JPH02282675A - Freezer - Google Patents

Freezer

Info

Publication number
JPH02282675A
JPH02282675A JP10341289A JP10341289A JPH02282675A JP H02282675 A JPH02282675 A JP H02282675A JP 10341289 A JP10341289 A JP 10341289A JP 10341289 A JP10341289 A JP 10341289A JP H02282675 A JPH02282675 A JP H02282675A
Authority
JP
Japan
Prior art keywords
expansion valve
valve
pressure
hot gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341289A
Other languages
Japanese (ja)
Other versions
JPH086991B2 (en
Inventor
Nobutaka Naruse
信隆 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP10341289A priority Critical patent/JPH086991B2/en
Publication of JPH02282675A publication Critical patent/JPH02282675A/en
Publication of JPH086991B2 publication Critical patent/JPH086991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PURPOSE:To enable a prevention of an opening of an expansion valve during a defrosting operation to be attained by a method wherein a bypassing pipe having a hot gas valve is connected in such a way as it may bypass a condensor and an expansion valve and then a mean pressure pipe is connected in such a way as an outlet port of a hot gas valve is communicated with the expansion valve. CONSTITUTION:A bypassing pipe 20 having a hot gas valve 19 is connected to a freezing circuit 12 in such a way as it may bypass a condensor 14 and an expansion valve 15 and at the same time a mean pressure pipe 22 is connected in such a way as an outlet port of a hot gas valve 19 in the bypassing pipe 20 is communicated with the bypassing pipe 20, resulting in that during a hot gas defrosting operation, a higher pressure than that of the outlet of the expansion valve may act against a diaphragm of the expansion valve 15 and a needle valve of the expansion valve 15 is closed. Only the refrigerant gas of high temperature is flowed stably into an evaporator 2 without being influenced by an external temperature condition and thus an efficient defrosting operation can be carried out. During a freezing operation, the expansion valve 15 may control an evaporating pressure under the same characteristic as that of an inner mean pressure temperature working type expansion valve and then an efficient freezing operation can be carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ホットガス弁を有するバイパス管が付設され
た冷媒回路を含む冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a refrigeration system including a refrigerant circuit equipped with a bypass pipe having a hot gas valve.

[従来の技術] 冷凍装置の冷媒回路は、圧縮機、凝縮器及び蒸発器の他
に、凝縮器からの冷媒液の圧力を下げ流量を調節して蒸
発器へ送るために、一般に膨張弁を備えており、ホット
ガス弁を有するバイパス管は、冷媒が凝縮器及び膨張弁
をバイパスするように、凝縮器の入口側と膨張弁の出口
側とに接続されている。ホットガス弁を開くことにより
高温の冷媒ガス即ちホットガスが蒸発器に直接に流入し
、ホットガスによる除氷、霜取りのようなデフロスト運
転が行われる。
[Prior Art] In addition to the compressor, condenser, and evaporator, the refrigerant circuit of a refrigeration system generally includes an expansion valve to lower the pressure of the refrigerant from the condenser, adjust the flow rate, and send it to the evaporator. A bypass pipe with a hot gas valve is connected to the inlet side of the condenser and the outlet side of the expansion valve so that the refrigerant bypasses the condenser and the expansion valve. By opening the hot gas valve, high-temperature refrigerant gas, ie, hot gas, flows directly into the evaporator, and a defrost operation such as deicing and defrosting using the hot gas is performed.

m張弁としては、種々の温度作動式膨張弁が知られてお
り、一般に、冷媒が封入された感温筒により圧縮機の吸
込ガスの温度に対応する圧力を検出し、温度が下がれば
膨張弁を閉じ、温度が上がれば膨張弁を開くように、感
温筒と膨張弁とを連絡している。
Various temperature-operated expansion valves are known as m-expansion valves, and generally, a temperature-sensitive cylinder filled with refrigerant detects the pressure corresponding to the temperature of the suction gas of the compressor, and when the temperature drops, the valve expands. The temperature sensing cylinder and the expansion valve are connected so that the valve is closed and the expansion valve is opened when the temperature rises.

また、圧縮機への吸込圧力が増加すると、モータ電流も
増大し、過剰の吸込圧力はモータの過負荷及び損傷を招
くので、吸込圧力の最大値を制限しうる圧力制限機能付
きの温度作動式膨張弁も知られている。この圧力制限機
能は、最大作動圧力(MOP:  Maximum O
peraLing Pressure)と一般に呼ばれ
ており、MOP付き熱動式膨張弁は、吸込圧力が最大作
動圧力以下の場合には上述した膨張弁と同様に制御を行
い、最大作動圧力に達すると、冷媒の給送を停止して圧
力の過昇を防ぐものである。
Additionally, as the suction pressure to the compressor increases, the motor current also increases, and excessive suction pressure can lead to motor overload and damage. Expansion valves are also known. This pressure limiting function is the maximum operating pressure (MOP).
The thermal expansion valve with MOP performs the same control as the expansion valve described above when the suction pressure is below the maximum operating pressure, and when the maximum operating pressure is reached, the refrigerant is stopped. This prevents pressure from rising excessively by stopping the feed.

[発明が解決しようとする課題] 周知のように、冷凍装置の周囲温度が低下すると、圧縮
機の吐出側もしくは高圧側圧力及び吸込側もしくは低圧
側圧力が低下し、冷媒循環量が低下する。また、このよ
うな低温条件下のホットガスデフロスト運転においては
、蒸発器の出口温度はそこに付着した霜や水の影響を受
けるので、蒸発器出口の冷媒温度は、低圧側圧力に対応
する飽和蒸気温度よりも高い温度になる。従って、蒸発
器出口に設けられてその温度とほぼ同一の温度を検出す
る膨張弁感温筒内の圧力は、蒸発器出口の冷媒温度に対
応する圧力となり、デフロスト運転中にも拘わらず膨張
弁を開弁させてしまう可能性がある。膨張弁が開弁する
と、液冷媒が蒸発器に流入してデフロスト能力が低下し
、デフロスト時間が異常に長引いたり、極端な場合には
不能になることさえあった。
[Problems to be Solved by the Invention] As is well known, when the ambient temperature of a refrigeration system decreases, the pressure on the discharge side or high pressure side and the pressure on the suction side or low pressure side of the compressor decrease, and the amount of refrigerant circulation decreases. In addition, in hot gas defrost operation under such low-temperature conditions, the evaporator outlet temperature is affected by the frost and water adhering to it, so the refrigerant temperature at the evaporator outlet is saturated, which corresponds to the low pressure side pressure. The temperature will be higher than the steam temperature. Therefore, the pressure inside the temperature-sensing cylinder of the expansion valve, which is installed at the evaporator outlet and detects almost the same temperature as that temperature, becomes the pressure corresponding to the refrigerant temperature at the evaporator outlet, and even during defrost operation, the expansion valve There is a possibility that the valve may open. When the expansion valve opens, liquid refrigerant flows into the evaporator, reducing the defrosting capacity, making defrosting time abnormally long or even impossible in extreme cases.

MOP付き温度作動式膨張弁によりデフロスト運転中に
おける膨張弁の上述のような開弁を防止することが可能
であるが、同m張弁の最大作動圧力を低く設定する必要
があり、そのように設定した場合には、冷凍運転時に、
冷凍温度になるまで熱を取るいわゆるプルダウン中の冷
凍能力が低下するので、圧縮機の冷凍能力を十分に引き
出すことができず、圧縮機を通常なら不必要なほど大型
にせざるを得す、冷凍装置の製造コストを大幅に上昇さ
せることになる。
Although it is possible to prevent the expansion valve from opening as described above during defrost operation by using a temperature-operated expansion valve with an MOP, it is necessary to set the maximum operating pressure of the expansion valve to a low value. If set, during refrigeration operation,
Since the refrigeration capacity during so-called pull-down, which takes heat until it reaches freezing temperature, is reduced, the refrigeration capacity of the compressor cannot be fully utilized, and the compressor must be made unnecessarily large. This will significantly increase the manufacturing cost of the device.

従って、本発明の目的は、デフロスト運転中の膨張弁の
開弁を圧縮機の冷凍能力を損なうことなく阻止すること
ができる冷凍装置を提供することである。
Therefore, an object of the present invention is to provide a refrigeration system that can prevent the expansion valve from opening during defrost operation without impairing the refrigerating ability of the compressor.

[課題を解決するための手段] 本発明は、圧縮機、凝縮器、外部均圧式の膨張弁及び蒸
発器を含む冷凍回路を有し、前記蒸発器の出口部冷媒温
度を、前記膨張弁に連絡する温度検出部により検出し、
同検出温度に応じて前記膨張弁が開閉制御される冷凍装
置に関するものである。
[Means for Solving the Problems] The present invention has a refrigeration circuit including a compressor, a condenser, an external pressure equalization type expansion valve, and an evaporator, and the refrigerant temperature at the outlet of the evaporator is controlled by the expansion valve. Detected by the communicating temperature detection unit,
The present invention relates to a refrigeration system in which the expansion valve is controlled to open and close depending on the detected temperature.

本発明によると、上述の目的を達成するために。According to the invention, to achieve the above objectives.

前記冷凍回路には、前記凝縮器及び前記膨張弁をバイパ
スするように、ホットガス弁を有するバイパス管が接続
されると共に、同バイパス管にある前記ホットガス弁の
出口側を前記膨張弁に連通ずるように、均圧管が接続さ
れている。
A bypass pipe having a hot gas valve is connected to the refrigeration circuit so as to bypass the condenser and the expansion valve, and an outlet side of the hot gas valve in the bypass pipe is connected to the expansion valve. A pressure equalizing pipe is connected so that it communicates.

[作用] 第1図の冷凍回路(12)において、冷凍運転中には、
圧縮機(13)で圧縮されて高温高圧となった冷媒ガス
は、圧縮機吐出側の管路<16)を経て凝縮器(14)
に流入し、ここで凝縮される。この液冷媒は膨張弁(1
5)に入り、蒸発器(2)に流入して熱を奪い、蒸発す
る。蒸発した冷媒は、圧縮機吸込側の管路(17)から
圧縮機(13)に戻り、再び圧縮され上述の動作を繰り
返す、この冷凍運転中には、ポットガス弁<19)は関
しているので、均圧管(22〉の圧力と膨張弁出口の圧
力はほぼ同一であり、膨張弁(15)は内部均圧型温度
作動式膨張弁として動作する。
[Function] In the refrigeration circuit (12) in Fig. 1, during refrigeration operation,
The refrigerant gas compressed by the compressor (13) to a high temperature and high pressure is passed through the condenser (14) through the conduit <16) on the discharge side of the compressor.
and is condensed here. This liquid refrigerant is supplied to the expansion valve (1
5), flows into the evaporator (2), removes heat, and evaporates. The evaporated refrigerant returns to the compressor (13) from the pipe (17) on the compressor suction side, is compressed again, and repeats the above operation.During this refrigeration operation, the pot gas valve <19) is engaged. Therefore, the pressure in the pressure equalization pipe (22>) and the pressure at the outlet of the expansion valve are approximately the same, and the expansion valve (15) operates as an internal pressure equalization type temperature-operated expansion valve.

従って、膨張弁(15)の出口側の冷媒圧力がバイパス
管(20)と均圧管〈22)とを介して膨張弁(15)
の入口側に作用し、膨張弁(15)は温度検出部である
感温筒(15a)の検出温度に応動してその開閉が制御
される。
Therefore, the refrigerant pressure on the outlet side of the expansion valve (15) is transferred to the expansion valve (15) via the bypass pipe (20) and the pressure equalization pipe (22).
The opening and closing of the expansion valve (15) is controlled in response to the temperature detected by the temperature sensing tube (15a), which is a temperature detection section.

ホットガスデフロスト運転時においては、ホットガス弁
(19)は開いているため、その出口圧力が均圧管(2
2)を経由して膨張弁(15)に作用するから、バイパ
ス管(20)に発生する圧損だけ、上述の冷凍運転時に
内部均圧型温度作動式膨張弁として動作する場合よりも
大きな圧力が膨張弁(15)に加わることになり、膨張
弁(15)は閉じたままとなる。この圧損により、低温
時でも膨張弁〈15)が開くことなくホットガスデフロ
スト運転が可能になる。
During hot gas defrost operation, the hot gas valve (19) is open, so the outlet pressure is equal to the pressure equalizing pipe (2).
2), the pressure loss generated in the bypass pipe (20) causes a larger pressure to expand than when the valve operates as an internal pressure-equalizing temperature-operated expansion valve during the above-mentioned refrigeration operation. The expansion valve (15) remains closed. This pressure drop enables hot gas defrost operation without opening the expansion valve (15) even at low temperatures.

[実施例] 次に、本発明の好適な実施例について添付図面を参照し
て詳細に説明するが、図中、同一符号は同−又は対応部
分を示すものとする。また、以下の実施例では、−例と
して製氷機に本発明が実施されているが、本発明は、冷
蔵庫、冷蔵ショーケース等の冷凍装置にも同様に適用す
ることができる。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts. Further, in the following embodiments, the present invention is implemented in an ice maker as an example, but the present invention can be similarly applied to refrigeration devices such as refrigerators and refrigerated showcases.

図面、特に第1図を参照すると、符号1で総括的に表さ
れた製氷t!4(冷凍装置)の全体構成が概略的に示さ
れている0本発明の理解を容易にするために、先ず製氷
機1の概要について説明すると、製氷機1は、後述する
冷凍回路の一部を形成する蒸発器2を間挿した一対の製
氷板3.3を備え、その下方には、案内板4を介して製
氷水タンク5が配設されており、その上方には、製氷サ
イクル(冷凍サイクル)中に製氷板3の表面に製氷水を
供給し、除氷サイクル〈デフロストサイクル)中に製氷
板3の裏面に除氷水を供給する散水装置6が配設されて
いる。
Referring to the drawings, and in particular to FIG. 1, the ice making t! 4 (refrigeration system) is schematically shown. In order to facilitate understanding of the present invention, an overview of the ice maker 1 will first be explained. A pair of ice-making plates 3.3 are provided with an evaporator 2 interposed therein to form an ice-making cycle, below which an ice-making water tank 5 is disposed via a guide plate 4, and above which an ice-making cycle ( A water sprinkler 6 is provided to supply ice-making water to the surface of the ice-making plate 3 during the refrigeration cycle (refrigeration cycle) and to the back surface of the ice-making plate 3 during the de-icing cycle (defrost cycle).

製氷サイクル運転中には、製氷水は、製氷水タンク5に
設けられた循環ポンプ7により管路8を介して散水装置
6の製氷水供給部6aに送られ、ここから、蒸発器2内
を流れる冷媒により冷却された製氷板3の表面を流下し
つつ冷却され、案内板4の穿孔(図示せず)を経て製氷
水タンク5内に戻る。このような循環を繰り返すうちに
製氷水の温度が零度もしくはその近傍まで低下し、やが
て製氷板3の表面に結氷して、氷粒9となる。
During the ice-making cycle operation, ice-making water is sent to the ice-making water supply section 6a of the sprinkler device 6 by the circulation pump 7 provided in the ice-making water tank 5 through the pipe line 8, and from there flows through the evaporator 2. The ice is cooled as it flows down the surface of the ice-making plate 3 cooled by the flowing refrigerant, and returns to the ice-making water tank 5 through a perforation (not shown) in the guide plate 4 . As such circulation is repeated, the temperature of the ice-making water drops to or near zero, and eventually ice forms on the surface of the ice-making plate 3, forming ice particles 9.

水から氷への相変化に伴って製氷水タンク5内の製氷水
水位が下がり、所定位置まで低下すると、図示しない水
位検出装置がそれを検知し、製氷完了信号を製氷機1の
制御回路(図示せず)に出力する。
As the ice making water level in the ice making water tank 5 decreases as the phase changes from water to ice, and when it drops to a predetermined position, a water level detection device (not shown) detects this and sends an ice making completion signal to the control circuit of the ice making machine 1 ( (not shown).

その結果、同制御回路は、循環ポンプ7の運転を停止さ
せて、製氷機1を製氷サイクル運転がら除氷サイクル運
転に切り換える。除水サイクル運転においては、散水装
置6の除氷水供給部6bに連通した管路10の電磁弁1
1が開弁されて、除氷水が製氷板3の裏面に供給される
と共に、後述する冷凍回路の一部をなすホットガス弁1
9が開弁されて、ホットガスが蒸発器2に供給され、製
氷板3の表面に付着していた氷粒9は、除氷水の熱とホ
ットガスの熱とによりその付着面が融解して、製氷板3
から離脱し、図示のように傾斜した案内板4上を滑り落
ちて、貯水庫(図示せず)に入る。除氷水は、製氷板3
を流下し、案内板4を経て製氷水タンク5内に入り、次
回の製氷サイクル運転の際に製氷水として使用される。
As a result, the control circuit stops the operation of the circulation pump 7 and switches the ice maker 1 from ice making cycle operation to deicing cycle operation. In the water removal cycle operation, the solenoid valve 1 of the pipe 10 communicating with the deicing water supply section 6b of the water sprinkler 6
1 is opened, deicing water is supplied to the back side of the ice making plate 3, and the hot gas valve 1, which forms part of the refrigeration circuit described later, is opened.
9 is opened, hot gas is supplied to the evaporator 2, and the ice particles 9 adhering to the surface of the ice making plate 3 are melted by the heat of the deicing water and the heat of the hot gas. , ice making plate 3
It separates from the water tank, slides down on the inclined guide plate 4 as shown, and enters a water storage (not shown). For deicing water, use ice making plate 3.
The ice flows down, passes through the guide plate 4, enters the ice-making water tank 5, and is used as ice-making water during the next ice-making cycle operation.

余剰の水はオーバーフロー管5aから外部に排出される
Excess water is discharged to the outside from the overflow pipe 5a.

以上のような製氷機1の構成及び動作は従来から周知で
ある。
The configuration and operation of the ice maker 1 as described above are conventionally well known.

さて、上述のような製氷機1の製氷及び除氷サイクル運
転を交互に行うために、蒸発器2には冷凍回路12が接
続されている。冷凍回路12は、閉じたループを形成す
るように接続された管路16.17及び18を備え、開
閉ルーズに、前述した蒸発器2に加えて、圧縮機13、
凝縮器14、膨張弁15が冷媒の流れる順に設けられて
いる。管路1Bがらは、凝縮器14及び膨張弁15をバ
イパスするように、同凝縮器14及び膨張弁15が設け
られた管路18に並列に、ホットガス弁19を有するバ
イパス管もしくは分岐管20が分岐しており、この分岐
管20は膨張弁15の出口側で管路18に合体している
Now, in order to alternately perform ice making and deicing cycle operations of the ice maker 1 as described above, a refrigeration circuit 12 is connected to the evaporator 2. The refrigeration circuit 12 includes pipes 16, 17 and 18 connected to form a closed loop, and in addition to the above-mentioned evaporator 2, the compressor 13,
A condenser 14 and an expansion valve 15 are provided in the order in which the refrigerant flows. The pipe line 1B includes a bypass pipe or a branch pipe 20 having a hot gas valve 19 in parallel with the pipe line 18 provided with the condenser 14 and expansion valve 15 so as to bypass the condenser 14 and the expansion valve 15. The branch pipe 20 is joined to the pipe line 18 on the outlet side of the expansion valve 15.

ホットガス弁19の吐出口側から延びた管路、即ち外部
均圧管22は、後から説明する膨張弁15の所定部位ま
で延び、そこに接続されている。この膨張弁15は温度
検出部を有し、その感温筒15aは蒸発器2の近傍で圧
縮機13の吸込側の管路17の外面に設けられている。
A conduit extending from the discharge port side of the hot gas valve 19, that is, an external pressure equalizing pipe 22, extends to a predetermined portion of the expansion valve 15, which will be described later, and is connected thereto. The expansion valve 15 has a temperature detection section, and the temperature sensing cylinder 15a is provided on the outer surface of the conduit 17 on the suction side of the compressor 13 near the evaporator 2.

第3図は膨張弁15の詳細図であり、膨張弁15は、ハ
ウジング15bを備え、同ハウジング15bに、感温筒
15a、凝縮器14、均圧管22及び蒸発器2に連通ず
る各ボートが図示のように形成されている。また、ハウ
ジング15b内には、針弁15c、スプリング15d、
ダイヤフラム15e及び作動棒15f等が設けられてお
り、ダイヤフラム15eには、感温筒15aの温度に対
応するガス圧P、と、均圧管22の接続位置の圧力P2
及び過熱を得るためのスプリング15clの力に等価な
圧力P、との差圧が作用する。圧力Plは針弁15cを
開ける方向の力であり、圧力P2、P3は針弁15cを
閉じる方向の力であり、定常状態においては、3つの力
はバランスしてP、=P2+P3となっている。
FIG. 3 is a detailed view of the expansion valve 15. The expansion valve 15 includes a housing 15b, and the housing 15b has a temperature sensing tube 15a, a condenser 14, a pressure equalization pipe 22, and each boat communicating with the evaporator 2. It is formed as shown. Also, inside the housing 15b, a needle valve 15c, a spring 15d,
A diaphragm 15e, an actuating rod 15f, etc. are provided, and the diaphragm 15e has a gas pressure P corresponding to the temperature of the temperature sensing cylinder 15a, and a pressure P2 at the connection position of the pressure equalizing pipe 22.
and a pressure P equivalent to the force of the spring 15cl to obtain superheat. Pressure Pl is a force in the direction of opening the needle valve 15c, and pressures P2 and P3 are forces in the direction of closing the needle valve 15c. In a steady state, the three forces are balanced and become P, = P2 + P3. .

上述の冷凍回路12において、製氷機1の製氷サイクル
運転中には、圧縮機13で圧縮されて高温高圧となった
冷媒ガスは、圧縮機吐出側の管路16を経て凝縮器14
に流入し、ここで、冷却ファン21からの空気流を受け
て凝縮される。この液冷媒は膨張弁15に入り、蒸発器
2に流入して製氷水から熱を奪い、蒸発する。蒸発した
冷媒は、吸込側の管路17から圧縮機13に戻り、再び
圧縮され、上述の動作を繰り返す、この製氷サイクル中
には、ホットガス弁19は閉じているので、均圧管22
の圧力と膨張弁出口の圧力はほぼ同一であり、膨張弁1
5は内部均圧型温度作動式膨張弁として動作する。
In the above-mentioned refrigeration circuit 12, during the ice-making cycle operation of the ice-making machine 1, the refrigerant gas compressed by the compressor 13 to a high temperature and high pressure is sent to the condenser 14 through the pipe line 16 on the discharge side of the compressor.
, where it is condensed by the airflow from the cooling fan 21. This liquid refrigerant enters the expansion valve 15, flows into the evaporator 2, removes heat from the ice-making water, and evaporates. The evaporated refrigerant returns to the compressor 13 from the suction side pipe 17, is compressed again, and repeats the above-mentioned operation.During this ice-making cycle, the hot gas valve 19 is closed, so the pressure equalizing pipe 22
The pressure at the expansion valve 1 and the pressure at the expansion valve outlet are almost the same, and the pressure at the expansion valve 1
5 operates as an internal pressure-equalizing temperature-operated expansion valve.

従って、膨張弁15の出口側の冷媒圧力が分岐管20と
均圧管22とを介して膨張弁15の入口側に作用し、1
lij張弁15は感温筒15aの検出温度に応動してそ
の開開が制御される。即ち、第2図において、感温筒1
5aの温度と均圧管22の圧力とが膨張弁開領域にあれ
ば、膨張弁15は開き、液冷媒が蒸発器2に流入する。
Therefore, the refrigerant pressure on the outlet side of the expansion valve 15 acts on the inlet side of the expansion valve 15 via the branch pipe 20 and the pressure equalization pipe 22, and 1
The opening and opening of the lij tension valve 15 is controlled in response to the temperature detected by the temperature sensing cylinder 15a. That is, in FIG.
If the temperature of 5 a and the pressure of pressure equalization pipe 22 are in the expansion valve opening region, expansion valve 15 opens and liquid refrigerant flows into evaporator 2 .

その結果、蒸発器2の中で蒸発する冷媒の量が増して感
温筒15aの検出温度が下がり、均圧管22の圧力は上
昇する。このため、膨張弁閉領域に入るので、膨張弁1
5は閉じる。膨張弁15が閉じれば蒸発器2内の冷媒量
が減るので、感温筒1.5 aの温度が上がり、均圧管
22の圧力は低下する。このような状態は膨張弁開領域
に入るので、膨張弁15は開く。
As a result, the amount of refrigerant evaporated in the evaporator 2 increases, the temperature detected by the temperature sensing tube 15a decreases, and the pressure in the pressure equalizing tube 22 increases. Therefore, since the expansion valve enters the closed region, the expansion valve 1
5 is closed. When the expansion valve 15 closes, the amount of refrigerant in the evaporator 2 decreases, so the temperature of the temperature sensing tube 1.5a increases and the pressure of the pressure equalization tube 22 decreases. Since such a state falls within the expansion valve open region, the expansion valve 15 is opened.

除氷サイクルにおいては、ホットガス弁19は開いてい
るから、高温の冷媒ガスは蒸発器2に直接入り、製氷板
3を裏面から暖める。給水弁11から流入した比較的温
度の高いく氷9に比較して)外部水道水が、除氷水供給
部6bから製氷板3.3間に散布される。この除氷水と
高温冷媒ガスの協働作用により、製氷板3に付着してい
た氷9はその付着面が融解して落下する。全ての氷9が
落下すれば、図示しない周知の除氷完了検知装置によっ
て検知され、その結果発生される除氷完了信号により、
ホットガス弁19及び給水弁11が閉じて、製氷サイク
ル運転へ移行する。除氷サイクルにおいては、上述のよ
うにホットガス弁19が開放され、その出口圧力が均圧
管22を経由して膨張弁15に作用するから、分岐管2
0に発生する圧損ΔPだけ、製氷サイクル時に内部均圧
型温度作動式膨張弁として動作する場合よりも大きな圧
力が膨張弁15に加わることになり(P+<Pz+Pi
)、膨張弁15は閉じたままとなる。この圧損APは、
冷凍装置が設置される通常の地域における温度条件下に
おいて、蒸発器出口の冷媒温度が圧縮機13の低圧側圧
力に対応する飽和蒸気温度よりも高い温度になっても、
針弁15cを閉止状態に保つような大きさとすることが
できるので、低温時でも膨張弁15が開くことなくホッ
トガスデフロスト運転ができる。
In the deicing cycle, the hot gas valve 19 is open, so high-temperature refrigerant gas directly enters the evaporator 2 and warms the ice-making plate 3 from the back side. External tap water (compared to the ice cubes 9 having a relatively high temperature flowing in from the water supply valve 11) is sprayed between the ice making plates 3.3 from the deicing water supply section 6b. Due to the cooperative action of the deicing water and the high-temperature refrigerant gas, the surface of the ice 9 adhering to the ice-making plate 3 melts and falls. When all the ice 9 has fallen, it is detected by a well-known de-icing completion detection device (not shown), and the de-icing completion signal generated as a result allows
The hot gas valve 19 and the water supply valve 11 are closed, and the ice making cycle operation begins. In the deicing cycle, the hot gas valve 19 is opened as described above, and the outlet pressure acts on the expansion valve 15 via the pressure equalization pipe 22, so the branch pipe 2
Due to the pressure drop ΔP that occurs at
), the expansion valve 15 remains closed. This pressure loss AP is
Even if the refrigerant temperature at the evaporator outlet becomes higher than the saturated vapor temperature corresponding to the low pressure side pressure of the compressor 13 under the temperature conditions in the normal region where the refrigeration equipment is installed,
Since the needle valve 15c can be sized to keep it closed, hot gas defrost operation can be performed without the expansion valve 15 opening even at low temperatures.

[発明の効果] 以上のように、本発明によれば、冷凍回路12には、凝
縮器14及び膨張弁15をバイパスするように、ホット
ガス弁19を有するバイパス管20が接続されると共に
、同バイパス管20にあるホットガス弁19の出口側を
膨張弁15に連通ずるように、均圧管22が接続されて
いるために、ホットガスデフロスト運転時には、膨張弁
15のダイヤフラムに膨張弁出口より高い圧力が作用し
、膨張弁の針弁15cを閉じるので、高温の冷媒ガスの
みが外部温度条件に左右されず蒸発器2に安定して流入
し、効率的にデフロストを行うことができる。
[Effects of the Invention] As described above, according to the present invention, the bypass pipe 20 having the hot gas valve 19 is connected to the refrigeration circuit 12 so as to bypass the condenser 14 and the expansion valve 15, and Since the pressure equalizing pipe 22 is connected so that the outlet side of the hot gas valve 19 in the bypass pipe 20 is communicated with the expansion valve 15, the diaphragm of the expansion valve 15 is connected to the diaphragm of the expansion valve 15 during the hot gas defrosting operation. Since high pressure acts and closes the needle valve 15c of the expansion valve, only high temperature refrigerant gas stably flows into the evaporator 2 regardless of external temperature conditions, allowing efficient defrosting.

また、冷凍運転時には、膨張弁15が内部均圧型温度作
動式膨張弁と同様の特性で蒸発圧力を制御し、冷凍運転
を効率的に行うことができる。
Further, during the refrigeration operation, the expansion valve 15 controls the evaporation pressure with characteristics similar to those of an internal pressure-equalizing temperature-operated expansion valve, so that the refrigeration operation can be performed efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による冷凍装置の全体構成を示す概要
図、第2図は、本発明の実施例の作用説明図、第3図は
、第1図の冷凍装置で使用されている外部均圧型温度作
動式膨張弁の概要図である。 1 ・・・冷凍装置   2・・・蒸発器12・・・冷
凍回路   13・・・圧縮機14・・・凝縮器   
 15・・・膨張弁15g・・・温度検出部(感温筒) 19・・・ホットガス弁 20・・・バイパス管22・
・・均圧管
FIG. 1 is a schematic diagram showing the overall configuration of a refrigeration system according to the present invention, FIG. 2 is an explanatory diagram of the operation of an embodiment of the present invention, and FIG. FIG. 2 is a schematic diagram of a pressure-equalizing temperature-activated expansion valve. 1... Refrigeration device 2... Evaporator 12... Refrigeration circuit 13... Compressor 14... Condenser
15... Expansion valve 15g... Temperature detection part (temperature sensing cylinder) 19... Hot gas valve 20... Bypass pipe 22.
・・Pressure equalization pipe

Claims (1)

【特許請求の範囲】[Claims] 圧縮機(13)、凝縮器(14)、外部均圧式の膨張弁
(15)及び蒸発器(2)を含む冷凍回路(12)を有
し、前記蒸発器(2)の出口部冷媒温度を、前記膨張弁
(15)に連絡する温度検出部(15a)によって検出
し、同検出温度に応じて前記膨張弁(15)が開閉制御
される冷凍装置(1)において、前記冷凍回路(12)
には、前記凝縮器(14)及び前記膨張弁(15)をバ
イパスするように、ホットガス弁(19)を有するバイ
パス管(20)が接続されると共に、同バイパス管(2
0)にある前記ホットガス弁(19)の出口側を前記膨
張弁(15)に連通するように、均圧管(22)が接続
されていることを特徴とする冷凍装置。
It has a refrigeration circuit (12) including a compressor (13), a condenser (14), an external pressure equalization type expansion valve (15), and an evaporator (2), and has a refrigerant temperature at the outlet of the evaporator (2). , in the refrigeration system (1) in which the temperature is detected by a temperature detection unit (15a) communicating with the expansion valve (15) and the expansion valve (15) is controlled to open and close according to the detected temperature, the refrigeration circuit (12)
A bypass pipe (20) having a hot gas valve (19) is connected to the bypass pipe (20) so as to bypass the condenser (14) and the expansion valve (15).
A refrigeration system characterized in that a pressure equalizing pipe (22) is connected so that the outlet side of the hot gas valve (19) located at 0) communicates with the expansion valve (15).
JP10341289A 1989-04-25 1989-04-25 Refrigeration equipment Expired - Lifetime JPH086991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341289A JPH086991B2 (en) 1989-04-25 1989-04-25 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341289A JPH086991B2 (en) 1989-04-25 1989-04-25 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH02282675A true JPH02282675A (en) 1990-11-20
JPH086991B2 JPH086991B2 (en) 1996-01-29

Family

ID=14353335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341289A Expired - Lifetime JPH086991B2 (en) 1989-04-25 1989-04-25 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH086991B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036503A (en) * 2007-07-09 2009-02-19 Panasonic Corp Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP2009145032A (en) * 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036503A (en) * 2007-07-09 2009-02-19 Panasonic Corp Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP2009145032A (en) * 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same

Also Published As

Publication number Publication date
JPH086991B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US6438978B1 (en) Refrigeration system
KR100352103B1 (en) Refrigerant flow control according to evaporator dryness
US3332251A (en) Refrigeration defrosting system
JP2010532462A (en) High temperature gas defrosting method and apparatus
AU5997599A (en) Two-refrigerant refrigerating device
US5157935A (en) Hot gas defrost system for refrigeration systems and apparatus therefor
US2907181A (en) Hot gas defrosting refrigerating system
US3195321A (en) Refrigeration system including defrosting means
JPH086973B2 (en) Ice machine refrigeration cycle
JPS6231263B2 (en)
US3350895A (en) Defrost means for non-reversible refrigeration systems
JPH02282675A (en) Freezer
JP3237867B2 (en) Ammonia refrigeration equipment
JPH09318205A (en) Refrigerating device
JPH10141822A (en) Drum type ice machine
US2895307A (en) Refrigerating system including a hot gas defrosting circuit
JPS5826511B2 (en) Defrosting device for refrigerators
JPS6050245B2 (en) Refrigeration equipment
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JPH03152349A (en) Freezer device
JPS6222396B2 (en)
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JPS61159072A (en) Refrigerator
JPH08240348A (en) Refrigerator
JPS6350629B2 (en)