JP5104002B2 - Refrigeration cycle apparatus and air conditioner equipped with the same - Google Patents

Refrigeration cycle apparatus and air conditioner equipped with the same Download PDF

Info

Publication number
JP5104002B2
JP5104002B2 JP2007110243A JP2007110243A JP5104002B2 JP 5104002 B2 JP5104002 B2 JP 5104002B2 JP 2007110243 A JP2007110243 A JP 2007110243A JP 2007110243 A JP2007110243 A JP 2007110243A JP 5104002 B2 JP5104002 B2 JP 5104002B2
Authority
JP
Japan
Prior art keywords
discharge gas
gas bypass
pipe
refrigerant
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007110243A
Other languages
Japanese (ja)
Other versions
JP2008267676A (en
Inventor
正敏 高橋
欣公 田積
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007110243A priority Critical patent/JP5104002B2/en
Priority to EP08153996.7A priority patent/EP1983277B1/en
Priority to CN2008100952127A priority patent/CN101307964B/en
Publication of JP2008267676A publication Critical patent/JP2008267676A/en
Application granted granted Critical
Publication of JP5104002B2 publication Critical patent/JP5104002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮機の吐出ガス冷媒を用いて蒸発器に付着した霜を溶解するためのバイパス回路を備えた冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus including a bypass circuit for melting frost attached to an evaporator using a discharge gas refrigerant of a compressor.

従来、この種の冷凍サイクル装置は運転状態によって、蒸発器に霜が付着し、能力低下を来す。すなわち、圧縮機で圧縮された高温高圧の吐出ガス冷媒は、四方弁を介して凝縮器に流入し、熱交換を行うことで冷媒は凝縮される。凝縮された冷媒は絞り装置で減圧されて気液2相状態となって蒸発器に流入し、熱交換を行うことで蒸発し、再度四方弁を介して圧縮機に吸い込まれる。ここで、蒸発器の周囲温度が低い場合においては、蒸発器に霜が徐々に付着し、霜の付着量が増えるに従って能力が低下する。   Conventionally, in this type of refrigeration cycle apparatus, frost adheres to the evaporator depending on the operating state, resulting in a reduction in capacity. That is, the high-temperature and high-pressure discharge gas refrigerant compressed by the compressor flows into the condenser via the four-way valve, and the refrigerant is condensed by performing heat exchange. The condensed refrigerant is depressurized by the expansion device, becomes a gas-liquid two-phase state, flows into the evaporator, evaporates by performing heat exchange, and is sucked into the compressor again through the four-way valve. Here, when the ambient temperature of the evaporator is low, frost gradually adheres to the evaporator, and the capacity decreases as the amount of frost attached increases.

そして、必要に応じて蒸発器に付着した霜を溶かす運転を行うが、この霜を溶かす方法としては、四方弁を切り替えて逆サイクル運転とすることで、それぞれの熱交換器の働きを逆にして霜を溶かす方法がある。しかしながら、この方法では本来凝縮器側の温度が低下してしまう。   Then, if necessary, the operation to melt the frost attached to the evaporator is performed. As a method of melting this frost, the operation of each heat exchanger is reversed by switching the four-way valve to perform the reverse cycle operation. There is a way to melt frost. However, this method inherently reduces the temperature on the condenser side.

そこで、逆サイクル運転としない方法として、圧縮機から吐出した冷媒が流れる吐出管に分岐管を設けることで、冷媒の一方は凝縮器に流れ、もう一方は電磁弁などの冷媒制御装置を介して蒸発器に流入させ、蒸発器に付着した霜を溶解させる除霜方法がある(例えば、特許文献1参照)。   Therefore, as a method not to perform reverse cycle operation, by providing a branch pipe in the discharge pipe through which the refrigerant discharged from the compressor flows, one of the refrigerant flows to the condenser and the other through a refrigerant control device such as an electromagnetic valve. There is a defrosting method in which frost adhering to the evaporator is melted by flowing into the evaporator (see, for example, Patent Document 1).

図2は、特許文献1に記載された従来の空気調和装置の冷凍サイクル装置を示すものである。図2において、室外機Bに、圧縮機1と四方弁11と絞り装置3と蒸発器4とを備え、室内機Aに凝縮器2を備えて暖房運転時の冷凍サイクルを構成している。そして、吐出管1aから絞り装置3と蒸発器4との間の管路までの吐出ガスバイパス30を、分岐管5と電磁弁6とを介して構成している。この構成において、暖房運転を続けていると蒸発器4に霜が付着してくる。そこで除霜運転として、凝縮器2や蒸発器4のそれぞれの熱交換器の働きは暖房運転の状態のままで、吐出ガスバイパス30の電磁弁6を開くと、吐出ガス冷媒が蒸発器4に直接流れ込んで除霜を行うもので、暖房運転を継続しながら蒸発器4の除霜を行うことができるものである。
実開昭60−10178号公報
FIG. 2 shows a refrigeration cycle apparatus of a conventional air conditioner described in Patent Document 1. As shown in FIG. In FIG. 2, the outdoor unit B includes a compressor 1, a four-way valve 11, a throttle device 3, and an evaporator 4, and the indoor unit A includes a condenser 2 to constitute a refrigeration cycle during heating operation. And the discharge gas bypass 30 from the discharge pipe 1a to the pipe line between the expansion device 3 and the evaporator 4 is configured through the branch pipe 5 and the electromagnetic valve 6. In this configuration, frost adheres to the evaporator 4 when the heating operation is continued. Therefore, as the defrosting operation, when the operation of the heat exchangers of the condenser 2 and the evaporator 4 remains in the heating operation state and the electromagnetic valve 6 of the discharge gas bypass 30 is opened, the discharge gas refrigerant is transferred to the evaporator 4. The defrosting is performed by directly flowing, and the evaporator 4 can be defrosted while continuing the heating operation.
Japanese Utility Model Publication No. 60-10178

しかしながら、前記従来の構成では、圧縮機から吐出した冷媒の主流が凝縮器に流れる方向で分岐管が設けてあるのが一般的であり、基本的には吐出ガスバイパスより凝縮器に多くの冷媒が流れるようになっている上、吐出圧力が低い場合には、蒸発器に流入させる吐出ガス冷媒の冷媒量がさらに少なくなるため、吐出ガスバイパスの効果が小さくなって除霜時間が長くかかるという課題や、少しでも多くの吐出ガス冷媒を流そうとすれば、電磁弁などの冷媒制御装置は流路抵抗が極めて小さいものを選択しなければならず、そのためのコストが大きくなるという課題を有していた。   However, in the conventional configuration, the branch pipe is generally provided in the direction in which the main flow of the refrigerant discharged from the compressor flows to the condenser. Basically, more refrigerant is provided in the condenser than the discharge gas bypass. In addition, when the discharge pressure is low, the refrigerant amount of the discharge gas refrigerant flowing into the evaporator is further reduced, so that the effect of the discharge gas bypass is reduced and the defrosting time is longer. If there is a problem or if a large amount of discharged gas refrigerant is allowed to flow, a refrigerant control device such as a solenoid valve must be selected with a very small flow path resistance, which increases the cost. Was.

本発明は、前記従来の課題を解決するもので、除霜時間の短縮を可能とし、また、電磁弁などの冷媒制御装置の選択範囲を広げて設計自由度を向上するとともにコストダウンが可能な冷凍サイクル装置を提供し、さらに、その冷凍サイクル装置を備えて暖房運転時の快適性を向上する空気調和機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, enables a reduction in defrosting time, expands a selection range of a refrigerant control device such as a solenoid valve, improves design flexibility, and enables cost reduction. An object of the present invention is to provide a refrigeration cycle apparatus, and further to provide an air conditioner that includes the refrigeration cycle apparatus and improves comfort during heating operation.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、除霜時には圧縮機の吐出冷媒が吐出ガスバイパスを流れる流量が、四方弁へ流れる流量より多くなる様に構成したものである。これによって、バイパス側に多く吐出冷媒が流れるために、蒸発器の温度上昇と、圧縮機の過熱度および吐出冷媒の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら、蒸発器の除霜時間の短縮が可能となる。   In order to solve the above-described conventional problems, the refrigeration cycle apparatus of the present invention is configured such that the flow rate at which the refrigerant discharged from the compressor flows through the discharge gas bypass during defrosting is greater than the flow rate through the four-way valve. . As a result, a large amount of discharged refrigerant flows on the bypass side, so that the temperature of the evaporator can be increased, the degree of superheat of the compressor and the temperature of the discharged refrigerant can be increased, and evaporation can be suppressed while suppressing a decrease in the capacity of the condenser. The defrosting time of the vessel can be shortened.

本発明の冷凍サイクル装置は、吐出ガスバイパス側に多く吐出冷媒が流れるために蒸発器の温度上昇を大きくして除霜時間の短縮ができ、また、吐出ガスバイパスに設置された冷媒制御装置の流路抵抗の影響度が小さくなるため、設計自由度が向上するとともに、それによるコストダウンが可能となる。また、その冷凍サイクル装置を備えた空気調和機においては、暖房運転における除霜時の室温低下を抑制して快適性を向上することができる。   The refrigeration cycle apparatus of the present invention can reduce the defrosting time by increasing the temperature rise of the evaporator because a large amount of discharged refrigerant flows to the discharge gas bypass side, and the refrigerant control device installed in the discharge gas bypass Since the degree of influence of the channel resistance is reduced, the degree of freedom in design is improved and the cost can be reduced accordingly. Moreover, in the air conditioner provided with the refrigeration cycle apparatus, it is possible to improve comfort by suppressing a decrease in room temperature during defrosting in heating operation.

第1の発明は、圧縮機と、四方弁と、凝縮器と、絞り装置と、蒸発器とを配管で接続して冷凍サイクルを構成し、前記圧縮機の吸入管と、前記絞り装置と蒸発器とを接続する蒸発器配管とのうちどちらか一方又はその双方へ、前記圧縮機と前記四方弁とを接続する吐出管から吐出冷媒をバイパスする吐出ガスバイパスと、前記吐出ガスバイパスに吐出冷媒を任意に流すことができる冷媒制御装置とを設けて蒸発器に付着した霜を溶解して除霜する構成を備え、除霜時には前記圧縮機の吐出冷媒がバイパスして流れる流量が、前記四方弁へ流れる流量より多くなる様に構成した冷凍サイクル装置である。   According to a first aspect of the present invention, a compressor, a four-way valve, a condenser, a throttling device, and an evaporator are connected by piping to form a refrigeration cycle. The suction pipe of the compressor, the throttling device, and evaporation A discharge gas bypass that bypasses the discharge refrigerant from a discharge pipe that connects the compressor and the four-way valve to one or both of the evaporator pipes that connect the evaporator, and a discharge refrigerant that bypasses the discharge gas bypass And a refrigerant control device that can freely flow the frost adhering to the evaporator to dissolve and defrost, and the flow rate that flows by bypassing the refrigerant discharged from the compressor during defrosting is the four-way It is a refrigeration cycle apparatus configured to be larger than the flow rate flowing to the valve.

これによって、吐出ガスバイパス側に多く吐出冷媒が流れるために、蒸発器の温度上昇と、または圧縮機の過熱度および吐出冷媒の温度上昇とそれに伴うさらなる蒸発器の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら、蒸発器の除霜時間の短縮が可能となる。また、吐出ガスバイパスに設置された冷媒制御装置の流路抵抗の影響度が小さくなるため、設計自由度が向上するとともに、それによるコストダウンが可能となる。   Thereby, since a large amount of discharged refrigerant flows on the discharge gas bypass side, the temperature of the evaporator can be increased, or the degree of superheat of the compressor and the temperature of the discharged refrigerant can be increased, and accordingly the temperature of the evaporator can be further increased. The defrosting time of the evaporator can be shortened while suppressing a decrease in capacity in the condenser. Moreover, since the influence degree of the flow path resistance of the refrigerant control device installed in the discharge gas bypass is reduced, the degree of freedom in design is improved and the cost can be reduced accordingly.

第2の発明は、特に、第1の発明の冷凍サイクル装置の吐出ガスバイパスの流路抵抗を凝縮器側の流路抵抗より小さくしたもので、吐出ガスバイパスを流れる冷媒の流量を、凝縮器側の四方弁へ流れる流量より多くすることが可能となる。   In the second invention, in particular, the flow resistance of the discharge gas bypass of the refrigeration cycle apparatus of the first invention is made smaller than the flow resistance on the condenser side. It is possible to increase the flow rate flowing to the side four-way valve.

第3の発明は、特に、第1の発明の冷凍サイクル装置の吐出ガスバイパスを、吐出管に分岐管を設け、圧縮機の吐出冷媒が吐出ガスバイパスの方向には四方弁の方向より動圧成分が大きく作用するように接続したもので、吐出冷媒の動圧成分がバイパス側に大きくかかるため、分岐管での冷媒分流比率が四方弁側より吐出ガスバイパス側に大きくなり、吐出ガスバイパス側の冷媒の流量を多くすることができる。また、吐出ガスバイパスに設置された冷媒制御装置があっても循環量を維持することができ、すなわち冷媒制御装置の流路抵抗の影響度を小さくすることが可能となる。   In the third invention, in particular, the discharge gas bypass of the refrigeration cycle apparatus of the first invention is provided with a branch pipe in the discharge pipe, and the refrigerant discharged from the compressor is more dynamic than the four-way valve in the direction of the discharge gas bypass. Because the dynamic pressure component of the discharged refrigerant is greatly applied to the bypass side, the refrigerant diversion ratio in the branch pipe is larger from the four-way valve side to the discharge gas bypass side, and the discharge gas bypass side The flow rate of the refrigerant can be increased. Further, even if there is a refrigerant control device installed in the discharge gas bypass, the circulation rate can be maintained, that is, the influence of the flow path resistance of the refrigerant control device can be reduced.

第4の発明は、特に、第1から第3の発明の冷凍サイクル装置の吐出ガスバイパスを、吐出管にT字形の分岐管を設け、圧縮機の吐出冷媒が吐出ガスバイパスの方向には直線的に流れ、四方弁の方向には折れ曲がって流れるように構成したもので、吐出ガスバイパスの流路抵抗を凝縮器側の流路抵抗より小さくできるとともに、圧縮機の吐出冷媒が吐出ガスバイパスの方向に対して、四方弁の方向より動圧成分を大きく作用させることが可能となる。   In the fourth invention, in particular, the discharge gas bypass of the refrigeration cycle apparatus according to the first to third inventions is provided, and the discharge pipe is provided with a T-shaped branch pipe, and the discharge refrigerant of the compressor is straight in the direction of the discharge gas bypass. The flow resistance of the discharge gas bypass can be made smaller than the flow path resistance on the condenser side, and the discharge refrigerant of the compressor can be connected to the discharge gas bypass. The dynamic pressure component can be applied to the direction more than the direction of the four-way valve.

第5の発明は、特に、第1〜4の冷凍サイクル装置の吐出ガスバイパスの出口が冷凍サイクルの配管に合流する箇所に、T字管によりバイパスからの流れが直線的になるように接続したもので、吐出ガスバイパスの流路抵抗を凝縮器側の流路抵抗より小さくできて、バイパス側の冷媒の流量を多くすることが可能となる。   In the fifth invention, in particular, the outlet of the discharge gas bypass of the first to fourth refrigeration cycle apparatuses is connected to the portion where the outlet of the refrigeration cycle joins the piping of the refrigeration cycle so that the flow from the bypass becomes linear by a T-shaped tube. Therefore, the flow resistance of the discharge gas bypass can be made smaller than the flow resistance on the condenser side, and the flow rate of the refrigerant on the bypass side can be increased.

第6の発明は、特に、第1〜5の冷凍サイクル装置の吐出ガスバイパスの配管長を凝縮器側の配管長より短くしたもので、吐出ガスバイパスの流路抵抗を凝縮器側の流路抵抗より小さくできて、バイパス側の冷媒の流量を多くすることが可能となる。   In the sixth aspect of the invention, in particular, the pipe length of the discharge gas bypass of the first to fifth refrigeration cycle apparatuses is shorter than the pipe length of the condenser side. It can be made smaller than the resistance, and the flow rate of the refrigerant on the bypass side can be increased.

第7の発明は、特に、第1〜6の冷凍サイクル装置の吐出ガスバイパスの配管径を、凝縮器側の配管径と同等以上に大きくしたもので、吐出ガスバイパスの流路抵抗を凝縮器側の流路抵抗より小さくできて、バイパス側の冷媒の流量を多くすることが可能となる。   In particular, the seventh aspect of the present invention is such that the pipe diameter of the discharge gas bypass of the first to sixth refrigeration cycle apparatuses is made equal to or larger than the pipe diameter on the condenser side, and the flow resistance of the discharge gas bypass is reduced to the condenser. The flow resistance of the refrigerant on the bypass side can be increased because the flow resistance on the side can be made smaller.

第8の発明は、特に、第1〜7の冷凍サイクル装置の吐出ガスバイパスに、吐出冷媒のうち50%〜90%が流れるように構成したもので、これによりバイパス側に多く吐出冷媒が流れるために、蒸発器の温度上昇と、または圧縮機の過熱度および吐出冷媒の温度上昇とそれに伴うさらなる蒸発器の温度上昇を図ることができ、凝縮器における能力の低下を抑制しながら、蒸発器の除霜時間の短縮が可能となる。   In the eighth aspect of the invention, in particular, 50% to 90% of the discharged refrigerant flows in the discharge gas bypass of the first to seventh refrigeration cycle apparatuses, whereby a large amount of discharged refrigerant flows on the bypass side. Therefore, it is possible to increase the temperature of the evaporator, or to increase the superheat degree of the compressor and the temperature of the discharged refrigerant, and further increase the temperature of the evaporator. It is possible to shorten the defrosting time.

第9の発明は、それぞれに送風機を備えた室内機と室外機とを有し、請求項1〜8のうちいずれか一項記載の冷凍サイクル装置を備えた空気調和機であり、除霜時間を短縮できる冷凍サイクル装置により、暖房運転における除霜時の室温低下を抑制することができて、快適性を向上することができる。   9th invention is an air conditioner which has the indoor unit and outdoor unit which were each equipped with the air blower, and was equipped with the refrigeration cycle apparatus as described in any one of Claims 1-8, and defrost time With the refrigeration cycle device that can shorten the temperature, a decrease in room temperature during defrosting in heating operation can be suppressed, and comfort can be improved.

第10の発明は、特に、第9の発明の空気調和機の室内機に補助加熱装置を備えたもので、暖房運転における除霜時の暖房能力の低下を補うことにより、室温低下をより抑制して快適性をより向上することができる。   In the tenth aspect of the invention, in particular, the indoor unit of the air conditioner of the ninth aspect of the invention is provided with an auxiliary heating device, and the room temperature decrease is further suppressed by compensating for the decrease in heating capacity during defrosting in heating operation. And comfort can be further improved.

以下、本発明の冷凍サイクル装置の実施の形態について、空気調和機に搭載した例として図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings as examples mounted on an air conditioner. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷凍サイクル装置の冷媒系統図で、空気調和機としての冷媒の流れ(暖房運転時は実線矢印方向)を示すものである。図1において、冷媒を圧縮する圧縮機1、冷媒の流れを変える四方弁11、高圧高温冷媒が凝縮される凝縮器2、凝縮された冷媒を減圧する絞り装置3、減圧された冷媒を蒸発させる蒸発器4が順番に配管で接続されて通常の冷凍サイクルを構成している。ここで、凝縮器2は室内機Aに設けられ、その他は室外機Bに設けられており、さらに室内機Aには室内送風機7と電気ヒータ9を備え、室外機Bには室外送風機8を備えている。
(Embodiment 1)
FIG. 1 is a refrigerant system diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention and shows a refrigerant flow as an air conditioner (in the direction of a solid arrow during heating operation). In FIG. 1, a compressor 1 that compresses refrigerant, a four-way valve 11 that changes the flow of refrigerant, a condenser 2 that condenses high-pressure and high-temperature refrigerant, a throttling device 3 that depressurizes condensed refrigerant, and evaporates the reduced refrigerant. The evaporator 4 is connected by piping in order, and the normal refrigeration cycle is comprised. Here, the condenser 2 is provided in the indoor unit A, and the others are provided in the outdoor unit B. The indoor unit A further includes an indoor fan 7 and an electric heater 9, and the outdoor unit B includes the outdoor fan 8. I have.

本実施の形態1においては、圧縮機1からの吐出ガス冷媒を、四方弁11の手前の吐出管1aで分岐させる第1吐出ガスバイパス31を設け、そこから更に分岐して、絞り装置3と蒸発器4との間の蒸発器配管4aにバイパスする第2吐出ガスバイパス32と、圧縮機1の吸入管1bにバイパスする第3吐出ガスバイパス33とを設けている。すなわち、ここでは吐出ガスバイパスは、第1吐出ガスバイパス31と第2吐出ガスバイパス32と第3吐出ガスバイパス33とから構成している。   In this Embodiment 1, the 1st discharge gas bypass 31 which branches the discharge gas refrigerant | coolant from the compressor 1 with the discharge pipe 1a before the four-way valve 11 is provided, and further branches from there, and the expansion device 3 A second discharge gas bypass 32 that bypasses the evaporator pipe 4 a between the evaporator 4 and a third discharge gas bypass 33 that bypasses the suction pipe 1 b of the compressor 1 is provided. That is, here, the discharge gas bypass is composed of the first discharge gas bypass 31, the second discharge gas bypass 32, and the third discharge gas bypass 33.

第1吐出ガスバイパス31の途中には吐出ガス冷媒を任意に流すことを可能とする冷媒
制御装置40を備え、必要に応じて冷媒の流れを制御する。また、第2吐出ガスバイパス32の途中には蒸発器バイパス流量調整管32aと逆止弁32bとを備える。さらに、第3吐出ガスバイパス33の途中には吸入バイパス流量調整管33aを備えて、第2吐出ガスバイパス32と第3吐出ガスバイパス33との流量バランスを調整している。
A refrigerant control device 40 is provided in the middle of the first discharge gas bypass 31 to allow the discharge gas refrigerant to flow arbitrarily, and the flow of the refrigerant is controlled as necessary. Further, an evaporator bypass flow rate adjustment pipe 32a and a check valve 32b are provided in the middle of the second discharge gas bypass 32. Further, an intake bypass flow rate adjustment pipe 33 a is provided in the middle of the third discharge gas bypass 33 to adjust the flow rate balance between the second discharge gas bypass 32 and the third discharge gas bypass 33.

また、吐出管1aにおける第1吐出ガスバイパス31の分岐は、略T字形の分岐管51を備えて行う。この分岐管51は、圧縮機1の吐出冷媒が第1吐出ガスバイパス31の方向には直線的に流れ(矢印D1)、四方弁11の方向にはほぼ直角に折れ曲がって流れる(矢印D2)ように構成している。   Further, the branch of the first discharge gas bypass 31 in the discharge pipe 1 a is performed by including a substantially T-shaped branch pipe 51. In this branch pipe 51, the refrigerant discharged from the compressor 1 flows linearly in the direction of the first discharge gas bypass 31 (arrow D1), and bends substantially perpendicularly to the direction of the four-way valve 11 (arrow D2). It is configured.

さらに、第2吐出ガスバイパス32の出口における蒸発器配管4aへの合流と、第3吐出ガスバイパス33の出口における吸入管1bへの合流においてもそれぞれ分岐管51と同様のT字管52,53を備えている。すなわち、熱交換器配管4a側のT字管52の合流においては、絞り装置3からの蒸発器配管4aとしての流れをほぼ直角に折り曲げる(矢印D3)ように構成し、第2吐出ガスバイパス32からの流れを蒸発器配管4aへ直線的に流れる(矢印D4)ように接続している。また、吸入管1b側のT字管53の合流においては、四方弁11からの吸入管1bとしての本来の流れをほぼ直角に折り曲げる(矢印D5)ように構成し、第3吐出ガスバイパス33からの流れを吸入管1bへ直線的に流れる(矢印D6)ように接続している。   Further, T-shaped pipes 52 and 53 similar to the branch pipe 51 are respectively joined at the junction to the evaporator pipe 4 a at the outlet of the second discharge gas bypass 32 and at the junction to the suction pipe 1 b at the outlet of the third discharge gas bypass 33. It has. That is, in the merge of the T-shaped pipe 52 on the heat exchanger pipe 4a side, the flow as the evaporator pipe 4a from the expansion device 3 is bent substantially at right angles (arrow D3), and the second discharge gas bypass 32 is configured. Is connected so as to flow linearly to the evaporator pipe 4a (arrow D4). Further, when the T-shaped pipe 53 on the suction pipe 1b side is merged, the original flow as the suction pipe 1b from the four-way valve 11 is bent substantially at a right angle (arrow D5), and from the third discharge gas bypass 33 Are connected to the suction pipe 1b so as to flow linearly (arrow D6).

以上のように構成された冷凍サイクル装置を備えた空気調和機について、以下その動作、作用を説明する。まず、暖房運転時は実線矢印のごとく、圧縮機1で圧縮された高温高圧の吐出ガス冷媒は、四方弁11を介して室内機Aの凝縮器2に流入し、熱交換を行うことで冷媒は凝縮され、室内は暖房される。凝縮された冷媒は室外機Bに入り、絞り装置3で減圧されて気液2相状態となって蒸発器4に流入し、熱交換を行うことで蒸発して室外の熱を吸熱する。そして、再度四方弁11を介して圧縮機1に吸入される。この通常の暖房運転時においては、冷媒制御装置40は閉じている。ここで、蒸発器4の周囲温度が低い場合においては、蒸発器4に霜が徐々に付着し、霜の付着量が増えるに従って暖房能力が低下する。   About the air conditioner provided with the refrigerating-cycle apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. First, at the time of heating operation, as indicated by a solid line arrow, the high-temperature and high-pressure discharge gas refrigerant compressed by the compressor 1 flows into the condenser 2 of the indoor unit A through the four-way valve 11 and performs heat exchange. Is condensed and the room is heated. The condensed refrigerant enters the outdoor unit B, is decompressed by the expansion device 3, enters a gas-liquid two-phase state, flows into the evaporator 4, evaporates by performing heat exchange, and absorbs outdoor heat. Then, it is sucked again into the compressor 1 through the four-way valve 11. During this normal heating operation, the refrigerant control device 40 is closed. Here, when the ambient temperature of the evaporator 4 is low, frost gradually adheres to the evaporator 4, and the heating capacity decreases as the amount of frost attached increases.

そこで、着霜量が所定量まで増えた段階で、第1吐出ガスバイパス31に設けた冷媒制御装置40を開いて第2吐出ガスバイパス32と第3吐出ガスバイパス33に吐出ガス冷媒を流すことにより、蒸発器4の除霜を行う。これは、第2吐出ガスバイパス32においては、蒸発器4の温度を上昇させることで霜の溶解を促進するものである。また、第3吐出ガスバイパス33においては、圧縮機1の乾き度を上昇して圧縮機1および吐出ガス冷媒の温度を上昇させるもので、これにより蒸発器4の温度がより上昇するものである。このように構成した場合、四方弁11は切り替えずに暖房運転状態のままで除霜することになり、暖房能力は低下するものの、逆サイクルで除霜するシステムと比較して暖房している室内の温度変化を小さくすることができ、快適性の低下を抑制することができる。   Therefore, when the amount of frost formation has increased to a predetermined amount, the refrigerant control device 40 provided in the first discharge gas bypass 31 is opened, and the discharge gas refrigerant flows through the second discharge gas bypass 32 and the third discharge gas bypass 33. Thus, the evaporator 4 is defrosted. In the second discharge gas bypass 32, the melting of frost is promoted by increasing the temperature of the evaporator 4. Further, in the third discharge gas bypass 33, the temperature of the compressor 1 and the discharge gas refrigerant is increased by increasing the dryness of the compressor 1, and thereby the temperature of the evaporator 4 is further increased. . When configured in this way, the four-way valve 11 is defrosted in the heating operation state without switching, and the heating capacity is reduced, but the room is heated as compared with the system that defrosts in the reverse cycle. Temperature change can be reduced, and a decrease in comfort can be suppressed.

なお、第1吐出ガスバイパス31は、必ずしも第2吐出ガスバイパス32と第3吐出ガスバイパス33との両方に分流して吐出ガス冷媒を流さなければならないものではなく、いずれか一方に流すだけでも暖房運転状態のままで除霜することが可能である。すなわち、上記構成の冷媒制御装置40の代わりに、第2吐出ガスバイパス32と第3吐出ガスバイパス33とのそれぞれに冷媒制御装置を配設して、運転状況等に応じて制御しても良い。さらに、吐出ガスバイパスとして、第1吐出ガスバイパス31と第2吐出ガスバイパス32とを組み合わせるだけの構成や、第1吐出ガスバイパス31と第3吐出ガスバイパス33とを組み合わせるだけの構成でも良い。   Note that the first discharge gas bypass 31 does not necessarily have to be divided into both the second discharge gas bypass 32 and the third discharge gas bypass 33 and flow the discharge gas refrigerant. It is possible to defrost in the heating operation state. That is, instead of the refrigerant control device 40 having the above-described configuration, a refrigerant control device may be provided in each of the second discharge gas bypass 32 and the third discharge gas bypass 33, and the control may be performed according to the operating condition or the like. . Further, as the discharge gas bypass, a configuration in which only the first discharge gas bypass 31 and the second discharge gas bypass 32 are combined, or a configuration in which the first discharge gas bypass 31 and the third discharge gas bypass 33 are combined may be used.

次に、本実施の形態1では、圧縮機1からの吐出ガス冷媒を、第1吐出ガスバイパス3
1から第2吐出ガスバイパス32と第3吐出ガスバイパス33とに流して循環させるにあたって、さらに圧縮機1の吐出管1aにおける第1吐出ガスバイパス31の分岐にT字形の分岐管51を備えている。特に、この分岐管51は、圧縮機1の吐出冷媒が第1吐出ガスバイパス31の方向には直線的に流れ、四方弁11の方向には直角に折れ曲がって流れるように構成している。この構成により、吐出ガス冷媒が第1吐出ガスバイパス31の方向には四方弁11の方向より動圧成分が大きく作用することになる。そして、この動圧の作用により分岐管51での冷媒分流比率が第1吐出ガスバイパス31側に大きくなり、第1吐出ガスバイパス31側の吐出ガス冷媒の流量を多くすることができる。
Next, in the first embodiment, the discharge gas refrigerant from the compressor 1 is used as the first discharge gas bypass 3.
When circulating from 1 to the second discharge gas bypass 32 and the third discharge gas bypass 33, a T-shaped branch pipe 51 is provided at the branch of the first discharge gas bypass 31 in the discharge pipe 1a of the compressor 1. Yes. In particular, the branch pipe 51 is configured such that the refrigerant discharged from the compressor 1 flows linearly in the direction of the first discharge gas bypass 31 and is bent at a right angle in the direction of the four-way valve 11. With this configuration, the discharge gas refrigerant has a larger dynamic pressure component in the direction of the first discharge gas bypass 31 than in the direction of the four-way valve 11. Then, due to the action of the dynamic pressure, the refrigerant distribution ratio in the branch pipe 51 becomes larger on the first discharge gas bypass 31 side, and the flow rate of the discharge gas refrigerant on the first discharge gas bypass 31 side can be increased.

これにより、蒸発器4に付着した霜をより短時間で溶解して室内の温度変化をより少なくすることができ、快適性の低下をより抑制することができる。特に、吐出ガス冷媒が第1吐出ガスバイパス31に流れる流量が、四方弁11へ流れる流量より多くなるようにすることにより、暖房能力の低下により室温が一時的に低下するとしても、さらに短時間で除霜を完了してしまうことで快適性の低下を抑制する大きな効果が得られるものである。   Thereby, the frost adhering to the evaporator 4 can be melt | dissolved in a short time, a room temperature change can be decreased more, and the fall of comfort can be suppressed more. In particular, by setting the flow rate of the discharge gas refrigerant flowing to the first discharge gas bypass 31 to be larger than the flow rate of flowing to the four-way valve 11, even if the room temperature temporarily decreases due to a decrease in heating capacity, it is even shorter. By completing the defrosting, a great effect of suppressing a decrease in comfort can be obtained.

さらに、吸入管1bと蒸発器配管4aの合流側でもT字管52,53を用い、第2吐出ガスバイパス32の出口、及び第3吐出ガスバイパス33の出口が冷凍サイクルの配管に合流する箇所での流れが直線的になるように接続して、流れをできるだけ妨げないように流路抵抗を小さく構成することで、吐出管1aから第1吐出ガスバイパス31への流量をより多く設定することが可能になる。なお、T字形の分岐管51やT字管52,53は必ずしも完全なT字形である必要はなく、これらの吐出ガスバイパス側をより流路抵抗が少なく構成できるものであれば良い。   Further, T-tubes 52 and 53 are also used on the merging side of the suction pipe 1b and the evaporator pipe 4a, and the outlet of the second discharge gas bypass 32 and the outlet of the third discharge gas bypass 33 join the refrigeration cycle pipe. The flow rate from the discharge pipe 1a to the first discharge gas bypass 31 is set to be higher by connecting the pipes so that the flow at the pipes is linear and making the flow path resistance small so as not to disturb the flow as much as possible. Is possible. Note that the T-shaped branch pipe 51 and the T-shaped pipes 52 and 53 do not necessarily need to be completely T-shaped, and may be any one that can configure the discharge gas bypass side with less flow path resistance.

以上のように、吐出ガス冷媒の動圧成分が第1吐出ガスバイパス31側に作用するように構成したり、合流においても流路抵抗を小さくしてスムーズに流れるように構成したりすることにより、分岐管51での分流比率が第1吐出ガスバイパス31側に多くなり、第1吐出ガスバイパス31に設置された冷媒制御装置40の流路抵抗の影響度が小さくなるなど、冷媒制御装置40の設計の余裕度を大きくすることができ、それによるコストダウンが可能となる。   As described above, the dynamic pressure component of the discharge gas refrigerant is configured to act on the first discharge gas bypass 31 side, or the flow resistance is reduced even in the merge, so that the flow can be smoothly performed. The refrigerant control device 40 is configured such that the branching ratio in the branch pipe 51 increases toward the first discharge gas bypass 31 and the influence of the flow path resistance of the refrigerant control device 40 installed in the first discharge gas bypass 31 decreases. The design margin can be increased, thereby reducing the cost.

また、第1吐出ガスバイパス31側の冷媒配管の配管長を、凝縮器2側の配管長より短くしたり、同じく配管径を同等以上に大きくしたりして、吐出ガスバイパス側の流路抵抗を凝縮器2側の流路抵抗より小さくすることによっても吐出管1aから第1吐出ガスバイパス31への流量をより多く設定することが可能になる。   Further, the pipe length of the refrigerant pipe on the first discharge gas bypass 31 side is made shorter than the pipe length on the condenser 2 side, or the pipe diameter is also made equal to or larger than that, so that the flow path resistance on the discharge gas bypass side is increased. It is possible to set a larger flow rate from the discharge pipe 1a to the first discharge gas bypass 31 by reducing the flow path resistance on the condenser 2 side.

以上、いくつかの実施例を示したように、吐出ガスバイパス側の流路抵抗を、凝縮器2側の流路抵抗より小さくすることによって、吐出管1aから第1吐出ガスバイパス31への流量を、凝縮器側の四方弁へ流れる流量より多く設定することが可能になる。そして、除霜時に圧縮機1の吐出ガス冷媒が第1吐出ガスバイパス31に流れる流量が、四方弁11へ流れる流量より多くなる様に構成することにより、蒸発器4の温度上昇を図るとともに、圧縮機1の過熱度および吐出ガス冷媒の温度上昇によってもより大きな蒸発器4の温度上昇を図ることができ、凝縮器2における能力の低下を抑制しながら、蒸発器4の除霜時間をより短縮することが可能となる。また、第1吐出ガスバイパス31に設置された冷媒制御装置40の流路抵抗の影響度が小さくなるため、設計自由度が向上するとともに、それによるコストダウンが可能となる。さらに、以上のような構成の冷凍サイクル装置を備えることにより、快適性を向上した空気調和機を提供することが可能となる。   As described above, the flow rate from the discharge pipe 1a to the first discharge gas bypass 31 is reduced by making the flow resistance on the discharge gas bypass side smaller than the flow resistance on the condenser 2 side. Can be set higher than the flow rate flowing to the four-way valve on the condenser side. Then, the temperature of the evaporator 4 is increased by configuring the flow rate of the discharge gas refrigerant of the compressor 1 flowing to the first discharge gas bypass 31 to be greater than the flow rate of flowing to the four-way valve 11 during defrosting, A larger temperature rise of the evaporator 4 can be achieved also by the degree of superheat of the compressor 1 and the temperature rise of the discharge gas refrigerant, and the defrosting time of the evaporator 4 can be further increased while suppressing a decrease in the capacity of the condenser 2. It can be shortened. Further, since the degree of influence of the flow path resistance of the refrigerant control device 40 installed in the first discharge gas bypass 31 is reduced, the degree of freedom in design is improved and the cost can be reduced accordingly. Furthermore, it becomes possible to provide the air conditioner which improved comfort by providing the refrigeration cycle apparatus of the above structures.

なお、第1吐出ガスバイパス31への分流比率としては、通常は50%未満であり、霜を溶かす除霜時間も比較的時間をかけて行うが、本実施の形態1では第1吐出ガスバイパス31に、吐出冷媒のうち50%〜90%が流れるように構成したことにより、周囲温度
条件にもよるが、およそ5分〜7分で除霜を完了する。これにより、室内機Aの凝縮器2への冷媒の循環量は低下するが、圧縮機1の乾き度を大きくして吐出ガス冷媒の温度を上昇することなどにより、暖房能力の低下を抑制することもできる。さらに、室内機Aに補助加熱装置として例えば電気ヒータ9を備えれば、冷凍サイクルにおける暖房能力の低下を補うことができ、室温低下をより抑制して快適性をより向上することができる。
The ratio of the diversion to the first discharge gas bypass 31 is usually less than 50%, and the defrosting time for melting the frost is also relatively long. In the first embodiment, the first discharge gas bypass is used. 31 is configured such that 50% to 90% of the discharged refrigerant flows, so that defrosting is completed in about 5 minutes to 7 minutes depending on the ambient temperature condition. Thereby, although the circulation amount of the refrigerant | coolant to the condenser 2 of the indoor unit A falls, the fall of heating capability is suppressed by enlarging the dryness of the compressor 1 and raising the temperature of discharge gas refrigerant | coolant etc. You can also Furthermore, if the indoor unit A is provided with, for example, an electric heater 9 as an auxiliary heating device, it is possible to compensate for a decrease in heating capacity in the refrigeration cycle, and to further suppress a decrease in room temperature and further improve comfort.

以上のように、本発明にかかる冷凍サイクル装置は、吐出冷媒の動圧成分がバイパス管側にかかるため、分岐管部での分流比率が大幅にバイパス管側に多くなり、バイパス管に設置された冷媒制御装置の流路抵抗の影響度が小さくなることでの設計自由度の向上によるコストダウンだけでなく、バイパス管側に多く吐出冷媒が流れるために、除霜時間の短縮が可能となるので、空気調和機はもちろんのこと、冷蔵庫、自動販売機及びヒートポンプ給湯器等の用途にも適用できる。   As described above, in the refrigeration cycle apparatus according to the present invention, since the dynamic pressure component of the discharged refrigerant is applied to the bypass pipe side, the branching ratio in the branch pipe portion is greatly increased to the bypass pipe side and installed in the bypass pipe. In addition to cost reduction due to improved design flexibility due to the reduced influence of flow path resistance of the refrigerant control device, a large amount of discharged refrigerant flows to the bypass pipe side, so the defrosting time can be shortened. Therefore, it can be applied not only to air conditioners but also to applications such as refrigerators, vending machines, and heat pump water heaters.

本発明の実施の形態1における冷凍サイクル装置の冷媒系統図Refrigerant system diagram of refrigeration cycle apparatus in Embodiment 1 of the present invention 従来の空気調和装置の冷媒系統図Refrigerant system diagram of conventional air conditioner

符号の説明Explanation of symbols

1 圧縮機
1a 吐出管
1b 吸入管
2 凝縮器
3 絞り装置
4 蒸発器
4a 蒸発器配管
7 室内送風機
8 室外送風機
9 電気ヒータ
11 四方弁
31 第1吐出ガスバイパス
32 第2吐出ガスバイパス
32a 流量調整管
32b 逆止弁
33 第3吐出ガスバイパス
33a 流量調整管
40 冷媒制御装置
51 分岐管
52,53 T字管
A 室内機
B 室外機
DESCRIPTION OF SYMBOLS 1 Compressor 1a Discharge pipe 1b Suction pipe 2 Condenser 3 Throttle device 4 Evaporator 4a Evaporator piping 7 Indoor fan 8 Outdoor fan 9 Electric heater 11 Four-way valve 31 1st discharge gas bypass 32 2nd discharge gas bypass 32a Flow rate adjustment pipe 32b Check valve 33 Third discharge gas bypass 33a Flow rate adjustment pipe 40 Refrigerant control device 51 Branch pipe 52, 53 T-shaped pipe A Indoor unit B Outdoor unit

Claims (10)

圧縮機と、四方弁と、凝縮器と、絞り装置と、蒸発器とを配管で接続して冷凍サイクルを構成し、前記圧縮機の吸入管と、前記絞り装置と蒸発器とを接続する蒸発器配管とのうちどちらか一方又はその双方へ、前記圧縮機と前記四方弁とを接続する吐出管から吐出冷媒をバイパスする吐出ガスバイパスと、前記吐出ガスバイパスに吐出冷媒を任意に流すことができる冷媒制御装置とを設けて蒸発器に付着した霜を溶解して除霜する構成を備え、前記圧縮機からの吐出ガスを、前記四方弁の手前の吐出管で分岐させる第1吐出ガスバイパスと、第1吐出ガスバイパスから更に分岐して、前記絞り装置と前記蒸発器との間の蒸発器配管に接続する第2吐出ガスバイパスと、前記圧縮機の吸入管に接続する第3吐出ガスバイパスとを設け、第1吐出ガスバイパスには吐出ガス冷媒流量を任意に制御する冷媒制御装置を備え、第2吐出ガスバイパスには蒸発器バイパス流量調整管と逆止弁とを備え、第3吐出ガスバイパスには吸入バイパス流量調整管を備え、前記吐出管における第1吐出ガスバイパスの分岐は略T字形の分岐管であり、該分岐管は前記圧縮機の吐出冷媒が第1吐出ガスバイパスの方向には直線的に流し、前記四方弁の方向にはほぼ直角に折れ曲がるよう接続し、さらに第2吐出ガスバイパスの出口における前記蒸発器配管への合流部分と第3吐出ガスバイパスの出口における前記吸入管との合流部分とにおいては、第1吐出ガスバイパスならびに第2吐出ガスバイパスからの流れを直線的に、他の流れをほぼ直角に折れ曲がるように接続し、除霜時には前記圧縮機の吐出冷媒が前記吐出ガスバイパスを流れる流量が、前記四方弁へ流れる流量より多くなり、尚且つ前記吐出ガスバイパスに前記蒸発器からの冷媒が合流する部位においても前記吐出ガスバイパスを流れる流量が、前記合流する冷媒よりも流量が多くなる様に構成したことを特徴とする冷凍サイクル装置。 A compressor, a four-way valve, a condenser, a throttling device, and an evaporator are connected by piping to form a refrigeration cycle, and the suction pipe of the compressor, the throttling device, and an evaporator are connected to the evaporator. A discharge gas bypass that bypasses the discharge refrigerant from a discharge pipe that connects the compressor and the four-way valve, and a discharge refrigerant that flows through the discharge gas bypass arbitrarily And a refrigerant control device capable of melting and defrosting frost adhering to the evaporator, and a first discharge gas bypass for branching the discharge gas from the compressor at a discharge pipe before the four-way valve And a second discharge gas bypass branched from the first discharge gas bypass and connected to an evaporator pipe between the expansion device and the evaporator, and a third discharge gas connected to the suction pipe of the compressor Bypass and first discharge The bypass has a refrigerant control device for arbitrarily controlling the discharge gas refrigerant flow rate, the second discharge gas bypass has an evaporator bypass flow rate adjustment pipe and a check valve, and the third discharge gas bypass has an intake bypass flow rate adjustment A branch of the first discharge gas bypass in the discharge pipe is a substantially T-shaped branch pipe, and the branch pipe causes the refrigerant discharged from the compressor to flow linearly in the direction of the first discharge gas bypass, In the direction of the four-way valve, it is connected so as to be bent at a substantially right angle, and further at the junction of the second discharge gas bypass at the outlet to the evaporator pipe and at the junction of the third discharge gas bypass at the outlet with the suction pipe It is linearly flow from the first discharge gas bypass, and the second discharge gas bypass, and connected to bent the other flow substantially perpendicular, discharge cooling of the compressor during defrosting The flow rate flowing through the discharge gas bypass is larger than the flow rate flowing to the four-way valve, and the flow rate flowing through the discharge gas bypass is also the portion where the refrigerant from the evaporator joins the discharge gas bypass. A refrigeration cycle apparatus configured to have a higher flow rate than the refrigerant to be used. 吐出ガスバイパスの流路抵抗を、凝縮器側の流路抵抗より小さくしたことを特徴とする請求項1記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the flow path resistance of the discharge gas bypass is made smaller than the flow path resistance on the condenser side. 吐出管に分岐管を設け、圧縮機の吐出冷媒が吐出ガスバイパスの方向には四方弁の方向より動圧成分が大きく作用するように接続したことを特徴とする請求項1記載の冷凍サイクル装置。 2. A refrigeration cycle apparatus according to claim 1, wherein a branch pipe is provided in the discharge pipe, and the refrigerant discharged from the compressor is connected so that a dynamic pressure component acts more in the direction of the discharge gas bypass than in the direction of the four-way valve. . 吐出管にT字形の分岐管を設け、圧縮機の吐出冷媒が吐出ガスバイパスの方向には直線的
に流れ、四方弁の方向には折れ曲がって流れるように構成したことを特徴とする請求項1〜3のうちいずれか一項記載の冷凍サイクル装置。
The discharge pipe is provided with a T-shaped branch pipe so that the refrigerant discharged from the compressor flows linearly in the direction of the discharge gas bypass and bends in the direction of the four-way valve. The refrigeration cycle apparatus according to any one of?
吐出ガスバイパスの出口が冷凍サイクルの配管に合流する箇所に、T字管によりバイパスからの流れが直線的になるように接続したことを特徴とする請求項1〜4のうちいずれか一項記載の冷凍サイクル装置。 5. The apparatus according to claim 1, wherein the outlet of the discharge gas bypass is connected to a location where the outlet of the discharge gas bypass joins the piping of the refrigeration cycle so that the flow from the bypass becomes linear by a T-shaped tube. Refrigeration cycle equipment. 吐出ガスバイパスの配管長を、凝縮器側の配管長より短くしたことを特徴とする請求項1〜5のうちいずれか一項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a pipe length of the discharge gas bypass is shorter than a pipe length on the condenser side. 吐出ガスバイパスの配管径を、凝縮器側の配管径と同等以上に大きくしたことを特徴とする請求項1〜6のうちいずれか一項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein a pipe diameter of the discharge gas bypass is made equal to or greater than a pipe diameter on the condenser side. 吐出ガスバイパスに、吐出冷媒のうち50%〜90%が流れるように構成したことを特徴とする請求項1〜7のうちいずれか一項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein 50% to 90% of the discharged refrigerant flows through the discharge gas bypass. それぞれに送風機を備えた室内機と室外機とを有し、請求項1〜8のうちいずれか一項記載の冷凍サイクル装置を備えたことを特徴とする空気調和機。 An air conditioner comprising an indoor unit and an outdoor unit each having a blower, and the refrigeration cycle apparatus according to any one of claims 1 to 8. 室内機に補助加熱装置を備えたことを特徴とする請求項9記載の空気調和機。 The air conditioner according to claim 9, wherein the indoor unit includes an auxiliary heating device.
JP2007110243A 2007-04-19 2007-04-19 Refrigeration cycle apparatus and air conditioner equipped with the same Expired - Fee Related JP5104002B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007110243A JP5104002B2 (en) 2007-04-19 2007-04-19 Refrigeration cycle apparatus and air conditioner equipped with the same
EP08153996.7A EP1983277B1 (en) 2007-04-19 2008-04-03 Refrigeration cycle apparatus
CN2008100952127A CN101307964B (en) 2007-04-19 2008-04-18 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110243A JP5104002B2 (en) 2007-04-19 2007-04-19 Refrigeration cycle apparatus and air conditioner equipped with the same

Publications (2)

Publication Number Publication Date
JP2008267676A JP2008267676A (en) 2008-11-06
JP5104002B2 true JP5104002B2 (en) 2012-12-19

Family

ID=40047415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110243A Expired - Fee Related JP5104002B2 (en) 2007-04-19 2007-04-19 Refrigeration cycle apparatus and air conditioner equipped with the same

Country Status (2)

Country Link
JP (1) JP5104002B2 (en)
CN (1) CN101307964B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057869A (en) * 2010-09-09 2012-03-22 Panasonic Corp Air conditioner
JP2012078015A (en) * 2010-10-01 2012-04-19 Panasonic Corp Refrigeration cycle device
CN103471203B (en) * 2013-08-29 2016-04-06 广东美的制冷设备有限公司 The defrosting control method of air-conditioner and air-conditioner system
CN104729006A (en) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 air conditioner defrosting control method and device
CN107152819A (en) * 2017-06-06 2017-09-12 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN107514735B (en) * 2017-07-13 2020-04-24 青岛海尔空调器有限总公司 Defrosting control method and control device of air conditioner
CN111442583A (en) * 2020-03-31 2020-07-24 科希曼电器有限公司 Parallel pipeline defrosting control method of air source heat pump system
CN117469871B (en) * 2023-12-26 2024-04-05 珠海格力电器股份有限公司 Control method and device of refrigeration system, refrigeration system and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459499Y1 (en) * 1967-09-16 1970-05-04
JPS4929490Y1 (en) * 1970-06-17 1974-08-10
JPS504284Y1 (en) * 1970-06-17 1975-02-04
JPH0620039Y2 (en) * 1985-09-27 1994-05-25 三菱電機株式会社 Air conditioner
JPS63251770A (en) * 1987-04-08 1988-10-19 株式会社日立製作所 Refrigeration cycle
JPH01208678A (en) * 1988-02-16 1989-08-22 Matsushita Seiko Co Ltd Heat pump type air conditioner
JPH0587426A (en) * 1991-09-30 1993-04-06 Fujitsu General Ltd Air-conditioner
JP3485679B2 (en) * 1995-06-27 2004-01-13 三洋電機株式会社 Air conditioner
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump
JP2001183037A (en) * 1999-12-28 2001-07-06 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
CN101307964A (en) 2008-11-19
CN101307964B (en) 2010-09-29
JP2008267676A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5104002B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP6576552B2 (en) Air conditioner
JP6021940B2 (en) Air conditioner
JP5791807B2 (en) Air conditioner
US10006647B2 (en) Air conditioning system with distributor for a plurality of indoor units
US10465968B2 (en) Air-conditioning apparatus having first and second defrosting pipes
JP5611353B2 (en) heat pump
JP6320567B2 (en) Air conditioner
WO2019073621A1 (en) Air-conditioning device
JP2006258343A (en) Air conditioning system
JP2009036503A (en) Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP4946948B2 (en) Heat pump air conditioner
US20110154847A1 (en) Air conditioner
JP2009145032A (en) Refrigeration cycle apparatus and air conditioner equipped with the same
WO2019053876A1 (en) Air conditioning device
JP2015117894A (en) Air conditioner outdoor unit
JP5963941B2 (en) Air conditioner
JP2000274859A (en) Refrigerator
JP2006317063A (en) Air conditioner
EP1983277B1 (en) Refrigeration cycle apparatus
JP2006023073A (en) Air conditioner
JP3984250B2 (en) Multi-room air conditioner
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP5071425B2 (en) Branch unit
JP2008180435A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5104002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees