JPH01208678A - Heat pump type air conditioner - Google Patents
Heat pump type air conditionerInfo
- Publication number
- JPH01208678A JPH01208678A JP3316988A JP3316988A JPH01208678A JP H01208678 A JPH01208678 A JP H01208678A JP 3316988 A JP3316988 A JP 3316988A JP 3316988 A JP3316988 A JP 3316988A JP H01208678 A JPH01208678 A JP H01208678A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- compressor
- heat exchanger
- defrosting
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 39
- 238000010257 thawing Methods 0.000 claims abstract description 35
- 238000005057 refrigeration Methods 0.000 claims description 8
- 239000002826 coolant Substances 0.000 abstract 3
- 229940084430 four-way Drugs 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 18
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はヒートポンプ式空気調和機の冷媒回路に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigerant circuit for a heat pump type air conditioner.
従来の技術
従来、ヒートポンプ式空気調和機の冷凍サイクルは、第
2図に示すような構成であった。すなわち、圧縮機1は
冷媒配管によって四方弁2に接続されるとともに前記四
方弁2と室内熱交換器3と、膨張弁4と、室外熱交換器
5が順次接続されて冷凍サイクルを構成している。また
、圧縮機1の吐出管6と、膨張弁4および室外熱交換器
6の間に設けた合流息子との間には電磁弁8を介してバ
イパス回路9を設けている。この構成により、暖房運転
中における除霜時は、冷媒が圧縮機1よシ四方弁2と室
内熱交換器3と膨張弁4と室外熱交換器6と西方弁2と
圧縮機1へ順次流れる暖房を目的とした主回路と、圧縮
機1より除霜時開となる電磁弁8を介して膨張弁4と室
外熱交換器6の間の合流部7にバイパスして流れ、前記
主回路に合流しても室外熱交換器5に着霜した箱を除霜
するホットガスバイパス除霜回路が同時に作用する回路
によって構成されていた。BACKGROUND OF THE INVENTION Conventionally, the refrigeration cycle of a heat pump type air conditioner has a configuration as shown in FIG. That is, the compressor 1 is connected to a four-way valve 2 by a refrigerant pipe, and the four-way valve 2, an indoor heat exchanger 3, an expansion valve 4, and an outdoor heat exchanger 5 are sequentially connected to form a refrigeration cycle. There is. Further, a bypass circuit 9 is provided between the discharge pipe 6 of the compressor 1 and a confluence son provided between the expansion valve 4 and the outdoor heat exchanger 6 via a solenoid valve 8. With this configuration, during defrosting during heating operation, the refrigerant flows sequentially from the compressor 1 to the four-way valve 2, the indoor heat exchanger 3, the expansion valve 4, the outdoor heat exchanger 6, the west valve 2, and the compressor 1. The air flows from the compressor 1 into the main circuit for heating, bypasses the solenoid valve 8 that opens during defrosting, flows into the confluence 7 between the expansion valve 4 and the outdoor heat exchanger 6, and flows into the main circuit. Even if they merge, a hot gas bypass defrosting circuit that defrosts the box that has formed frost on the outdoor heat exchanger 5 is constituted by a circuit that operates at the same time.
発明が解決しようとする課題
このような従来の構成では、暖房中の除霜運転時におい
て圧縮機1より室内熱交換器3.膨張弁4を経て合流部
7までの主回路の流路抵抗が、圧縮機1よシミ磁弁8を
経て合流部7に至るバイパス回路の流路抵抗に較べ、極
めて大きいので、主回路を流れる冷媒循環量がバイパス
回路9を流れる冷媒循環量に咬べて著しく小さくなシ、
暖房能力の低下や、室内熱交換器3に冷媒が滞溜し、圧
縮機1の吸入圧力が揃度に低下しすぎるという課題があ
った。Problems to be Solved by the Invention In such a conventional configuration, during the defrosting operation during heating, the indoor heat exchanger 3. The flow path resistance of the main circuit from the expansion valve 4 to the confluence section 7 is extremely large compared to the flow path resistance of the bypass circuit from the compressor 1 to the confluence section 7 via the stain magnetic valve 8. The refrigerant circulation amount is significantly smaller than the refrigerant circulation amount flowing through the bypass circuit 9,
There were problems in that the heating capacity decreased, refrigerant accumulated in the indoor heat exchanger 3, and the suction pressure of the compressor 1 decreased too uniformly.
本発明はこのような課題を解決するもので、除霜運転時
の著しい暖房能力の低下や圧縮機の吸入圧力の低下を防
止し、暖房能力の向上と圧縮機の吸入圧力の低下の緩和
を画ることを目的とするものである。The present invention solves these problems by preventing a significant decrease in heating capacity and compressor suction pressure during defrosting operation, improving heating capacity and alleviating the decrease in compressor suction pressure. The purpose is to draw.
課題を解決するだめの手段 この課題を解決するために本発明は、圧縮機。A means to solve problems In order to solve this problem, the present invention provides a compressor.
四方弁、室内熱交換器、膨張弁および室外熱交換器を順
次連絡した冷凍サイクルと、前記圧縮機と前記室外熱交
換器との間に除霜用電磁弁を備えた除霜用バイパス回路
と、前記室内熱交換器と室外熱交換器をバイパスし、吸
入管側に接続される暖房用電磁弁を備えた暖房用バイパ
ス回路より構成したものである。A refrigeration cycle in which a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are sequentially connected; and a defrosting bypass circuit including a defrosting solenoid valve between the compressor and the outdoor heat exchanger. , a heating bypass circuit bypassing the indoor heat exchanger and the outdoor heat exchanger and having a heating solenoid valve connected to the suction pipe side.
作 用
この構成により、除霜運転時は、冷媒が圧縮機より四方
弁、室内熱交換器、暖房用電磁弁を備えた暖房用バイパ
ス回路より圧縮機へ順次流れ、−方圧縮機より除霜用電
磁弁を備えた除霜用バイパス回路より室外熱交換器、四
方弁、圧縮機へと順次流れ、除霜時における冷媒を室内
熱交換器を通る冷媒循環量と、室外熱交換器で除霜する
冷媒循環量とが分岐され、かつ、はぼ等しい循環量にな
ることとなる。With this configuration, during defrosting operation, refrigerant flows sequentially from the compressor to the compressor through a heating bypass circuit equipped with a four-way valve, an indoor heat exchanger, and a heating solenoid valve, and defrosts from the --way compressor. The refrigerant flows sequentially from the defrosting bypass circuit equipped with a solenoid valve to the outdoor heat exchanger, four-way valve, and compressor. The amount of refrigerant circulated that causes frost is divided, and the amount of refrigerant circulated becomes approximately equal.
実施例
以下本発明による一実施例を第1図によシ説明する。圧
縮機11は冷媒配管によって四方弁12に接続されてい
る。四方弁12と室内熱交換器13と膨張弁14と室外
熱交換器15は冷媒配管により順次接続されてヒートポ
ンプ式冷凍サイクルを構成している。また、圧縮段11
の吐出管16からは膨張弁14と室外熱交換器15との
間の合流部17には除霜時に開となる除霜用電磁弁18
を介して除霜用バイパス回路19を設け、さらに室内熱
交換器13と膨張弁14の間に分岐部20を接続し、こ
の分岐部2oより圧縮機11の吸入管21の合流部25
に接続し、除霜時に開となる暖房用電磁弁22を介して
暖房用バイパス回路23を構成している。EXAMPLE Hereinafter, an example according to the present invention will be explained with reference to FIG. Compressor 11 is connected to four-way valve 12 via refrigerant piping. The four-way valve 12, the indoor heat exchanger 13, the expansion valve 14, and the outdoor heat exchanger 15 are sequentially connected by refrigerant piping to constitute a heat pump type refrigeration cycle. In addition, the compression stage 11
From the discharge pipe 16, a defrosting solenoid valve 18 which is opened during defrosting is connected to the confluence part 17 between the expansion valve 14 and the outdoor heat exchanger 15.
A defrosting bypass circuit 19 is provided via a defrosting bypass circuit 19, and a branch part 20 is connected between the indoor heat exchanger 13 and the expansion valve 14, and a confluence part 25 of the suction pipe 21 of the compressor 11 is connected from this branch part 2o.
A heating bypass circuit 23 is configured via a heating electromagnetic valve 22 that is connected to and opens during defrosting.
冷房運転時には冷媒は圧縮機11より四方弁12と室外
熱交換器15と膨張弁14と室内熱交換器13と四方弁
12と圧縮機11へ順次流れ、暖房運転時には冷媒は圧
縮機11より四方弁12と室内熱交換器13と膨張弁1
4と室外熱交換器15と四方弁12と圧縮機11へ順次
流れ、従来の冷凍サイクルと同様の冷房及び暖房の冷媒
循環となる。During cooling operation, the refrigerant flows sequentially from the compressor 11 to the four-way valve 12, the outdoor heat exchanger 15, the expansion valve 14, the indoor heat exchanger 13, the four-way valve 12, and the compressor 11, and during the heating operation, the refrigerant flows from the compressor 11 to the four-way valve 12, the indoor heat exchanger 13, the four-way valve 12, and the compressor 11. Valve 12, indoor heat exchanger 13, and expansion valve 1
4, the outdoor heat exchanger 15, the four-way valve 12, and the compressor 11, the refrigerant circulates for cooling and heating similar to a conventional refrigeration cycle.
上記構成において除霜運転時には、暖房用バイパス回路
23の暖房用電磁弁22は開となり冷媒は圧縮機11よ
り四方弁12.室内熱交換器13゜暖房用電磁弁22.
圧縮段11へ順次流れる暖房用回路と、他方の回路とし
ては冷媒が圧縮機11よシ除霜時に開となっている除霜
用電磁弁18より合流部17に流れ室外熱交換器15.
四方弁12、圧縮機11を順次流れる除霜用回路の2回
路が同時に作用する。すなわち暖房用電磁弁22と除霜
用電磁弁18は除霜運転時のみ開とし、他の運転モード
では閉とし、除霜用バイパス回路19と、暖房用バイパ
ス回路23の抵抗をほぼ等しくなるようにしているので
ある。ただし、暖房運転時の過負荷制御用として、暖房
用電磁弁22を開にして使用してもよい。また膨張弁1
4は温度式膨張弁でも電子式膨張弁のどちらでも使用し
てよいが、電子式膨張弁の場合は除霜運転時は全閉とす
るようにしてもよい。In the above configuration, during defrosting operation, the heating solenoid valve 22 of the heating bypass circuit 23 is opened, and the refrigerant is supplied from the compressor 11 to the four-way valve 12. Indoor heat exchanger 13° Heating solenoid valve 22.
In the heating circuit that sequentially flows to the compression stage 11, and in the other circuit, the refrigerant flows from the compressor 11 to the confluence section 17 from the defrosting solenoid valve 18, which is opened during defrosting, to the outdoor heat exchanger 15.
Two circuits, ie, a defrosting circuit that sequentially flows through the four-way valve 12 and the compressor 11, operate simultaneously. That is, the heating solenoid valve 22 and the defrosting solenoid valve 18 are opened only during defrosting operation, and are closed in other operation modes, so that the resistances of the defrosting bypass circuit 19 and the heating bypass circuit 23 are approximately equal. This is what we are doing. However, the heating solenoid valve 22 may be opened and used for overload control during heating operation. Also, expansion valve 1
4 may be either a temperature-type expansion valve or an electronic expansion valve, but in the case of an electronic expansion valve, it may be fully closed during defrosting operation.
発明の効果
前記実施例の説明よシ明らかなように、本発明によれば
、除霜運転時の回路を、膨張弁と室外熱交換器を通過し
ない暖房用電磁弁を備えた暖房用バイパス回路を形成す
るようにしだから、除霜用バイパス回路の流路抵抗と暖
房用バイパス回路の流路抵抗をほぼ等しくすることがで
き、暖房能力の低下を防止でき、また、室内熱交換器で
の冷媒の滞溜を無くすることができるので、圧縮機の吸
入圧力の低下も防止することができるという効果が得ら
れる。Effects of the Invention As is clear from the description of the above embodiments, according to the present invention, the circuit during defrosting operation is a heating bypass circuit equipped with a heating solenoid valve that does not pass through an expansion valve and an outdoor heat exchanger. Therefore, it is possible to make the flow path resistance of the defrosting bypass circuit and the flow path resistance of the heating bypass circuit almost equal, preventing a decrease in heating capacity, and also reducing the refrigerant flow in the indoor heat exchanger. Since the accumulation of water can be eliminated, it is possible to obtain the effect that a drop in the suction pressure of the compressor can also be prevented.
第1図は本発明の一実施例によるヒートポンプ式空気調
和機の冷凍サイクル図、第2図は従来のヒートポンプ式
空気調和機の冷凍サイクル図である。
11・・・・・・圧縮機、12・・・・・・四方弁、1
3・・・・・・室内熱交換器、14・・・・・・膨張弁
、15・・・・・・室外熱交換器、18・・・・・・除
霜用電磁弁、19・・・・・・除霜用バイパス回路、2
1・・・・・・吸入管、22・・・・・・暖房用電磁弁
、23・・・・・・暖房用バイパス回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名塚FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigeration cycle diagram of a conventional heat pump type air conditioner. 11...Compressor, 12...Four-way valve, 1
3... Indoor heat exchanger, 14... Expansion valve, 15... Outdoor heat exchanger, 18... Solenoid valve for defrosting, 19... ...defrosting bypass circuit, 2
1... Suction pipe, 22... Solenoid valve for heating, 23... Bypass circuit for heating. Name of agent: Patent attorney Toshio Nakao and one other person
Claims (1)
換器を順次連絡した冷凍サイクルと、前記圧縮機と前記
室外熱交換器との間に除霜用電磁弁を備えた除霜用バイ
パス回路と、前記室内熱交換器と室外熱交換器をバイパ
スし、吸入管側に接続される暖房用電磁弁を備えた暖房
用バイパス回路とを設けてなるヒートポンプ式空気調和
機。A defrosting cycle comprising a refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected in sequence, and a defrosting solenoid valve between the compressor and the outdoor heat exchanger. A heat pump air conditioner comprising a bypass circuit and a heating bypass circuit that bypasses the indoor heat exchanger and the outdoor heat exchanger and includes a heating solenoid valve connected to the suction pipe side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316988A JPH01208678A (en) | 1988-02-16 | 1988-02-16 | Heat pump type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316988A JPH01208678A (en) | 1988-02-16 | 1988-02-16 | Heat pump type air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01208678A true JPH01208678A (en) | 1989-08-22 |
Family
ID=12379034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3316988A Pending JPH01208678A (en) | 1988-02-16 | 1988-02-16 | Heat pump type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01208678A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008267676A (en) * | 2007-04-19 | 2008-11-06 | Matsushita Electric Ind Co Ltd | Refrigerating cycle device and air conditioner including it |
-
1988
- 1988-02-16 JP JP3316988A patent/JPH01208678A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008267676A (en) * | 2007-04-19 | 2008-11-06 | Matsushita Electric Ind Co Ltd | Refrigerating cycle device and air conditioner including it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR850008403A (en) | Heat Pump Air Conditioning Unit | |
JPH01208678A (en) | Heat pump type air conditioner | |
JPH0452469A (en) | Air conditioner | |
JP2001201217A (en) | Air conditioner | |
JP3480217B2 (en) | Air conditioner | |
JPH0587426A (en) | Air-conditioner | |
JP2000055482A (en) | Air conditioner | |
JPH08320172A (en) | Air conditioner | |
JPH03286979A (en) | Defrosting apparatus of air conditioner | |
JPH05340625A (en) | Air conditioner | |
JP2682729B2 (en) | Refrigerant heating type air conditioner and starting method thereof | |
JP2000274892A (en) | Air conditioner | |
JPS5971963A (en) | Heat pump type refrigeration cycle | |
JPS61250463A (en) | Heat pump type air conditioner | |
JPH06337172A (en) | Heat pump type air-conditioning machine | |
JPS60233471A (en) | Heat pump type air conditioner | |
JPH1082565A (en) | Multi-chamber type air conditioner | |
JP2000274780A (en) | Air conditioner | |
JP2000213822A (en) | Air conditioner | |
JPH03230060A (en) | Heat pump type air conditioner | |
JPS62266365A (en) | Air conditioner | |
JPH0518645A (en) | Heat pump type air conditioning device | |
JPH0120709B2 (en) | ||
JPS61159057A (en) | Heat pump type air conditioner | |
JPS58124174A (en) | Refrigeration cycle of air conditioner |