JP2009036503A - Refrigerating cycle device and air conditioner having this refrigerating cycle device - Google Patents

Refrigerating cycle device and air conditioner having this refrigerating cycle device Download PDF

Info

Publication number
JP2009036503A
JP2009036503A JP2007297578A JP2007297578A JP2009036503A JP 2009036503 A JP2009036503 A JP 2009036503A JP 2007297578 A JP2007297578 A JP 2007297578A JP 2007297578 A JP2007297578 A JP 2007297578A JP 2009036503 A JP2009036503 A JP 2009036503A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
bypass
discharge
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007297578A
Other languages
Japanese (ja)
Inventor
Masatoshi Takahashi
正敏 高橋
Yoshikimi Tazumi
欣公 田積
Tomiyuki Noma
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007297578A priority Critical patent/JP2009036503A/en
Priority to CN2008101102670A priority patent/CN101344335B/en
Publication of JP2009036503A publication Critical patent/JP2009036503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of requiring much time for defrosting the whole evaporator, due to reduction in refrigerant energy for melting frost of an evaporator tail end part, since heat is exchanged with surrounding air in a part of completing defrosting such as the vicinity of an evaporator inlet in defrosting. <P>SOLUTION: This refrigerating cycle device is constituted so that a delivery refrigerant of a compressor 1 is bypassed in the middle of a refrigerant flow passage of an evaporator 4 in the defrosting, and has a plurality of delivery gas refrigerants flowed in the evaporator 4 like a second delivery gas bypass 32 and an evaporator gas bypass 34, and thus, since not only that the heat is exchanged with the surrounding air in a defrosting finished part of the evaporator 4 by partially defrosting the evaporator 4 only in the vicinity of an inlet 4a can be restrained but also that a temperature rise in the evaporator 4 by reduction in flow passage resistance in the evaporator can be expected, the air conditioner for restraining reduction in amenity by a room temperature drop in heating operation by shortening a defrosting time, can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧縮機の吐出ガス冷媒を用いて蒸発器に付着した霜を溶解するためのバイパス回路を備えた冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus including a bypass circuit for melting frost attached to an evaporator using a discharge gas refrigerant of a compressor.

従来、この種の冷凍サイクル装置においては、圧縮機で圧縮された高温高圧の吐出ガス冷媒は、四方弁を介して凝縮器に流入し、熱交換を行うことで冷媒は凝縮される。凝縮された冷媒は絞り装置で減圧されて気液2相状態となって蒸発器に流入し、熱交換を行うことで蒸発し、再度四方弁を介して圧縮機に吸い込まれる。ここで、蒸発器の周囲温度が低い場合においては、蒸発器に霜が徐々に付着し、霜の付着量が増えるに従って能力が低下する。   Conventionally, in this type of refrigeration cycle apparatus, high-temperature and high-pressure discharge gas refrigerant compressed by a compressor flows into a condenser via a four-way valve, and the refrigerant is condensed by heat exchange. The condensed refrigerant is depressurized by the expansion device, becomes a gas-liquid two-phase state, flows into the evaporator, evaporates by performing heat exchange, and is sucked into the compressor again through the four-way valve. Here, when the ambient temperature of the evaporator is low, frost gradually adheres to the evaporator, and the capacity decreases as the amount of frost attached increases.

そこで、蒸発器に付着した霜を溶かす必要があるが、一般的には、四方弁を切り替えて逆サイクル運転とすることで、それぞれの熱交換器の働きを逆にして霜を溶かす方法がある。しかしながら、この方法では本来の暖房運転を停止することになって凝縮器側の温度が低下してしまい、急激な室温低下による不快感を引き起こしてしまう。   Therefore, it is necessary to melt the frost adhering to the evaporator. Generally, there is a method of melting the frost by switching the four-way valve and performing reverse cycle operation to reverse the function of each heat exchanger. . However, in this method, the original heating operation is stopped, the temperature on the condenser side is lowered, and unpleasant feeling due to a sudden room temperature drop is caused.

また、そのような逆サイクル運転としない方法として、圧縮機から吐出した冷媒が流れる吐出管に分岐管を設けることで、冷媒の一部は分岐管の一方の凝縮器に流れ、残りはもう一方の電磁弁などの冷媒制御装置を介して蒸発器に流入させ、暖房能力としては低下するものの、暖房運転を継続しながら蒸発器に付着した霜を溶解させる除霜方法がある(例えば、特許文献1参照)。   Also, as a method not to perform such reverse cycle operation, by providing a branch pipe in the discharge pipe through which the refrigerant discharged from the compressor flows, a part of the refrigerant flows to one condenser of the branch pipe and the rest is the other There is a defrosting method in which the frost adhering to the evaporator is dissolved while continuing the heating operation, although the heating capacity is reduced by flowing into the evaporator via a refrigerant control device such as an electromagnetic valve (for example, Patent Documents) 1).

図3は、特許文献1に記載された従来の空気調和装置の冷凍サイクル装置を示すものである。図3において、室外機Bに、圧縮機1と四方弁11と絞り装置3と蒸発器4とを備え、室内機Aに凝縮器2を備えて暖房運転時の冷凍サイクルを構成している。そして、吐出管1aから絞り装置3と蒸発器4との間の管路までの吐出冷媒バイパス30を、分岐管5と電磁弁6とを介して構成している。この構成において、暖房運転を続けていると蒸発器4に霜が付着してくる。そこで除霜運転として、凝縮器2や蒸発器4のそれぞれの熱交換器の働きは暖房運転の状態のままで、吐出冷媒バイパス30の電磁弁6を開くと、吐出ガス冷媒が蒸発器4に直接流れ込んで除霜を行うもので、暖房運転を継続しながら蒸発器4の除霜を行うことができるものである。
実開昭60−10178号公報
FIG. 3 shows a refrigeration cycle apparatus of a conventional air conditioner described in Patent Document 1. In FIG. 3, the outdoor unit B includes a compressor 1, a four-way valve 11, a throttle device 3, and an evaporator 4, and the indoor unit A includes a condenser 2 to constitute a refrigeration cycle during heating operation. A discharge refrigerant bypass 30 from the discharge pipe 1 a to the pipe line between the expansion device 3 and the evaporator 4 is configured via the branch pipe 5 and the electromagnetic valve 6. In this configuration, frost adheres to the evaporator 4 when the heating operation is continued. Therefore, as the defrosting operation, when the operation of the heat exchangers of the condenser 2 and the evaporator 4 remains in the heating operation state and the electromagnetic valve 6 of the discharge refrigerant bypass 30 is opened, the discharge gas refrigerant is transferred to the evaporator 4. The defrosting is performed by directly flowing in, and the evaporator 4 can be defrosted while continuing the heating operation.
Japanese Utility Model Publication No. 60-10178

しかしながら、前記従来の構成では、圧縮機から吐出したバイパス冷媒により高温となった冷媒が蒸発器の入口から流入し、冷媒エネルギーを蒸発器に供給しながら順次蒸発器内の冷媒を進むため、吐出冷媒が蒸発器に流入した直後の入口付近の霜は比較的短時間で除霜されるが、出口側になるほど除霜に時間が掛かる。そのような状態において、蒸発器入口付近の除霜が早々に完了した部分は、周囲の空気と熱交換してしまうことになって除霜に関係なく温度が低下してしまうため、蒸発器出口付近の霜を溶解する冷媒エネルギーが少なくなり、蒸発器全体を除霜する時間がますます多くかかってしまう。そうなると、能力が低下した暖房運転が続くことになるので、室温が徐々に低下して快適性が低下してしまうという課題を有していた。   However, in the above-described conventional configuration, the refrigerant that has become hot due to the bypass refrigerant discharged from the compressor flows in from the inlet of the evaporator, and advances the refrigerant in the evaporator sequentially while supplying refrigerant energy to the evaporator. The frost in the vicinity of the inlet immediately after the refrigerant flows into the evaporator is defrosted in a relatively short time, but it takes longer to defrost toward the outlet side. In such a state, the portion where the defrosting near the evaporator inlet is completed quickly is subject to heat exchange with the surrounding air, and the temperature decreases regardless of the defrosting. The refrigerant energy that dissolves the nearby frost is reduced, and it takes more time to defrost the entire evaporator. If it becomes so, since the heating operation in which the capability fell will continue, it had the subject that room temperature would fall gradually and comfort would fall.

本発明は、前記従来の課題を解決するもので、除霜時間を短縮するとともに、その冷凍
サイクル装置を備えて暖房運転時の室温低下による快適性の低下を抑制する空気調和機を提供することを目的とする。
The present invention solves the above-described conventional problems, and provides an air conditioner that shortens the defrosting time and includes the refrigeration cycle device to suppress a decrease in comfort due to a decrease in room temperature during heating operation. With the goal.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、除霜時には圧縮機の吐出冷媒が蒸発器の冷媒流路の途中にバイパスされる様に構成したものである。これによって、除霜時の吐出冷媒が除霜完了部分で周囲の空気と熱交換する量を抑制するとともに、蒸発器の冷媒流路の途中の出口に近いところからも除霜が進んで冷媒の熱を効果的に除霜に使うことができ、蒸発器の温度上昇と、圧縮機の過熱度および吐出冷媒の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら除霜時間の短縮が可能となる。   In order to solve the above-described conventional problems, the refrigeration cycle apparatus of the present invention is configured such that the refrigerant discharged from the compressor is bypassed in the refrigerant flow path of the evaporator during defrosting. As a result, the amount of refrigerant discharged at the time of defrosting is reduced in the amount of heat exchanged with the surrounding air at the defrosting completion part, and defrosting progresses from a place near the outlet in the middle of the refrigerant flow path of the evaporator. Heat can be effectively used for defrosting, the temperature of the evaporator can be increased, the degree of superheat of the compressor and the temperature of the discharged refrigerant can be increased, and the defrosting time can be suppressed while suppressing the decrease in the capacity of the condenser Can be shortened.

また、そのような冷凍サイクル装置を備えた空気調和機とすることで、除霜時間を短縮するとともに、暖房運転時の室温低下による快適性の低下を抑制することが可能となる。   Moreover, by setting it as the air conditioner provided with such a refrigerating-cycle apparatus, it becomes possible to reduce the defrost time and to suppress the fall of the comfort by the room temperature fall at the time of heating operation.

本発明の冷凍サイクル装置は、除霜時に除霜が終了した蒸発器の部分で、パイパスされた吐出冷媒が周囲の空気と熱交換する量を抑制できるために除霜時間短縮ができ、空気調和機においては暖房運転における除霜時の室温低下を抑制することにより快適性の低下を抑制することができる。   The refrigeration cycle apparatus of the present invention can reduce the defrosting time because the amount of heat exchanged between the discharged refrigerant bypassed and the surrounding air can be reduced at the portion of the evaporator where the defrosting is completed at the time of defrosting. In a machine, the fall of comfort can be suppressed by suppressing the room temperature fall at the time of the defrost in heating operation.

第1の発明は、圧縮機と、四方弁と、凝縮器と、絞り装置と、蒸発器とを順番に配管で接続して冷凍サイクルを構成し、前記蒸発器の冷媒流路の途中に前記圧縮機の吐出管から吐出冷媒をバイパスする第1の吐出冷媒バイパスと、前記絞り装置と蒸発器とを接続する蒸発器配管へ前記圧縮機の吐出管から吐出冷媒をバイパスする第2の吐出冷媒バイパスとを設けて、暖房運転の除霜時に前記2つの吐出冷媒バイパスに吐出冷媒を流すようにした構成を備えた冷凍サイクル装置である。   According to a first aspect of the present invention, a compressor, a four-way valve, a condenser, a throttling device, and an evaporator are connected in order by a pipe to constitute a refrigeration cycle, and the refrigerant is placed in the middle of the refrigerant flow path of the evaporator. A first discharge refrigerant bypass that bypasses the discharge refrigerant from the discharge pipe of the compressor, and a second discharge refrigerant that bypasses the discharge refrigerant from the discharge pipe of the compressor to an evaporator pipe connecting the expansion device and the evaporator A refrigeration cycle apparatus having a configuration in which a bypass is provided so that the discharged refrigerant flows through the two discharged refrigerant bypasses during defrosting in heating operation.

この構成によって、除霜を行うための吐出管からバイパスした高温の冷媒を、蒸発器の冷媒流路において本来の入口と途中の入口との複数の入口から蒸発器に流入させて除霜を行うことにより、除霜時に蒸発器の除霜が本来の入口だけから行われて霜が早々に溶けてしまった蒸発器の部分で、バイパスされた吐出冷媒が周囲の空気と熱交換して温度が低下してしまうことを抑制するとともに、蒸発器の冷媒流路の途中の出口に近いところからも除霜が進んで冷媒の熱を効果的に除霜に使うことができ、蒸発器の温度上昇と、圧縮機の過熱度および吐出冷媒の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら、蒸発器の除霜時間の大幅な短縮が可能となる。   With this configuration, the high-temperature refrigerant bypassed from the discharge pipe for performing defrosting is introduced into the evaporator through a plurality of inlets of the original inlet and the intermediate inlet in the refrigerant flow path of the evaporator to perform the defrosting. As a result, the defrosting of the evaporator is performed only from the original inlet at the time of defrosting, and the temperature of the evaporator is reduced by heat exchange between the bypassed discharged refrigerant and the surrounding air. In addition to suppressing the decrease, the defrosting can proceed from the vicinity of the outlet in the middle of the refrigerant flow path of the evaporator, and the heat of the refrigerant can be effectively used for the defrosting. Thus, the degree of superheat of the compressor and the temperature of the discharged refrigerant can be increased, and the defrosting time of the evaporator can be significantly shortened while suppressing a decrease in the capacity of the condenser.

第2の発明は、圧縮機と、四方弁と、凝縮器と、絞り装置と、蒸発器とを順番に配管で接続して冷凍サイクルを構成し、前記蒸発器の冷媒流路の途中に前記圧縮機の吐出管から吐出冷媒をバイパスする第1の吐出冷媒バイパスを設けて、暖房運転の除霜時に前記第1の吐出冷媒バイパスに吐出冷媒を流すようにした構成を備えた冷凍サイクル装置である。   According to a second aspect of the present invention, a compressor, a four-way valve, a condenser, a throttling device, and an evaporator are connected in order by a pipe to constitute a refrigeration cycle, and the refrigerant is placed in the middle of the refrigerant flow path of the evaporator. A refrigeration cycle apparatus having a configuration in which a first discharge refrigerant bypass that bypasses a discharge refrigerant from a discharge pipe of a compressor is provided, and the discharge refrigerant flows through the first discharge refrigerant bypass during defrosting in heating operation is there.

この構成によって、蒸発器の冷媒流路の本来の入口にはバイパスがない通常の冷媒を流入し、蒸発器の冷媒流路の途中の入口には吐出管からバイパスした高温の冷媒を流入させるようにして、除霜を行うための冷媒を複数の入口から蒸発器に流入させて除霜を行うことにより、霜の付着量が多い出口付近は充分に除霜することができ、除霜時に蒸発器の除霜が本来の入口だけから行われて霜が早々に溶けてしまった蒸発器の部分で、バイパスされた吐出冷媒が周囲の空気と熱交換して温度が低下してしまうことを抑制することもできるために、冷媒の熱を効果的に除霜に使うことができ、凝縮器における能力の低下を抑制
しながら、蒸発器の除霜時間の短縮が可能となる。特に、第1の発明の冷凍サイクルに較べて簡易なシステムで可能となる。
With this configuration, normal refrigerant without bypass flows into the original inlet of the refrigerant flow path of the evaporator, and hot refrigerant bypassed from the discharge pipe flows into the middle inlet of the refrigerant flow path of the evaporator. The defrosting is performed by allowing the refrigerant for performing defrosting to flow into the evaporator from a plurality of inlets, so that the vicinity of the outlet having a large amount of frost can be sufficiently defrosted and evaporated during defrosting. In the part of the evaporator where the defrosting of the vessel is performed only from the original inlet and the frost has melted quickly, the bypassed refrigerant is prevented from exchanging heat with the surrounding air and decreasing in temperature. Therefore, the heat of the refrigerant can be effectively used for defrosting, and the defrosting time of the evaporator can be shortened while suppressing the decrease in the capacity of the condenser. In particular, it is possible with a simple system compared to the refrigeration cycle of the first invention.

第3の発明は、特に第1又は第2の発明の、冷凍サイクル装置に圧縮機の吸入管に吐出冷媒をバイパスする第3の吐出冷媒バイパスを更に設けたものである。これによって、圧縮機の過熱度および吐出冷媒の温度上昇とそれに伴うさらなる蒸発器の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら、蒸発器の除霜時間のさらなる短縮が可能となる。   According to a third aspect of the invention, in particular, the refrigeration cycle apparatus according to the first or second aspect further includes a third discharge refrigerant bypass for bypassing the discharge refrigerant in the suction pipe of the compressor. This makes it possible to increase the degree of superheat of the compressor and the temperature of the discharged refrigerant and further increase the temperature of the evaporator, thereby further reducing the defrosting time of the evaporator while suppressing a decrease in the capacity of the condenser. It becomes possible.

第4の発明は、特に第1〜3の発明の冷凍サイクル装置の圧縮機の吐出冷媒が一つ以上の吐出冷媒バイパスにバイパスして流れる流量が、前記四方弁へ流れる流量より多くなる様に構成した冷凍サイクル装置である。これによって、バイパス側に四方弁側より多く吐出冷媒が流れるために、蒸発器の温度上昇を図ることができ、蒸発器の除霜時間の短縮が可能となる。   In the fourth aspect of the invention, in particular, the flow rate of the refrigerant discharged from the compressor of the refrigeration cycle apparatus of the first to third aspects of the bypass bypassing one or more discharge refrigerant bypasses is greater than the flow rate flowing to the four-way valve. It is the comprised refrigeration cycle apparatus. As a result, more refrigerant is discharged to the bypass side than the four-way valve side, so that the temperature of the evaporator can be increased and the defrosting time of the evaporator can be shortened.

第5の発明は、特に第4の発明の冷凍サイクル装置の吐出冷媒バイパス側の総合的な流路抵抗を凝縮器側の流路抵抗より小さくしたもので、吐出冷媒バイパスを流れる冷媒の流量を、凝縮器側の四方弁へ流れる流量より多くすることが可能となる。   In the fifth aspect of the invention, in particular, the overall flow path resistance on the discharge refrigerant bypass side of the refrigeration cycle apparatus of the fourth invention is made smaller than the flow path resistance on the condenser side. It is possible to increase the flow rate that flows to the four-way valve on the condenser side.

第6の発明は、特に、第1〜5の発明の冷凍サイクル装置の吐出冷媒バイパスを、吐出管に分岐管を設け、圧縮機の吐出冷媒が吐出冷媒バイパスの方向には四方弁の方向より動圧成分が大きく作用するように接続したもので、吐出冷媒の動圧成分がバイパス側に大きくかかるため、分岐管での冷媒分流比率が四方弁側よりバイパス側に大きくなり、バイパス側の冷媒の流量を多くすることができる。また、吐出冷媒バイパスに設置された冷媒制御装置があっても循環量を維持することができ、すなわち冷媒制御装置の流路抵抗の影響度を小さくすることが可能となるとともに、冷媒の分岐以降にバイパス側に接続する冷媒制御装置の選択範囲の向上を可能とする。   In the sixth aspect of the invention, in particular, the discharge refrigerant bypass of the refrigeration cycle apparatus of the first to fifth aspects of the invention is provided, and a branch pipe is provided in the discharge pipe. It is connected so that the dynamic pressure component acts greatly, and the dynamic pressure component of the discharged refrigerant is greatly applied to the bypass side, so that the refrigerant distribution ratio in the branch pipe becomes larger on the bypass side than on the four-way valve side, and the refrigerant on the bypass side The flow rate can be increased. Further, the circulation amount can be maintained even if there is a refrigerant control device installed in the discharge refrigerant bypass, that is, the influence of the flow path resistance of the refrigerant control device can be reduced, and after the refrigerant branching The selection range of the refrigerant control device connected to the bypass side can be improved.

第7の発明は、特に第4〜6の発明の冷凍サイクル装置の吐出冷媒バイパスを、吐出管にT字形の分岐管を設け、圧縮機の吐出冷媒が吐出冷媒バイパスの方向には直線的に流れ、四方弁の方向には折れ曲がって流れるように構成したもので、吐出冷媒バイパス方向の流路抵抗を、凝縮器方向の流路抵抗より小さくできるとともに、圧縮機の吐出冷媒が吐出冷媒バイパスの方向に対して、四方弁の方向より動圧成分を大きく作用させることが可能となる。   In the seventh aspect of the invention, in particular, the discharge refrigerant bypass of the refrigeration cycle apparatus of the fourth to sixth aspects of the invention is provided with a T-shaped branch pipe in the discharge pipe, and the discharge refrigerant of the compressor is linear in the direction of the discharge refrigerant bypass. The flow resistance in the direction of the four-way valve is bent so that the flow resistance in the discharge refrigerant bypass direction can be made smaller than the flow resistance in the condenser direction, and the discharge refrigerant of the compressor The dynamic pressure component can be applied to the direction more than the direction of the four-way valve.

第8の発明は、特に第1〜7の冷凍サイクル装置の少なくとも一つ以上の吐出冷媒バイパスの出口が冷凍サイクルの配管に合流する箇所に、T字管によりバイパスからの流れが直線的になるように接続したもので、吐出冷媒バイパスの流路抵抗を凝縮器側の流路抵抗より小さくできて、バイパス側の冷媒の流量を多くすることが可能となる。   In the eighth aspect of the invention, in particular, the flow from the bypass is linearized by the T-shaped tube at the location where the outlet of at least one discharge refrigerant bypass of the first to seventh refrigeration cycle apparatuses joins the piping of the refrigeration cycle. Thus, the flow resistance of the discharge refrigerant bypass can be made smaller than the flow resistance on the condenser side, and the flow rate of the refrigerant on the bypass side can be increased.

第9の発明は、特に第1〜8の冷凍サイクル装置の一つ以上の吐出冷媒バイパスのうち、最も長い吐出冷媒バイパスの配管長を凝縮器側の配管長より短くしたもので、吐出冷媒バイパスの流路抵抗を凝縮器側の流路抵抗より小さくできて、バイパス側の冷媒の流量を多くすることが可能となる。   The ninth aspect of the invention is a discharge refrigerant bypass in which the pipe length of the longest discharge refrigerant bypass is made shorter than the pipe length on the condenser side among the one or more discharge refrigerant bypasses of the first to eighth refrigeration cycle apparatuses. Can be made smaller than the flow path resistance on the condenser side, and the flow rate of the refrigerant on the bypass side can be increased.

第10の発明は、特に第1〜9の冷凍サイクル装置の一つ以上の吐出冷媒バイパスのうち、最も太い吐出冷媒バイパスの配管径を、凝縮器側の配管径と同等以上に大きくしたもので、吐出冷媒バイパスの流路抵抗を凝縮器側の流路抵抗より小さくできて、バイパス側の冷媒の流量を多くすることが可能となる。   In the tenth aspect of the invention, in particular, among the one or more discharge refrigerant bypasses of the first to ninth refrigeration cycle apparatuses, the pipe diameter of the thickest discharge refrigerant bypass is made equal to or larger than the pipe diameter on the condenser side. Thus, the flow resistance of the discharge refrigerant bypass can be made smaller than the flow resistance of the condenser side, and the flow rate of the refrigerant on the bypass side can be increased.

第11の発明は、特に第1〜10の冷凍サイクル装置の吐出冷媒バイパスに、吐出冷媒のうち50%〜90%が流れるように構成したもので、これによりバイパス側に多く吐出冷媒が流れるために、蒸発器の温度上昇と、圧縮機の過熱度および吐出冷媒の温度上昇とそれに伴うさらなる蒸発器の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら、蒸発器の除霜時間の短縮が可能となる。   In the eleventh aspect of the invention, in particular, 50% to 90% of the discharged refrigerant flows in the discharged refrigerant bypass of the first to tenth refrigeration cycle apparatuses, so that a larger amount of discharged refrigerant flows to the bypass side. In addition, it is possible to increase the temperature of the evaporator, the degree of superheat of the compressor and the temperature of the discharged refrigerant, and further increase the temperature of the evaporator. The frost time can be shortened.

第12の発明は、それぞれに送風機を備えた室内機と室外機とを有し、請求項1〜11のうちいずれか一項記載の冷凍サイクル装置を備えた空気調和機であり、除霜時間を短くできる冷凍サイクル装置により、暖房運転における除霜時の室温低下を抑制することができて、快適性の低下を抑制することができる。   A twelfth aspect of the present invention is an air conditioner that includes an indoor unit and an outdoor unit each having a blower, and includes the refrigeration cycle apparatus according to any one of claims 1 to 11, and a defrosting time. With the refrigeration cycle apparatus that can shorten the temperature, a decrease in room temperature during defrosting in heating operation can be suppressed, and a decrease in comfort can be suppressed.

第13の発明は、特に第12の発明の空気調和機の室内機に補助加熱装置を備えたもので、暖房運転における除霜時の暖房能力の低下を補うことにより、室温低下をより抑制して快適性の低下をより抑制することができる。   In the thirteenth aspect of the invention, in particular, the indoor unit of the air conditioner of the twelfth aspect of the invention is provided with an auxiliary heating device to compensate for a decrease in heating capacity during defrosting in heating operation, thereby further suppressing a decrease in room temperature. Thus, it is possible to further suppress a decrease in comfort.

以下、本発明の冷凍サイクル装置の実施の形態について、空気調和機に搭載した例として図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings as examples mounted on an air conditioner. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷凍サイクル装置の冷媒系統図で、空気調和機としての冷媒の流れ(暖房運転時は実線矢印方向)を示すものである。図1において、冷媒を圧縮する圧縮機1、冷媒の流れを変える四方弁11、高圧高温冷媒が凝縮される凝縮器2、凝縮された冷媒を減圧する絞り装置3、減圧された冷媒を蒸発させる蒸発器4が順番に配管で接続されて通常の冷凍サイクルを構成している。ここで、凝縮器2は室内機Aに設けられ、その他は室外機Bに設けられており、さらに室内機Aには室内送風機7と電気ヒータ9を備え、室外機Bには室外送風機8を備えている。
(Embodiment 1)
FIG. 1 is a refrigerant system diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention and shows a refrigerant flow as an air conditioner (in the direction of a solid arrow during heating operation). In FIG. 1, a compressor 1 that compresses refrigerant, a four-way valve 11 that changes the flow of refrigerant, a condenser 2 that condenses high-pressure and high-temperature refrigerant, a throttling device 3 that decompresses condensed refrigerant, and evaporates the decompressed refrigerant. The evaporator 4 is connected by piping in order, and the normal refrigeration cycle is comprised. Here, the condenser 2 is provided in the indoor unit A, and the others are provided in the outdoor unit B. The indoor unit A further includes an indoor fan 7 and an electric heater 9, and the outdoor unit B includes the outdoor fan 8. I have.

本実施の形態1においては、冷凍サイクル装置に圧縮機1からの吐出ガス冷媒を凝縮器2をバイパスする複数の吐出冷媒バイパスを設けている。すなわち、四方弁11の手前の吐出管1aで分岐させて吐出冷媒バイパスの全流量が流れる第1吐出ガスバイパス31を設け、そこから更に分岐して、絞り装置3と蒸発器4との間の蒸発器配管10にバイパスする、第2の吐出冷媒バイパスであるところの第2吐出ガスバイパス32と、蒸発器4の冷媒流路の途中の入口4cにバイパスする、第1の吐出冷媒バイパスであるところの蒸発器パスバイパス34と、圧縮機1の吸入管1bにバイパスする、第3の吐出冷媒バイパスであるところの第3吐出ガスバイパス33とを設けている。すなわち、ここでは吐出冷媒バイパスは、第1吐出ガスバイパス31と、そこから分岐する第2吐出ガスバイパス32と第3吐出ガスバイパス33と蒸発器パスバイパス34とから構成している。   In the first embodiment, the refrigeration cycle apparatus is provided with a plurality of discharge refrigerant bypasses that bypass the condenser 2 with the discharge gas refrigerant from the compressor 1. That is, a first discharge gas bypass 31 is provided which branches at the discharge pipe 1a in front of the four-way valve 11 to flow the entire flow rate of the discharge refrigerant bypass, and further branches from there, between the expansion device 3 and the evaporator 4. The second discharge gas bypass 32, which is the second discharge refrigerant bypass, bypassed to the evaporator pipe 10, and the first discharge refrigerant bypass, bypassed to the inlet 4c in the middle of the refrigerant flow path of the evaporator 4. An evaporator path bypass 34 and a third discharge gas bypass 33 that is a third discharge refrigerant bypass that bypasses the suction pipe 1 b of the compressor 1 are provided. That is, here, the discharge refrigerant bypass is composed of the first discharge gas bypass 31, the second discharge gas bypass 32, the third discharge gas bypass 33, and the evaporator path bypass 34 branched therefrom.

第1吐出ガスバイパス31の途中には吐出ガス冷媒を任意に流すことを可能とする冷媒制御装置40を備え、必要に応じて全体の冷媒の流れを制御する。また、第2吐出ガスバイパス32の途中には蒸発器バイパス流量調整管32aと逆止弁32bとを備え、第3吐出ガスバイパス33の途中には吸入バイパス流量調整管33aを備え、さらに、蒸発器パスバイパス34の途中には蒸発器パスバイパス流量調整管34aと逆止弁34bとを備えて、第2吐出ガスバイパス32と第3吐出ガスバイパス33と蒸発器パスバイパス34との流量バランスを調整している。   A refrigerant control device 40 is provided in the middle of the first discharge gas bypass 31 to allow the discharge gas refrigerant to flow arbitrarily, and the entire refrigerant flow is controlled as necessary. Further, an evaporator bypass flow rate adjustment pipe 32a and a check valve 32b are provided in the middle of the second discharge gas bypass 32, and a suction bypass flow rate adjustment pipe 33a is provided in the middle of the third discharge gas bypass 33, and further, evaporation An evaporator path bypass flow rate adjustment pipe 34a and a check valve 34b are provided in the middle of the evaporator path bypass 34 to balance the flow rates of the second discharge gas bypass 32, the third discharge gas bypass 33, and the evaporator path bypass 34. It is adjusted.

また、吐出管1aにおける第1吐出ガスバイパス31の分岐は、略T字形の分岐管51を備えて行う。この分岐管51は、圧縮機1の吐出冷媒が第1吐出ガスバイパス31の方向には直線的に流れ(矢印D1)、四方弁11の方向にはほぼ直角に折れ曲がって流れる
(矢印D2)ように構成している。
Further, the branch of the first discharge gas bypass 31 in the discharge pipe 1 a is performed by including a substantially T-shaped branch pipe 51. In this branch pipe 51, the refrigerant discharged from the compressor 1 flows linearly in the direction of the first discharge gas bypass 31 (arrow D1), and bends substantially perpendicularly to the direction of the four-way valve 11 (arrow D2). It is configured.

さらに、第2吐出ガスバイパス32の出口における蒸発器配管10への合流と、第3吐出ガスバイパス33の出口における吸入管1bへの合流においてもそれぞれ分岐管51と同様のT字管52,53を備えている。すなわち、熱交換器配管10側のT字管52の合流においては、絞り装置3からの蒸発器配管10としての流れをほぼ直角に折り曲げる(矢印D3)ように構成し、第2吐出ガスバイパス32からの流れを蒸発器配管10へ直線的に流れる(矢印D4)ように接続している。また、吸入管1b側のT字管53の合流においては、四方弁11からの吸入管1bとしての本来の流れをほぼ直角に折り曲げる(矢印D5)ように構成し、第3吐出ガスバイパス33からの流れを吸入管1bへ直線的に流れる(矢印D6)ように接続している。   Further, T-shaped pipes 52 and 53 similar to the branch pipe 51 are also obtained in the merge to the evaporator pipe 10 at the outlet of the second discharge gas bypass 32 and the merge to the suction pipe 1b at the outlet of the third discharge gas bypass 33. It has. That is, in the merge of the T-shaped tube 52 on the heat exchanger pipe 10 side, the flow as the evaporator pipe 10 from the expansion device 3 is bent substantially at right angles (arrow D3), and the second discharge gas bypass 32 is configured. Is connected so as to flow linearly to the evaporator pipe 10 (arrow D4). Further, when the T-shaped pipe 53 on the suction pipe 1b side is merged, the original flow as the suction pipe 1b from the four-way valve 11 is bent substantially at a right angle (arrow D5), and from the third discharge gas bypass 33 Are connected to the suction pipe 1b so as to flow linearly (arrow D6).

以上のように構成された冷凍サイクル装置を備えた空気調和機について、以下その動作、作用を説明する。まず、暖房運転時は実線矢印のごとく、圧縮機1で圧縮された高温高圧の吐出ガス冷媒は、四方弁11を介して室内機Aの凝縮器2に流入し、熱交換を行うことで冷媒は凝縮され、室内は暖房される。凝縮された冷媒は室外機Bに入り、絞り装置3で減圧されて気液2相状態となって蒸発器4に流入し、熱交換を行うことで蒸発して室外の熱を吸熱する。そして、再度四方弁11を介して圧縮機1に吸入される。この通常の暖房運転時においては、冷媒制御装置40は閉じている。   About the air conditioner provided with the refrigerating-cycle apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. First, at the time of heating operation, as indicated by a solid line arrow, the high-temperature and high-pressure discharge gas refrigerant compressed by the compressor 1 flows into the condenser 2 of the indoor unit A through the four-way valve 11 and performs heat exchange. Is condensed and the room is heated. The condensed refrigerant enters the outdoor unit B, is decompressed by the expansion device 3, enters a gas-liquid two-phase state, flows into the evaporator 4, evaporates by performing heat exchange, and absorbs outdoor heat. Then, it is sucked again into the compressor 1 through the four-way valve 11. During this normal heating operation, the refrigerant control device 40 is closed.

ここで、蒸発器4の周囲温度が低い場合においては、蒸発器4に霜が徐々に付着し、霜の付着量が増えるに従って暖房能力が低下する。ちなみに、この着霜の進行については、蒸発器4の出口に近いほど圧力が低く温度も低いため、出口4b付近から着霜が始まり入口4a側に広がってゆく。   Here, when the ambient temperature of the evaporator 4 is low, frost gradually adheres to the evaporator 4, and the heating capacity decreases as the amount of frost attached increases. Incidentally, with regard to the progress of frost formation, the closer to the outlet of the evaporator 4, the lower the pressure and the lower the temperature, so that frosting starts from the vicinity of the outlet 4 b and spreads toward the inlet 4 a side.

そこで、制御装置(図示せず)が蒸発器4の出口温度等を検知することにより、着霜量が所定量まで増えた段階で、第1吐出ガスバイパス31に設けた冷媒制御装置40を開いて第2吐出ガスバイパス32と第3吐出ガスバイパス33と蒸発器パスバイパス34とに吐出ガス冷媒を流すことにより、蒸発器4の除霜を行う。これは、第2吐出ガスバイパス32と蒸発器パスバイパス34とにおいては、蒸発器4の温度を上昇させることで霜の溶解を促進するものである。   Therefore, when the control device (not shown) detects the outlet temperature of the evaporator 4 and the like, the refrigerant control device 40 provided in the first discharge gas bypass 31 is opened when the amount of frost formation has increased to a predetermined amount. The evaporator 4 is defrosted by flowing the discharge gas refrigerant through the second discharge gas bypass 32, the third discharge gas bypass 33, and the evaporator path bypass 34. This promotes melting of frost by raising the temperature of the evaporator 4 in the second discharge gas bypass 32 and the evaporator path bypass 34.

特に、蒸発器パスバイパス34に流して蒸発器4の冷媒流路の途中の入口4cに合流させる構成にしていることで、除霜を行うための高温の冷媒を蒸発器4の冷媒流路において途中の入口4cから蒸発器4に流入させて蒸発器4の出口4bに近いところからも除霜を行うことにより、蒸発器4の除霜が本来の入口4aだけから行われて霜が早々に溶けてしまった部分で周囲の空気と熱交換して温度が低下してしまうことを抑制できるため、除霜時の吐出冷媒が除霜完了部分で周囲の空気と熱交換する量を抑制するとともに、蒸発器の冷媒流路の途中の出口に近いところからも除霜が進んで冷媒の熱を効果的に除霜に使うことができ、蒸発器の温度上昇と、圧縮機の過熱度および吐出冷媒の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら除霜時間の短縮が可能となる。これによって、蒸発器4に付着した霜を短時間で溶解して室内の温度変化をより少なくすることができ、室温低下による快適性の低下を抑制することができる。   In particular, the high-temperature refrigerant for defrosting is supplied to the refrigerant flow path of the evaporator 4 by flowing through the evaporator path bypass 34 and joining the inlet 4c in the middle of the refrigerant flow path of the evaporator 4. The defrosting is also performed from the vicinity of the outlet 4b of the evaporator 4 by flowing into the evaporator 4 from the middle inlet 4c, so that the defrosting of the evaporator 4 is performed only from the original inlet 4a and the frost is quickly generated. Since it is possible to suppress the temperature from decreasing due to heat exchange with the surrounding air at the melted part, the amount of refrigerant discharged at the time of defrosting heat exchange with the surrounding air at the defrosting completed part is suppressed. The defrosting can proceed from the vicinity of the outlet in the middle of the refrigerant flow path of the evaporator, so that the heat of the refrigerant can be effectively used for the defrosting, the temperature rise of the evaporator, the degree of superheat of the compressor and the discharge The temperature of the refrigerant can be increased and the capacity of the condenser is low. It is possible to shorten the defrosting time while suppressing. Thereby, the frost adhering to the evaporator 4 can be melt | dissolved in a short time, indoor temperature change can be decreased more, and the fall of the comfort by room temperature fall can be suppressed.

また、第3吐出ガスバイパス33においては、圧縮機1の乾き度を上昇して圧縮機1および吐出ガス冷媒の温度を上昇させるもので、これにより蒸発器4の温度がより上昇するものである。このように構成した場合、四方弁11は切り替えずに暖房運転状態のままで除霜することで暖房能力は低下するものの、逆サイクルで除霜するシステムと比較して暖房している室内の温度変化をより小さくすることができ、室温低下による快適性の低下を抑制することができる。   Further, in the third discharge gas bypass 33, the temperature of the compressor 1 and the discharge gas refrigerant is increased by increasing the dryness of the compressor 1, and thereby the temperature of the evaporator 4 is further increased. . When configured in this way, although the heating capacity is reduced by defrosting in the heating operation state without switching the four-way valve 11, the temperature of the room being heated as compared with the system that defrosts in the reverse cycle A change can be made smaller and the fall of the comfort by the room temperature fall can be suppressed.

なお、第1吐出ガスバイパス31は、必ずしも第3吐出ガスバイパス33にも分流して吐出ガス冷媒を流さなければならないものではなく、第2吐出ガスバイパス32と蒸発器パスバイパス34とに流すだけでも暖房運転状態のままで除霜することが可能である。すなわち、上記構成の冷媒制御装置40の代わりに、第2吐出ガスバイパス32と第3吐出ガスバイパス33とのそれぞれに冷媒制御装置を配設して、運転状況等に応じて制御しても良い。   The first discharge gas bypass 31 does not necessarily have to be diverted to the third discharge gas bypass 33 and flow the discharge gas refrigerant, but only flows to the second discharge gas bypass 32 and the evaporator path bypass 34. However, it is possible to defrost in the heating operation state. That is, instead of the refrigerant control device 40 having the above-described configuration, a refrigerant control device may be provided in each of the second discharge gas bypass 32 and the third discharge gas bypass 33, and the control may be performed according to the operating condition or the like. .

次に、本実施の形態1では、圧縮機1からの吐出ガス冷媒を、第1吐出ガスバイパス31から第2吐出ガスバイパス32と第3吐出ガスバイパス33と蒸発器パスバイパス34とに流して循環させるにあたって、さらに圧縮機1の吐出管1aにおける第1吐出ガスバイパス31の分岐にT字形の分岐管51を備えている。特に、この分岐管51は、圧縮機1の吐出冷媒が第1吐出ガスバイパス31の方向には直線的に流れ、四方弁11の方向には直角に折れ曲がって流れるように構成している。この構成により、吐出ガス冷媒が第1吐出ガスバイパス31の方向には四方弁11の方向より動圧成分が大きく作用することになる。そして、この動圧の作用により分岐管51での冷媒分流比率が第1吐出ガスバイパス31側に大きくなり、第1吐出ガスバイパス31側の吐出ガス冷媒の流量を多くすることができる。   Next, in the first embodiment, the discharge gas refrigerant from the compressor 1 is caused to flow from the first discharge gas bypass 31 to the second discharge gas bypass 32, the third discharge gas bypass 33, and the evaporator path bypass 34. For circulation, a T-shaped branch pipe 51 is further provided at the branch of the first discharge gas bypass 31 in the discharge pipe 1 a of the compressor 1. In particular, the branch pipe 51 is configured such that the refrigerant discharged from the compressor 1 flows linearly in the direction of the first discharge gas bypass 31 and is bent at a right angle in the direction of the four-way valve 11. With this configuration, the discharge gas refrigerant has a larger dynamic pressure component in the direction of the first discharge gas bypass 31 than in the direction of the four-way valve 11. Then, due to the action of the dynamic pressure, the refrigerant distribution ratio in the branch pipe 51 becomes larger on the first discharge gas bypass 31 side, and the flow rate of the discharge gas refrigerant on the first discharge gas bypass 31 side can be increased.

これにより、蒸発器4に付着した霜をより短時間で溶解して室内の温度変化をより少なくすることができ、室温低下による快適性の低下をより抑制することができる。特に、吐出ガス冷媒が第1吐出ガスバイパス31に流れる流量が、四方弁11へ流れる流量より多くなるようにすることにより、暖房能力の低下により室温が一時的に低下するとしても、さらに短時間で除霜を完了してしまうことで快適性の低下を抑制する大きな効果が得られるものである。   Thereby, the frost adhering to the evaporator 4 can be melt | dissolved in a shorter time, a room temperature change can be decreased more, and the fall of the comfort by a room temperature fall can be suppressed more. In particular, by setting the flow rate of the discharge gas refrigerant flowing to the first discharge gas bypass 31 to be larger than the flow rate of flowing to the four-way valve 11, even if the room temperature temporarily decreases due to a decrease in heating capacity, it is even shorter. By completing the defrosting, a great effect of suppressing a decrease in comfort can be obtained.

さらに、吸入管1bと蒸発器配管10の合流側でもT字管52,53を用い、第2吐出ガスバイパス32の出口、及び第3吐出ガスバイパス33の出口が冷凍サイクルの配管に合流する箇所での流れが直線的になるように接続して、流れをできるだけ妨げないように流路抵抗を小さく構成することで、吐出管1aから第1吐出ガスバイパス31への流量をより多く設定することが可能になる。なお、T字形の分岐管51やT字管52,53は必ずしも完全なT字形である必要はなく、これらの吐出ガスバイパス側を凝縮器2側より流路抵抗が少なく構成できるものであれば良い。   Further, the T-shaped pipes 52 and 53 are also used on the merging side of the suction pipe 1b and the evaporator pipe 10, and the outlet of the second discharge gas bypass 32 and the outlet of the third discharge gas bypass 33 join the refrigeration cycle pipe. The flow rate from the discharge pipe 1a to the first discharge gas bypass 31 is set to be higher by connecting the pipes so that the flow at the pipes is linear and making the flow path resistance small so as not to disturb the flow as much as possible. Is possible. Note that the T-shaped branch pipe 51 and the T-shaped pipes 52 and 53 do not necessarily need to be completely T-shaped, and the discharge gas bypass side can be configured with less channel resistance than the condenser 2 side. good.

以上のように、蒸発器4に流入させる吐出ガス冷媒を第2吐出ガスバイパス32と蒸発器パスバイパス34のように複数持つことで、蒸発器4の除霜が一つの入口4a側にばかり偏って行われて蒸発器4の除霜が終了した部分で周囲の空気と熱交換してしまう量を低減できるだけでなく、蒸発器4内の流路抵抗の削減による蒸発器4の温度の上昇が期待できることから、除霜時間を短縮して室温低下による快適性の低下を抑制した空気調和機を提供することが可能となる。   As described above, by providing a plurality of discharge gas refrigerants that flow into the evaporator 4 such as the second discharge gas bypass 32 and the evaporator path bypass 34, the defrosting of the evaporator 4 is biased toward the single inlet 4a. Thus, the amount of heat exchange with the surrounding air at the portion where the defrosting of the evaporator 4 is completed can be reduced, and the temperature of the evaporator 4 can be increased by reducing the flow resistance in the evaporator 4. Since it can be expected, it is possible to provide an air conditioner that shortens the defrosting time and suppresses a decrease in comfort due to a decrease in room temperature.

また、吐出ガス冷媒の動圧成分が第1吐出ガスバイパス31側に作用するように構成したり、合流においても流路抵抗を小さくしてスムーズに流れるように構成したりすることにより、分岐管51での分流比率が第1吐出ガスバイパス31側に多くなり、第1吐出ガスバイパス31に設置された冷媒制御装置40の流路抵抗の影響度が小さくなるなど、冷媒制御装置40の設計の余裕度を大きくすることができ、それによるコストダウンが可能となる。   Further, the branch pipe is configured such that the dynamic pressure component of the discharge gas refrigerant acts on the first discharge gas bypass 31 side, or the flow resistance is reduced even in the merging so as to flow smoothly. In the design of the refrigerant control device 40, for example, the diversion ratio at 51 increases toward the first discharge gas bypass 31, and the influence of the flow path resistance of the refrigerant control device 40 installed in the first discharge gas bypass 31 decreases. The margin can be increased, thereby reducing the cost.

また、第1吐出ガスバイパス31から第2吐出ガスバイパスの経路、又は第1吐出ガスバイパスから第2吐出ガスバイパスの経路、又は第1吐出ガスバイパスから蒸発器パスバ
イパスの経路の冷媒配管のうち、最も長い配管長を、凝縮器2側の冷媒配管の配管長より短くしたり、同じく配管径を同等以上に大きくしたりして、吐出ガスバイパス側の流路抵抗を凝縮器2側の流路抵抗より小さくすることによっても吐出管1aから第1吐出ガスバイパス31への流量をより多く設定することが可能になる。
Of the refrigerant pipes in the path from the first discharge gas bypass 31 to the second discharge gas bypass, from the first discharge gas bypass to the second discharge gas bypass, or from the first discharge gas bypass to the evaporator path bypass The longest pipe length is shorter than the pipe length of the refrigerant pipe on the condenser 2 side, or the pipe diameter is also made equal to or larger than that, so that the flow resistance on the discharge gas bypass side is reduced to the flow on the condenser 2 side. It is possible to set a larger flow rate from the discharge pipe 1a to the first discharge gas bypass 31 by making it smaller than the path resistance.

以上、いくつかの実施例を示したように、吐出ガスバイパス側の吐出管1aの分岐部分から凝縮器2側配管を除く圧縮機1の吸入までの全体の総合的な流路抵抗を、凝縮器2側の吐出管1aの分岐部分から吐出ガスバイパス側の配管を除く圧縮機1の吸入までの流路抵抗より小さくすることによって、吐出管1aから第1吐出ガスバイパス31への流量を、凝縮器2側の四方弁11へ流れる流量より多く設定することが可能になる。   As described above, as shown in some embodiments, the overall flow resistance from the branch part of the discharge pipe 1a on the discharge gas bypass side to the suction of the compressor 1 excluding the condenser 2 side pipe is condensed. The flow rate from the discharge pipe 1a to the first discharge gas bypass 31 is reduced by reducing the flow resistance from the branch portion of the discharge pipe 1a on the container 2 side to the suction of the compressor 1 excluding the discharge gas bypass side pipe. It is possible to set more than the flow rate flowing to the four-way valve 11 on the condenser 2 side.

このように、除霜時に圧縮機1の吐出ガス冷媒が第1吐出ガスバイパス31に流れる流量が、四方弁11へ流れる流量より多くなる様に構成することにより、蒸発器4のより大きな温度上昇を図るとともに、圧縮機1の過熱度および吐出ガス冷媒の温度上昇によってもさらに大きな蒸発器4の温度上昇を図ることができ、凝縮器2における能力の低下を抑制しながら、蒸発器4の除霜時間をより短縮することが可能となる。また、第1吐出ガスバイパス31に設置された冷媒制御装置40の流路抵抗の影響度が小さくなるため、設計自由度が向上するとともに、それによるコストダウンが可能となる。さらに、以上のような構成の冷凍サイクル装置を備えることにより、室温低下による快適性の低下を抑制した空気調和機を提供することが可能となる。   In this way, by configuring the flow rate of the discharge gas refrigerant of the compressor 1 to flow through the first discharge gas bypass 31 at the time of defrosting to be greater than the flow rate of flowing to the four-way valve 11, the temperature rise of the evaporator 4 can be further increased. In addition, the temperature of the evaporator 4 can be further increased by the degree of superheat of the compressor 1 and the temperature of the discharge gas refrigerant, and the evaporator 4 can be removed while suppressing a decrease in the capacity of the condenser 2. It becomes possible to shorten frost time more. Further, since the degree of influence of the flow path resistance of the refrigerant control device 40 installed in the first discharge gas bypass 31 is reduced, the degree of freedom in design is improved and the cost can be reduced accordingly. Furthermore, by providing the refrigeration cycle apparatus configured as described above, it is possible to provide an air conditioner that suppresses a decrease in comfort due to a decrease in room temperature.

なお、第1吐出ガスバイパス31への分流比率としては、通常は50%未満であり、霜を溶かす除霜時間も比較的時間をかけて行うが、本実施の形態1では第1吐出ガスバイパス31に、吐出冷媒のうち50%〜90%が流れるように構成したことにより、周囲温度条件にもよるが、およそ3分〜7分で除霜を完了する。これにより、室内機Aの凝縮器2への冷媒の循環量は低下するが、圧縮機1の乾き度を大きくして吐出ガス冷媒の温度を上昇することなどにより、暖房能力の低下を抑制することもできる。さらに、室内機Aに補助加熱装置として例えば電気ヒータ9を備えれば、冷凍サイクルにおける暖房能力の低下を補うことができ、室温低下による快適性の低下をより抑制することができる。   The ratio of the diversion to the first discharge gas bypass 31 is usually less than 50%, and the defrosting time for melting the frost is also relatively long. In the first embodiment, the first discharge gas bypass is used. 31 is configured such that 50% to 90% of the discharged refrigerant flows, and the defrosting is completed in about 3 minutes to 7 minutes depending on the ambient temperature condition. Thereby, although the circulation amount of the refrigerant | coolant to the condenser 2 of the indoor unit A falls, the fall of heating capability is suppressed by enlarging the dryness of the compressor 1 and raising the temperature of discharge gas refrigerant | coolant etc. You can also. Furthermore, if the indoor unit A is provided with, for example, an electric heater 9 as an auxiliary heating device, it is possible to compensate for a decrease in heating capacity in the refrigeration cycle, and to further suppress a decrease in comfort due to a decrease in room temperature.

(実施の形態2)
図2は、本発明の実施の形態2における冷凍サイクル装置の冷媒系統図で、空気調和機としての冷媒の流れ(暖房運転時は実線矢印方向)を示すものである。図2において、通常の冷凍サイクルは図1と同様であり、異なるところは、絞り装置3と蒸発器4との間の蒸発器配管10にバイパスする第2吐出ガスバイパス32がない点である。
(Embodiment 2)
FIG. 2 is a refrigerant system diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention and shows the flow of refrigerant as an air conditioner (in the direction of the solid arrow during heating operation). In FIG. 2, the normal refrigeration cycle is the same as in FIG. 1, except that there is no second discharge gas bypass 32 that bypasses the evaporator pipe 10 between the expansion device 3 and the evaporator 4.

通常暖房運転時の蒸発器4の入口4a付近の伝熱管は、蒸発器4の管内抵抗の関係から冷媒温度が出口4b付近の伝熱管より高く、実施の形態1でも述べたが、着霜の進行については、蒸発器4の出口に近いほど圧力が低く温度も低いため、出口4b付近から着霜が始まり入口4a側に広がってゆく。そのような経過から、蒸発器4全体に着霜が広がったときでも、出口4b付近の方が着霜の厚みがあって着霜量が多く、入口4a付近の方が着霜が薄くて霜の付着量が少ないのが通常である。そこで、除霜運転においては絞り装置3を暖房運転時よりも開いて室内機からの冷媒温度を上昇させることによって、通常の冷凍サイクルで蒸発器4の入口4aに流入する冷媒だけによっても霜の溶解が可能である。   The heat transfer tube near the inlet 4a of the evaporator 4 during normal heating operation has a higher refrigerant temperature than the heat transfer tube near the outlet 4b due to the resistance in the tube of the evaporator 4, and as described in the first embodiment, Regarding the progress, the closer to the outlet of the evaporator 4, the lower the pressure and the lower the temperature, so that frosting starts from the vicinity of the outlet 4b and spreads toward the inlet 4a. From such a process, even when frost spreads over the entire evaporator 4, the area near the outlet 4 b has a larger frost thickness and a larger amount of frost formation, and the area near the inlet 4 a has a smaller frost formation and frost. Usually, there is little adhesion amount. Therefore, in the defrosting operation, the expansion device 3 is opened more than in the heating operation to raise the refrigerant temperature from the indoor unit, so that the frost can be generated only by the refrigerant flowing into the inlet 4a of the evaporator 4 in the normal refrigeration cycle. Dissolution is possible.

つまり、本実施の形態2においては、着霜がこのような状態であることを想定して、第2吐出ガスバイパス32を省略して、圧縮機1からの吐出ガス冷媒を、第1吐出ガスバイパス31から圧縮機1の吸入への第3吐出ガスバイパス33と蒸発器パスバイパス34に流すことで蒸発器4に付着した霜を短時間で溶解するものである。   That is, in the second embodiment, assuming that frost formation is in such a state, the second discharge gas bypass 32 is omitted, and the discharge gas refrigerant from the compressor 1 is used as the first discharge gas. Frost adhering to the evaporator 4 is dissolved in a short time by flowing through the third discharge gas bypass 33 and the evaporator path bypass 34 from the bypass 31 to the suction of the compressor 1.

特に、蒸発器パスバイパス34に流して蒸発器4の冷媒流路の途中の入口4cに合流させる構成にしていることで、通常の冷媒を本来の入口4aに流入させることに加えて、除霜を行うための高温の冷媒を蒸発器4の冷媒流路の途中の入口4cに流入させて蒸発器4の出口4bに近いところからも除霜を行うことにより、霜の付着量が多い出口4b付近でも充分に除霜することができ、蒸発器4の除霜が本来の入口4aだけから行われてその付近の霜が早々に溶けてしまった部分で周囲の空気と熱交換して温度が低下してしまうことを抑制することもできるため、蒸発器4に付着した霜を短時間で溶解して室内の温度変化をより少なくすることができ、室温低下による快適性の低下を抑制することができる。特に、実施の形態1の冷凍サイクルに較べて簡易なシステムで可能となる。   In particular, by flowing through the evaporator path bypass 34 and joining the inlet 4c in the middle of the refrigerant flow path of the evaporator 4, in addition to allowing normal refrigerant to flow into the original inlet 4a, defrosting is performed. A high-temperature refrigerant for carrying out the desorption is introduced into the inlet 4c in the middle of the refrigerant flow path of the evaporator 4 and defrosting is performed also from a position close to the outlet 4b of the evaporator 4, whereby the outlet 4b having a large amount of frost attached It can be sufficiently defrosted in the vicinity, and the defrosting of the evaporator 4 is performed only from the original inlet 4a, and the temperature is increased by heat exchange with the surrounding air at the part where the frost in the vicinity has melted quickly. Since it can also suppress that it falls, the frost adhering to the evaporator 4 can be melt | dissolved in a short time, indoor temperature change can be decreased more, and the fall of the comfort by room temperature fall is suppressed. Can do. In particular, a simple system is possible as compared with the refrigeration cycle of the first embodiment.

さらに、蒸発器4の冷媒流路の途中の入口4cに合流させる構成においてもT字管54により直線的に接続してバイパスからの流れをできるだけ妨げないように流路抵抗を小さく構成することで、蒸発器パスバイパス34への流量をより多く設定することが可能になる。   Furthermore, even in the configuration where the refrigerant is merged with the inlet 4c in the middle of the refrigerant flow path of the evaporator 4, the flow path resistance is configured to be small so as to prevent the flow from the bypass as much as possible by linearly connecting with the T-shaped tube 54. It becomes possible to set a larger flow rate to the evaporator path bypass 34.

なお、蒸発器4の冷媒流路の途中の入口4cの位置について、図1及び図2では蒸発器4の冷媒流路が複数のパスに分岐する前としているが、分岐した後の各パスや任意のパスの適切な位置に設けることが可能である。   In addition, about the position of the inlet 4c in the middle of the refrigerant | coolant flow path of the evaporator 4, in FIG.1 and FIG.2, it is set as before the refrigerant | coolant flow path of the evaporator 4 branches to a some path | pass, However, It can be provided at an appropriate position in an arbitrary path.

以上のように、蒸発器4に流入させる吐出ガス冷媒を蒸発器4の冷媒経路の途中にバイパスさせることで、蒸発器4の除霜が終了した部分で周囲の空気との熱交換することを抑制することができるだけでなく、蒸発器4の流路抵抗の削減による蒸発器4の温度の上昇が期待できることから、蒸発器4に付着した霜を短時間で溶解して室内の温度変化をより少なくすることができ、室温低下による快適性の低下を抑制した空気調和機を提供することが可能となる。   As described above, the discharge gas refrigerant flowing into the evaporator 4 is bypassed in the refrigerant path of the evaporator 4 to exchange heat with the surrounding air at the portion where the defrosting of the evaporator 4 is completed. Not only can it be suppressed, but also an increase in the temperature of the evaporator 4 can be expected by reducing the flow resistance of the evaporator 4, so that the frost adhering to the evaporator 4 can be melted in a short time to further change the temperature in the room. It is possible to provide an air conditioner that can be reduced and that suppresses a decrease in comfort due to a decrease in room temperature.

以上のように、本発明にかかる冷凍サイクル装置は、吐出冷媒をバイパスさせて蒸発器を除霜させる際に、蒸発器でロスする熱量を低減できるだけでなく、吐出冷媒の動圧成分がバイパス管側にかかるため、分岐管部での分流比率が大幅にバイパス管側に多くなり、バイパス管に設置された冷媒制御装置の流路抵抗の影響度が小さくなることでの設計自由度の向上によるコストダウンだけでなく、バイパス管側に多く吐出冷媒が流れるために、除霜時間の短縮が可能となるので、空気調和機はもちろんのこと、冷蔵庫や自動販売機等の冷凍サイクルを利用した商品用途にも適用できる。   As described above, the refrigeration cycle apparatus according to the present invention not only reduces the amount of heat lost in the evaporator when bypassing the discharged refrigerant and defrosting the evaporator, but also the dynamic pressure component of the discharged refrigerant is a bypass pipe. Because the flow splitting ratio at the branch pipe part is greatly increased on the bypass pipe side, the influence of the flow path resistance of the refrigerant control device installed in the bypass pipe is reduced, thereby improving the design flexibility. Not only cost reduction but also a large amount of discharged refrigerant flows to the bypass pipe side, so the defrosting time can be shortened, so products using refrigeration cycles such as refrigerators and vending machines as well as air conditioners It can also be applied to applications.

本発明の実施の形態1における冷凍サイクル装置の冷媒系統図Refrigerant system diagram of refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における冷凍サイクル装置の冷媒系統図Refrigerant system diagram of refrigeration cycle apparatus in Embodiment 2 of the present invention 従来の空気調和装置の冷媒系統図Refrigerant system diagram of conventional air conditioner

符号の説明Explanation of symbols

1 圧縮機
1a 吐出管
1b 吸入管
2 凝縮器
3 絞り装置
4 蒸発器
4a 入口
4b 途中の入口
4c 出口
7 室内送風機
8 室外送風機
9 電気ヒータ
10 蒸発器配管
11 四方弁
31 第1吐出ガスバイパス
32 第2吐出ガスバイパス
32a 流量調整管
32b 逆止弁
33 第3吐出ガスバイパス
33a 流量調整管
33b 逆止弁
34 蒸発器パスバイパス
34a 流量調整管
34b 逆止弁
40 冷媒制御装置
51 分岐管
52,53,54 T字管
1 Compressor 1a Discharge Pipe 1b Suction Pipe 2 Condenser 3 Throttle Device 4 Evaporator 4a Inlet 4b Middle Inlet 4c Outlet 7 Indoor Blower 8 Outdoor Blower 9 Electric Heater 10 Evaporator Pipe 11 Four Way Valve 31 First Discharge Gas Bypass 32 Second 2 Discharge gas bypass 32a Flow rate adjustment pipe 32b Check valve 33 Third discharge gas bypass 33a Flow rate adjustment pipe 33b Check valve 34 Evaporator path bypass 34a Flow rate adjustment pipe 34b Check valve 40 Refrigerant control device 51 Branch pipes 52, 53, 54 T-tube

Claims (13)

圧縮機と、四方弁と、凝縮器と、絞り装置と、蒸発器とを順番に配管で接続して冷凍サイクルを構成し、前記蒸発器の冷媒流路の途中に前記圧縮機の吐出管から吐出冷媒をバイパスする第1の吐出冷媒バイパスと、前記絞り装置と前記蒸発器とを接続する蒸発器配管へ前記圧縮機の吐出管から吐出冷媒をバイパスする第2の吐出冷媒バイパスとを設けて、暖房運転の除霜時に前記2つの吐出冷媒バイパスに吐出冷媒を流すようにした構成を備えたことを特徴とする冷凍サイクル装置。 A compressor, a four-way valve, a condenser, a throttling device, and an evaporator are connected in order by a pipe to form a refrigeration cycle, and from the discharge pipe of the compressor in the middle of the refrigerant flow path of the evaporator A first discharge refrigerant bypass for bypassing the discharge refrigerant, and a second discharge refrigerant bypass for bypassing the discharge refrigerant from the discharge pipe of the compressor to an evaporator pipe connecting the expansion device and the evaporator. A refrigeration cycle apparatus comprising a configuration in which discharged refrigerant flows through the two discharged refrigerant bypasses during defrosting in heating operation. 圧縮機と、四方弁と、凝縮器と、絞り装置と、蒸発器とを順番に配管で接続して冷凍サイクルを構成し、前記蒸発器の冷媒流路の途中に前記圧縮機の吐出管から吐出冷媒をバイパスする第1の吐出冷媒バイパスを設けて、暖房運転の除霜時に前記第1の吐出冷媒バイパスに吐出冷媒を流すようにした構成を備えたことを特徴とする冷凍サイクル装置。 A compressor, a four-way valve, a condenser, a throttling device, and an evaporator are connected in order by a pipe to form a refrigeration cycle, and from the discharge pipe of the compressor in the middle of the refrigerant flow path of the evaporator A refrigeration cycle apparatus comprising: a first discharge refrigerant bypass that bypasses the discharge refrigerant, and a configuration in which the discharge refrigerant flows through the first discharge refrigerant bypass during defrosting in heating operation. 圧縮機の吸入管に吐出冷媒をバイパスする第3の吐出冷媒バイパスを設けたことを特徴とする請求項1又は2記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein a third discharge refrigerant bypass for bypassing the discharge refrigerant is provided in the suction pipe of the compressor. 圧縮機の吐出冷媒が一つ以上の吐出冷媒バイパスにバイパスして流れる流量が、前記四方弁へ流れる流量より多くなる様に構成したことを特徴とする請求項1〜3のうちいずれか一項記載の冷凍サイクル装置。 The flow rate of the refrigerant discharged from the compressor bypassing one or more discharged refrigerant bypasses is configured to be larger than the flow rate flowing to the four-way valve. The refrigeration cycle apparatus described. 吐出冷媒バイパス側の総合的な流路抵抗を凝縮器側の流路抵抗より小さくしたことを特徴とする請求項4記載の冷凍サイクル装置。 5. The refrigeration cycle apparatus according to claim 4, wherein the overall flow path resistance on the discharge refrigerant bypass side is smaller than the flow path resistance on the condenser side. 吐出管に分岐管を設け、圧縮機の吐出冷媒が吐出冷媒バイパスの方向には四方弁の方向より動圧成分が大きく作用するように接続したことを特徴とする請求項1〜5のうちいずれか一項記載の冷凍サイクル装置。 A branch pipe is provided in the discharge pipe, and the discharge refrigerant of the compressor is connected so that the dynamic pressure component acts more in the direction of the discharge refrigerant bypass than in the direction of the four-way valve. The refrigeration cycle apparatus according to claim 1. 吐出管にT字形の分岐管を設け、圧縮機の吐出冷媒が吐出冷媒バイパスの方向には直線的に流れ、四方弁の方向には折れ曲がって流れるように構成したことを特徴とする請求項1〜6のうちいずれか一項記載の冷凍サイクル装置。 The discharge pipe is provided with a T-shaped branch pipe so that the discharge refrigerant of the compressor flows linearly in the direction of the discharge refrigerant bypass and bends in the direction of the four-way valve. The refrigeration cycle apparatus according to any one of? 少なくとも一つ以上の吐出冷媒バイパスの出口が冷凍サイクルの配管に合流する箇所に、T字管によりバイパスからの流れが直線的になるように接続したことを特徴とする請求項1〜7のうちいずれか一項記載の冷凍サイクル装置。 Among the at least one discharge refrigerant bypass outlet, a point where the outlet from the bypass merges with the piping of the refrigeration cycle is connected by a T-shaped tube so that the flow from the bypass becomes linear. The refrigeration cycle apparatus according to any one of claims. 一つ以上の吐出冷媒バイパスのうち、最も長い吐出冷媒バイパスの配管長を、凝縮器側の配管長より短くしたことを特徴とする請求項1〜8のうちいずれか一項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the pipe length of the longest discharge refrigerant bypass among the one or more discharge refrigerant bypasses is shorter than the pipe length on the condenser side. . 一つ以上の吐出冷媒バイパスのうち、最も太い吐出冷媒バイパスの配管径を、凝縮器側の配管径と同等以上に大きくしたことを特徴とする請求項1〜9のうちいずれか一項記載の冷凍サイクル装置。 The pipe diameter of the thickest discharge refrigerant bypass among the one or more discharge refrigerant bypasses is set to be equal to or greater than the pipe diameter on the condenser side. Refrigeration cycle equipment. 一つ以上の吐出冷媒バイパスに、吐出冷媒のうち50%〜90%が流れるように構成したことを特徴とする請求項1〜10のうちいずれか一項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein 50% to 90% of the discharged refrigerant flows through one or more discharged refrigerant bypasses. それぞれに送風機を備えた室内機と室外機とを有し、請求項1〜11のうちいずれか一項記載の冷凍サイクル装置を備えたことを特徴とする空気調和機。 An air conditioner comprising an indoor unit and an outdoor unit each having a blower, and the refrigeration cycle apparatus according to any one of claims 1 to 11. 室内機に補助加熱装置を備えたことを特徴とする請求項12記載の空気調和機。 The air conditioner according to claim 12, wherein the indoor unit includes an auxiliary heating device.
JP2007297578A 2007-07-09 2007-11-16 Refrigerating cycle device and air conditioner having this refrigerating cycle device Pending JP2009036503A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007297578A JP2009036503A (en) 2007-07-09 2007-11-16 Refrigerating cycle device and air conditioner having this refrigerating cycle device
CN2008101102670A CN101344335B (en) 2007-07-09 2008-06-19 Refrigeration circulation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007179546 2007-07-09
JP2007297578A JP2009036503A (en) 2007-07-09 2007-11-16 Refrigerating cycle device and air conditioner having this refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2009036503A true JP2009036503A (en) 2009-02-19

Family

ID=40246386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297578A Pending JP2009036503A (en) 2007-07-09 2007-11-16 Refrigerating cycle device and air conditioner having this refrigerating cycle device

Country Status (2)

Country Link
JP (1) JP2009036503A (en)
CN (1) CN101344335B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121770A (en) * 2011-03-10 2011-07-13 中山市麦科尔热能技术有限公司 Working medium evaporation system for carbon dioxide heat pump water heating equipment
CN102425839A (en) * 2011-11-17 2012-04-25 美的集团有限公司 Forced defrosting control method for air conditioner
CN107631513A (en) * 2017-09-20 2018-01-26 珠海格力电器股份有限公司 Heat pump and its control method
CN108224602A (en) * 2018-01-31 2018-06-29 青岛海尔空调器有限总公司 For the branch pipe and air conditioner of outdoor heat exchanger of air conditioner
CN113280541A (en) * 2021-06-29 2021-08-20 江苏拓米洛环境试验设备有限公司 Control method and device for multi-chamber electronic expansion valve of refrigeration system and refrigeration system
WO2023248868A1 (en) * 2022-06-24 2023-12-28 株式会社デンソー Heat pump cycle apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538071B (en) * 2010-12-28 2014-12-10 珠海格力电器股份有限公司 Heat pump system
CN105180430B (en) * 2015-06-18 2019-05-14 Tcl空调器(中山)有限公司 Heat exchange equipment
CN108775624B (en) * 2018-06-28 2023-09-12 珠海格力电器股份有限公司 Air Conditioning System

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291759A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Defrostation system of refrigeration cycle for heat pump
JPS63169459A (en) * 1986-12-27 1988-07-13 三菱電機株式会社 Heat pump device
JPH026970U (en) * 1988-06-27 1990-01-17
JPH02282675A (en) * 1989-04-25 1990-11-20 Hoshizaki Electric Co Ltd Freezer
JPH09196523A (en) * 1996-01-16 1997-07-31 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2003050064A (en) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd Turbo freezer
JP2004232891A (en) * 2003-01-28 2004-08-19 Denso Corp Vapor compression type refrigerating machine
JP2004293857A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat pump device
JP2005069368A (en) * 2003-08-25 2005-03-17 Rinnai Corp Warm water piping structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291759A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Defrostation system of refrigeration cycle for heat pump
JPS63169459A (en) * 1986-12-27 1988-07-13 三菱電機株式会社 Heat pump device
JPH026970U (en) * 1988-06-27 1990-01-17
JPH02282675A (en) * 1989-04-25 1990-11-20 Hoshizaki Electric Co Ltd Freezer
JPH09196523A (en) * 1996-01-16 1997-07-31 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2003050064A (en) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd Turbo freezer
JP2004232891A (en) * 2003-01-28 2004-08-19 Denso Corp Vapor compression type refrigerating machine
JP2004293857A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat pump device
JP2005069368A (en) * 2003-08-25 2005-03-17 Rinnai Corp Warm water piping structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121770A (en) * 2011-03-10 2011-07-13 中山市麦科尔热能技术有限公司 Working medium evaporation system for carbon dioxide heat pump water heating equipment
CN102425839A (en) * 2011-11-17 2012-04-25 美的集团有限公司 Forced defrosting control method for air conditioner
CN102425839B (en) * 2011-11-17 2016-07-06 美的集团股份有限公司 A kind of pressure defrosting control method of air-conditioner
CN107631513A (en) * 2017-09-20 2018-01-26 珠海格力电器股份有限公司 Heat pump and its control method
CN108224602A (en) * 2018-01-31 2018-06-29 青岛海尔空调器有限总公司 For the branch pipe and air conditioner of outdoor heat exchanger of air conditioner
CN113280541A (en) * 2021-06-29 2021-08-20 江苏拓米洛环境试验设备有限公司 Control method and device for multi-chamber electronic expansion valve of refrigeration system and refrigeration system
WO2023248868A1 (en) * 2022-06-24 2023-12-28 株式会社デンソー Heat pump cycle apparatus

Also Published As

Publication number Publication date
CN101344335A (en) 2009-01-14
CN101344335B (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP5968534B2 (en) Air conditioner
JP6576552B2 (en) Air conditioner
JP6021940B2 (en) Air conditioner
JP5791807B2 (en) Air conditioner
JP4675810B2 (en) Air conditioner
JP4771721B2 (en) Air conditioner
JP2009036503A (en) Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP5104002B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
US20080028773A1 (en) Air conditioner and controlling method thereof
JP2012067967A (en) Refrigeration cycle apparatus and hot water heating apparatus
JP6880204B2 (en) Air conditioner
WO2015122056A1 (en) Air conditioning device
JP2001056159A (en) Air conditioner
JP2009145032A (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2008175410A (en) Heat source-side unit and air conditioning system
EP1983277B1 (en) Refrigeration cycle apparatus
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5601890B2 (en) Air conditioner
JP2006090683A (en) Multiple room type air conditioner
JP5537906B2 (en) Air conditioner
JP5473581B2 (en) Air conditioner
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JPH04324067A (en) Air conditioner
JP2009019779A (en) Refrigerating cycle device
JP2014119144A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016