JPH0518645A - Heat pump type air conditioning device - Google Patents

Heat pump type air conditioning device

Info

Publication number
JPH0518645A
JPH0518645A JP16973891A JP16973891A JPH0518645A JP H0518645 A JPH0518645 A JP H0518645A JP 16973891 A JP16973891 A JP 16973891A JP 16973891 A JP16973891 A JP 16973891A JP H0518645 A JPH0518645 A JP H0518645A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
valve
indoor
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16973891A
Other languages
Japanese (ja)
Inventor
Masayoshi Enomoto
雅好 榎本
Seiji Ito
誠司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP16973891A priority Critical patent/JPH0518645A/en
Publication of JPH0518645A publication Critical patent/JPH0518645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve defrosting capacity by a method wherein production of a fluctuation in a cycle is reduced and the high power of a refrigerant compressor is generated. CONSTITUTION:In a refrigeration cycle 1 wherein a refrigerant compressor 3, an outdoor heat-exchanger 4, and an indoor heat-exchanger 5 are interconnected in an annular manner through a four-way valve 2, a first pressure reducing device 9 and a first bypass passage 10 bypassing the first pressure reducing device 9 are located between the outdoor and indoor heat-exchangers 4 and 5, and a solenoid valve 11 opened during defrost operation is located in the first bypass passage 10. A second pressure reducing device 12 and a second bypass passage 13 bypassing the second pressure reducing device 12 are located between the four-way valve 2 and the indoor heat-exchanger 5, and a solenoid valve 14 closed during defrosting operation is located in the second bypass passage 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ式空気調和
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner.

【0002】[0002]

【従来の技術】従来より、ヒートポンプ式空気調和装置
では、暖房時に室外熱交換器に付着した霜を融解するた
めの除霜運転が行われている。この除霜運転は、暖房サ
イクルから、一旦、四方弁を切り替えて冷房サイクルと
し、冷媒圧縮機より吐出された高温のガス冷媒を室外熱
交換器で放熱させることで行われる。
2. Description of the Related Art Conventionally, in a heat pump type air conditioner, a defrosting operation for melting frost adhering to an outdoor heat exchanger during heating is performed. This defrosting operation is performed by temporarily switching the four-way valve from the heating cycle to a cooling cycle, and radiating the high temperature gas refrigerant discharged from the refrigerant compressor with the outdoor heat exchanger.

【0003】従って、除霜時には、冷房時と同様に室内
熱交換器が冷媒蒸発器として機能するため、室内熱交換
器へ送風しても室内暖房を行うことができず、室内熱交
換器への送風は停止されている。
Therefore, during defrosting, the indoor heat exchanger functions as a refrigerant evaporator as in the case of cooling, so that even if air is blown to the indoor heat exchanger, indoor heating cannot be performed, and the indoor heat exchanger is not heated. Ventilation has been stopped.

【0004】そこで、特開昭61−262560号公報
では、暖房運転時に、冷媒圧縮機より吐出されたガス冷
媒の一部を室外熱交換器の出口側へ導くとともに、膨張
弁の開度を大きくして低圧側を上げることにより、室内
暖房を中断することなく室外熱交換器の除霜を行う技術
が開示されている。
Therefore, in Japanese Patent Laid-Open No. 61-262560, during heating operation, part of the gas refrigerant discharged from the refrigerant compressor is guided to the outlet side of the outdoor heat exchanger and the opening of the expansion valve is increased. Then, the technique of defrosting the outdoor heat exchanger without interrupting the indoor heating is disclosed by raising the low pressure side.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記の従来
技術では、暖房を行う室内熱交換器が高圧側であるた
め、冷媒が冷却されて高圧が低下することから、冷媒圧
縮機の動力(=放熱量)が低下する。また、室内熱交換
器および室外熱交換器では冷媒が2相となっている。こ
の2相では、熱交換器の放熱性能が良く、一見放熱量も
増加しそうであるが、実際は、熱交換器の放熱性能が良
いと高低圧が低下して、冷媒圧縮機の動力(=放熱量)
が小さくなる。さらには、除霜に用いられる熱量が、除
霜初期と除霜完了直前では大きく異なるため、サイクル
が変動し、冷媒圧縮機の動力変動も大きくなる。
However, in the above-mentioned prior art, since the indoor heat exchanger for heating is on the high pressure side, the refrigerant is cooled and the high pressure is reduced. Therefore, the power of the refrigerant compressor (= The amount of heat radiation) decreases. Further, the refrigerant has two phases in the indoor heat exchanger and the outdoor heat exchanger. In these two phases, the heat dissipation performance of the heat exchanger is good, and the heat dissipation amount seems to increase at first glance, but in reality, if the heat dissipation performance of the heat exchanger is good, the high and low pressures decrease, and the power of the refrigerant compressor (= discharge Calorie)
Becomes smaller. Furthermore, since the amount of heat used for defrosting differs greatly between the initial stage of defrosting and immediately before the completion of defrosting, the cycle fluctuates and the power fluctuation of the refrigerant compressor also increases.

【0006】本発明は、上記事情に基づいて成されたも
ので、その目的は、サイクルの変動が少なく、大きな動
力を得ることで、除霜時の能力向上を図ることのできる
ヒートポンプ式空気調和装置を提供することにある。
The present invention has been made based on the above circumstances, and an object thereof is a heat pump type air conditioner capable of improving the capacity at the time of defrosting by obtaining a large power with little cycle fluctuation. To provide a device.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、吸入した冷媒を圧縮して吐出する冷媒圧
縮機と、この冷媒圧縮機より吐出された冷媒の循環方向
を切り替える四方弁と、冷媒と室外空気との熱交換を行
う室外熱交換器と、冷媒と室内空気との熱交換を行う室
内熱交換器と、前記室外熱交換器と前記室内熱交換器と
の間に配されて、通過する冷媒を減圧する第1減圧装置
と、この第1減圧装置をバイパスして前記室外熱交換器
と前記室内熱交換器とを結ぶ第1バイパス路と、このバ
イパス路を開閉する第1開閉弁と、前記室外熱交換器と
前記四方弁との間または前記室内熱交換器と前記四方弁
との間に配されて、通過する冷媒を減圧する第2減圧装
置と、この第2減圧装置をバイパスして、前記室外熱交
換器と前記四方弁または前記室内熱交換器と前記四方弁
とを結ぶ第2バイパス路と、この第2バイパス路を開閉
する第2開閉弁と、冷房運転時および暖房運転時には、
前記第1開閉弁を閉じて前記第2開閉弁を開き、室内暖
房とともに前記室外熱交換器の除霜を行う際には、前記
第1開閉弁を開いて前記第2開閉弁を閉じるように、前
記第1開閉弁および前記第2開閉弁の開閉制御を行う制
御手段とから成ることを技術的手段とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a refrigerant compressor for compressing and discharging a sucked refrigerant, and a four-way method for switching the circulation direction of the refrigerant discharged from the refrigerant compressor. A valve, an outdoor heat exchanger for exchanging heat between the refrigerant and outdoor air, an indoor heat exchanger for exchanging heat between the refrigerant and indoor air, and between the outdoor heat exchanger and the indoor heat exchanger. A first decompression device that is arranged to decompress the passing refrigerant, a first bypass path that bypasses the first decompression device and connects the outdoor heat exchanger and the indoor heat exchanger, and opens and closes the bypass path. A first on-off valve, and a second decompression device arranged between the outdoor heat exchanger and the four-way valve or between the indoor heat exchanger and the four-way valve to decompress the passing refrigerant, Bypassing the second pressure reducing device, the outdoor heat exchanger and the four-way valve Others a second bypass path connecting said four-way valve and the indoor heat exchanger, and a second on-off valve for opening and closing the second bypass passage, the and the heating operation during the cooling operation,
When the first opening / closing valve is closed and the second opening / closing valve is opened to defrost the outdoor heat exchanger together with indoor heating, the first opening / closing valve is opened and the second opening / closing valve is closed. The technical means comprises a control means for controlling the opening / closing of the first opening / closing valve and the second opening / closing valve.

【0008】[0008]

【作用】上記構成より成る本発明のヒートポンプ式空気
調和装置は、室内暖房とともに室外熱換気の除霜を行う
際に、冷媒圧縮機より吐出された冷媒は、第2開閉弁が
閉じられることにより、第2減圧装置で減圧されて、冷
房サイクルであれば室外熱交換器へ導かれ、暖房サイク
ルであれば室内熱交換器へ導かれる。そして、第1開閉
弁が開かれることにより、室外熱交換器と室内熱交換器
との間を流れる冷媒は、第1バイパス路を通過すること
になる。
In the heat pump type air conditioner of the present invention having the above structure, the refrigerant discharged from the refrigerant compressor is closed by closing the second opening / closing valve when defrosting the outdoor heat ventilation together with the indoor heating. After being decompressed by the second decompression device, it is led to the outdoor heat exchanger in the cooling cycle and to the indoor heat exchanger in the heating cycle. Then, by opening the first on-off valve, the refrigerant flowing between the outdoor heat exchanger and the indoor heat exchanger passes through the first bypass passage.

【0009】従って、この除霜時には、室外熱交換器と
室内熱交換器に第2減圧装置で減圧された低圧の加熱ガ
ス冷媒が循環することになり、冷房サイクルであれば、
室外熱交換器で霜を解かした後、室内熱交換器で残りの
熱量を放熱して室内を暖房し、暖房サイクルであれば、
室内熱交換器で放熱した後、残りの熱量で室外熱交換器
の霜を解かすことになる。
Therefore, at the time of defrosting, the low-pressure heating gas refrigerant decompressed by the second decompressor circulates in the outdoor heat exchanger and the indoor heat exchanger, and if the cooling cycle is performed,
After defrosting with the outdoor heat exchanger, the indoor heat exchanger radiates the remaining amount of heat to heat the room, and if it is a heating cycle,
After radiating heat in the indoor heat exchanger, the remaining heat quantity is used to defrost the outdoor heat exchanger.

【0010】[0010]

【実施例】次に、本発明のヒートポンプ式空気調和装置
の実施例を図1および図2を基に説明する。図1はヒー
トポンプ式空気調和装置の冷凍サイクル図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the heat pump type air conditioner of the present invention will be described with reference to FIGS. FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner.

【0011】本実施例のヒートポンプ式空気調和装置
は、冷凍サイクル1を流れる冷媒の循環方向を切り替え
て冷暖房運転を行うものである。冷凍サイクル1は、冷
媒の循環方向を切り替える四方弁2を備え、この四方弁
2を介して、冷媒圧縮機3と室外熱交換器4および室内
熱交換器5とが環状に接続されている。
The heat pump type air conditioner of this embodiment switches the circulation direction of the refrigerant flowing through the refrigeration cycle 1 to perform cooling / heating operation. The refrigerating cycle 1 includes a four-way valve 2 that switches the circulation direction of the refrigerant, and the refrigerant compressor 3, the outdoor heat exchanger 4, and the indoor heat exchanger 5 are annularly connected via the four-way valve 2.

【0012】冷媒圧縮機3は、その上流に設けられたア
キュムレータ6より吸引したガス冷媒を圧縮して吐出す
る。室外熱交換器4は、送風機7の送風を受けて、冷媒
と室外空気とを熱交換する。室内熱交換器5は、送風機
8の送風を受けて、冷媒と室内空気とを熱交換する。
The refrigerant compressor 3 compresses and discharges the gas refrigerant sucked by the accumulator 6 provided upstream thereof. The outdoor heat exchanger 4 exchanges heat between the refrigerant and the outdoor air in response to the blow of the blower 7. The indoor heat exchanger 5 receives the air blown by the blower 8 and exchanges heat between the refrigerant and the indoor air.

【0013】室外熱交換器4と室内熱交換器5との間に
は、通過する冷媒を減圧する第1減圧装置9が配設され
るとともに、この第1減圧装置9をバイパスして室外熱
交換器4と室内熱交換器5とを結ぶ第1バイパス路10
が設けられている。そして、第1バイパス路10には、
第1バイパス路10を開閉する電磁弁11(第1開閉
弁)が配されている。
Between the outdoor heat exchanger 4 and the indoor heat exchanger 5, a first pressure reducing device 9 for reducing the pressure of the refrigerant passing therethrough is arranged, and the first pressure reducing device 9 is bypassed to provide outdoor heat. First bypass passage 10 connecting the exchanger 4 and the indoor heat exchanger 5
Is provided. Then, in the first bypass passage 10,
An electromagnetic valve 11 (first opening / closing valve) that opens and closes the first bypass passage 10 is arranged.

【0014】四方弁2と室内熱交換器5との間には、通
過する冷媒を減圧する第2減圧装置12が配設されると
ともに、この第2減圧装置12をバイパスして四方弁2
と室内熱交換器5とを結ぶ第2バイパス路13が設けら
れている。そして、第2バイパス路13には、第2バイ
パス路13を開閉する電磁弁14(第2開閉弁)が配さ
れている。
Between the four-way valve 2 and the indoor heat exchanger 5, a second pressure reducing device 12 for reducing the pressure of the passing refrigerant is provided, and the second pressure reducing device 12 is bypassed and the four-way valve 2 is provided.
A second bypass path 13 that connects the indoor heat exchanger 5 to the indoor heat exchanger 5 is provided. The second bypass passage 13 is provided with an electromagnetic valve 14 (second opening / closing valve) that opens and closes the second bypass passage 13.

【0015】電磁弁11および電磁弁14は、それぞれ
後述する制御装置15(制御手段)を介して通電制御さ
れ、通電によって開弁し、通電が遮断されることで閉弁
する。
The solenoid valve 11 and the solenoid valve 14 are energized and controlled by a controller 15 (control means), which will be described later, and open when energized, and close when energized.

【0016】この冷凍サイクル1は、制御装置15によ
る四方弁2の切り替え、電磁弁11および電磁弁14の
通電制御により、冷房運転を行う冷房サイクルと暖房運
転を行う暖房サイクルとを形成し、暖房サイクル時に
は、室内暖房とともに室外熱交換器4に付着した霜を解
かすための除霜運転を行うことができる。
The refrigeration cycle 1 forms a cooling cycle for performing a cooling operation and a heating cycle for performing a heating operation by switching the four-way valve 2 by the control device 15 and controlling energization of the solenoid valves 11 and 14. During the cycle, it is possible to perform the defrosting operation for defrosting the frost adhering to the outdoor heat exchanger 4 together with the indoor heating.

【0017】このヒートポンプ式空気調和装置は、冷房
運転を行う冷房モード、暖房運転を行う暖房モード、お
よび除霜運転を行う除霜モードを選択することができ
る。そして、選択された各モードに応じて、制御装置1
5による四方弁2の切り替え、電磁弁11および電磁弁
14の通電制御が行われる。
This heat pump type air conditioner can select a cooling mode for performing a cooling operation, a heating mode for performing a heating operation, and a defrosting mode for performing a defrosting operation. Then, according to each selected mode, the control device 1
Switching of the four-way valve 2 by 5 and energization control of the solenoid valve 11 and the solenoid valve 14 are performed.

【0018】制御装置15は、冷房モードが選択される
と、冷媒圧縮機3より吐出された冷媒が室外熱交換器4
側へ流れるように四方弁2を切り替えるとともに、電磁
弁14を通電して第2バイパス路13を開く。このと
き、電磁弁11は通電されずに閉弁状態であり、従っ
て、第1バイパス路10は閉じている。この冷房モード
時の冷媒の流れを図1に破線矢印で示す。
When the cooling mode is selected, the control device 15 causes the refrigerant discharged from the refrigerant compressor 3 to transfer the refrigerant to the outdoor heat exchanger 4.
The four-way valve 2 is switched so as to flow to the side, and the solenoid valve 14 is energized to open the second bypass passage 13. At this time, the solenoid valve 11 is not energized and is in a closed state, so that the first bypass passage 10 is closed. The flow of the refrigerant in this cooling mode is shown by the broken line arrow in FIG.

【0019】暖房モードが選択されると、冷媒圧縮機3
より吐出された冷媒が室内熱交換器5側へ流れるように
四方弁2を切り替えるとともに、電磁弁14を通電して
第2バイパス路13を開く。このとき、電磁弁11は通
電されずに閉弁状態であり、従って、第1バイパス路1
0は閉じている。この暖房モード時の冷媒の流れを図1
に一点鎖線の矢印で示す。
When the heating mode is selected, the refrigerant compressor 3
The four-way valve 2 is switched so that the discharged refrigerant flows toward the indoor heat exchanger 5, and the solenoid valve 14 is energized to open the second bypass passage 13. At this time, the solenoid valve 11 is not energized and is in a closed state, and therefore the first bypass passage 1
0 is closed. Figure 1 shows the flow of refrigerant in this heating mode.
Is indicated by a dashed-dotted arrow.

【0020】除霜モードが選択されると、四方弁2を、
暖房モードの時と同じで、冷媒圧縮機3より吐出された
冷媒が室内熱交換器5側へ流れるように切り替えるとと
もに、電磁弁11を通電して第1バイパス路10を開
く。このとき、電磁弁14は通電されずに閉弁状態であ
り、従って、第2バイパス路13は閉じている。この除
霜モード時の冷媒の流れを図1に実線矢印で示す。
When the defrosting mode is selected, the four-way valve 2 is
As in the heating mode, the refrigerant discharged from the refrigerant compressor 3 is switched to flow toward the indoor heat exchanger 5, and the solenoid valve 11 is energized to open the first bypass passage 10. At this time, the solenoid valve 14 is not energized and is in a closed state, so the second bypass passage 13 is closed. The flow of the refrigerant in the defrosting mode is shown by a solid arrow in FIG.

【0021】次に、本実施例の作動を説明する。 a)冷房モードが選択された場合。 冷媒圧縮機3より吐出された冷媒が、四方弁2、室外熱
交換器4、第1減圧装置9、室内熱交換器5、第2バイ
パス路13、四方弁2、アキュムレータ6を順次流れ、
再び冷媒圧縮機3に吸引されて上記サイクルを繰り返
す。これにより、室内熱交換器5で冷やされた空気が送
風機8により室内に送風されて、室内の冷房が行われ
る。
Next, the operation of this embodiment will be described. a) When the cooling mode is selected. The refrigerant discharged from the refrigerant compressor 3 sequentially flows through the four-way valve 2, the outdoor heat exchanger 4, the first pressure reducing device 9, the indoor heat exchanger 5, the second bypass passage 13, the four-way valve 2, and the accumulator 6.
It is sucked into the refrigerant compressor 3 again and the above cycle is repeated. Thus, the air cooled by the indoor heat exchanger 5 is blown into the room by the blower 8 to cool the room.

【0022】b)暖房モードが選択された場合。 冷媒圧縮機3より吐出された冷媒が、四方弁2、第2バ
イパス路13、室内熱交換器5、第1減圧装置9、室外
熱交換器4、四方弁2、アキュムレータ6を順次流れ、
再び冷媒圧縮機3に吸引されて上記サイクルを繰り返
す。これにより、室内熱交換器5で加熱された空気が送
風機8により室内に送風されて、室内の暖房が行われ
る。
B) When the heating mode is selected. The refrigerant discharged from the refrigerant compressor 3 sequentially flows through the four-way valve 2, the second bypass passage 13, the indoor heat exchanger 5, the first pressure reducing device 9, the outdoor heat exchanger 4, the four-way valve 2, and the accumulator 6,
It is sucked into the refrigerant compressor 3 again and the above cycle is repeated. Thereby, the air heated by the indoor heat exchanger 5 is blown into the room by the blower 8 to heat the room.

【0023】c)除霜モードが選択された場合。 冷媒圧縮機3で圧縮された高温、高圧のガス冷媒(図2
に示すモリエル線図の状態点a)は、四方弁2を通過し
て第2減圧装置12で減圧され(図2の状態点b)、高
温、低圧のガス冷媒となって室内熱交換器5に流入す
る。そして、室内熱交換器5での冷媒と室内空気との熱
交換により、室内暖房が行われる。
C) When the defrosting mode is selected. A high-temperature, high-pressure gas refrigerant compressed by the refrigerant compressor 3 (see FIG. 2).
The state point a) in the Mollier diagram shown in FIG. 2 passes through the four-way valve 2 and is decompressed by the second pressure reducing device 12 (state point b in FIG. 2) to become a high-temperature, low-pressure gas refrigerant, and the indoor heat exchanger 5 Flow into. Then, the indoor heating is performed by the heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 5.

【0024】室内熱交換器5を流出した冷媒は、第1バ
イパス路10を通過して室外熱交換器4に流入するが、
室内空気と熱交換された冷媒(図2の状態点c)が、ま
だ十分な熱量を保持しているため、室外熱交換器4で残
りの熱量を放出する(図2の状態点d)ことにより、室
外熱交換器4の除霜が行われる。室外熱交換器4を流出
した冷媒は、アキュムレータ6を通過して、再び冷媒圧
縮機3に吸引され、上記サイクルを繰り返す。
The refrigerant flowing out of the indoor heat exchanger 5 passes through the first bypass passage 10 and flows into the outdoor heat exchanger 4,
Since the refrigerant that has exchanged heat with the indoor air (state point c in FIG. 2) still retains a sufficient amount of heat, the outdoor heat exchanger 4 releases the remaining amount of heat (state point d in FIG. 2). Thus, the outdoor heat exchanger 4 is defrosted. The refrigerant flowing out of the outdoor heat exchanger 4 passes through the accumulator 6 and is sucked into the refrigerant compressor 3 again, and the above cycle is repeated.

【0025】この除霜運転時には、室内熱交換器5と室
外熱交換器4とが共に低圧側にあるため、高圧を高くす
ることで、冷媒圧縮機3の大きな動力を得ることができ
る。また、室内熱交換器5および室外熱交換器4では、
冷媒の状態がガスとなっているため、気液二相状態の場
合と比較して、室内熱交換器5および室外熱交換器4で
の放熱性能が低くなる。このため、高低圧が上昇して冷
媒圧縮機3の動力が大きくなる。さらには、除霜に使用
される熱量が変動しても、暖房に使用される熱量の方が
除霜に使用される熱量より多いため、大きなサイクル変
動を招くことはない。
During the defrosting operation, since the indoor heat exchanger 5 and the outdoor heat exchanger 4 are both on the low pressure side, it is possible to obtain a large power of the refrigerant compressor 3 by increasing the high pressure. Further, in the indoor heat exchanger 5 and the outdoor heat exchanger 4,
Since the state of the refrigerant is gas, the heat dissipation performance in the indoor heat exchanger 5 and the outdoor heat exchanger 4 is lower than that in the gas-liquid two-phase state. Therefore, the high pressure and the low pressure increase, and the power of the refrigerant compressor 3 increases. Furthermore, even if the amount of heat used for defrosting changes, the amount of heat used for heating is larger than the amount of heat used for defrosting, so there is no large cycle fluctuation.

【0026】次に、本発明の第2実施例を説明する。図
3は本実施例の冷凍サイクル図である。第1実施例で
は、四方弁2の設定を暖房サイクルとして除霜運転を行
うものであるが、本実施例では、冷房サイクルで除霜運
転を行うように構成されている。
Next, a second embodiment of the present invention will be described. FIG. 3 is a refrigeration cycle diagram of this embodiment. In the first embodiment, the defrosting operation is performed with the setting of the four-way valve 2 as the heating cycle, but in the present embodiment, the defrosting operation is performed in the cooling cycle.

【0027】従って、冷凍サイクル1は、室外熱交換器
4と四方弁2との間に第2減圧装置12を備えるととも
に、この第2減圧装置12をバイパスして室外熱交換器
4と四方弁2とを結ぶ第2バイパス路13を設け、この
第2バイパス路13に電磁弁14が介在されている。
Therefore, the refrigerating cycle 1 is provided with the second pressure reducing device 12 between the outdoor heat exchanger 4 and the four-way valve 2, and the second heat reducing device 12 is bypassed to the outdoor heat exchanger 4 and the four-way valve. A second bypass path 13 that connects the second bypass path 13 and the second bypass path 13 is provided, and an electromagnetic valve 14 is interposed in the second bypass path 13.

【0028】除霜モードが選択されると、冷媒圧縮機3
より吐出された冷媒が室外熱交換器4側へ流れる(冷房
サイクル)ように四方弁2が切り替えられるとともに、
電磁弁14が通電されて第2バイパス路13が開く。こ
のとき、電磁弁11は通電されずに閉弁状態であり、従
って、第1バイパス路10は閉じている。この除霜モー
ド時の冷媒の流れを図3に実線矢印で示す。また、冷房
モード時および暖房モード時の冷媒の流れをそれぞれ破
線矢印および一点鎖線の矢印で示す。
When the defrosting mode is selected, the refrigerant compressor 3
The four-way valve 2 is switched so that the discharged refrigerant flows toward the outdoor heat exchanger 4 side (cooling cycle),
The solenoid valve 14 is energized to open the second bypass passage 13. At this time, the solenoid valve 11 is not energized and is in a closed state, so that the first bypass passage 10 is closed. The flow of the refrigerant in the defrosting mode is shown by a solid arrow in FIG. In addition, the flow of the refrigerant in the cooling mode and the heating mode is shown by a dashed arrow and a dashed-dotted arrow, respectively.

【0029】本実施例の場合には、第2減圧装置12で
減圧された高温、低圧の冷媒がまず室外熱交換器4に流
入し、冷媒と室外空気との熱交換に伴って放出される熱
量により室外熱交換器4の除霜が行われる。その後、第
1バイパス路10を通過して室内熱交換器5に流入した
冷媒が、室内空気との熱交換によって残りの熱量を放出
することで室内暖房が行われる。
In the case of the present embodiment, the high-temperature and low-pressure refrigerant decompressed by the second decompression device 12 first flows into the outdoor heat exchanger 4 and is discharged along with the heat exchange between the refrigerant and the outdoor air. The outdoor heat exchanger 4 is defrosted by the amount of heat. After that, the refrigerant that has passed through the first bypass passage 10 and flowed into the indoor heat exchanger 5 releases the remaining heat amount by heat exchange with the indoor air, thereby performing indoor heating.

【0030】この第2実施例においても、室内熱交換器
5と室外熱交換器4とが共に低圧側にあり、第1実施例
と同様に、大きな冷媒圧縮機3の動力を得ることができ
るとともに、サイクル変動を抑えることができる。
Also in this second embodiment, both the indoor heat exchanger 5 and the outdoor heat exchanger 4 are on the low pressure side, and as in the first embodiment, a large power of the refrigerant compressor 3 can be obtained. At the same time, cycle fluctuation can be suppressed.

【0031】[0031]

【発明の効果】本発明のヒートポンプ式空気調和装置
は、室内暖房とともに室外熱交換器の除霜を行う際に、
冷媒圧縮機から吐出された冷媒が、第2減圧装置で減圧
されて室外熱交換器あるいは室内熱交換器に流入する。
そして、この除霜運転時には、室外熱交換器と室内熱交
換器との間に設けられた第1バイパス路が開かれるた
め、室外熱交換器と室内熱交換器とが共に低圧側にある
ことになる。
The heat pump type air conditioner of the present invention, when performing defrosting of the outdoor heat exchanger as well as indoor heating,
The refrigerant discharged from the refrigerant compressor is decompressed by the second pressure reducing device and flows into the outdoor heat exchanger or the indoor heat exchanger.
During the defrosting operation, the first bypass passage provided between the outdoor heat exchanger and the indoor heat exchanger is opened, so that both the outdoor heat exchanger and the indoor heat exchanger are on the low pressure side. become.

【0032】従って、冷媒圧縮機の大きな動力(=放熱
量)を得ることができ、除霜能力を向上させることがで
きる。また、除霜と暖房とが共に低圧側で行われること
から、除霜に使用される熱量が変動しても、サイクルの
変動はあまり大きくならない。
Therefore, a large power (= heat radiation amount) of the refrigerant compressor can be obtained, and the defrosting ability can be improved. Further, since both defrosting and heating are performed on the low pressure side, even if the amount of heat used for defrosting changes, the cycle does not change significantly.

【図面の簡単な説明】[Brief description of drawings]

【図1】ヒートポンプ式空気調和装置の冷凍サイクル図
である。
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner.

【図2】本実施例の作動を説明するモリエル線図であ
る。
FIG. 2 is a Mollier diagram for explaining the operation of this embodiment.

【図3】本発明の第2実施例を示す冷凍サイクル図であ
る。
FIG. 3 is a refrigeration cycle diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 四方弁 3 冷媒圧縮機 4 室外熱交換器 5 室内熱交換器 9 第1減圧装置 10 第1バイパス路 11 電磁弁(第1開閉弁) 12 第2減圧装置 13 第2バイパス路 14 電磁弁(第2開閉弁) 15 制御装置(制御手段) 2 Four-way valve 3 Refrigerant compressor 4 Outdoor heat exchanger 5 Indoor heat exchanger 9 First pressure reducing device 10 First bypass passage 11 Electromagnetic valve (first opening / closing valve) 12 Second pressure reducing device 13 Second bypass passage 14 Solenoid valve ( Second opening / closing valve) 15 Control device (control means)

Claims (1)

【特許請求の範囲】 【請求項1】a)吸入した冷媒を圧縮して吐出する冷媒
圧縮機と、 b)この冷媒圧縮機より吐出された冷媒の循環方向を切
り替える四方弁と、 c)冷媒と室外空気との熱交換を行う室外熱交換器と、 d)冷媒と室内空気との熱交換を行う室内熱交換器と、 e)前記室外熱交換器と前記室内熱交換器との間に配さ
れて、通過する冷媒を減圧する第1減圧装置と、 f)この第1減圧装置をバイパスして前記室外熱交換器
と前記室内熱交換器とを結ぶ第1バイパス路と、 g)このバイパス路を開閉する第1開閉弁と、 h)前記室外熱交換器と前記四方弁との間または前記室
内熱交換器と前記四方弁との間に配されて、通過する冷
媒を減圧する第2減圧装置と、 i)この第2減圧装置をバイパスして、前記室外熱交換
器と前記四方弁または前記室内熱交換器と前記四方弁と
を結ぶ第2バイパス路と、 j)この第2バイパス路を開閉する第2開閉弁と、 k)冷房運転時および暖房運転時には、前記第1開閉弁
を閉じて前記第2開閉弁を開き、室内暖房とともに前記
室外熱交換器の除霜を行う際には、前記第1開閉弁を開
いて前記第2開閉弁を閉じるように、前記第1開閉弁お
よび前記第2開閉弁の開閉制御を行う制御手段とから成
るヒートポンプ式空気調和装置。
Claims: 1. A refrigerant compressor for compressing and discharging sucked refrigerant, b) a four-way valve for switching the circulation direction of the refrigerant discharged from the refrigerant compressor, and c) refrigerant. And an outdoor heat exchanger for exchanging heat with the outdoor air, d) an indoor heat exchanger for exchanging heat between the refrigerant and the indoor air, and e) between the outdoor heat exchanger and the indoor heat exchanger. A first decompression device that is arranged to decompress the passing refrigerant; f) a first bypass path that bypasses the first decompression device and connects the outdoor heat exchanger and the indoor heat exchanger; g) this A first opening / closing valve for opening / closing a bypass passage; and h) arranged between the outdoor heat exchanger and the four-way valve or between the indoor heat exchanger and the four-way valve to reduce the pressure of the refrigerant passing therethrough. 2) a decompression device, i) bypassing this second decompression device and connecting with the outdoor heat exchanger. A four-way valve or a second bypass passage connecting the indoor heat exchanger and the four-way valve, j) a second opening / closing valve for opening and closing the second bypass passage, and k) the first bypass valve during cooling operation and heating operation. When the on-off valve is closed and the second on-off valve is opened to defrost the outdoor heat exchanger together with indoor heating, the first on-off valve is opened and the second on-off valve is closed. A heat pump type air conditioner comprising one opening / closing valve and a control means for controlling opening / closing of the second opening / closing valve.
JP16973891A 1991-07-10 1991-07-10 Heat pump type air conditioning device Pending JPH0518645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16973891A JPH0518645A (en) 1991-07-10 1991-07-10 Heat pump type air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16973891A JPH0518645A (en) 1991-07-10 1991-07-10 Heat pump type air conditioning device

Publications (1)

Publication Number Publication Date
JPH0518645A true JPH0518645A (en) 1993-01-26

Family

ID=15891933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16973891A Pending JPH0518645A (en) 1991-07-10 1991-07-10 Heat pump type air conditioning device

Country Status (1)

Country Link
JP (1) JPH0518645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008278A1 (en) * 2011-07-14 2013-01-17 三菱電機株式会社 Air-conditioning device
JP2015535071A (en) * 2012-12-21 2015-12-07 フレクト・ウッズ・アクチボラグFlakt Woods Ab Method and apparatus for defrosting an evaporator for an air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008278A1 (en) * 2011-07-14 2013-01-17 三菱電機株式会社 Air-conditioning device
JP2015535071A (en) * 2012-12-21 2015-12-07 フレクト・ウッズ・アクチボラグFlakt Woods Ab Method and apparatus for defrosting an evaporator for an air conditioner

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
JP2528601B2 (en) Air conditioner and air conditioning method
US20060150667A1 (en) Heat exchanger and air conditioner using the same
US20080028773A1 (en) Air conditioner and controlling method thereof
US20120266616A1 (en) Multi-type air conditioner and method of controlling the same
JP4538892B2 (en) Air conditioner using CO2 refrigerant
JP2001033117A (en) Refrigerating device
JP2002107000A (en) Air conditioner
JP2000274879A (en) Air conditioner
JPH1123036A (en) Air conditioner
JP3324420B2 (en) Refrigeration equipment
JP4661451B2 (en) Air conditioner
JPH10205933A (en) Air conditioner
JPH0518645A (en) Heat pump type air conditioning device
JP5313467B2 (en) Air conditioning system and control method thereof
JPH1082569A (en) Air conditioner
JP2001201217A (en) Air conditioner
JP3480217B2 (en) Air conditioner
JP2007051840A (en) Air conditioner
JPH07190572A (en) Defrosting mechanism for heat pump type air conditioner
JP2653749B2 (en) Heat pump package
JPH10148413A (en) Air-conditioning equipment
JPH0926219A (en) Cooling/heating apparatus for many rooms
JPH03170758A (en) Air conditioner
JP2007292330A (en) Air conditioner