JP2012207823A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2012207823A
JP2012207823A JP2011072323A JP2011072323A JP2012207823A JP 2012207823 A JP2012207823 A JP 2012207823A JP 2011072323 A JP2011072323 A JP 2011072323A JP 2011072323 A JP2011072323 A JP 2011072323A JP 2012207823 A JP2012207823 A JP 2012207823A
Authority
JP
Japan
Prior art keywords
refrigerant
path
heat exchanger
refrigerant path
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011072323A
Other languages
Japanese (ja)
Inventor
Keito Kawai
圭人 川合
Hideya Tamura
秀哉 田村
Takahiro Matsunaga
隆廣 松永
Takamitsu Kurokawa
貴光 黒川
Kuniko Hayashi
久仁子 林
Katsuki Arai
勝紀 荒井
Kotaro Toya
廣太郎 戸矢
Yasuhiro Oka
康弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011072323A priority Critical patent/JP2012207823A/en
Publication of JP2012207823A publication Critical patent/JP2012207823A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely discharge a sufficient amount of refrigerant from a refrigerant storage by a refrigerating cycle device.SOLUTION: When the high-temperature and high-pressure refrigerant is supplied through a first refrigerant path 18 to a first heat exchanger, the first heat exchanger functions as a condenser. The refrigerant is returned to a compressor through a third refrigerant path 26. When the first refrigerant path 18 is cut off, the high-temperature and high-pressure refrigerant is supplied to a second heat exchanger through a second refrigerant path 25. The second heat exchanger functions as the condenser. When too much refrigerant is present on a circulation path, the refrigerant is stored into the refrigerant storage 60 through the first refrigerant path 18. When the refrigerant is insufficient on the circulation path, the refrigerant is discharged to the third refrigerant path 26 from the refrigerant storage 60. In discharge of the refrigerant, the high-temperature and high-pressure refrigerant is introduced into the refrigerant storage 60 through the second refrigerant path 25. The refrigerant is pushed out from within the refrigerant storage 60 under the action of high pressure.

Description

本発明は例えば空気調和機に用いられる冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus used in, for example, an air conditioner.

特許文献1に記載されるように、複数台の室外機と複数台の室内機とを備える空気調和機は広く知られる。冷房運転時には室外熱交換器は凝縮器として機能する。室内熱交換器は蒸発器として機能する。冷媒は室内熱交換器から低圧ガス管に流れ込む。暖房運転時には高圧ガス管から室内熱交換器に高温高圧の冷媒が供給される。室内熱交換器で凝縮された冷媒は室外熱交換器に流れ込む。膨張弁と室外熱交換器とは液管で相互に接続される。   As described in Patent Document 1, an air conditioner including a plurality of outdoor units and a plurality of indoor units is widely known. During the cooling operation, the outdoor heat exchanger functions as a condenser. The indoor heat exchanger functions as an evaporator. The refrigerant flows from the indoor heat exchanger into the low pressure gas pipe. During heating operation, high-temperature and high-pressure refrigerant is supplied from the high-pressure gas pipe to the indoor heat exchanger. The refrigerant condensed in the indoor heat exchanger flows into the outdoor heat exchanger. The expansion valve and the outdoor heat exchanger are connected to each other by a liquid pipe.

こうした空気調和機では運転にあたって冷媒量の調整が要求される。冷媒量の調整にあたって液管と低圧ガス管との間に冷媒貯留器が挿入される。循環経路内に冷媒が過剰に存在すると判断されると、冷媒貯留器は冷媒を溜め込む。循環経路内で冷媒が不足すると、冷媒貯留器は循環経路に向けて冷媒を放出する。冷媒の貯留や放出は凝縮器の過冷却度に基づき制御される。   In such an air conditioner, adjustment of the refrigerant amount is required for operation. In adjusting the amount of refrigerant, a refrigerant reservoir is inserted between the liquid pipe and the low-pressure gas pipe. If it is determined that the refrigerant is excessively present in the circulation path, the refrigerant reservoir stores the refrigerant. When the refrigerant runs short in the circulation path, the refrigerant reservoir releases the refrigerant toward the circulation path. The storage and discharge of the refrigerant is controlled based on the degree of supercooling of the condenser.

特開2008−185295号公報JP 2008-185295 A

前述の冷媒貯留器では冷媒貯留器内の圧力と低圧ガス管の圧力との圧力差に基づき冷媒は冷媒貯留器から循環経路に放出される。その結果、例えば外気の温度が低下すると、冷媒貯留器と低圧ガス管との間で十分に圧力差が確保されないことがあり得る。こうした場合には低圧ガス管に十分な量の冷媒が供給されないおそれがある。   In the above-described refrigerant reservoir, the refrigerant is discharged from the refrigerant reservoir to the circulation path based on the pressure difference between the pressure in the refrigerant reservoir and the pressure in the low-pressure gas pipe. As a result, for example, when the temperature of the outside air decreases, a sufficient pressure difference may not be ensured between the refrigerant reservoir and the low pressure gas pipe. In such a case, a sufficient amount of refrigerant may not be supplied to the low pressure gas pipe.

本発明のいくつかの態様によれば、冷媒貯留器から確実に十分な量の冷媒を放出させることができる冷凍サイクル装置は提供されることができる。   According to some aspects of the present invention, a refrigeration cycle apparatus capable of reliably discharging a sufficient amount of refrigerant from a refrigerant reservoir can be provided.

冷凍サイクル装置の一形態は、圧縮機および第1の膨張弁の間に第1熱交換器を有し、流路切替手段により前記第1熱交換器への高温高圧の冷媒の供給および遮断が成される第1冷媒経路と、前記圧縮機および前記第1熱交換器の間で前記第1冷媒経路から第1分岐点で分岐して、前記流路切替手段による前記第1冷媒経路への高温高圧の冷媒の遮断時に前記圧縮機および前記第1の膨張弁の間で第2熱交換器に高温高圧の冷媒を供給する第2冷媒経路と、前記圧縮機および前記第2熱交換器の間で前記第2冷媒経路から第2分岐点で分岐して、前記第1冷媒経路から前記第1熱交換器に冷媒が供給される際に、前記第2熱交換器から流出する冷媒を前記圧縮機の吸い込み側に導く第3冷媒経路と、前記第1分岐点および前記第1熱交換器の間で前記第1冷媒経路から分岐して前記圧縮機の前記吸い込み側に接続され、前記第1冷媒経路の前記流路切替手段による前記遮断時に前記第1冷媒経路から冷媒の流入を許容し、前記第1冷媒経路から前記第1熱交換器に冷媒が供給される際に前記第1冷媒経路から前記第3冷媒経路への冷媒の流入を遮断する第4冷媒経路と、前記第1熱交換器および前記第1の膨張弁の間で前記第1冷媒経路から冷媒を獲得し、前記第3冷媒経路に向けて冷媒を放出する冷媒貯留器と、前記第2冷媒経路および前記冷媒貯留器に接続されて、前記第2冷媒経路から前記冷媒貯留器に高温高圧の冷媒を導入するバイパス経路とを備える。   One form of the refrigeration cycle apparatus has a first heat exchanger between the compressor and the first expansion valve, and supply and shutoff of high-temperature and high-pressure refrigerant to the first heat exchanger is performed by the flow path switching means. A first refrigerant path formed between the compressor and the first heat exchanger is branched from the first refrigerant path at a first branch point to the first refrigerant path by the flow path switching unit. A second refrigerant path for supplying a high-temperature and high-pressure refrigerant to the second heat exchanger between the compressor and the first expansion valve when the high-temperature and high-pressure refrigerant is shut off; and the compressor and the second heat exchanger The refrigerant flowing out from the second heat exchanger when the refrigerant is branched from the second refrigerant path at the second branch point and supplied from the first refrigerant path to the first heat exchanger. A third refrigerant path leading to the suction side of the compressor, the first branch point and the first heat exchanger Branching from the first refrigerant path and connected to the suction side of the compressor, allowing the refrigerant to flow in from the first refrigerant path when the flow path switching means of the first refrigerant path is shut off, A fourth refrigerant path that blocks inflow of refrigerant from the first refrigerant path to the third refrigerant path when the refrigerant is supplied from the first refrigerant path to the first heat exchanger; and the first heat exchanger. And a refrigerant reservoir that acquires refrigerant from the first refrigerant path between the first expansion valve and discharges the refrigerant toward the third refrigerant path, and is connected to the second refrigerant path and the refrigerant reservoir. And a bypass path for introducing a high-temperature and high-pressure refrigerant from the second refrigerant path to the refrigerant reservoir.

こうした冷凍サイクル装置では、第1冷媒経路から第1熱交換器に対して高温高圧の冷媒が供給されると、第1熱交換器は凝縮器として機能する。低圧の気液2相冷媒は第2熱交換器に供給される。こうして第2熱交換器では空気が冷却される。冷媒は第3冷媒経路から圧縮機に戻される。第1冷媒経路および第3冷媒経路で冷媒の循環経路は確立される。   In such a refrigeration cycle apparatus, when a high-temperature and high-pressure refrigerant is supplied from the first refrigerant path to the first heat exchanger, the first heat exchanger functions as a condenser. The low-pressure gas-liquid two-phase refrigerant is supplied to the second heat exchanger. Thus, air is cooled in the second heat exchanger. The refrigerant is returned to the compressor from the third refrigerant path. A refrigerant circulation path is established by the first refrigerant path and the third refrigerant path.

第1冷媒経路が遮断されると、第2冷媒経路から第2熱交換器に対して高温高圧の冷媒が供給される。第2熱交換器は凝縮器として機能する。第2熱交換器では空気が暖められる。冷媒は第1冷媒経路および第4冷媒経路から圧縮機に戻される。第2冷媒経路、第1冷媒経路および第4冷媒経路で冷媒の循環経路が確立される。こうして第1冷媒経路および第2冷媒経路の切り替えに応じて第2熱交換器では冷房および暖房は実現される。   When the first refrigerant path is blocked, the high-temperature and high-pressure refrigerant is supplied from the second refrigerant path to the second heat exchanger. The second heat exchanger functions as a condenser. In the second heat exchanger, the air is warmed. The refrigerant is returned to the compressor from the first refrigerant path and the fourth refrigerant path. A refrigerant circulation path is established by the second refrigerant path, the first refrigerant path, and the fourth refrigerant path. Thus, cooling and heating are realized in the second heat exchanger in accordance with the switching of the first refrigerant path and the second refrigerant path.

循環経路で冷媒が過剰に存在すると、第1冷媒経路から冷媒貯留器に冷媒が格納される。循環中の冷媒の量は減少する。その結果、熱交換器の液溜まりは解消される。熱交換能力の低下は回避される。循環経路で冷媒が不足すると、冷媒貯留器から第3冷媒経路に冷媒が放出される。循環経路では十分な量の冷媒が確保される。熱交換能力の低下は回避される。このとき、冷媒の放出にあたって冷媒貯留器には第2冷媒経路から高温高圧の冷媒が導入される。高圧が作用することから、冷媒は冷媒貯留器から押し出される。確実に冷媒貯留器から冷媒は放出されることができる。   If excessive refrigerant exists in the circulation path, the refrigerant is stored in the refrigerant reservoir from the first refrigerant path. The amount of refrigerant in circulation is reduced. As a result, the liquid pool in the heat exchanger is eliminated. A decrease in heat exchange capacity is avoided. When the refrigerant runs short in the circulation path, the refrigerant is released from the refrigerant reservoir to the third refrigerant path. A sufficient amount of refrigerant is secured in the circulation path. A decrease in heat exchange capacity is avoided. At this time, high-temperature and high-pressure refrigerant is introduced into the refrigerant reservoir from the second refrigerant path when the refrigerant is released. Since the high pressure acts, the refrigerant is pushed out of the refrigerant reservoir. The refrigerant can be reliably discharged from the refrigerant reservoir.

冷凍サイクル装置は、前記バイパス経路および前記第2分岐点の間で前記第2冷媒経路に組み込まれて、前記第1冷媒経路で冷媒の供給および遮断を切り替える第1開放弁と、前記圧縮機および前記第2分岐点の間で前記第3冷媒経路に組み込まれて、前記第3冷媒経路で冷媒の流通および遮断を切り替える第2開放弁とを備えてもよい。こうした開放弁によれば、第1冷媒経路から高温高圧の冷媒が第1熱交換器に供給される際でも、第1冷媒経路の遮断時に第2冷媒経路から第2熱交換器に高温高圧の冷媒が供給される際でも、バイパス経路には常に高温高圧の冷媒は供給されることができる。確実に冷媒貯留器から冷媒は放出されることができる。   The refrigeration cycle apparatus includes a first release valve that is incorporated in the second refrigerant path between the bypass path and the second branch point, and switches between supply and shutoff of the refrigerant in the first refrigerant path, the compressor, A second opening valve may be provided that is incorporated in the third refrigerant path between the second branch points and that switches between the circulation and blocking of the refrigerant in the third refrigerant path. According to such an open valve, even when the high-temperature and high-pressure refrigerant is supplied from the first refrigerant path to the first heat exchanger, the high-temperature and high-pressure is supplied from the second refrigerant path to the second heat exchanger when the first refrigerant path is interrupted. Even when the refrigerant is supplied, the high-temperature and high-pressure refrigerant can always be supplied to the bypass path. The refrigerant can be reliably discharged from the refrigerant reservoir.

冷凍サイクル装置は、1つまたは複数の第2の膨張弁と、前記第1熱交換器および前記第1の膨張弁の間で前記第1冷媒経路から分岐し、個々の前記第2の膨張弁に個別に接続される第1並列冷媒経路と、前記第1分岐点および前記第2分岐点の間で前記第2冷媒経路から分岐し、個々の前記第2の膨張弁に個別に接続される第2並列冷媒経路と、個々の前記第2並列冷媒経路に個別に組み込まれる並列第2熱交換器と、前記バイパス経路および前記並列第2熱交換器の間で前記第2並列冷媒経路から分岐し、前記第3冷媒経路に接続される第3並列冷媒経路とをさらに備えてもよい。   The refrigeration cycle apparatus branches from the first refrigerant path between one or a plurality of second expansion valves, the first heat exchanger, and the first expansion valve, and each of the second expansion valves A first parallel refrigerant path individually connected to the first branch point and the second refrigerant path between the first branch point and the second branch point, and individually connected to each of the second expansion valves. Branch from the second parallel refrigerant path between the second parallel refrigerant path, the parallel second heat exchanger individually incorporated in each of the second parallel refrigerant paths, and the bypass path and the parallel second heat exchanger And a third parallel refrigerant path connected to the third refrigerant path.

こうした冷凍サイクル装置では第2熱交換器に並列に1つまたは複数の並列第2熱交換器が組み込まれる。個々の第2熱交換器および並列第2熱交換器で冷房および暖房は実現されることができる。しかも、第2熱交換器で第2冷媒経路および第3冷媒経路が切り替えられ、個々の並列第2熱交換器ごとに並列第2冷媒経路および並列第3冷媒経路が切り替えられると、第2熱交換器および並列第2熱交換器で冷房および暖房は混在することができる。   In such a refrigeration cycle apparatus, one or more parallel second heat exchangers are incorporated in parallel with the second heat exchanger. Cooling and heating can be realized with individual second heat exchangers and parallel second heat exchangers. In addition, when the second refrigerant path and the third refrigerant path are switched in the second heat exchanger, and the parallel second refrigerant path and the parallel third refrigerant path are switched for each parallel second heat exchanger, the second heat Cooling and heating can be mixed in the exchanger and the parallel second heat exchanger.

冷凍サイクル装置は、前記第2熱交換器および前記並列第2熱交換器のうち少なくとも1台が蒸発器として機能する際に、前記蒸発器の過熱度が所定値以上であると前記冷媒貯留器から前記第3冷媒経路に向けて冷媒を放出する制御信号を生成する制御回路をさらに備えてもよい。   In the refrigeration cycle apparatus, when at least one of the second heat exchanger and the parallel second heat exchanger functions as an evaporator, if the superheat degree of the evaporator is a predetermined value or more, the refrigerant reservoir A control circuit for generating a control signal for releasing the refrigerant from the refrigerant toward the third refrigerant path may be further provided.

こうして冷媒貯留器から冷媒が放出されると、当該蒸発器で冷媒の不足は解消される。その結果、蒸発器の熱交換能力は高められることができる。蒸発器では空気は効率的に冷却される。蒸発器で冷房が実現される際に蒸発器で過熱度が所定値以上であると、当該蒸発器の熱交換能力は低下してしまう。   When the refrigerant is released from the refrigerant reservoir in this way, the shortage of refrigerant is eliminated in the evaporator. As a result, the heat exchange capacity of the evaporator can be increased. In the evaporator, the air is cooled efficiently. When cooling is realized by an evaporator, if the degree of superheat is not less than a predetermined value in the evaporator, the heat exchange capability of the evaporator will be reduced.

冷凍サイクル装置は、全ての前記第2熱交換器および前記並列第2熱交換器が凝縮器として機能する際に、前記第1熱交換器の過熱度が所定値以上であると前記冷媒貯留器から前記第3冷媒経路に向けて冷媒を放出する制御信号を生成する制御回路をさらに備えてもよい。   In the refrigeration cycle apparatus, when all the second heat exchangers and the parallel second heat exchangers function as condensers, the refrigerant reservoir is such that the degree of superheat of the first heat exchanger is a predetermined value or more. A control circuit for generating a control signal for releasing the refrigerant from the refrigerant toward the third refrigerant path may be further provided.

こうして冷媒貯留器から冷媒が放出されると、第1熱交換器で冷媒の不足は解消される。その結果、第1熱交換器の熱交換能力は高められることができる。第1熱交換器で大きな熱エネルギが冷媒に付与されることができる。第2熱交換器や並列第2熱交換器で効率的に熱エネルギは放出されることができる。第2熱交換器や並列第2熱交換器で効率的な暖房は実現されることができる。   When the refrigerant is released from the refrigerant reservoir in this manner, the shortage of refrigerant is eliminated in the first heat exchanger. As a result, the heat exchange capacity of the first heat exchanger can be increased. Large heat energy can be imparted to the refrigerant in the first heat exchanger. Thermal energy can be efficiently released by the second heat exchanger or the parallel second heat exchanger. Efficient heating can be realized with the second heat exchanger or the parallel second heat exchanger.

以上のように本発明によれば、冷媒貯留器から確実に十分な量の冷媒を放出させることができる冷凍サイクル装置は提供される。   As described above, according to the present invention, a refrigeration cycle apparatus capable of reliably discharging a sufficient amount of refrigerant from a refrigerant reservoir is provided.

本発明の第1実施形態に係る冷凍サイクル装置すなわち空気調和機の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of a refrigeration cycle apparatus, that is, an air conditioner according to a first embodiment of the present invention. 冷媒貯留ユニットの構成を概略的に示すブロック図である。It is a block diagram which shows the structure of a refrigerant | coolant storage unit roughly. 空気調和機の制御系を概略的に示すブロック図である。It is a block diagram which shows roughly the control system of an air conditioner. 図1に対応し、全ての室内機で冷房運転が実施される際に冷媒の流れを示すブロック図である。FIG. 2 is a block diagram corresponding to FIG. 1 and showing a refrigerant flow when cooling operation is performed in all indoor units. 図1に対応し、全ての室内機で暖房運転が実施される際に冷媒の流れを示すブロック図である。FIG. 2 is a block diagram illustrating a refrigerant flow when heating operation is performed in all indoor units corresponding to FIG. 1. 図1に対応し、室外機が凝縮器として機能する際に冷暖同時運転を実現する冷媒の流れを示すブロック図である。It is a block diagram which shows the flow of the refrigerant | coolant which implement | achieves cooling and heating simultaneous operation, when an outdoor unit functions as a condenser corresponding to FIG. 図1に対応し、室外機が蒸発器として機能する際に冷暖同時運転を実現する冷媒の流れを示すブロック図である。It is a block diagram which shows the flow of the refrigerant | coolant which implement | achieves cooling and heating simultaneous operation, when an outdoor unit functions as an evaporator corresponding to FIG. 冷媒貯留ユニットの制御方法を概略的に示すフローチャートである。It is a flowchart which shows the control method of a refrigerant | coolant storage unit roughly. 第1放出格納制御を概略的に示すフローチャートである。It is a flowchart which shows the 1st discharge | release storage control roughly. 第2放出格納制御を概略的に示すフローチャートである。It is a flowchart which shows the 2nd discharge storage control roughly. 第3放出格納制御を概略的に示すフローチャートである。It is a flowchart which shows the 3rd discharge | release storage control roughly. 本発明の第1実施形態に係る冷凍サイクル装置すなわち空気調和機の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of a refrigeration cycle apparatus, that is, an air conditioner according to a first embodiment of the present invention.

以下、添付図面を参照しつつ本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第1実施形態に係る冷凍サイクル装置すなわち空気調和機11の構成を概略的に示す。空気調和機11は1台の室外機12と2台の室内機13a、13bとを備える。室内機13a、13bは室外機12に相互に並列に接続される。室内機13a、13bは1室内に設置されてもよく複数室内に個別に設置されてもよい。この空気調和機11では、室内機13a、13bごとに個別に運転および休止が選択されることができる。同時に、この空気調和機11では、後述されるように、冷房運転中の室内機13a(13b)と暖房運転中の室内機13b(13a)とが混在することができる。その他、図1から明らかなように、空気調和機11は2台以上の室内機13a、13b…を備えてもよい。室内機13a、13b…は同様に室外機12に相互に並列に接続されればよい。   FIG. 1 schematically shows the configuration of a refrigeration cycle apparatus, that is, an air conditioner 11 according to a first embodiment of the present invention. The air conditioner 11 includes one outdoor unit 12 and two indoor units 13a and 13b. The indoor units 13a and 13b are connected to the outdoor unit 12 in parallel with each other. The indoor units 13a and 13b may be installed in one room or may be installed individually in a plurality of rooms. In the air conditioner 11, operation and pause can be selected individually for each of the indoor units 13a and 13b. At the same time, in the air conditioner 11, the indoor unit 13a (13b) in the cooling operation and the indoor unit 13b (13a) in the heating operation can coexist as described later. 1, the air conditioner 11 may include two or more indoor units 13a, 13b,. Similarly, the indoor units 13a, 13b, etc. may be connected to the outdoor unit 12 in parallel.

空気調和機11は第1熱交換器すなわち室外熱交換器14を備える。室外熱交換器14は室外機12に組み込まれる。空気調和機11は複数台の室内熱交換器15a、15bを備える。ここでは、便宜上、1台目の室内熱交換器15aは第2熱交換器とし、2台目の室内熱交換器15bは1台目の並列第2熱交換器とする。空気調和機11には複数台の並列第2熱交換器すなわち3台目以降の室内熱交換器が組み込まれてもよい。全ての室内熱交換器15a、15bは同一の構造を有すればよい。室内熱交換器15a、15bは個別に個々の室内機13a、13bに組み込まれる。室外熱交換器14および室内熱交換器15a、15bは、通過する冷媒と周囲の空気との間で熱エネルギの交換を実現する。   The air conditioner 11 includes a first heat exchanger, that is, an outdoor heat exchanger 14. The outdoor heat exchanger 14 is incorporated in the outdoor unit 12. The air conditioner 11 includes a plurality of indoor heat exchangers 15a and 15b. Here, for convenience, the first indoor heat exchanger 15a is a second heat exchanger, and the second indoor heat exchanger 15b is a first parallel second heat exchanger. The air conditioner 11 may include a plurality of parallel second heat exchangers, that is, third and subsequent indoor heat exchangers. All the indoor heat exchangers 15a and 15b should just have the same structure. The indoor heat exchangers 15a and 15b are individually incorporated into the individual indoor units 13a and 13b. The outdoor heat exchanger 14 and the indoor heat exchangers 15a and 15b realize exchange of heat energy between the refrigerant passing therethrough and ambient air.

空気調和機11は圧縮機16を備える。圧縮機16は室外機12に組み込まれる。圧縮機16はガス冷媒を圧縮する。圧縮機16から高圧のガス冷媒は吐出される。   The air conditioner 11 includes a compressor 16. The compressor 16 is incorporated in the outdoor unit 12. The compressor 16 compresses the gas refrigerant. A high-pressure gas refrigerant is discharged from the compressor 16.

空気調和機11は個々の室内熱交換器15a、15bごとに膨張弁17a、17bを備える。膨張弁17a、17bは個々の室内機13a、13bに個別に組み込まれる。圧縮機16と膨張弁17aとの間には第1冷媒経路18が形成される。第1冷媒経路18には室外熱交換器14が組み込まれる。   The air conditioner 11 includes expansion valves 17a and 17b for each of the indoor heat exchangers 15a and 15b. The expansion valves 17a and 17b are individually incorporated in the individual indoor units 13a and 13b. A first refrigerant path 18 is formed between the compressor 16 and the expansion valve 17a. The outdoor heat exchanger 14 is incorporated in the first refrigerant path 18.

ここでは、第1冷媒経路18から第1中間経路19が分岐する。第1冷媒経路18と第1中間経路19との分岐点21は室外熱交換器14と膨張弁17aとの間に配置される。第1中間経路19には第1並列冷媒経路22が接続される。第1並列冷媒経路22は分岐点23で第1中間経路19から分岐する。第1並列冷媒経路22は膨張弁17bに接続される。こうして膨張弁17bは膨張弁17aに並列に室外熱交換器14に接続される。空気調和機11に室内機すなわち膨張弁が追加されるたびに、膨張弁はさらなる第1並列冷媒経路(図示されず)で第1中間経路19に個別に接続されればよい。こうして第1並列冷媒経路は第1冷媒経路18から分岐し個々の膨張弁に個別に接続される。   Here, the first intermediate path 19 branches from the first refrigerant path 18. A branch point 21 between the first refrigerant path 18 and the first intermediate path 19 is disposed between the outdoor heat exchanger 14 and the expansion valve 17a. A first parallel refrigerant path 22 is connected to the first intermediate path 19. The first parallel refrigerant path 22 branches from the first intermediate path 19 at a branch point 23. The first parallel refrigerant path 22 is connected to the expansion valve 17b. Thus, the expansion valve 17b is connected to the outdoor heat exchanger 14 in parallel with the expansion valve 17a. Each time an indoor unit or an expansion valve is added to the air conditioner 11, the expansion valve may be individually connected to the first intermediate path 19 with a further first parallel refrigerant path (not shown). Thus, the first parallel refrigerant path branches off from the first refrigerant path 18 and is individually connected to each expansion valve.

圧縮機16と室外熱交換器14との間で第1冷媒経路18から分岐点24で第2冷媒経路25が分岐する。分岐した第2冷媒経路25は膨張弁17aに接続される。第2冷媒経路25に室内熱交換器15aが組み込まれる。   A second refrigerant path 25 branches from the first refrigerant path 18 at the branch point 24 between the compressor 16 and the outdoor heat exchanger 14. The branched second refrigerant path 25 is connected to the expansion valve 17a. An indoor heat exchanger 15 a is incorporated in the second refrigerant path 25.

第2冷媒経路25から第3冷媒経路26が分岐する。第2冷媒経路25と第3冷媒経路26との分岐点27は圧縮機16と室内熱交換器15aとの間、すなわち、第1冷媒経路18および第2冷媒経路25の分岐点24と室内熱交換器15aとの間に配置される。第3冷媒経路26は圧縮機16の吸い込み側に接続される。   The third refrigerant path 26 branches from the second refrigerant path 25. The branch point 27 between the second refrigerant path 25 and the third refrigerant path 26 is between the compressor 16 and the indoor heat exchanger 15a, that is, the branch point 24 between the first refrigerant path 18 and the second refrigerant path 25 and the room heat. It arrange | positions between the exchangers 15a. The third refrigerant path 26 is connected to the suction side of the compressor 16.

ここでは、第2冷媒経路25から第2中間経路28が分岐する。第2冷媒経路25と第2中間経路28との分岐点29は第1冷媒経路18および第2冷媒経路25の分岐点24と第2冷媒経路25および第3冷媒経路26の分岐点27との間に配置される。第2中間経路28には第2並列冷媒経路31が接続される。第2並列冷媒経路31は分岐点32で第2中間経路28から分岐する。第2並列冷媒経路31は膨張弁17bに接続される。第2並列冷媒経路31に室内熱交換器15bが組み込まれる。空気調和機11に室内機すなわち膨張弁が追加されるたびに、膨張弁はさらなる第2並列冷媒経路(図示されず)で第2中間経路28に個別に接続されればよい。こうして第2並列冷媒経路31は個々に第2冷媒経路25から分岐し個々の膨張弁に個別に接続される。   Here, the second intermediate path 28 branches from the second refrigerant path 25. A branch point 29 between the second refrigerant path 25 and the second intermediate path 28 is defined as a branch point 24 between the first refrigerant path 18 and the second refrigerant path 25 and a branch point 27 between the second refrigerant path 25 and the third refrigerant path 26. Arranged between. A second parallel refrigerant path 31 is connected to the second intermediate path 28. The second parallel refrigerant path 31 branches from the second intermediate path 28 at a branch point 32. The second parallel refrigerant path 31 is connected to the expansion valve 17b. The indoor heat exchanger 15 b is incorporated in the second parallel refrigerant path 31. Each time an indoor unit or expansion valve is added to the air conditioner 11, the expansion valve may be individually connected to the second intermediate path 28 by a further second parallel refrigerant path (not shown). Thus, the second parallel refrigerant paths 31 are individually branched from the second refrigerant path 25 and individually connected to the individual expansion valves.

第3冷媒経路26から第3中間経路33が分岐する。第3冷媒経路26と第3中間経路33との分岐点34は第2冷媒経路25および第3冷媒経路26の分岐点27と圧縮機16との間に配置される。第3中間経路33には第3並列冷媒経路35が接続される。第3並列冷媒経路35は分岐点36で第3中間経路33から分岐する。分岐する第3並列冷媒経路35は室内熱交換器15bと分岐点32との間で第2並列冷媒経路31の分岐点37に接続される。空気調和機11に室内機すなわち膨張弁が追加されるたびに、さらなる第3並列冷媒経路(図示されず)は第2並列冷媒経路と第3中間経路33とを個別に接続すればよい。こうして第3並列冷媒経路35…は個々に第2並列冷媒経路31…から分岐し第3冷媒経路26に接続される。   A third intermediate path 33 branches from the third refrigerant path 26. A branch point 34 between the third refrigerant path 26 and the third intermediate path 33 is disposed between the second refrigerant path 25 and the branch point 27 of the third refrigerant path 26 and the compressor 16. A third parallel refrigerant path 35 is connected to the third intermediate path 33. The third parallel refrigerant path 35 branches from the third intermediate path 33 at a branch point 36. The branched third parallel refrigerant path 35 is connected to the branch point 37 of the second parallel refrigerant path 31 between the indoor heat exchanger 15 b and the branch point 32. Each time an indoor unit, that is, an expansion valve is added to the air conditioner 11, a further third parallel refrigerant path (not shown) may be connected to the second parallel refrigerant path and the third intermediate path 33 individually. Thus, the third parallel refrigerant paths 35 are individually branched from the second parallel refrigerant paths 31 and connected to the third refrigerant path 26.

第2冷媒経路25および第3冷媒経路26の分岐点27と第2冷媒経路25および第2中間経路28の分岐点29との間で第2冷媒経路25には暖房時開放弁38が組み込まれる。暖房時開放弁38は例えば電磁開閉弁から構成されればよい。暖房時開放弁38は開弁時に第2冷媒経路25での冷媒の流通を許容する一方で閉弁時には第2冷媒経路25での冷媒の流通を遮断する。   A heating release valve 38 is incorporated in the second refrigerant path 25 between the branch point 27 of the second refrigerant path 25 and the third refrigerant path 26 and the branch point 29 of the second refrigerant path 25 and the second intermediate path 28. . The heating open valve 38 may be constituted by, for example, an electromagnetic open / close valve. The heating opening valve 38 allows the refrigerant to flow through the second refrigerant path 25 when the valve is opened, while blocking the refrigerant flowing through the second refrigerant path 25 when the valve is closed.

同様に、第2中間経路28および第2並列冷媒経路31の分岐点32と第2並列冷媒経路31および第3並列冷媒経路35の分岐点37との間で第2並列冷媒経路31には暖房時開放弁39が組み込まれる。暖房時開放弁39は同様に例えば電磁開閉弁から構成されればよい。暖房時開放弁39は開弁時に第2並列冷媒経路31での冷媒の流通を許容する一方で閉弁時には第2並列冷媒経路31での冷媒の流通を遮断する。暖房時開放弁39は、空気調和機11に室内機すなわち膨張弁が追加されるたびに、膨張弁ごとにさらなる第2並列冷媒経路に組み込まれればよい。   Similarly, the second parallel refrigerant path 31 is heated between the branch point 32 of the second intermediate path 28 and the second parallel refrigerant path 31 and the branch point 37 of the second parallel refrigerant path 31 and the third parallel refrigerant path 35. An hour opening valve 39 is incorporated. Similarly, the heating release valve 39 may be constituted by an electromagnetic on-off valve, for example. The heating open valve 39 allows the refrigerant to flow through the second parallel refrigerant path 31 when the valve is opened, while blocking the refrigerant flow through the second parallel refrigerant path 31 when the valve is closed. The heating release valve 39 may be incorporated into the second parallel refrigerant path for each expansion valve each time an indoor unit, that is, an expansion valve, is added to the air conditioner 11.

第2冷媒経路25および第3冷媒経路26の分岐点27と第3冷媒経路26および第3中間経路33の分岐点34との間で第3冷媒経路26には冷房時開放弁41が組み込まれる。冷房時開放弁41は例えば電磁開閉弁から構成されればよい。冷房時開放弁41は開弁時に第3冷媒経路26での冷媒の流通を許容する一方で閉弁時には第3冷媒経路26での冷媒の流通を遮断する。ここで、分岐点27、暖房時開放弁38および冷房時開放弁41は室内機13aに組み込まれてもよく分岐ユニットとして室外機12および室内機13a、13bとは別体に構成されてもよい。   A cooling release valve 41 is incorporated in the third refrigerant path 26 between the branch point 27 of the second refrigerant path 25 and the third refrigerant path 26 and the branch point 34 of the third refrigerant path 26 and the third intermediate path 33. . The cooling opening valve 41 may be constituted by, for example, an electromagnetic opening / closing valve. The cooling opening valve 41 allows the refrigerant to flow through the third refrigerant path 26 when the valve is opened, and blocks the refrigerant flow through the third refrigerant path 26 when the valve is closed. Here, the branch point 27, the heating opening valve 38, and the cooling opening valve 41 may be incorporated in the indoor unit 13a, and may be configured separately from the outdoor unit 12 and the indoor units 13a, 13b as branch units. .

同様に、第2並列冷媒経路31および第3並列冷媒経路35の分岐点37と第3中間経路33および第3並列冷媒経路35の分岐点36との間で第3並列冷媒経路35には冷房時開放弁42が組み込まれる。冷房時開放弁42は例えば電磁開閉弁から構成されればよい。冷房時開放弁42は開弁時に第3並列冷媒経路35での冷媒の流通を許容する一方で閉弁時には第3並列冷媒経路35での冷媒の流通を遮断する。冷房時開放弁42は、空気調和機11に室内機すなわち膨張弁が追加されるたびに、膨張弁ごとにさらなる第3並列冷媒経路に組み込まれればよい。ここで、分岐点37、暖房時開放弁39および冷房時開放弁42は室内機13bに組み込まれてもよく分岐ユニットとして室外機12および室内機13a、13bとは別体に構成されてもよい。   Similarly, the third parallel refrigerant path 35 is cooled between the branch point 37 of the second parallel refrigerant path 31 and the third parallel refrigerant path 35 and the branch point 36 of the third intermediate path 33 and the third parallel refrigerant path 35. An hour open valve 42 is incorporated. The cooling opening valve 42 may be constituted by an electromagnetic opening / closing valve, for example. The cooling open valve 42 allows the refrigerant to flow through the third parallel refrigerant path 35 when the valve is opened, while blocking the refrigerant flow through the third parallel refrigerant path 35 when the valve is closed. The cooling-time release valve 42 may be incorporated into a further third parallel refrigerant path for each expansion valve every time an indoor unit, that is, an expansion valve is added to the air conditioner 11. Here, the branch point 37, the heating opening valve 39, and the cooling opening valve 42 may be incorporated in the indoor unit 13b, and may be configured separately from the outdoor unit 12 and the indoor units 13a, 13b as branch units. .

第1冷媒経路18および第2冷媒経路25の分岐点24と室外熱交換器14との間で第1冷媒経路18には四方弁43が挿入される。四方弁43は第1位置と第2位置との間で切り替えられる。第1位置の四方弁43は、第1口44aおよび第2口44bを相互に接続する経路と、第3口44cおよび第4口44dを相互に接続する経路とを確立する。第2位置の四方弁43は、第1口44aおよび第4口44dを相互に接続する経路と、第2口44bおよび第3口44cを相互に接続する経路とを確立する。   A four-way valve 43 is inserted into the first refrigerant path 18 between the branch point 24 of the first refrigerant path 18 and the second refrigerant path 25 and the outdoor heat exchanger 14. The four-way valve 43 is switched between the first position and the second position. The four-way valve 43 in the first position establishes a path that connects the first port 44a and the second port 44b to each other and a path that connects the third port 44c and the fourth port 44d to each other. The four-way valve 43 in the second position establishes a path that connects the first port 44a and the fourth port 44d to each other and a path that connects the second port 44b and the third port 44c to each other.

第3口44cおよび第4口44dと第3冷媒経路26との間には第4冷媒経路45が形成される。第4冷媒経路45は第1流通路45aおよび第2流通路45bを備える。第1流通路45aは四方弁43の第3口44cと第3冷媒経路26とを接続する。第2流通路45bは四方弁43の第4口44dと第3冷媒経路26あるいは第1流通路45aとを接続する。第2流通路45bには例えばキャピラリチューブ46が挿入される。キャピラリチューブ46は冷媒の流通を制限する。   A fourth refrigerant path 45 is formed between the third port 44 c and the fourth port 44 d and the third refrigerant path 26. The fourth refrigerant path 45 includes a first flow path 45a and a second flow path 45b. The first flow passage 45 a connects the third port 44 c of the four-way valve 43 and the third refrigerant path 26. The second flow path 45b connects the fourth port 44d of the four-way valve 43 and the third refrigerant path 26 or the first flow path 45a. For example, a capillary tube 46 is inserted into the second flow passage 45b. The capillary tube 46 restricts the circulation of the refrigerant.

第4冷媒経路45と圧縮機16との間で第3冷媒経路26にはアキュムレータ47が組み込まれる。アキュムレータ47はガス冷媒と液冷媒とを分離し圧縮機16への液戻りを防止することができる。   An accumulator 47 is incorporated in the third refrigerant path 26 between the fourth refrigerant path 45 and the compressor 16. The accumulator 47 can separate the gas refrigerant and the liquid refrigerant and prevent the liquid from returning to the compressor 16.

第1冷媒経路18にはさらに室外機膨張弁48が組み込まれる。室外機膨張弁48は室外熱交換器14と分岐点21との間に配置される。室外機膨張弁48の開度に応じて冷媒の流通量は調整される。   An outdoor unit expansion valve 48 is further incorporated in the first refrigerant path 18. The outdoor unit expansion valve 48 is disposed between the outdoor heat exchanger 14 and the branch point 21. The flow rate of the refrigerant is adjusted according to the opening degree of the outdoor unit expansion valve 48.

圧縮機16には2つの圧力センサ49、51が関連づけられる。1つ目の圧力センサ49は圧縮機16の吐出側の冷媒圧力を測定する。圧力センサ49は例えば第1冷媒経路18および第2冷媒経路25の分岐点24と第2冷媒経路25および第2中間経路28の分岐点29との間で第2冷媒経路25に取り付けられる。圧力センサ49は第2冷媒経路25内の冷媒の圧力を測定する。2つ目の圧力センサ51は圧縮機16の吸入側の冷媒圧力を測定する。圧力センサ51は例えば第4冷媒経路45と圧縮機16との間で第3冷媒経路26に取り付けられる。圧力センサ51は第3冷媒経路26内の冷媒の圧力を測定する。   Two pressure sensors 49 and 51 are associated with the compressor 16. The first pressure sensor 49 measures the refrigerant pressure on the discharge side of the compressor 16. For example, the pressure sensor 49 is attached to the second refrigerant path 25 between the branch point 24 of the first refrigerant path 18 and the second refrigerant path 25 and the branch point 29 of the second refrigerant path 25 and the second intermediate path 28. The pressure sensor 49 measures the pressure of the refrigerant in the second refrigerant path 25. The second pressure sensor 51 measures the refrigerant pressure on the suction side of the compressor 16. For example, the pressure sensor 51 is attached to the third refrigerant path 26 between the fourth refrigerant path 45 and the compressor 16. The pressure sensor 51 measures the pressure of the refrigerant in the third refrigerant path 26.

室外熱交換器14には3つの温度センサ52、53、54が関連づけられる。1つ目の温度センサ52は室外熱交換器14が凝縮器として機能する際に室外熱交換器14の出口で冷媒の温度を測定する。すなわち、温度センサ52は室外熱交換器14の出口で第1冷媒経路18に取り付けられる。2つ目の温度センサ53は室外熱交換器14が凝縮器として機能する際に室外機膨張弁48の下流で冷媒の温度を測定する。すなわち、温度センサ53は室外機膨張弁48の下流で第1冷媒経路18に取り付けられる。さらに、3つ目の温度センサ54は室外熱交換器14が蒸発器として機能する際に室外熱交換器14の出口で冷媒の温度を測定する。すなわち、温度センサ54は室外熱交換器14の出口で第1冷媒経路18に取り付けられる。   Three temperature sensors 52, 53, 54 are associated with the outdoor heat exchanger 14. The first temperature sensor 52 measures the temperature of the refrigerant at the outlet of the outdoor heat exchanger 14 when the outdoor heat exchanger 14 functions as a condenser. That is, the temperature sensor 52 is attached to the first refrigerant path 18 at the outlet of the outdoor heat exchanger 14. The second temperature sensor 53 measures the temperature of the refrigerant downstream of the outdoor unit expansion valve 48 when the outdoor heat exchanger 14 functions as a condenser. That is, the temperature sensor 53 is attached to the first refrigerant path 18 downstream of the outdoor unit expansion valve 48. Further, the third temperature sensor 54 measures the temperature of the refrigerant at the outlet of the outdoor heat exchanger 14 when the outdoor heat exchanger 14 functions as an evaporator. That is, the temperature sensor 54 is attached to the first refrigerant path 18 at the outlet of the outdoor heat exchanger 14.

室内熱交換器15aには2つの温度センサ55、56が関連づけられる。1つ目の温度センサ55は室内熱交換器15aが凝縮器として機能する際に室内熱交換器15aの出口で冷媒の温度を測定する。すなわち、温度センサ55は室内熱交換器15aの出口で第2冷媒経路25に取り付けられる。2つ目の温度センサ56は室内熱交換器15aが蒸発器として機能する際に室内熱交換器15aの出口で冷媒の温度を測定する。すなわち、温度センサ56は室内熱交換器15aの出口で第2冷媒経路25に取り付けられる。   Two temperature sensors 55 and 56 are associated with the indoor heat exchanger 15a. The first temperature sensor 55 measures the refrigerant temperature at the outlet of the indoor heat exchanger 15a when the indoor heat exchanger 15a functions as a condenser. That is, the temperature sensor 55 is attached to the second refrigerant path 25 at the outlet of the indoor heat exchanger 15a. The second temperature sensor 56 measures the temperature of the refrigerant at the outlet of the indoor heat exchanger 15a when the indoor heat exchanger 15a functions as an evaporator. That is, the temperature sensor 56 is attached to the second refrigerant path 25 at the outlet of the indoor heat exchanger 15a.

同様に、室内熱交換器15bには2つの温度センサ57、58が関連づけられる。1つ目の温度センサ57は室内熱交換器15bが凝縮器として機能する際に室内熱交換器15bの出口で冷媒の温度を測定する。すなわち、温度センサ57は室内熱交換器15bの出口で第2並列冷媒経路31に取り付けられる。2つ目の温度センサ58は室内熱交換器15bが蒸発器として機能する際に室内熱交換器15bの出口で冷媒の温度を測定する。すなわち、温度センサ58は室内熱交換器15bの出口で第2並列冷媒経路31に取り付けられる。温度センサ57、58は、空気調和機11に室内機すなわち室内熱交換器が追加されるたびに、室内熱交換器ごとにさらなる第2並列冷媒経路に取り付けられればよい。   Similarly, two temperature sensors 57 and 58 are associated with the indoor heat exchanger 15b. The first temperature sensor 57 measures the temperature of the refrigerant at the outlet of the indoor heat exchanger 15b when the indoor heat exchanger 15b functions as a condenser. That is, the temperature sensor 57 is attached to the second parallel refrigerant path 31 at the outlet of the indoor heat exchanger 15b. The second temperature sensor 58 measures the temperature of the refrigerant at the outlet of the indoor heat exchanger 15b when the indoor heat exchanger 15b functions as an evaporator. That is, the temperature sensor 58 is attached to the second parallel refrigerant path 31 at the outlet of the indoor heat exchanger 15b. The temperature sensors 57 and 58 should just be attached to the further 2nd parallel refrigerant path for every indoor heat exchanger, whenever an indoor unit, ie, an indoor heat exchanger, is added to the air conditioner 11. FIG.

空気調和機11は冷媒貯留ユニット59を備える。冷媒貯留ユニット59は室外機12に組み込まれる。図2に示されるように、冷媒貯留ユニット59は冷媒貯留器60を備える。冷媒貯留器60内には貯留空間61が形成される。貯留空間61では重力の働きでガス冷媒と液冷媒とが分離する。液冷媒は下方に溜まる。   The air conditioner 11 includes a refrigerant storage unit 59. The refrigerant storage unit 59 is incorporated in the outdoor unit 12. As shown in FIG. 2, the refrigerant storage unit 59 includes a refrigerant reservoir 60. A storage space 61 is formed in the refrigerant reservoir 60. In the storage space 61, the gas refrigerant and the liquid refrigerant are separated by the action of gravity. Liquid refrigerant accumulates downward.

冷媒貯留器60は流入経路62で第1冷媒経路18に接続される。流入経路62は第1冷媒経路18および第1中間経路19の分岐点21と室外熱交換器14との間で第1冷媒経路18に接続される。流入経路62にはストレーナ63、第1開閉弁64と逆止弁65とが組み込まれる。ストレーナ63は冷媒中の異物を除去する。第1開閉弁64には例えば電磁開閉弁が用いられればよい。第1開閉弁64が開弁すると、第1冷媒経路18の圧力と貯留空間61内の圧力との圧力差に応じて第1冷媒経路18から貯留空間61に液冷媒が流れ込む。逆止弁65は貯留空間61から第1冷媒経路18に向かって冷媒の逆流を阻止する。   The refrigerant reservoir 60 is connected to the first refrigerant path 18 by an inflow path 62. The inflow path 62 is connected to the first refrigerant path 18 between the branch point 21 of the first refrigerant path 18 and the first intermediate path 19 and the outdoor heat exchanger 14. A strainer 63, a first on-off valve 64, and a check valve 65 are incorporated in the inflow path 62. The strainer 63 removes foreign matters in the refrigerant. For example, an electromagnetic on-off valve may be used as the first on-off valve 64. When the first on-off valve 64 is opened, the liquid refrigerant flows from the first refrigerant path 18 into the storage space 61 according to the pressure difference between the pressure in the first refrigerant path 18 and the pressure in the storage space 61. The check valve 65 prevents the refrigerant from flowing backward from the storage space 61 toward the first refrigerant path 18.

冷媒貯留器60は流出経路66で第3冷媒経路26に接続される。流出経路66は第3冷媒経路26および第3中間経路33の分岐点34と圧縮機16との間で第3冷媒経路26に接続される。流出経路66にはストレーナ67、第2開閉弁68および減圧器69が組み込まれる。第2開閉弁68には例えば電磁開閉弁が用いられる。減圧器69には例えばキャピラリチューブが用いられればよい。第2開閉弁68が開弁すると、貯留空間61内の圧力と第3冷媒経路26の圧力との圧力差に応じて貯留空間61から第3冷媒経路26に冷媒が流れ出す。このとき、減圧器69の働きで冷媒はガス化する。ガス冷媒が第3冷媒経路26に導入される。ストレーナ67は冷媒中の異物を除去する。   The refrigerant reservoir 60 is connected to the third refrigerant path 26 by an outflow path 66. The outflow path 66 is connected to the third refrigerant path 26 between the branch point 34 of the third refrigerant path 26 and the third intermediate path 33 and the compressor 16. In the outflow path 66, a strainer 67, a second on-off valve 68, and a decompressor 69 are incorporated. As the second on-off valve 68, for example, an electromagnetic on-off valve is used. For example, a capillary tube may be used as the decompressor 69. When the second on-off valve 68 is opened, the refrigerant flows from the storage space 61 to the third refrigerant path 26 according to the pressure difference between the pressure in the storage space 61 and the pressure of the third refrigerant path 26. At this time, the refrigerant is gasified by the action of the decompressor 69. A gas refrigerant is introduced into the third refrigerant path 26. The strainer 67 removes foreign matters in the refrigerant.

冷媒貯留器60にはガス抜き用の補助経路71が接続される。補助経路71はできる限り貯留空間61の上部で開口する。補助経路71は第3冷媒経路26に接続される。補助経路71にはストレーナ72および第3開閉弁73が組み込まれる。第3開閉弁73には例えば電磁開閉弁が用いられる。第3開閉弁73が開弁すると、流入経路62から取り込まれる液冷媒に代わって、補助経路71を通じて貯留空間61からガス冷媒が第3冷媒経路26に逃されることができる。   An auxiliary path 71 for venting gas is connected to the refrigerant reservoir 60. The auxiliary path 71 is opened at the upper part of the storage space 61 as much as possible. The auxiliary path 71 is connected to the third refrigerant path 26. A strainer 72 and a third on-off valve 73 are incorporated in the auxiliary path 71. As the third on-off valve 73, for example, an electromagnetic on-off valve is used. When the third on-off valve 73 is opened, the gas refrigerant can escape from the storage space 61 to the third refrigerant path 26 through the auxiliary path 71 instead of the liquid refrigerant taken in from the inflow path 62.

冷媒貯留器60にはバイパス経路74が接続される。バイパス経路74は第1冷媒経路18および第2冷媒経路25の分岐点24と第2冷媒経路25および第2中間経路28の分岐点29との間で第2冷媒経路25に接続される。バイパス経路74にはストレーナ75、第4開閉弁76および逆止弁77とが組み込まれる。ストレーナ75は冷媒中の異物を除去する。第4開閉弁76が開弁すると、第2冷媒経路25から高温高圧の冷媒が貯留空間61に流れ込む。逆止弁77は貯留空間61から第2冷媒経路25に向かって冷媒の逆流を阻止する。   A bypass path 74 is connected to the refrigerant reservoir 60. The bypass path 74 is connected to the second refrigerant path 25 between the branch point 24 of the first refrigerant path 18 and the second refrigerant path 25 and the branch point 29 of the second refrigerant path 25 and the second intermediate path 28. A strainer 75, a fourth on-off valve 76, and a check valve 77 are incorporated in the bypass path 74. The strainer 75 removes foreign matters in the refrigerant. When the fourth on-off valve 76 is opened, the high-temperature and high-pressure refrigerant flows into the storage space 61 from the second refrigerant path 25. The check valve 77 prevents the refrigerant from flowing backward from the storage space 61 toward the second refrigerant path 25.

図3は空気調和機11の制御系を概略的に示す。空気調和機11は制御回路81を備える。この制御回路81は例えば室外機12に組み込まれる。制御回路81には室外機12内の圧縮機16、四方弁43、室外機膨張弁48、第1開閉弁64、第2開閉弁68、第3開閉弁73および第4開閉弁76がそれぞれ接続される。制御回路81は圧縮機16、四方弁43、室外機膨張弁48、第1開閉弁64、第2開閉弁68、第3開閉弁73および第4開閉弁76にそれぞれ制御信号を供給する。制御信号に応じて圧縮機16のオンオフや回転数は制御される。制御信号に応じて四方弁43は第1位置および第2位置の間で切り替えられる。制御信号に応じて室外機膨張弁48の開度は制御される。制御信号に応じて第1開閉弁64、第2開閉弁68、第3開閉弁73および第4開閉弁76では開弁および閉弁が切り替えられる。   FIG. 3 schematically shows a control system of the air conditioner 11. The air conditioner 11 includes a control circuit 81. This control circuit 81 is incorporated in the outdoor unit 12, for example. The compressor 16, the four-way valve 43, the outdoor unit expansion valve 48, the first on-off valve 64, the second on-off valve 68, the third on-off valve 73, and the fourth on-off valve 76 in the outdoor unit 12 are connected to the control circuit 81, respectively. Is done. The control circuit 81 supplies control signals to the compressor 16, the four-way valve 43, the outdoor unit expansion valve 48, the first on-off valve 64, the second on-off valve 68, the third on-off valve 73, and the fourth on-off valve 76, respectively. Depending on the control signal, the on / off of the compressor 16 and the rotational speed are controlled. In response to the control signal, the four-way valve 43 is switched between the first position and the second position. The opening degree of the outdoor unit expansion valve 48 is controlled according to the control signal. In response to the control signal, the first on-off valve 64, the second on-off valve 68, the third on-off valve 73, and the fourth on-off valve 76 are switched between opening and closing.

加えて、制御回路81には室内機15aの膨張弁17a、暖房時開放弁38および冷房時開放弁41が接続され室内機15bの膨張弁17b、暖房時開放弁39および冷房時開放弁42が接続される。制御回路81は膨張弁17a、暖房時開放弁38、冷房時開放弁41、膨張弁17b、暖房時開放弁39および冷房時開放弁42にそれぞれ制御信号を供給する。制御信号に応じて膨張弁17a、17bの開度は制御される。開度は例えば内蔵のステッピングモータのパルス数で設定されればよい。制御信号に応じて暖房時開放弁38、冷房時開放弁41、暖房時開放弁39および冷房時開放弁42では開弁および閉弁が切り替えられる。   In addition, the control circuit 81 is connected to the expansion valve 17a of the indoor unit 15a, the heating release valve 38, and the cooling release valve 41, and the expansion valve 17b, the heating release valve 39, and the cooling release valve 42 of the indoor unit 15b. Connected. The control circuit 81 supplies control signals to the expansion valve 17a, the heating release valve 38, the cooling release valve 41, the expansion valve 17b, the heating release valve 39, and the cooling release valve 42, respectively. The opening degree of the expansion valves 17a and 17b is controlled according to the control signal. The opening may be set by the number of pulses of the built-in stepping motor, for example. In response to the control signal, the heating open valve 38, the cooling open valve 41, the heating open valve 39, and the cooling open valve 42 are switched between open and closed.

さらに、制御回路81には室外機12の圧力センサ49、51、温度センサ52、53、54および開度センサ82が接続される。圧力センサ49、51は制御回路81に圧力情報信号を供給する。圧力情報信号は冷媒の圧力値を特定する。制御回路81は圧力センサ49の圧力情報信号に基づき高圧飽和温度を算出する。高圧飽和温度は、室外熱交換器14が凝縮器として働く際に室外熱交換器14内の冷媒温度に相当する。同様に、制御回路81は圧力センサ51の圧力情報信号に基づき低圧飽和温度を算出する。低圧飽和温度は、室外熱交換器14が蒸発器として働く際に室外熱交換器14内の冷媒温度に相当する。温度センサ52、53、54は制御回路81に温度情報信号を供給する。温度情報信号は冷媒の温度値を特定する。開度センサ82は制御回路81に開度情報信号を供給する。開度情報信号は室外機膨張弁48の開度を特定する。   Further, pressure sensors 49 and 51, temperature sensors 52, 53 and 54 and an opening degree sensor 82 of the outdoor unit 12 are connected to the control circuit 81. The pressure sensors 49 and 51 supply a pressure information signal to the control circuit 81. The pressure information signal specifies the pressure value of the refrigerant. The control circuit 81 calculates a high-pressure saturation temperature based on the pressure information signal from the pressure sensor 49. The high-pressure saturation temperature corresponds to the refrigerant temperature in the outdoor heat exchanger 14 when the outdoor heat exchanger 14 functions as a condenser. Similarly, the control circuit 81 calculates a low pressure saturation temperature based on the pressure information signal of the pressure sensor 51. The low-pressure saturation temperature corresponds to the refrigerant temperature in the outdoor heat exchanger 14 when the outdoor heat exchanger 14 functions as an evaporator. The temperature sensors 52, 53, and 54 supply temperature information signals to the control circuit 81. The temperature information signal specifies the temperature value of the refrigerant. The opening sensor 82 supplies an opening information signal to the control circuit 81. The opening degree information signal specifies the opening degree of the outdoor unit expansion valve 48.

さらにまた、制御回路81には室内機13aの開度センサ83および温度センサ55、56並びに室内機13bの開度センサ84および温度センサ57、58が接続される。温度センサ55、56、57、58は制御回路81に温度情報信号を供給する。温度情報信号は冷媒の温度値を特定する。開度センサ83、84はそれぞれ対応の膨張弁17a、17bの開度を測定する。開度センサ83、84は制御回路81に開度情報信号を供給する。開度情報信号は膨張弁17a、17bの開度を特定する。   Furthermore, the opening degree sensor 83 and temperature sensors 55 and 56 of the indoor unit 13a and the opening degree sensor 84 and temperature sensors 57 and 58 of the indoor unit 13b are connected to the control circuit 81. The temperature sensors 55, 56, 57 and 58 supply temperature information signals to the control circuit 81. The temperature information signal specifies the temperature value of the refrigerant. The opening sensors 83 and 84 measure the opening degrees of the corresponding expansion valves 17a and 17b, respectively. The opening sensors 83 and 84 supply an opening information signal to the control circuit 81. The opening degree information signal specifies the opening degree of the expansion valves 17a and 17b.

次に、空気調和機11の動作を簡単に説明する。ここでは、本実施形態に則って空気調和機11に2台の室内機13a、13bが組み込まれた場合を詳述するものの、前述のように空気調和機11には3台以上の室内機13a、13b…が組み込まれることができる。したがって、以下では、説明の便宜上、3台以上の室内機13a、13b…も想定し、2台の室内機13a、13bであっても「全て」の室内機13a、13bというものとする。   Next, the operation of the air conditioner 11 will be briefly described. Here, although the case where two indoor units 13a and 13b are incorporated in the air conditioner 11 according to the present embodiment will be described in detail, the air conditioner 11 includes three or more indoor units 13a as described above. , 13b... Can be incorporated. Therefore, in the following, for convenience of explanation, three or more indoor units 13a, 13b,... Are also assumed, and the two indoor units 13a, 13b are referred to as “all” indoor units 13a, 13b.

いま、全ての室内機13a、13bで冷房運転が実施される場面を想定する。図4に示されるように、制御回路81は第1位置に四方弁43をセットする。その結果、圧縮機16から膨張弁17aまで第1冷媒経路18が開通する。加えて、圧縮機16から膨張弁17bまで第1冷媒経路18、第1中間経路19および第1並列冷媒経路22が開通する。第4冷媒経路45では第1冷媒経路18から冷媒は流入しない。   Now, it is assumed that the cooling operation is performed in all the indoor units 13a and 13b. As shown in FIG. 4, the control circuit 81 sets the four-way valve 43 at the first position. As a result, the first refrigerant path 18 is opened from the compressor 16 to the expansion valve 17a. In addition, the first refrigerant path 18, the first intermediate path 19, and the first parallel refrigerant path 22 are opened from the compressor 16 to the expansion valve 17b. In the fourth refrigerant path 45, no refrigerant flows from the first refrigerant path 18.

同時に、制御回路81は暖房時開放弁38、39を閉じ冷房時開放弁41、42を開放する。その結果、膨張弁17aから第2冷媒経路25を経て第3冷媒経路26に至る循環経路が確立される。同時に、膨張弁17bから第2並列冷媒経路31、第3並列冷媒経路35および第3中間経路33を経て第3冷媒経路26に至る循環経路が確立される。第4冷媒経路45では第3冷媒経路26からの冷媒は流入しない。   At the same time, the control circuit 81 closes the heating opening valves 38 and 39 and opens the cooling opening valves 41 and 42. As a result, a circulation path from the expansion valve 17a through the second refrigerant path 25 to the third refrigerant path 26 is established. At the same time, a circulation path is established from the expansion valve 17b to the third refrigerant path 26 through the second parallel refrigerant path 31, the third parallel refrigerant path 35, and the third intermediate path 33. In the fourth refrigerant path 45, the refrigerant from the third refrigerant path 26 does not flow.

制御回路81は圧縮機16の動作を制御する。圧縮機16と膨張弁17a、17bとの間で第1冷媒経路18、第1中間経路19および第1並列冷媒経路22に高温高圧の冷媒が流通する。同時に、圧縮機16と暖房時開放弁38、39との間で第2冷媒経路25、第2中間経路28および第2並列冷媒経路31に高温高圧の冷媒が流通する。こうして室外熱交換器14に対して高温高圧の冷媒が供給される。室外熱交換器14は凝縮器として機能する。凝縮された液冷媒は膨張弁17a、17bで減圧された後、室内熱交換器15a、15bを通過する。室内熱交換器15a、15bは蒸発器として機能する。その結果、室内の空気は冷却される。   The control circuit 81 controls the operation of the compressor 16. High-temperature and high-pressure refrigerant flows through the first refrigerant path 18, the first intermediate path 19 and the first parallel refrigerant path 22 between the compressor 16 and the expansion valves 17a and 17b. At the same time, high-temperature and high-pressure refrigerant flows through the second refrigerant path 25, the second intermediate path 28, and the second parallel refrigerant path 31 between the compressor 16 and the heating release valves 38 and 39. In this way, the high-temperature and high-pressure refrigerant is supplied to the outdoor heat exchanger 14. The outdoor heat exchanger 14 functions as a condenser. The condensed liquid refrigerant is decompressed by the expansion valves 17a and 17b, and then passes through the indoor heat exchangers 15a and 15b. The indoor heat exchangers 15a and 15b function as an evaporator. As a result, the indoor air is cooled.

続いて、全ての室内機13a、13bで暖房運転が実施される場面を想定する。図5に示されるように、制御回路81は第2位置に四方弁43をセットする。その結果、圧縮機16と室外熱交換器14との間で第1冷媒経路18は遮断される。同時に、第1冷媒経路18と第4冷媒経路45とが相互に接続される。   Then, the scene where heating operation is implemented by all the indoor units 13a and 13b is assumed. As shown in FIG. 5, the control circuit 81 sets the four-way valve 43 at the second position. As a result, the first refrigerant path 18 is blocked between the compressor 16 and the outdoor heat exchanger 14. At the same time, the first refrigerant path 18 and the fourth refrigerant path 45 are connected to each other.

加えて、制御回路81は暖房時開放弁38、39を開放し冷房時開放弁41、42を閉じる。その結果、第2冷媒経路25と第3冷媒経路26との間で冷媒の流通は遮断され、第2並列冷媒経路31と第3並列冷媒経路35との間で冷媒の流通は遮断される。分岐点22から第2冷媒経路25を経て膨張弁17aに至る冷媒経路が確立されるとともに、分岐点22から第2冷媒経路25、第2中間経路28および第2並列冷媒経路31を経て膨張弁17bに至る循環経路が確立される。   In addition, the control circuit 81 opens the heating opening valves 38 and 39 and closes the cooling opening valves 41 and 42. As a result, the refrigerant flow is blocked between the second refrigerant path 25 and the third refrigerant path 26, and the refrigerant flow is blocked between the second parallel refrigerant path 31 and the third parallel refrigerant path 35. A refrigerant path from the branch point 22 through the second refrigerant path 25 to the expansion valve 17a is established, and the expansion valve from the branch point 22 through the second refrigerant path 25, the second intermediate path 28, and the second parallel refrigerant path 31. A circulation path to 17b is established.

圧縮機16から高温高圧の冷媒が吐出されると、圧縮機16と膨張弁17a、17bとの間で第2冷媒経路25、第2中間経路28および第2並列冷媒経路31に高温高圧の冷媒が流通する。同時に、圧縮機16とキャピラリチューブ46との間で第1冷媒経路18および第4冷媒経路45に高温高圧の冷媒が流通する。こうして室内熱交換器15a、15bに対して高温高圧の冷媒が供給される。室内熱交換器15a、15bは凝縮器として機能する。その結果、室内の空気は暖められる。凝縮された冷媒は膨張弁17a、17bで減圧された後、室外熱交換器14を通過する。室外熱交換器14は蒸発器として機能する。第4冷媒経路45は第1冷媒経路18から冷媒の流入を許容する。   When the high-temperature and high-pressure refrigerant is discharged from the compressor 16, the high-temperature and high-pressure refrigerant flows into the second refrigerant path 25, the second intermediate path 28, and the second parallel refrigerant path 31 between the compressor 16 and the expansion valves 17a and 17b. Circulate. At the same time, high-temperature and high-pressure refrigerant flows through the first refrigerant path 18 and the fourth refrigerant path 45 between the compressor 16 and the capillary tube 46. Thus, the high-temperature and high-pressure refrigerant is supplied to the indoor heat exchangers 15a and 15b. The indoor heat exchangers 15a and 15b function as condensers. As a result, the indoor air is warmed. The condensed refrigerant is decompressed by the expansion valves 17a and 17b and then passes through the outdoor heat exchanger 14. The outdoor heat exchanger 14 functions as an evaporator. The fourth refrigerant path 45 allows the refrigerant to flow from the first refrigerant path 18.

続いて、室外熱交換器14が凝縮器として機能する際に室内機13aで冷房運転が実施され室内機13bで暖房運転が実施される場面を想定する。図6に示されるように、制御回路81は第1位置に四方弁43をセットする。同時に、制御回路81は暖房時開放弁38および冷房時開放弁42を閉じ冷房時開放弁41および暖房時開放弁39を開放する。その結果、圧縮機16と膨張弁17aとの間では第1冷媒経路18で循環経路が確立される。その一方で、圧縮機16と膨張弁17bとの間では第2冷媒経路25、第2中間経路28および第2並列冷媒経路31で循環経路が確立される。室内熱交換器15bで凝縮された冷媒は第1並列冷媒経路22、第1中間経路19および第1冷媒経路18を経て室内熱交換器15aに供給される。こうして1台の室外機12に対して冷房運転の室内機13aおよび暖房運転の室内機13bは混在することができる。こうした冷暖同時運転は、例えば1つの建物内で生活空間を暖めコンピュータのサーバ室を冷やすといった場面での利用が想定される。このとき、第2冷媒経路25および第2中間経路28の分岐点29は圧縮機16と暖房時開放弁38との間に配置されることから、暖房時開放弁38の働きで膨張弁17aに向かって第1冷媒経路18で高温高圧の冷媒が遮断されても、膨張弁17bには確実に第2冷媒経路25から高温高圧の冷媒が供給されることができる。ここで、制御回路81は室外熱交換器14に流入する冷媒の流量を制御する。こうした流量の制御は室外機膨張弁48の働きで実現される。制御回路81は、例えば圧力センサ49の圧力値と室外機膨張弁48の下流の圧力値との間で一定の圧力差を維持すべく室外機膨張弁48の開度を制御する。   Next, assume that when the outdoor heat exchanger 14 functions as a condenser, a cooling operation is performed in the indoor unit 13a and a heating operation is performed in the indoor unit 13b. As shown in FIG. 6, the control circuit 81 sets the four-way valve 43 at the first position. At the same time, the control circuit 81 closes the heating release valve 38 and the cooling release valve 42 and opens the cooling release valve 41 and the heating release valve 39. As a result, a circulation path is established in the first refrigerant path 18 between the compressor 16 and the expansion valve 17a. On the other hand, a circulation path is established between the compressor 16 and the expansion valve 17b by the second refrigerant path 25, the second intermediate path 28, and the second parallel refrigerant path 31. The refrigerant condensed in the indoor heat exchanger 15b is supplied to the indoor heat exchanger 15a through the first parallel refrigerant path 22, the first intermediate path 19, and the first refrigerant path 18. Thus, the indoor unit 13a for cooling operation and the indoor unit 13b for heating operation can coexist with one outdoor unit 12. Such cooling and heating simultaneous operation is assumed to be used in a situation where, for example, a living space is heated in one building and a computer server room is cooled. At this time, since the branch point 29 of the second refrigerant path 25 and the second intermediate path 28 is disposed between the compressor 16 and the heating release valve 38, the heating release valve 38 acts on the expansion valve 17 a. Even when the high-temperature and high-pressure refrigerant is blocked in the first refrigerant path 18, the high-temperature and high-pressure refrigerant can be reliably supplied to the expansion valve 17 b from the second refrigerant path 25. Here, the control circuit 81 controls the flow rate of the refrigerant flowing into the outdoor heat exchanger 14. Such control of the flow rate is realized by the action of the outdoor unit expansion valve 48. For example, the control circuit 81 controls the opening degree of the outdoor unit expansion valve 48 so as to maintain a constant pressure difference between the pressure value of the pressure sensor 49 and the pressure value downstream of the outdoor unit expansion valve 48.

さらに、室外熱交換器14が蒸発器として機能する際に室内機13aで冷房運転が実施され室内機13bで暖房運転が実施される場面を想定する。図7に示されるように、制御回路81は第2位置に四方弁43をセットする。同時に、制御回路81は暖房時開放弁38および冷房時開放弁42を閉じ冷房時開放弁41および暖房時開放弁39を開放する。その結果、圧縮機16と膨張弁17bとの間では第2冷媒経路25、第2中間経路28および第2並列冷媒経路31で循環経路が確立される。室内熱交換器15bで凝縮された冷媒は第1並列冷媒経路22、第1中間経路19および第1冷媒経路18を経て室外熱交換器14に供給される。同時に、室内熱交換器15bで凝縮された冷媒は第1並列冷媒経路22、第1中間経路19および第1冷媒経路18を経て室内熱交換器15aに供給される。こうして1台の室外機12に対して冷房運転の室内機13aおよび暖房運転の室内機13bは混在することができる。制御回路81は室外熱交換器14に流入する冷媒の流量を制御する。こうした流量の制御は室外機膨張弁48の働きで実現される。制御回路81は、例えば圧力センサ51で検出される冷媒圧力から低圧飽和温度と温度センサ54で検出される温度との間で一定の温度差を維持すべく室外機膨張弁48の開度を制御する。   Further, assume that when the outdoor heat exchanger 14 functions as an evaporator, a cooling operation is performed in the indoor unit 13a and a heating operation is performed in the indoor unit 13b. As shown in FIG. 7, the control circuit 81 sets the four-way valve 43 at the second position. At the same time, the control circuit 81 closes the heating release valve 38 and the cooling release valve 42 and opens the cooling release valve 41 and the heating release valve 39. As a result, a circulation path is established between the compressor 16 and the expansion valve 17b by the second refrigerant path 25, the second intermediate path 28, and the second parallel refrigerant path 31. The refrigerant condensed in the indoor heat exchanger 15 b is supplied to the outdoor heat exchanger 14 through the first parallel refrigerant path 22, the first intermediate path 19 and the first refrigerant path 18. At the same time, the refrigerant condensed in the indoor heat exchanger 15 b is supplied to the indoor heat exchanger 15 a via the first parallel refrigerant path 22, the first intermediate path 19 and the first refrigerant path 18. Thus, the indoor unit 13a for cooling operation and the indoor unit 13b for heating operation can coexist with one outdoor unit 12. The control circuit 81 controls the flow rate of the refrigerant flowing into the outdoor heat exchanger 14. Such control of the flow rate is realized by the action of the outdoor unit expansion valve 48. For example, the control circuit 81 controls the opening degree of the outdoor unit expansion valve 48 so as to maintain a constant temperature difference between the low pressure saturation temperature and the temperature detected by the temperature sensor 54 from the refrigerant pressure detected by the pressure sensor 51. To do.

四方弁43の切り替えにあたって制御回路81は室内機13a(または13b)の冷房負荷と室内機13b(13a)の暖房負荷とを比較する。暖房負荷に比べて冷房負荷が大きければ、制御回路81は第1位置に四方弁43をセットする。このとき、室外熱交換器14は凝縮器として働く。反対に、冷房負荷に比べて暖房負荷が大きければ、制御回路81は第2位置に四方弁43をセットする。このとき、室外熱交換器14は蒸発器として働く。特に、空気調和機11に3台以上の室内機13a、13b…が組み込まれる場合には、冷房運転中の室内機13a、13b…の冷房負荷全体と暖房運転中の室内機13a、13b…の暖房負荷全体とが比較されればよい。   In switching the four-way valve 43, the control circuit 81 compares the cooling load of the indoor unit 13a (or 13b) with the heating load of the indoor unit 13b (13a). If the cooling load is larger than the heating load, the control circuit 81 sets the four-way valve 43 at the first position. At this time, the outdoor heat exchanger 14 functions as a condenser. On the other hand, if the heating load is larger than the cooling load, the control circuit 81 sets the four-way valve 43 at the second position. At this time, the outdoor heat exchanger 14 functions as an evaporator. In particular, when three or more indoor units 13a, 13b ... are incorporated in the air conditioner 11, the entire cooling load of the indoor units 13a, 13b ... during the cooling operation and the indoor units 13a, 13b ... during the heating operation What is necessary is just to compare with the whole heating load.

次に、図8〜図11のフローチャートを参照しつつ冷媒貯留ユニット59の動作を説明する。図8に示されるように、ステップS1で、制御回路81は暖房運転の有無を判断する。「運転中」の室内機13a、13bで暖房運転中のものが含まれない、言い換えると、全ての「運転中」の室内機13a、13bで冷房運転中であることが判断されると、制御回路81の処理動作はステップS2に移行する。ステップS2で制御回路81は「第1放出格納制御」を実施する。制御回路81は冷媒の放出および格納に基づき循環経路内の冷媒量を調整する。この「第1放出格納制御」の実施にあたって制御回路81は循環経路内の冷媒量を監視する。空気調和機11全体で循環経路内の冷媒量が過剰であると判断されると、冷媒貯留ユニット59は循環経路から冷媒を格納する。冷媒の格納に応じて熱交換器で冷媒の液溜まりは解消される。熱交換器内に液冷媒が溜まると、液冷媒の貯留部分で熱交換面積が減少してしまう。その結果、熱交換器の熱交換能力は低下する。反対に、空気調和機11全体で循環経路内の冷媒量が不足すると判断されると、冷媒貯留ユニット59は循環経路に冷媒を放出する。冷媒が不足してしまうと、熱交換器の熱交換能力は低下してしまう。「第1放出格納制御」が終了すると、制御回路81の処理動作はステップS1に戻る。   Next, operation | movement of the refrigerant | coolant storage unit 59 is demonstrated, referring the flowchart of FIGS. As shown in FIG. 8, in step S1, the control circuit 81 determines the presence or absence of the heating operation. When it is determined that the “operating” indoor units 13a and 13b are not included in the heating operation, in other words, all the “operating” indoor units 13a and 13b are determined to be in the cooling operation. The processing operation of the circuit 81 proceeds to step S2. In step S2, the control circuit 81 performs “first release storage control”. The control circuit 81 adjusts the amount of refrigerant in the circulation path based on the release and storage of the refrigerant. In carrying out the “first release storage control”, the control circuit 81 monitors the amount of refrigerant in the circulation path. If it is determined that the amount of refrigerant in the circulation path is excessive in the entire air conditioner 11, the refrigerant storage unit 59 stores the refrigerant from the circulation path. The refrigerant pool is eliminated by the heat exchanger according to the storage of the refrigerant. When liquid refrigerant accumulates in the heat exchanger, the heat exchange area is reduced at the liquid refrigerant storage portion. As a result, the heat exchange capacity of the heat exchanger decreases. Conversely, if it is determined that the amount of refrigerant in the circulation path is insufficient in the entire air conditioner 11, the refrigerant storage unit 59 releases the refrigerant to the circulation path. If the refrigerant runs short, the heat exchange capability of the heat exchanger will be reduced. When the “first release storage control” is completed, the processing operation of the control circuit 81 returns to step S1.

ステップS1で少なくとも1台で暖房運転が実施されていれば、制御回路81の処理動作はステップS3に移行する。ステップS3で、運転中の室内機13a、13bに冷房運転中のものが含まれるか否かが判断される。全ての「運転中」の室内機13a、13bで暖房運転中であれば、制御回路81の処理動作はステップS4に移行する。ステップS4で「第2放出格納制御」が実施される。同様に、制御回路81は冷媒の放出および格納に基づき循環経路内の冷媒量を調整する。「第2放出格納制御」が終了すると、制御回路81の処理動作はステップS1に戻る。その一方で、ステップS3で少なくとも1台で冷房運転が実施されていると判断されると、制御回路81はステップS5で「第3放出格納制御」を実施する。同様に、制御回路81は冷媒の放出および格納に基づき循環経路内の冷媒量を調整する。「第3放出格納制御」が終了すると、制御回路81の処理動作はステップS1に戻る。   If at least one heating operation is performed in step S1, the processing operation of the control circuit 81 proceeds to step S3. In step S3, it is determined whether or not the indoor units 13a and 13b that are in operation include those that are in the cooling operation. If all indoor units 13a and 13b that are “operating” are in heating operation, the processing operation of the control circuit 81 proceeds to step S4. In step S4, “second release storage control” is performed. Similarly, the control circuit 81 adjusts the amount of refrigerant in the circulation path based on the release and storage of the refrigerant. When the “second release storage control” is completed, the processing operation of the control circuit 81 returns to step S1. On the other hand, if it is determined in step S3 that at least one unit is performing the cooling operation, the control circuit 81 performs “third release storage control” in step S5. Similarly, the control circuit 81 adjusts the amount of refrigerant in the circulation path based on the release and storage of the refrigerant. When the “third release storage control” ends, the processing operation of the control circuit 81 returns to step S1.

図9に示されるように、「第1放出格納制御」の実施にあたってステップT1で制御回路81は室内熱交換器15a、15bの過熱度を特定する。過熱度の特定にあたって制御回路81は蒸発器として機能する室内熱交換器15a、15bの出口温度から入口温度を差し引く。出口温度は温度センサ56、58の温度情報信号で特定される。入口温度は温度センサ55、57の温度情報信号で特定される。温度センサ56、58の温度値から温度センサ55、57の温度値が差し引かれることで、室内熱交換器15a、15bの過熱度は特定される。過熱度が例えば所定値以上(例えば10度以上)であれば、制御回路81はステップT2で当該室内機13a、13bの膨張弁17a、17bの開度を特定する。開度の特定にあたって制御回路81は開度センサ83、84から開度情報信号を取得する。膨張弁17a、17bが全開であれば、制御回路81はステップT3で冷媒貯留器60から冷媒を放出する。放出にあたって制御回路81は第2開閉弁68および第4開閉弁76を開放する。その結果、流出経路66から第3冷媒経路26に冷媒は流れ込む。流れ込みにあたって減圧器69は冷媒を気化させる。制御回路81は、放出の開始から10秒経過後にステップT4で冷媒の放出を終了する。処理は終了する。ステップT2で膨張弁18a、18bの開度が全開以外であれば、制御回路81は処理を終了する。ここでは、室内熱交換器15a、15bのうちいずれか一方で過熱度が所定値以上であって対応する膨張弁17a、17b…が全開であれば、冷媒は放出される。   As shown in FIG. 9, the control circuit 81 identifies the degree of superheat of the indoor heat exchangers 15 a and 15 b in step T <b> 1 when performing the “first release storage control”. In specifying the degree of superheat, the control circuit 81 subtracts the inlet temperature from the outlet temperature of the indoor heat exchangers 15a and 15b functioning as an evaporator. The outlet temperature is specified by temperature information signals from the temperature sensors 56 and 58. The inlet temperature is specified by the temperature information signal from the temperature sensors 55 and 57. The degree of superheat of the indoor heat exchangers 15a and 15b is specified by subtracting the temperature values of the temperature sensors 55 and 57 from the temperature values of the temperature sensors 56 and 58. If the degree of superheat is, for example, a predetermined value or more (for example, 10 degrees or more), the control circuit 81 specifies the opening degree of the expansion valves 17a, 17b of the indoor units 13a, 13b in step T2. In specifying the opening, the control circuit 81 acquires an opening information signal from the opening sensors 83 and 84. If the expansion valves 17a and 17b are fully open, the control circuit 81 releases the refrigerant from the refrigerant reservoir 60 in step T3. In discharging, the control circuit 81 opens the second on-off valve 68 and the fourth on-off valve 76. As a result, the refrigerant flows from the outflow path 66 into the third refrigerant path 26. When flowing in, the decompressor 69 vaporizes the refrigerant. The control circuit 81 ends the discharge of the refrigerant in step T4 after 10 seconds have elapsed from the start of the discharge. The process ends. If the opening degree of the expansion valves 18a, 18b is other than full open in step T2, the control circuit 81 ends the process. Here, if either one of the indoor heat exchangers 15a and 15b has a superheat degree equal to or greater than a predetermined value and the corresponding expansion valves 17a, 17b.

ステップT1でいずれの室内熱交換器15a、15bでも過熱度が所定値未満であれば、制御回路81はステップT5で室外熱交換器14の過冷却度を特定する。過冷却度の特定にあたって制御回路81は圧力センサ49から圧力情報信号を取得し温度センサ52から温度情報信号を取得する。制御回路81は圧力情報信号から高圧飽和温度を算出する。高圧飽和温度は、凝縮器として機能する室外熱交換器14内の冷媒温度に相当する。高圧飽和温度の温度値から温度情報信号の温度値が差し引かれることで、凝縮器として機能する室外熱交換器14の過冷却度は特定される。過冷却度が例えば所定値以上(例えば7度以上)であれば、制御回路81はステップT6で冷媒貯留器60に冷媒を格納する。制御回路81は第1開閉弁64および第3開閉弁73を開放する。その結果、第1冷媒経路18から冷媒貯留器60に冷媒は流れ込む。このとき、貯留空間61内のガス冷媒は第3冷媒経路26に逃されることから、流入経路62から確実に冷媒は流れ込む。制御回路81は、格納の開始から10秒経過後にステップT7で冷媒の格納を終了する。処理は終了する。ステップT5で過冷却度が所定値未満であれば、処理は終了する。   If the degree of superheat is less than the predetermined value in any of the indoor heat exchangers 15a and 15b in step T1, the control circuit 81 specifies the degree of supercooling of the outdoor heat exchanger 14 in step T5. In specifying the degree of supercooling, the control circuit 81 acquires a pressure information signal from the pressure sensor 49 and acquires a temperature information signal from the temperature sensor 52. The control circuit 81 calculates a high pressure saturation temperature from the pressure information signal. The high-pressure saturation temperature corresponds to the refrigerant temperature in the outdoor heat exchanger 14 that functions as a condenser. By subtracting the temperature value of the temperature information signal from the temperature value of the high-pressure saturation temperature, the degree of supercooling of the outdoor heat exchanger 14 functioning as a condenser is specified. If the degree of supercooling is, for example, a predetermined value or more (for example, 7 degrees or more), the control circuit 81 stores the refrigerant in the refrigerant reservoir 60 in step T6. The control circuit 81 opens the first on-off valve 64 and the third on-off valve 73. As a result, the refrigerant flows from the first refrigerant path 18 into the refrigerant reservoir 60. At this time, since the gas refrigerant in the storage space 61 is released to the third refrigerant path 26, the refrigerant surely flows from the inflow path 62. The control circuit 81 ends the storage of the refrigerant in step T7 after 10 seconds have elapsed from the start of the storage. The process ends. If the degree of supercooling is less than the predetermined value in step T5, the process ends.

図10に示されるように、「第2放出格納制御」の実施にあたってステップV1で制御回路81は室外熱交換器14の過熱度を特定する。過熱度の特定にあたって制御回路81は圧力センサ51から圧力情報信号を取得し温度センサ54から温度情報信号を取得する。制御回路81は圧力情報信号から低圧飽和温度を算出する。温度情報信号の温度値から低圧飽和温度の温度値が差し引かれることで、蒸発器として機能する室外熱交換器14の過熱度は特定される。過熱度が例えば所定値以上(例えば10度以上)であれば、制御回路81はステップV2で室外機膨張弁48の開度を特定する。開度の特定にあたって制御回路81は開度センサ82から開度情報信号を取得する。室外機膨張弁48が全開であれば、前述と同様に制御回路81はステップV3で冷媒貯留器60から冷媒を放出する。制御回路81は、放出の開始から10秒経過後にステップV4で冷媒の放出を終了する。処理は終了する。ステップV2で室外機膨張弁48の開度が全開以外であれば、制御回路81は処理を終了する。   As shown in FIG. 10, the control circuit 81 specifies the degree of superheat of the outdoor heat exchanger 14 in step V <b> 1 when performing the “second release storage control”. In specifying the degree of superheat, the control circuit 81 acquires a pressure information signal from the pressure sensor 51 and acquires a temperature information signal from the temperature sensor 54. The control circuit 81 calculates a low pressure saturation temperature from the pressure information signal. By subtracting the temperature value of the low-pressure saturation temperature from the temperature value of the temperature information signal, the degree of superheat of the outdoor heat exchanger 14 functioning as an evaporator is specified. If the degree of superheat is, for example, a predetermined value or more (for example, 10 degrees or more), the control circuit 81 specifies the opening degree of the outdoor unit expansion valve 48 in step V2. In specifying the opening, the control circuit 81 acquires an opening information signal from the opening sensor 82. If the outdoor unit expansion valve 48 is fully open, the control circuit 81 releases the refrigerant from the refrigerant reservoir 60 in step V3 as described above. The control circuit 81 ends the discharge of the refrigerant in step V4 after 10 seconds have elapsed from the start of the discharge. The process ends. If the opening degree of the outdoor unit expansion valve 48 is other than fully open in step V2, the control circuit 81 ends the process.

ステップV1で室外熱交換器14の過熱度が所定値未満であれば、制御回路81はステップV5で凝縮器として機能する室内熱交換器15a、15bの過冷却度を特定する。過冷却度の特定にあたって制御回路81は圧力センサ49から圧力情報信号を取得し室内機13a、13bの温度センサ55、57から温度情報信号を取得する。制御回路81は圧力情報信号から高圧飽和温度を算出する。高圧飽和温度の温度値から温度情報信号の温度値が差し引かれることで、凝縮器として機能する室内熱交換器15a、15bの過冷却度は特定される。過冷却度が例えば所定値以上(例えば7度以上)であれば、前述と同様に、制御回路81はステップV6で冷媒貯留器60に冷媒を格納する。制御回路81は、格納の開始から10秒経過後にステップV7で冷媒の格納を終了する。処理は終了する。ステップV5で過冷却度が所定値未満であれば、処理は終了する。ここでは、格納の判断にあたって制御回路81は過冷却度の平均値を使用する。   If the degree of superheat of the outdoor heat exchanger 14 is less than a predetermined value in step V1, the control circuit 81 specifies the degree of supercooling of the indoor heat exchangers 15a and 15b functioning as condensers in step V5. In specifying the degree of supercooling, the control circuit 81 acquires a pressure information signal from the pressure sensor 49 and acquires temperature information signals from the temperature sensors 55 and 57 of the indoor units 13a and 13b. The control circuit 81 calculates a high pressure saturation temperature from the pressure information signal. By subtracting the temperature value of the temperature information signal from the temperature value of the high-pressure saturation temperature, the degree of supercooling of the indoor heat exchangers 15a and 15b functioning as condensers is specified. If the degree of supercooling is, for example, a predetermined value or more (for example, 7 degrees or more), the control circuit 81 stores the refrigerant in the refrigerant reservoir 60 in step V6 as described above. The control circuit 81 ends the storage of the refrigerant in Step V7 after 10 seconds have elapsed from the start of the storage. The process ends. If the degree of supercooling is less than the predetermined value in step V5, the process ends. Here, the control circuit 81 uses the average value of the degree of supercooling when determining the storage.

「第3放出格納制御」の実施にあたってステップW1で制御回路81は蒸発器として機能する室内熱交換器15a(15b)の過熱度を特定する。過熱度の特定にあたって制御回路81は前述と同様に室内熱交換器15a(15b)の出口温度から入口温度を差し引く。過熱度が例えば所定値以上(例えば10度以上)であれば、制御回路81はステップW2で当該室内機13a(13b)の膨張弁17a(17b)の開度を特定する。膨張弁17a(17b)が全開であれば、前述と同様に制御回路81はステップW3で冷媒貯留器60から冷媒を放出する。制御回路81は、放出の開始から10秒経過後にステップW4で冷媒の放出を終了する。処理は終了する。ステップW2で室外機膨張弁48の開度が全開以外であれば、制御回路81は処理を終了する。   In performing the “third release storage control”, in step W1, the control circuit 81 specifies the degree of superheat of the indoor heat exchanger 15a (15b) functioning as an evaporator. In specifying the degree of superheat, the control circuit 81 subtracts the inlet temperature from the outlet temperature of the indoor heat exchanger 15a (15b) as described above. If the degree of superheat is, for example, a predetermined value or more (for example, 10 degrees or more), the control circuit 81 specifies the opening degree of the expansion valve 17a (17b) of the indoor unit 13a (13b) in step W2. If the expansion valve 17a (17b) is fully open, the control circuit 81 releases the refrigerant from the refrigerant reservoir 60 in step W3 as described above. The control circuit 81 ends the discharge of the refrigerant in step W4 after 10 seconds have elapsed from the start of the discharge. The process ends. If the opening degree of the outdoor unit expansion valve 48 is other than full open in step W2, the control circuit 81 ends the process.

ステップW1で室内熱交換器15a(15b)の過熱度が所定値未満であれば、制御回路81はステップW5で凝縮器として機能する室内熱交換器15b(15a)の過冷却度を特定する。過冷却度が例えば所定値以上(例えば7度以上)であれば、制御回路81はステップW6で冷媒貯留器60に冷媒を格納する。制御回路81は、格納の開始から10秒経過後にステップW7で冷媒の格納を終了する。処理は終了する。ステップW5で過冷却度が所定値未満であれば、処理は終了する。   If the superheat degree of the indoor heat exchanger 15a (15b) is less than a predetermined value in step W1, the control circuit 81 specifies the supercooling degree of the indoor heat exchanger 15b (15a) functioning as a condenser in step W5. If the degree of supercooling is, for example, a predetermined value or more (for example, 7 degrees or more), the control circuit 81 stores the refrigerant in the refrigerant reservoir 60 in step W6. The control circuit 81 ends the storage of the refrigerant in step W7 after 10 seconds have elapsed from the start of the storage. The process ends. If the degree of supercooling is less than the predetermined value in step W5, the process ends.

空気調和機11では冷媒貯留器60から冷媒が放出される際にバイパス経路74で第4開閉弁76が開弁する。したがって、バイパス経路74を通じて第2冷媒経路25から高温高圧の冷媒が冷媒貯留器60に導入される。こうした冷媒の働きで冷媒貯留器60から流出経路66に冷媒は押し出される。その結果、この空気調和機11では確実に冷媒貯留器60から冷媒は放出されることができる。   In the air conditioner 11, the fourth on-off valve 76 is opened in the bypass path 74 when the refrigerant is discharged from the refrigerant reservoir 60. Accordingly, the high-temperature and high-pressure refrigerant is introduced into the refrigerant reservoir 60 from the second refrigerant path 25 through the bypass path 74. The refrigerant is pushed out from the refrigerant reservoir 60 to the outflow path 66 by the action of the refrigerant. As a result, the air conditioner 11 can reliably release the refrigerant from the refrigerant reservoir 60.

図12は本発明の第2実施形態に係る冷凍サイクル装置すなわち空気調和機11aの構成を概略的に示す。この空気調和機11aは2台の室外機12a、12bと2台の室内機13a、13bとを備える。室外機12a、12bは室外機12と同一の構造を有する。その他、第1実施形態に係る空気調和機11と均等な構成には同一の参照符号が付される。図12から明らかなように、空気調和機11は2台以上の室外機12a、12b…を備えてもよく2台以上の室内機13a、13b…を備えてもよい。室外機12a、12b…は室内機13a、13b…に対して相互に並列に接続されればよく、室内機13a、13b…は室外機12a、12b…に対して相互に並列に接続されればよい。   FIG. 12 schematically shows the configuration of a refrigeration cycle apparatus, that is, an air conditioner 11a according to a second embodiment of the present invention. The air conditioner 11a includes two outdoor units 12a and 12b and two indoor units 13a and 13b. The outdoor units 12a and 12b have the same structure as the outdoor unit 12. In addition, the same reference numerals are assigned to components equivalent to those of the air conditioner 11 according to the first embodiment. As is clear from FIG. 12, the air conditioner 11 may include two or more outdoor units 12a, 12b, and may include two or more indoor units 13a, 13b, and so on. The outdoor units 12a, 12b,... Need only be connected in parallel to the indoor units 13a, 13b, and the indoor units 13a, 13b, etc. can be connected in parallel to the outdoor units 12a, 12b,. Good.

室外機12a、12bの第1冷媒経路18は相互に接続される。すなわち、室外機12bの第1冷媒経路18は第1中間経路19に接続される。第1中間経路19はさらなる室外機やさらなる室内機に共通の接続経路として機能する。   The first refrigerant paths 18 of the outdoor units 12a and 12b are connected to each other. That is, the first refrigerant path 18 of the outdoor unit 12 b is connected to the first intermediate path 19. The first intermediate path 19 functions as a connection path common to further outdoor units and further indoor units.

室外機12a、12bの第2冷媒経路25は相互に接続される。すなわち、室外機12bの第2冷媒経路25は第2中間経路28に接続される。第2中間経路28はさらなる室外機やさらなる室内機に共通の接続経路として機能する。   The second refrigerant paths 25 of the outdoor units 12a and 12b are connected to each other. That is, the second refrigerant path 25 of the outdoor unit 12 b is connected to the second intermediate path 28. The second intermediate path 28 functions as a connection path common to further outdoor units and further indoor units.

室外機12a、12bの第3冷媒経路26は相互に接続される。すなわち、室外機12bの第3冷媒経路26は第3中間経路33に接続される。第3中間経路33はさらなる室外機やさらなる室内機に共通の接続経路として機能する。   The third refrigerant paths 26 of the outdoor units 12a and 12b are connected to each other. That is, the third refrigerant path 26 of the outdoor unit 12 b is connected to the third intermediate path 33. The third intermediate path 33 functions as a connection path common to further outdoor units and further indoor units.

室外機12a、12bの冷媒貯留ユニット59は室外機12aの制御回路81に基づき制御される。制御回路81は図8〜図11のフローチャートに従って処理を実行する。冷媒の格納にあたって制御回路81は室外機12a、12bの第1開閉弁64および第3開閉弁73を開放する。格納の判断にあたって制御回路81は運転中の全室外熱交換器14の過冷却度の平均値を使用する。格納の停止にあたって制御回路81は室外機12a、12bの第1開閉弁64および第3開閉弁73を閉弁する。冷媒の放出にあたって制御回路81は室外機12a、12bの第2開閉弁68および第4開閉弁76を開放する。複数の室外熱交換器14のうち1台でも過熱度および膨張弁の開度が所定の条件を満たせば制御回路81は冷媒を放出する。放出の停止にあたって制御回路81は室外機12a、12bの第2開閉弁68および第4開閉弁76を閉弁する。   The refrigerant storage unit 59 of the outdoor units 12a and 12b is controlled based on the control circuit 81 of the outdoor unit 12a. The control circuit 81 executes processing according to the flowcharts of FIGS. In storing the refrigerant, the control circuit 81 opens the first on-off valve 64 and the third on-off valve 73 of the outdoor units 12a, 12b. In determining the storage, the control circuit 81 uses the average value of the degree of supercooling of the outdoor heat exchanger 14 during operation. When stopping the storage, the control circuit 81 closes the first on-off valve 64 and the third on-off valve 73 of the outdoor units 12a and 12b. In releasing the refrigerant, the control circuit 81 opens the second on-off valve 68 and the fourth on-off valve 76 of the outdoor units 12a, 12b. If at least one of the plurality of outdoor heat exchangers 14 satisfies the predetermined conditions for the degree of superheat and the opening degree of the expansion valve, the control circuit 81 releases the refrigerant. When stopping the release, the control circuit 81 closes the second on-off valve 68 and the fourth on-off valve 76 of the outdoor units 12a, 12b.

なお、空気調和機11、11aで3台以上の室内機13a、13b…が組み込まれる場合には、全ての室内機13a、13b…で冷房運転が実施されると、「第1放出格納制御」にあたって複数の室内熱交換器15a、15b…のうち1台でも過熱度が所定値以上であって対応する膨張弁17a、17b…が全開であれば、冷媒は放出される。同様に、全ての室内機13a、13b…で暖房運転が実施されると、「第2放出格納制御」にあたって全ての室内熱交換器15a、15b…の過冷却度から平均値が算出される。冷房運転および暖房運転が混在すると、「第3放出格納制御」にあたって、蒸発器として機能する室内熱交換器15a、15b…のうち1台でも過熱度が所定値以上であって対応する膨張弁17a、17b…が全開であれば、冷媒は放出され、凝縮器として機能する室内熱交換器15a、15b…の過冷却度の平均値が所定値以上であれば、冷媒は格納される。   When three or more indoor units 13a, 13b,... Are incorporated in the air conditioners 11, 11a, when the cooling operation is performed in all the indoor units 13a, 13b, the “first release storage control” is performed. When one of the plurality of indoor heat exchangers 15a, 15b,... Has a degree of superheat above a predetermined value and the corresponding expansion valves 17a, 17b,. Similarly, when the heating operation is performed in all the indoor units 13a, 13b..., An average value is calculated from the degree of supercooling of all the indoor heat exchangers 15a, 15b. When the cooling operation and the heating operation are mixed, in the “third release storage control”, at least one of the indoor heat exchangers 15a, 15b... Functioning as an evaporator has a degree of superheat of a predetermined value or more and the corresponding expansion valve 17a. , 17b ... are fully opened, the refrigerant is released, and if the average value of the degree of subcooling of the indoor heat exchangers 15a, 15b ... functioning as condensers is equal to or greater than a predetermined value, the refrigerant is stored.

11 サイクル装置(空気調和機)、14 第1熱交換器、15a 第2熱交換器、15b 並列第2熱交換器、16 圧縮機、17a 第1の膨張弁、17b 第2の膨張弁、18 第1冷媒経路、22 第1並列冷媒経路、24 第1分岐点、25 第2冷媒経路、26 第3冷媒経路、27 第2分岐点、31 第2並列冷媒経路、35 第3並列冷媒経路、38,39 流路切替手段としての第1開放弁、41,42 流路切替手段としての第2開放弁、45 第4冷媒経路、60 冷媒貯留器、74 バイパス経路、81 制御回路。   11 cycle device (air conditioner), 14 first heat exchanger, 15a second heat exchanger, 15b parallel second heat exchanger, 16 compressor, 17a first expansion valve, 17b second expansion valve, 18 First refrigerant path, 22 First parallel refrigerant path, 24 First branch point, 25 Second refrigerant path, 26 Third refrigerant path, 27 Second branch point, 31 Second parallel refrigerant path, 35 Third parallel refrigerant path, 38,39 First open valve as flow path switching means, 41,42 Second open valve as flow path switching means, 45 Fourth refrigerant path, 60 Refrigerant reservoir, 74 Bypass path, 81 Control circuit.

Claims (5)

圧縮機および第1の膨張弁の間に第1熱交換器を有し、流路切替手段により前記第1熱交換器への高温高圧の冷媒の供給および遮断がなされる第1冷媒経路と、
前記圧縮機および前記第1熱交換器の間で前記第1冷媒経路から第1分岐点で分岐して、前記流路切替手段による前記第1冷媒経路への高温高圧の冷媒の遮断時に前記圧縮機および前記第1の膨張弁の間で第2熱交換器に高温高圧の冷媒を供給する第2冷媒経路と、
前記圧縮機および前記第2熱交換器の間で前記第2冷媒経路から第2分岐点で分岐して、前記第1冷媒経路から前記第1熱交換器に冷媒が供給される際に、前記第2熱交換器から流出する冷媒を前記圧縮機の吸い込み側に導く第3冷媒経路と、
前記第1分岐点および前記第1熱交換器の間で前記第1冷媒経路から分岐して前記圧縮機の前記吸い込み側に接続され、前記第1冷媒経路の前記流路切替手段による前記遮断時に前記第1冷媒経路から冷媒の流入を許容し、前記第1冷媒経路から前記第1熱交換器に冷媒が供給される際に前記第1冷媒経路から前記第3冷媒経路への冷媒の流入を遮断する第4冷媒経路と、
前記第1熱交換器および前記第1の膨張弁の間で前記第1冷媒経路から冷媒を獲得し、前記第3冷媒経路に向けて冷媒を放出する冷媒貯留器と、
前記第2冷媒経路および前記冷媒貯留器に接続されて、前記第2冷媒経路から前記冷媒貯留器に高温高圧の冷媒を導入するバイパス経路と
を備えることを特徴とする冷凍サイクル装置。
A first refrigerant path having a first heat exchanger between the compressor and the first expansion valve, and supplying and blocking high-temperature and high-pressure refrigerant to the first heat exchanger by a flow path switching unit;
When the high-temperature and high-pressure refrigerant is shut off to the first refrigerant path by the flow path switching means, the compression is branched from the first refrigerant path between the compressor and the first heat exchanger. A second refrigerant path for supplying high-temperature and high-pressure refrigerant to the second heat exchanger between the compressor and the first expansion valve;
The refrigerant branches from the second refrigerant path at the second branch point between the compressor and the second heat exchanger, and when the refrigerant is supplied from the first refrigerant path to the first heat exchanger, A third refrigerant path for guiding the refrigerant flowing out of the second heat exchanger to the suction side of the compressor;
The first refrigerant path is branched from the first refrigerant path between the first branch point and the first heat exchanger and connected to the suction side of the compressor. At the time of the interruption by the flow path switching unit of the first refrigerant path Allow the refrigerant to flow from the first refrigerant path, and allow the refrigerant to flow from the first refrigerant path to the third refrigerant path when the refrigerant is supplied from the first refrigerant path to the first heat exchanger. A fourth refrigerant path to be blocked;
A refrigerant reservoir that obtains refrigerant from the first refrigerant path between the first heat exchanger and the first expansion valve and releases the refrigerant toward the third refrigerant path;
A refrigeration cycle apparatus comprising: a bypass path that is connected to the second refrigerant path and the refrigerant reservoir and introduces a high-temperature and high-pressure refrigerant from the second refrigerant path to the refrigerant reservoir.
請求項1に記載の冷凍サイクル装置において、前記流路切替手段は、
前記バイパス経路および前記第2分岐点の間で前記第2冷媒経路に組み込まれて、前記第1冷媒経路で冷媒の供給および遮断を切り替える第1開放弁と、
前記圧縮機および前記第2分岐点の間で前記第3冷媒経路に組み込まれて、前記第3冷媒経路で冷媒の流通および遮断を切り替える第2開放弁と
を備えることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1, wherein the flow path switching means is
A first release valve that is incorporated in the second refrigerant path between the bypass path and the second branch point, and switches supply and interruption of the refrigerant in the first refrigerant path;
A refrigeration cycle apparatus comprising: a second release valve that is incorporated in the third refrigerant path between the compressor and the second branch point, and that switches between circulation and blocking of the refrigerant in the third refrigerant path. .
請求項1または2に記載の冷凍サイクル装置において、
1つまたは複数の第2の膨張弁と、
前記第1熱交換器および前記第1の膨張弁の間で前記第1冷媒経路から分岐し、個々の前記第2の膨張弁に個別に接続される第1並列冷媒経路と、
前記第1分岐点および前記第2分岐点の間で前記第2冷媒経路から分岐し、個々の前記第2の膨張弁に個別に接続される第2並列冷媒経路と、
個々の前記第2並列冷媒経路に個別に組み込まれる並列第2熱交換器と、
前記バイパス経路および前記並列第2熱交換器の間で前記第2並列冷媒経路から分岐し、前記第3冷媒経路に接続される第3並列冷媒経路と
をさらに備えることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1 or 2,
One or more second expansion valves;
A first parallel refrigerant path branched from the first refrigerant path between the first heat exchanger and the first expansion valve and individually connected to each of the second expansion valves;
A second parallel refrigerant path that branches from the second refrigerant path between the first branch point and the second branch point and is individually connected to each of the second expansion valves;
A parallel second heat exchanger individually incorporated in each of the second parallel refrigerant paths;
A refrigeration cycle apparatus further comprising: a third parallel refrigerant path branched from the second parallel refrigerant path between the bypass path and the parallel second heat exchanger and connected to the third refrigerant path. .
請求項3に記載の冷凍サイクル装置において、
前記第2熱交換器および前記並列第2熱交換器のうち少なくとも1台が蒸発器として機能する際に、前記蒸発器の過熱度が所定値以上であると前記冷媒貯留器から前記第3冷媒経路に向けて冷媒を放出する制御信号を生成する制御回路を
さらに備えることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 3,
When at least one of the second heat exchanger and the parallel second heat exchanger functions as an evaporator, if the degree of superheat of the evaporator is greater than or equal to a predetermined value, the third refrigerant from the refrigerant reservoir A refrigeration cycle apparatus, further comprising: a control circuit that generates a control signal for discharging the refrigerant toward the path.
請求項3または4に記載の冷凍サイクル装置において、
全ての前記第2熱交換器および前記並列第2熱交換器が凝縮器として機能する際に、前記第1熱交換器の過熱度が所定値以上であると前記冷媒貯留器から前記第3冷媒経路に向けて冷媒を放出する制御信号を生成する制御回路を
さらに備えることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 3 or 4,
When all the second heat exchangers and the parallel second heat exchanger function as condensers, if the degree of superheat of the first heat exchanger is equal to or greater than a predetermined value, the third refrigerant is supplied from the refrigerant reservoir. A refrigeration cycle apparatus, further comprising: a control circuit that generates a control signal for discharging the refrigerant toward the path.
JP2011072323A 2011-03-29 2011-03-29 Refrigerating cycle device Pending JP2012207823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011072323A JP2012207823A (en) 2011-03-29 2011-03-29 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072323A JP2012207823A (en) 2011-03-29 2011-03-29 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2012207823A true JP2012207823A (en) 2012-10-25

Family

ID=47187721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072323A Pending JP2012207823A (en) 2011-03-29 2011-03-29 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2012207823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051493A1 (en) * 2014-09-30 2016-04-07 三菱電機株式会社 Refrigeration cycle device
JPWO2021229647A1 (en) * 2020-05-11 2021-11-18

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625051A (en) * 1985-07-01 1987-01-12 ダイキン工業株式会社 Refrigerator using mixed refrigerant
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2002310520A (en) * 2002-04-04 2002-10-23 Mitsubishi Electric Corp Refrigerant control method for air conditioner, and the air conditioner
US20040003601A1 (en) * 2002-07-08 2004-01-08 Serge Dube High-speed defrost refrigeration system
JP2004061023A (en) * 2002-07-30 2004-02-26 Kumushu Chin Heat pump device
JP2006153349A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same
JP2007071504A (en) * 2005-09-09 2007-03-22 Daikin Ind Ltd Refrigerating device
JP2008185295A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat source unit and refrigerating device
JP2009180493A (en) * 2008-02-01 2009-08-13 Daikin Ind Ltd Heating auxiliary unit and air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625051A (en) * 1985-07-01 1987-01-12 ダイキン工業株式会社 Refrigerator using mixed refrigerant
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2002310520A (en) * 2002-04-04 2002-10-23 Mitsubishi Electric Corp Refrigerant control method for air conditioner, and the air conditioner
US20040003601A1 (en) * 2002-07-08 2004-01-08 Serge Dube High-speed defrost refrigeration system
JP2004061023A (en) * 2002-07-30 2004-02-26 Kumushu Chin Heat pump device
JP2006153349A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same
JP2007071504A (en) * 2005-09-09 2007-03-22 Daikin Ind Ltd Refrigerating device
JP2008185295A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat source unit and refrigerating device
JP2009180493A (en) * 2008-02-01 2009-08-13 Daikin Ind Ltd Heating auxiliary unit and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051493A1 (en) * 2014-09-30 2016-04-07 三菱電機株式会社 Refrigeration cycle device
JPWO2016051493A1 (en) * 2014-09-30 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
CN107076465A (en) * 2014-09-30 2017-08-18 三菱电机株式会社 Refrigerating circulatory device
AU2014407850B2 (en) * 2014-09-30 2018-03-08 Mitsubishi Electric Corporation Refrigeration cycle device
US10088210B2 (en) 2014-09-30 2018-10-02 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2021229647A1 (en) * 2020-05-11 2021-11-18
WO2021229647A1 (en) * 2020-05-11 2021-11-18 三菱電機株式会社 Refrigeration cycle device
EP4151926A4 (en) * 2020-05-11 2023-06-14 Mitsubishi Electric Corporation Refrigeration cycle device
JP7407920B2 (en) 2020-05-11 2024-01-04 三菱電機株式会社 Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
EP3467406B1 (en) Air conditioner
EP2933588B1 (en) Air conditioning hot water supply composite system
EP2128542B1 (en) Air conditioner
KR100924628B1 (en) Refrigeration device
EP1120611A1 (en) Refrigerating device
JP5506185B2 (en) Air conditioner
EP1873466A2 (en) Refrigeration cycle and water heater
CN113348333B (en) Outdoor unit of refrigeration device and refrigeration device provided with same
JP2007315702A (en) Freezer
JPWO2019053876A1 (en) Air conditioner
JP2009036503A (en) Refrigerating cycle device and air conditioner having this refrigerating cycle device
EP3835686A1 (en) Air-conditioning system
JP6448780B2 (en) Air conditioner
EP2896911B1 (en) Air conditioning apparatus
JP2012207826A (en) Refrigerating cycle device
JP5334554B2 (en) Air conditioner
JP2019066158A (en) Refrigerator
JP6643630B2 (en) Air conditioner
JP2006170541A (en) Air conditioner
JP2012207823A (en) Refrigerating cycle device
JP6021943B2 (en) Air conditioner
JP5537906B2 (en) Air conditioner
GB2533041A (en) Air conditioner
JP5525906B2 (en) Refrigeration cycle equipment
JP2021032441A (en) Refrigeration unit and intermediate unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903