JPH0587426A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH0587426A
JPH0587426A JP3251007A JP25100791A JPH0587426A JP H0587426 A JPH0587426 A JP H0587426A JP 3251007 A JP3251007 A JP 3251007A JP 25100791 A JP25100791 A JP 25100791A JP H0587426 A JPH0587426 A JP H0587426A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
bypass circuit
receiver tank
suction side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3251007A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kitakakiuchi
俊之 北垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP3251007A priority Critical patent/JPH0587426A/en
Publication of JPH0587426A publication Critical patent/JPH0587426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To increase the refrigerant circulation rate of flow during defrosting by providing a bypass circuit through which high temperature, high pressure refrigerant gas is bypassed to an indoor side heat exchanger, and a bypass circuit leading from a receiver tank to the suction side of a compressor via a capillary. CONSTITUTION:A first bypass circuit 8 branches off from the inlet of a four-way valve 2 on the suction side of a compressor 1 and is connected between an outdoor side heat exchanger 6 and an expansion valve 4 via a first solenoid valve 7, so that hot gas from the compressor 1 can be directly led to the outdoor side heat exchanger 6 to stimulate defrosting of the heat exchanger 6 when defrosting of the heat exchanger 6 is carried out during heating operation. In this case, a second bypass circuit 11 leading from the receiver tank 5 to the suction side of the compressor via a second solenoid valve 9 and a capillary 10 is formed to send liquid refrigerant stored in a room side heat exchanger 3 and the receiver tank 5 to the suction side of the compressor 1 so that the refrigerant circulation rate of flow is increased to stimulate defrosting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機に関し、詳
しくは暖房運転時の空気調和機の除霜に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to defrosting of an air conditioner during heating operation.

【0002】[0002]

【従来の技術】従来、空気調和機の冷媒回路には、暖房
運転時に暖房成績係数(COP)を改善するために、図
2に示すように、室内側熱交換器3と膨張弁4との間に
レシーバータンク5を設け、室内側熱交換器3により室
内空気に熱交換して冷却された液状冷媒を蓄え、膨張弁
4を通過する冷媒の量を適正にして、圧縮機1による冷
媒の循環を早めることにより、暖房能力の向上を図って
いる。暖房運転中に室外側熱交換器6に着霜すると熱交
換効率が低下するため、室外側熱交換器6の除霜を行う
が、この時室内側熱交換器3の温度低下を避けるため
に、圧縮機1の吐出側から冷媒の流れを分岐し、一部を
室内側熱交換器3に、他を第1のバイパス回路8により
室外側熱交換器6の入口に第1の電磁弁7を介して圧縮
機1から圧縮された高温ガスを流し、短時間で除霜を行
い、室内側熱交換器3の温度の低下を防止している。こ
の時、圧縮機1からの高温高圧の冷媒ガスは、第1のバ
イパス回路8と室内側熱交換器3に分かれて流れるが、
室外側熱交換器6の入口の合流点では第1のバイパス回
路8を流れる冷媒ガスの圧力が高く、室内側熱交換器3
に向け逆流する冷媒ガスの流れを生じ、室内側熱交換器
3からの冷媒ガスの流れを抑え、室内側熱交換器3やレ
シーバータンク5に液状の冷媒が溜まり、除霜時間が長
引くと室内側熱交換器3の温度を低下させ、室内の暖房
状態を低下させる問題を生じている。
2. Description of the Related Art Conventionally, in a refrigerant circuit of an air conditioner, as shown in FIG. 2, an indoor heat exchanger 3 and an expansion valve 4 are provided in order to improve a heating coefficient of performance (COP) during heating operation. A receiver tank 5 is provided between them to store the liquid refrigerant cooled by heat exchange with the indoor air by the indoor heat exchanger 3 to make the amount of the refrigerant passing through the expansion valve 4 appropriate so that the compressor 1 The heating capacity is improved by speeding up circulation. When the outdoor heat exchanger 6 is frosted during the heating operation, the heat exchange efficiency is reduced. Therefore, the outdoor heat exchanger 6 is defrosted. At this time, in order to avoid the temperature drop of the indoor heat exchanger 3. , The flow of the refrigerant is branched from the discharge side of the compressor 1, part of which is used for the indoor heat exchanger 3 and the other is used for the inlet of the outdoor heat exchanger 6 by the first bypass circuit 8 and the first solenoid valve 7 Compressed high-temperature gas is caused to flow from the compressor 1 through the to defrost in a short time to prevent the temperature of the indoor heat exchanger 3 from decreasing. At this time, the high-temperature and high-pressure refrigerant gas from the compressor 1 is divided into the first bypass circuit 8 and the indoor heat exchanger 3 and flows,
At the confluence of the inlets of the outdoor heat exchanger 6, the pressure of the refrigerant gas flowing through the first bypass circuit 8 is high, and the indoor heat exchanger 3
When the defrosting time is prolonged, the refrigerant gas flows backward to the indoor heat exchanger 3 to suppress the refrigerant gas flow from the indoor heat exchanger 3, and the liquid refrigerant accumulates in the indoor heat exchanger 3 and the receiver tank 5. This causes a problem of lowering the temperature of the inner heat exchanger 3 and lowering the heating state of the room.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来の
問題点に鑑みなされたもので、除霜時に室内側熱交換器
やレシーバータンクに過度の液状冷媒が溜まるのを防止
する空気調和機を提供しようとすることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and is an air conditioner for preventing excessive liquid refrigerant from accumulating in the indoor heat exchanger or the receiver tank during defrosting. Is intended to provide.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、レシーバータンクから第2の電磁弁とキャピラリを
介して圧縮機の吸込側に連なる第2のバイパス回路を形
成し、除霜時に第2の電磁弁を開き、レシーバータンク
の冷媒をキャピラリを介して圧縮機の吸込側に送出する
ようにした。
In order to achieve the above object, a second bypass circuit is formed from a receiver tank to a suction side of a compressor via a second solenoid valve and a capillary to form a second bypass circuit. The second solenoid valve was opened so that the refrigerant in the receiver tank was sent to the suction side of the compressor via the capillary.

【0005】[0005]

【作用】上記の構成によれば、レシーバータンクから圧
縮機の吸込側に連なる第2のバイパス回路を形成し、除
霜時にレシーバータンクに滞留する液状冷媒が増加して
室内側熱交換器に流れ、室内側熱交換器温度の低下を生
じると、第2の電磁弁を開き、滞留した液状冷媒をキャ
ピラリを通じて圧縮機の吸込側に戻して、冷媒の循環量
を増やし、レシーバータンクに滞留する液状冷媒を減ら
すことにより、除霜時間が長引いても室内温度の低下を
防ぐことができる。
According to the above construction, the second bypass circuit connecting from the receiver tank to the suction side of the compressor is formed, and the liquid refrigerant staying in the receiver tank during defrosting increases and flows to the indoor heat exchanger. , When the temperature of the indoor heat exchanger decreases, the second solenoid valve is opened, the accumulated liquid refrigerant is returned to the suction side of the compressor through the capillary, the circulation amount of the refrigerant is increased, and the liquid accumulated in the receiver tank is retained. By reducing the amount of refrigerant, it is possible to prevent a decrease in indoor temperature even if the defrosting time is prolonged.

【0006】[0006]

【実施例】本発明の実施例を添付図面を参照して詳細に
説明する。図1は本発明の詳細を示す冷媒回路図で、圧
縮機1により高温高圧に圧縮された冷媒ガスは四方弁2
により「暖房」に切り換えられて室内側熱交換器3に送
られ、室内側熱交換器3により室内空気と熱交換を行い
冷却され、室内側熱交換器3と膨張弁4との間に分岐し
て設けられたレシーバータンク5に余剰の液化冷媒を蓄
え、膨張弁4を介して減圧され気化して室外側熱交換器
6に入り、室外空気と熱交換して四方弁2により圧縮機
1の吸込側に戻る経路を循環している。さらに、圧縮機
1の吐出側の四方弁2の入口部分から分岐し、第1の電
磁弁7を介して室外側熱交換器6と膨張弁4の間に接続
する第1のバイパス回路8が設けられ、暖房運転時に室
外側熱交換器6に着霜し除霜を行う時に、第1の電磁弁
7を開き圧縮機1からのホットガスを直接室外側熱交換
器6に流すことにより、室外側熱交換器6の除霜を早め
るようにしている。本発明では、さらにレシーバータン
ク5から第2の電磁弁9とキャピラリ10を通じて、圧縮
機1の吸込側に連なる第2のバイパス回路11を形成して
いる。第1のバイパス回路8により第1の電磁弁7を開
き除霜を行うと、圧縮機1からのホットガスは室内側熱
交換器3と第1のバイパス回路8に分流されるが、流体
抵抗の少ない第1のバイパス回路8を主に流れ、室内側
熱交換器3側には僅かに流れる。室外側熱交換器6の入
口、第1のバイパス回路8の出口付近では、第1のバイ
パス回路8からのホットガスの圧力が高くなり、膨張弁
4を通過する室内側熱交換器3からの冷媒ガスの流入を
抑えて逆流し、レシーバータンク5および室内側熱交換
器3に液化した冷媒ガスが滞留し、室内側熱交換器3の
温度を下げ、室内の暖房状態を低下させている。この
時、レシーバータンク5の第2の電磁弁9を開き、レシ
ーバータンク5および室内側熱交換器3内の液化した冷
媒ガスをキャピラリ10を通して、圧縮機1の吸込側に送
ることによりレシーバータンク5および室内側熱交換器
3に滞留する冷媒ガスを減少させ、冷媒の循環量を増や
して室内側熱交換器3の温度の低下を防ぎ、同時に圧縮
機1の吸込側の冷媒ガス圧力を上げることにより、圧縮
機1の負荷を減少させ圧縮機1の効率を向上することが
できる。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a refrigerant circuit diagram showing details of the present invention, in which a refrigerant gas compressed to a high temperature and high pressure by a compressor 1 has a four-way valve 2
Is switched to "heating" and sent to the indoor heat exchanger 3, where it is cooled by exchanging heat with the indoor air by the indoor heat exchanger 3 and branched between the indoor heat exchanger 3 and the expansion valve 4. The excess liquefied refrigerant is stored in the receiver tank 5 provided by the above, and is decompressed through the expansion valve 4 to be vaporized and enter the outdoor heat exchanger 6 to exchange heat with the outdoor air and the compressor 1 by the four-way valve 2. It circulates in the route returning to the suction side of. Further, a first bypass circuit 8 that branches from the inlet portion of the discharge-side four-way valve 2 of the compressor 1 and is connected between the outdoor heat exchanger 6 and the expansion valve 4 via the first electromagnetic valve 7 is provided. When the outdoor heat exchanger 6 is provided and defrosted by performing frosting during the heating operation, the first electromagnetic valve 7 is opened to allow hot gas from the compressor 1 to directly flow to the outdoor heat exchanger 6, The defrosting of the outdoor heat exchanger 6 is accelerated. In the present invention, further, the second bypass circuit 11 connected to the suction side of the compressor 1 is formed from the receiver tank 5 through the second electromagnetic valve 9 and the capillary 10. When defrosting is performed by opening the first solenoid valve 7 by the first bypass circuit 8, the hot gas from the compressor 1 is shunted to the indoor heat exchanger 3 and the first bypass circuit 8, but the fluid resistance increases. Flow mainly through the first bypass circuit 8 having a small amount of heat, and slightly flow toward the indoor heat exchanger 3 side. In the vicinity of the inlet of the outdoor heat exchanger 6 and the outlet of the first bypass circuit 8, the pressure of the hot gas from the first bypass circuit 8 becomes high, and the hot gas from the indoor heat exchanger 3 passing through the expansion valve 4 is discharged. Refrigerant gas is prevented from flowing in and flows backward, and the liquefied refrigerant gas is retained in the receiver tank 5 and the indoor heat exchanger 3 to lower the temperature of the indoor heat exchanger 3 and lower the indoor heating state. At this time, the second solenoid valve 9 of the receiver tank 5 is opened, and the liquefied refrigerant gas in the receiver tank 5 and the indoor heat exchanger 3 is sent to the suction side of the compressor 1 through the capillary 10 to receive the receiver tank 5. And reducing the refrigerant gas staying in the indoor heat exchanger 3 to increase the circulation amount of the refrigerant to prevent the temperature of the indoor heat exchanger 3 from decreasing and at the same time increase the refrigerant gas pressure on the suction side of the compressor 1. Thereby, the load of the compressor 1 can be reduced and the efficiency of the compressor 1 can be improved.

【0007】[0007]

【発明の効果】以上のように本発明においては、レシー
バータンクから圧縮機の吸込側に連なる第2のバイパス
回路を設け、除霜時に第2のバイパス回路を通じて室内
側熱交換器およびレシーバータンクに滞留する液状冷媒
を圧縮機の吸込側に送り、冷媒の循環量を増やすことに
より、第1のバイパス回路による除霜を早めるととも
に、室内側熱交換器側にも冷媒ホットガスの流れを確保
し、室内の暖房環境を維持することができる。同時に圧
縮機の吸込側の冷媒ガス圧力を上げることにより、圧縮
機の負荷を減少させ圧縮機の効率を向上することができ
る。
As described above, according to the present invention, the second bypass circuit is provided so as to be connected from the receiver tank to the suction side of the compressor, and the indoor heat exchanger and the receiver tank are provided through the second bypass circuit during defrosting. By sending the staying liquid refrigerant to the suction side of the compressor and increasing the amount of refrigerant circulation, defrosting by the first bypass circuit is accelerated and the flow of refrigerant hot gas is also secured on the indoor heat exchanger side. , The indoor heating environment can be maintained. At the same time, by increasing the refrigerant gas pressure on the suction side of the compressor, it is possible to reduce the load on the compressor and improve the efficiency of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の詳細を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing details of the present invention.

【図2】従来の詳細を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing details of a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室内側熱交換器 4 膨張弁 5 レシーバータンク 6 室外側熱交換器 7 第1の電磁弁 8 第1のバイパス回路 9 第2の電磁弁9 10 キャピラリ 11 第2のバイパス回路 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Expansion valve 5 Receiver tank 6 Outdoor heat exchanger 7 First solenoid valve 8 First bypass circuit 9 Second solenoid valve 9 10 Capillary 11 Second bypass circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室内側熱交換器、膨張
弁、室外側熱交換器を順次接続し、室内側熱交換器と膨
張弁との間にレシーバータンクを設け、圧縮機の吐出側
の四方弁入口から第1の電磁弁を介して高温高圧の冷媒
ガスを室外側熱交換器にバイパスする第1のバイパス回
路を形成してなる空気調和機において、上記レシーバー
タンクから第2の電磁弁とキャピラリを介して圧縮機の
吸込側に連なる第2のバイパス回路を形成し、除霜時に
第2の電磁弁を開き、レシーバータンクの冷媒をキャピ
ラリを介して圧縮機の吸込側に送出してなることを特徴
とする空気調和機。
1. A compressor, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are sequentially connected, and a receiver tank is provided between the indoor heat exchanger and the expansion valve. An air conditioner comprising a first bypass circuit for bypassing a high-temperature high-pressure refrigerant gas from an outlet-side four-way valve inlet via a first electromagnetic valve to an outdoor heat exchanger, wherein the receiver tank is connected to a second side of the receiver tank. A second bypass circuit that connects to the suction side of the compressor via the solenoid valve and the capillary of the above is formed, and the second solenoid valve is opened during defrosting, and the refrigerant in the receiver tank is passed through the capillary to the suction side of the compressor. An air conditioner characterized by being sent out.
JP3251007A 1991-09-30 1991-09-30 Air-conditioner Pending JPH0587426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3251007A JPH0587426A (en) 1991-09-30 1991-09-30 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3251007A JPH0587426A (en) 1991-09-30 1991-09-30 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH0587426A true JPH0587426A (en) 1993-04-06

Family

ID=17216256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3251007A Pending JPH0587426A (en) 1991-09-30 1991-09-30 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH0587426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267676A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device and air conditioner including it
US7814761B2 (en) 2005-12-05 2010-10-19 Sharp Kabushiki Kaisha Air conditioner
CN105698424A (en) * 2016-04-18 2016-06-22 迪邦仕冷却技术(苏州)有限公司 Ultralow-temperature refrigeration type single-cooling split air conditioner and ultralow-temperature refrigeration method thereof
CN106671733A (en) * 2017-02-15 2017-05-17 唐齐新 Air-conditioning system used in electric vehicle
KR102405815B1 (en) * 2022-02-07 2022-06-09 주식회사 엘케이에스 Refrigeration system provided with hot gas defrosting structure using heat storage of phase change material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7814761B2 (en) 2005-12-05 2010-10-19 Sharp Kabushiki Kaisha Air conditioner
JP2008267676A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device and air conditioner including it
CN105698424A (en) * 2016-04-18 2016-06-22 迪邦仕冷却技术(苏州)有限公司 Ultralow-temperature refrigeration type single-cooling split air conditioner and ultralow-temperature refrigeration method thereof
CN105698424B (en) * 2016-04-18 2018-03-13 迪邦仕冷却技术(苏州)有限公司 A kind of super low temperature refrigeration method
CN106671733A (en) * 2017-02-15 2017-05-17 唐齐新 Air-conditioning system used in electric vehicle
KR102405815B1 (en) * 2022-02-07 2022-06-09 주식회사 엘케이에스 Refrigeration system provided with hot gas defrosting structure using heat storage of phase change material

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
WO2014020651A1 (en) Air-conditioning device
JP4441965B2 (en) Air conditioner
EP3217121A1 (en) Outdoor unit for air conditioner and method for controlling air conditioner
JP3984258B2 (en) Air conditioner
JPH0587426A (en) Air-conditioner
CN208620653U (en) A kind of air-conditioning based on economizer is adjusted and controlled and air-conditioning system
JP4031560B2 (en) Air conditioner
CN217763680U (en) Outdoor heat exchange assembly, outdoor unit and air conditioning system
KR100528292B1 (en) Heat-pump type air conditioner
JP3138154B2 (en) Air conditioner
CN212362478U (en) Refrigeration system
CN112762538A (en) Unit refrigerant cooling system, unit and air conditioning system
CN112013559A (en) Refrigeration system and refrigeration system control method
CN111637656A (en) Air conditioner and control method
CN109341160A (en) The idle call circulatory system and air-conditioning
JPS63286676A (en) Air conditioner
JPS5852460Y2 (en) Refrigeration equipment
KR100541891B1 (en) Heat pump air-conditioner having indoor heat exchanger of multi type
CN109959180B (en) Air conditioning system and defrosting method thereof
JPH08320172A (en) Air conditioner
JP3361144B2 (en) Multi-room air conditioner with mixed cooling and heating
JP2001033126A (en) Air conditioner
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
CN115751466A (en) Air conditioning system