JPS6011785B2 - Heat pump type multi-room air conditioning system - Google Patents

Heat pump type multi-room air conditioning system

Info

Publication number
JPS6011785B2
JPS6011785B2 JP5157078A JP5157078A JPS6011785B2 JP S6011785 B2 JPS6011785 B2 JP S6011785B2 JP 5157078 A JP5157078 A JP 5157078A JP 5157078 A JP5157078 A JP 5157078A JP S6011785 B2 JPS6011785 B2 JP S6011785B2
Authority
JP
Japan
Prior art keywords
pipe
liquid
valve
refrigerant
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5157078A
Other languages
Japanese (ja)
Other versions
JPS54142851A (en
Inventor
真 小畑
譲治 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5157078A priority Critical patent/JPS6011785B2/en
Publication of JPS54142851A publication Critical patent/JPS54142851A/en
Publication of JPS6011785B2 publication Critical patent/JPS6011785B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多室の冷暖房に使用するヒートポンプ式冷暖房
装置に関し、使用する部屋数に左右されることなく、安
定した冷暖房能力を発揮できるようにするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type air-conditioning device used for air-conditioning and heating multiple rooms, and is capable of exhibiting stable heating and cooling performance regardless of the number of rooms used.

一般にこの種従来例の多室冷暖房装置は多室使用時の能
力に必要な冷媒量に設定している。しかし、使用しない
室が生じると、その運転休止中の室内ユニット側の管略
に冷煤が徐々に溜り込み、運転中の室内ユニット側の管
路に冷煤の不足が起り運転不能になるケースが起る。そ
こで、この問題を解決するため、休止中の室内ユニット
側の管路に溜り込む冷蝶を、運転中の室内ユニット側の
管路へ送り込んでいる。しかし、このために必要以上の
冷媒が運転中の室内ユニット側の管路に流れることにな
り好ましくないとともに次のような種々の欠点も残され
ていた。
Generally, in this type of conventional multi-room air conditioning/heating system, the amount of refrigerant is set to the amount necessary for the capacity when multiple rooms are used. However, if there is a room that is not used, cold soot gradually accumulates in the pipes of the indoor unit that is not in operation, and there may be a shortage of cold soot in the pipes of the indoor unit that is in operation, making it impossible to operate. happens. Therefore, in order to solve this problem, the cold butterflies that accumulate in the pipes of the indoor units that are inactive are sent to the pipes of the indoor units that are in operation. However, as a result, more refrigerant than necessary flows into the conduit on the indoor unit side during operation, which is undesirable and also leaves behind various drawbacks as described below.

すなわち、第2図において1は室外ユニット、2,3は
室内ユニットで、この両者は各々一対のガス管4,5、
液管6,7により接続されている。
That is, in FIG. 2, 1 is an outdoor unit, 2 and 3 are indoor units, and both are connected to a pair of gas pipes 4 and 5, respectively.
They are connected by liquid pipes 6 and 7.

そして、二室の暖房運転時に室外ユニット1の圧縮機8
より吐出された袷煤ガスは四方弁9よりガス管10を通
り、分岐管11より複数路に分岐される。そして、ガス
側可逆流通電磁弁(または逆止弁内蔵電磁弁)(以下ガ
ス電磁弁という)12,13を通り、ガス管4,5より
室内ユニット2,3へ導かれる。そして、各室内側熱交
換器13,14にて左損熱凝縮され室が暖房される。そ
して冷嬢液は冷房時に使用される室内側膨張弁15,1
6を側路し、これに並設した逆止弁17,18を通り液
管6,7より再び室守ユニット1へ戻る。すなわち、冷
煤液は液側可逆流通電磁弁(または逆止弁内蔵電磁弁)
(以下液電磁弁という)19,20を通り分岐管2で合
流し、そして液管22、受液器23を通り、暖房用膨張
弁24にて減圧膨張しながら、室外側熱交換器25にて
吸熱蒸発する。そして、袷煤は四方弁9を経てアキュム
レータ26より再び圧縮機8へ吸引されるのである。2
7および28は暖房過負荷運転時における高圧制御弁と
管路、29は冷房時に暖房用膨張弁24を袷蝶が側路す
るべく設けた逆止弁である。
Then, during the heating operation of the two rooms, the compressor 8 of the outdoor unit 1
The soot gas discharged from the four-way valve 9 passes through a gas pipe 10 and is branched into a plurality of paths through a branch pipe 11. The gas then passes through gas-side reversible flow solenoid valves (or solenoid valves with a built-in check valve) (hereinafter referred to as gas solenoid valves) 12 and 13, and is led to the indoor units 2 and 3 from gas pipes 4 and 5. Then, the left heat is condensed in the indoor heat exchangers 13 and 14 to heat the room. The cooling liquid is an indoor expansion valve 15, 1 used during cooling.
6, passes through check valves 17 and 18 arranged in parallel thereto, and returns to the room guard unit 1 via liquid pipes 6 and 7. In other words, for cold soot liquid, use a reversible flow solenoid valve (or a solenoid valve with a built-in check valve) on the liquid side.
(hereinafter referred to as liquid electromagnetic valve) 19 and 20, join at branch pipe 2, pass through liquid pipe 22, liquid receiver 23, and expand under reduced pressure at heating expansion valve 24, and then enter outdoor heat exchanger 25. It evaporates endothermically. The soot is then sucked back into the compressor 8 from the accumulator 26 via the four-way valve 9. 2
Reference numerals 7 and 28 indicate a high-pressure control valve and a conduit during heating overload operation, and reference numeral 29 indicates a check valve provided to allow butterflies to bypass the heating expansion valve 24 during cooling.

続いて、一室暖房運転するにはガス電磁弁13、液電磁
弁20を閉じると、室内ユニット3例の管路が閉じられ
、室内ユニット2のみが運転される。
Subsequently, when the gas solenoid valve 13 and the liquid solenoid valve 20 are closed to perform one-room heating operation, the pipes of the three indoor units are closed, and only the indoor unit 2 is operated.

しかし、この場合に休止中の室内ユニット3の配管内に
は冷煤が残溜し、またガス電磁弁13、液電磁弁20か
らの漏れにより配管内へ袷煤が侵入する。このため、室
内ユニット2の管路を循環する冷媒が不足し運転に支障
をきたすことになる。しかしながら、逆止弁30、キヤ
ピラリチューブ31からなる直列回路32を、液管7と
暖房用膨張弁24の暖房時に低圧となる側に接続してい
る。したがって、休止中の室内ユニット3は直列管路3
2を介して室外ユニット1の吸込側に接続できて低圧に
保持できるから、上述した残溜および侵入する冷煤を室
内ユニット2側の管路に送られ、一室暖房運転の支障は
避けられる。しかし、室内ユニット2側の管路には必要
以上の冷煤が循環し、好ましくないのである。そして、
前記と同じく逆止弁33、キャピラリチューブ34から
なる直例管路35は室内ユニット2に接続したもので、
室内ユニット2が休止した時に、前記と同じように作用
する。また、冷媒の流量制御には暖房用膨張弁24、室
内側膨張弁15,16を使用しているから、これら膨張
弁の製作時の設定バラッキ、経年変化、目詰りによって
その作動に安定性がなかった。
However, in this case, cold soot remains in the piping of the indoor unit 3 that is inactive, and leakage from the gas solenoid valve 13 and the liquid solenoid valve 20 causes soot to enter the piping. For this reason, there is a shortage of refrigerant circulating through the pipes of the indoor unit 2, which causes problems in operation. However, a series circuit 32 consisting of a check valve 30 and a capillary tube 31 is connected to the liquid pipe 7 and the heating expansion valve 24 on the side that becomes low pressure during heating. Therefore, the indoor unit 3 that is inactive is connected to the series pipe line 3.
2 can be connected to the suction side of the outdoor unit 1 and can be maintained at a low pressure, so the above-mentioned residual accumulation and intruding cold soot can be sent to the pipe on the indoor unit 2 side, avoiding trouble in single-room heating operation. . However, more cold soot than necessary circulates in the pipes on the indoor unit 2 side, which is not desirable. and,
As before, a direct pipe line 35 consisting of a check valve 33 and a capillary tube 34 is connected to the indoor unit 2.
When the indoor unit 2 is stopped, it operates in the same manner as described above. In addition, since the heating expansion valve 24 and the indoor expansion valves 15 and 16 are used to control the flow rate of the refrigerant, their operation may become unstable due to variations in the settings of these expansion valves during manufacture, aging, or clogging. There wasn't.

その結果、多室冷暖房時に各室間の室内ユニット能力に
不均衡を生じ易く、これは多室冷暖房装置においては大
きな問題であった。さらに室外ユニット】は圧縮機8、
四方弁9、室外熱交換器25、アキュムレータ26等の
通常機器以外に、室内ユニット2,3の数によって変化
するガス電磁弁12,13、液電磁弁19,20、直列
回路32,35等が必要になるので、室外ユニットの共
通使用のできない不便なものであつた。
As a result, when multiple rooms are air-conditioned, an imbalance tends to occur in the indoor unit capacities of each room, which is a major problem in multi-room air-conditioning systems. In addition, the outdoor unit] is a compressor 8,
In addition to normal equipment such as the four-way valve 9, outdoor heat exchanger 25, and accumulator 26, there are gas solenoid valves 12, 13, liquid solenoid valves 19, 20, series circuits 32, 35, etc. that vary depending on the number of indoor units 2, 3. This was inconvenient because the outdoor unit could not be used commonly.

さらにまた「内外の熱交換器13,14,25に複数の
冷煤流路を設ける際に、ディストリビュータを設けても
、冷媒の分配に不均衡を生じ易く、熱交換器全体を充分
に活用できない問題点も有していた。
Furthermore, ``Even if a distributor is provided when providing multiple cold soot flow paths in the internal and external heat exchangers 13, 14, and 25, it is easy to cause an imbalance in the distribution of the refrigerant, making it impossible to fully utilize the entire heat exchanger.'' It also had some problems.

第3図は従来の他実施例を示すもので、この構造におい
ても種々の問題点を有する。
FIG. 3 shows another conventional embodiment, and this structure also has various problems.

すなわち、401ま室外ユニット、41,42は室内ユ
ニットで、この両者は各々一対の冷嬢管にて接続されて
いる。そして、一室暖房運転時に圧縮機43から吐出さ
れた冷煤は配管44、四方弁45、配管46の順に通り
分岐管47に至る。そして、電磁弁48が閉じられ室内
ユニット42は休止中であるから、開成している電磁弁
49を通り室内熱交換器501こ入り放熱凝縮し、室が
暖房される。一方、凝縮した高圧の冷嬢液は逆止弁51
を通ってさらに電磁弁52、分岐管53から室外ユニッ
ト40‘こ入り、キャピラリチューブ54により減圧さ
れて室外熱交換器55により外気から吸熱して蒸発する
。そして、この室外熱交換器55より流出した冷煤ガス
は配管56、四方電磁弁45「配管57を通り圧縮機4
3に吸入される。このように一室暖房運転時には電磁弁
48,58が閉じて休止している室内ユニット42側の
管路に冷煤が残溜、または徐々に侵入することになり、
運転中の室内ユニット41側を循環する冷煤量に不足が
起り、運転に支障をきたすことになる。
That is, 401 is an outdoor unit, 41 and 42 are indoor units, and both are connected by a pair of cooling pipes. The cold soot discharged from the compressor 43 during the room heating operation passes through the pipe 44, the four-way valve 45, and the pipe 46 in this order, and reaches the branch pipe 47. Since the solenoid valve 48 is closed and the indoor unit 42 is inactive, the heat is radiated and condensed through the open solenoid valve 49 and into the indoor heat exchanger 501, heating the room. On the other hand, the condensed high-pressure refrigerating liquid is removed by the check valve 51.
The air then enters the outdoor unit 40' through a solenoid valve 52 and a branch pipe 53, is depressurized by a capillary tube 54, and is evaporated by absorbing heat from the outside air through an outdoor heat exchanger 55. The cold soot gas flowing out from this outdoor heat exchanger 55 passes through a pipe 56, a four-way solenoid valve 45, and a pipe 57 to the compressor 4.
3 is inhaled. In this way, during single-room heating operation, the solenoid valves 48 and 58 are closed and cold soot remains or gradually enters the pipe line on the side of the indoor unit 42, which is inactive.
The amount of cold soot circulating on the indoor unit 41 side during operation becomes insufficient, causing problems in operation.

しかし、開成している電磁弁59により休止中の室内ユ
ニット42の室内熱交換器60が圧縮機43の吸入側に
接続されている。したがって、室内ユニット42側の電
磁弁48から電磁弁58までの冷媒管路は圧縮機43の
吸入側に蓮通し低圧になるので、袷媒が圧縮機43に流
入し、休止中の室内ユニット42側の冷煤管路への冷煤
溜りはなくなる。よって、運転中の室内ユニット41は
冷線不足による支障はなくなる。しかし、二室暖房運転
時より冷煤量が多くなるので、逆に安定した暖房の運転
ができなくなる。すなわち、室内負荷(室内ユニットの
運転台数)が変化した場合、各室内負荷に相当した様通
冷煤充填量にて運転が不可能になり、良好なバランス状
態における運転ができない。なお、61は前記の電磁弁
59と同じ働きする電磁弁で、室内ユニット41側のも
のである。本発明は上託した従来例の欠点を解決するも
ので、以下にその一実施例を第1図にしたがい説明する
However, the indoor heat exchanger 60 of the indoor unit 42 that is inactive is connected to the suction side of the compressor 43 due to the solenoid valve 59 that is open. Therefore, the refrigerant pipe line from the solenoid valve 48 to the solenoid valve 58 on the indoor unit 42 side passes through the suction side of the compressor 43 and becomes low pressure, so the refrigerant flows into the compressor 43 and the indoor unit 42 is in rest. Cold soot will no longer accumulate in the cold soot pipe on the side. Therefore, the indoor unit 41 during operation will not be affected by the lack of cold wires. However, since the amount of cold soot is greater than during two-room heating operation, stable heating operation cannot be achieved. That is, when the indoor load (the number of indoor units in operation) changes, it becomes impossible to operate with a uniform cold soot filling amount corresponding to each indoor load, and it is impossible to operate in a well-balanced state. Note that 61 is a solenoid valve that functions in the same way as the solenoid valve 59 described above, and is located on the indoor unit 41 side. The present invention is intended to solve the drawbacks of the conventional examples mentioned above, and one embodiment thereof will be described below with reference to FIG.

本発明の多室冷暖房装置は室外ユニット62、複数の室
内ユニット63,64そして、前記の両者を接続する冷
媒配管分岐器65とからなる。室外ユニット62は圧縮
機66、室外熱交換タ器67ト四方弁68、アキュムレ
ータ69、暖房用キャピラリチューブ70およびこれに
並設した逆止弁71を図のように接続して構成する。そ
して、室外熱交換器67には配管による圧力損失の減少
と熱交換器の有効利用をはかるように設けたZ複数の冷
煤流路(図示せず)にそれぞれ対応してキャピラリチュ
ーブ72を並列に設け、冷媒の均等分配により熱交換器
を有効に働らかせている。さらに室外ユニット62は室
外熱交換器67と四方弁68との間に接続した、暖房運
転時に低圧、Z冷房運転時に高圧になる低圧接続口73
、圧縮機66の吐出側に通じる吐出口74、そして室外
熱交換器67の吸入側に通じる流入口75が設けてある
。室内ユニット63,64は通常のキャピラリチューブ
方式で、室内熱交換器76,77と、これの一端部より
導出した室内冷煤ガス管78,79と、同じく池端部よ
り導出したキャピラリチューブ80,81、そしてこれ
の先に接続した室内液管82,83とにより構成される
The multi-room air conditioning system of the present invention includes an outdoor unit 62, a plurality of indoor units 63, 64, and a refrigerant pipe branch 65 that connects the two. The outdoor unit 62 is constructed by connecting a compressor 66, an outdoor heat exchanger 67, a four-way valve 68, an accumulator 69, a heating capillary tube 70, and a check valve 71 arranged in parallel thereto as shown in the figure. In the outdoor heat exchanger 67, capillary tubes 72 are arranged in parallel corresponding to a plurality of cold soot flow paths (not shown) provided in order to reduce pressure loss due to piping and effectively utilize the heat exchanger. The heat exchanger works effectively by distributing the refrigerant evenly. Furthermore, the outdoor unit 62 has a low pressure connection port 73 connected between the outdoor heat exchanger 67 and the four-way valve 68, which becomes low pressure during heating operation and high pressure during Z cooling operation.
, a discharge port 74 communicating with the discharge side of the compressor 66, and an inlet port 75 communicating with the suction side of the outdoor heat exchanger 67. The indoor units 63 and 64 are of the normal capillary tube type, and include indoor heat exchangers 76 and 77, indoor cold soot gas pipes 78 and 79 led out from one end of these, and capillary tubes 80 and 81 led out from the same end of the pond. , and indoor liquid pipes 82 and 83 connected to the tip thereof.

続いて、冷媒配管分岐器65について説明すると、84
は吐出口74に接続した冷媒ガス管、85は一端を袷媒
ガス管84に接続した分岐冷煤ガス管で、室内ユニット
63,64の数に応じて分岐し、室内冷煤ガス管78,
79に接続している。86‘ま流入口75に一端を接続
した液管、87は一端を液管86に接続した分岐液管で
、室内ユニット63,64の数に応じて分岐し、室内液
管82,83にそれぞれ接続する。
Next, the refrigerant pipe branch 65 will be explained.
is a refrigerant gas pipe connected to the discharge port 74, and 85 is a branch cold soot gas pipe whose one end is connected to the liner gas pipe 84, which branches according to the number of indoor units 63, 64, and is connected to the indoor cold soot gas pipe 78,
Connected to 79. 86' is a liquid pipe whose one end is connected to the inlet 75, and 87 is a branch liquid pipe whose one end is connected to the liquid pipe 86, which branches according to the number of indoor units 63, 64, and connects to the indoor liquid pipes 82, 83, respectively. Connecting.

88,89は分岐冷媒ガス管85,85にそれぞれ設け
、冷煤流を制御する可逆流通型開閉電磁弁からなる開閉
弁、90,91は分岐液管87,87にそれぞれ設け「
冷嬢流を制御する可逆流通型開閉電磁弁からなる開閉弁
「 92は冷暖房一室運転時に開くバイパス電磁弁で、
冷房一室運転時にはキャピラリチューブ93、逆止弁9
4を介して、冷房時に高圧となる液管86と低圧ガス冷
蝶の通る冷媒ガス管84の間に接続する。
Reference numerals 88 and 89 are provided in the branch refrigerant gas pipes 85 and 85, respectively, and on-off valves are reversible flow type on-off solenoid valves for controlling the flow of cold soot, and 90 and 91 are provided in the branch liquid pipes 87 and 87, respectively.
An on-off valve consisting of a reversible flow-type on-off solenoid valve that controls the cooling flow. 92 is a bypass solenoid valve that opens when air conditioning/heating a single room.
When operating a single cooling room, capillary tube 93 and check valve 9
4, it is connected between a liquid pipe 86 that becomes high-pressure during cooling and a refrigerant gas pipe 84 through which a low-pressure gas cooling butterfly passes.

そして、冷房二室運転時に適正に設定されたキャピラリ
チュープ80,81が、一室運転時においてはその特性
から全体の系として絞り過ぎとなり、圧縮機66の吐出
温度が上昇するのを防止するべく、橋圧冷煤液を冷煤ガ
ス管84へバイパスする第3のバイパス管95を構成す
る。また、バイパス電磁弁92は暖房一室運転時におい
て、キャピラIJチューブ96、逆止弁97を介して液
管86と低圧接続口73に接続した低圧管98との間に
接続した暖房一室運転時の第3のバイパス管路99を構
成する。そして、液冷煤を低圧管98へバイパスするも
のである。1001ま同じく暖房一室運転時のバイパス
電磁弁で、キャピラリチューブ101、逆止弁102を
介して液管86と冷嬢ガス管84との間に接続し、冷媒
ガスを液管86へバイパスする暖房一室運転時の第2の
バイパス管路103を構成する。
In order to prevent the capillary tubes 80 and 81, which are properly set during two-room cooling operation, from becoming too constricted as a whole system during single-room operation due to their characteristics, the discharge temperature of the compressor 66 increases. , constitutes a third bypass pipe 95 that bypasses the bridge pressure cold soot liquid to the cold soot gas pipe 84. In addition, the bypass solenoid valve 92 is connected between the liquid pipe 86 and the low pressure pipe 98 connected to the low pressure connection port 73 via the capillary IJ tube 96 and the check valve 97 during single room heating operation. A third bypass conduit 99 is configured at the time. The liquid-cooled soot is then bypassed to the low-pressure pipe 98. 1001 is also a bypass solenoid valve when operating a single heating room, and is connected between the liquid pipe 86 and the refrigerating gas pipe 84 via the capillary tube 101 and the check valve 102, and bypasses the refrigerant gas to the liquid pipe 86. A second bypass conduit 103 is configured during single room heating operation.

104は暖房一室運転時における冷媒ガスの高圧圧力の
上昇とともに連続的に開閉する圧力制御弁で、袷媒ガス
管84に一端を接続し、分岐した他端は逆止弁105,
106を介して分岐冷媒ガス管85,85に接続してい
る。
104 is a pressure control valve that opens and closes continuously as the high pressure of the refrigerant gas increases during single-room heating operation; one end is connected to the refrigerant gas pipe 84, and the other branched end is a check valve 105;
It is connected to branch refrigerant gas pipes 85, 85 via 106.

そして、圧力制御弁104は運転休止中の室内ユニット
63あるいは64のいずれか一方に開閉弁88あるいは
89をバィパスして袷煤ガスを貯溜し、暖房一室運転時
における高圧圧力を降下させる圧力調整管路107を構
成する。108は圧力調整管略107の働らきで、運転
休止中の室内ユニット63、あるいは64に貯溜した袷
媒流出量を制御する第1のバイパス管路で、分岐液管8
7,87毎に接続した逆止弁109,110、キャピラ
リチューブ111,li2をそれぞれ介して低圧管98
に接続し、冷煤液を低圧管98へバイパスさせるのであ
る。
Then, the pressure control valve 104 bypasses the on-off valve 88 or 89 in either one of the indoor units 63 or 64 that is out of operation to store soot gas, and adjusts the pressure to reduce the high pressure during single room heating operation. A conduit 107 is configured. Reference numeral 108 is a first bypass pipe which functions as a pressure adjustment pipe 107 and controls the outflow amount of the medium stored in the indoor unit 63 or 64 when the operation is suspended.
The low pressure pipe 98 is
to bypass the cold soot liquid to the low pressure pipe 98.

上記一実施例において、二室暖房運転を説明すると、圧
縮機66より吐出された冷煤ガスは四方弁68→冷煤ガ
ス管84→開閉弁88,89→分、岐袷煤ガス管85,
85を経て各室内ユニット63764へ導かれ室内熱交
換器76,77にて放熱凝縮され、二室が暖房される。
In the above-mentioned embodiment, to explain the two-room heating operation, the cold soot gas discharged from the compressor 66 is transferred to the four-way valve 68 → the cold soot gas pipe 84 → the on-off valves 88, 89 → the branch soot gas pipe 85,
The heat is guided to each indoor unit 63764 via the indoor heat exchangers 76 and 77, where it is radiated and condensed to heat the two rooms.

さらに袷媒液は室内ユニット63,64より流出して分
岐液管87,87→開閉弁90,91→液管86→暖房
用キヤビラリチユーブ70→キヤピラリチユーブ72を
蓬て室外熱交換器67に入り吸熱蒸発する。そして、冷
媒は四方弁68、アキュムレータ69を通り再び圧縮機
66へ戻る。続いて暖房一室運転について説明すると、
先ずガス側、および液側の開閉弁89,91を閉じ、室
内ユニット64の運転を休止する。
Furthermore, the medium liquid flows out from the indoor units 63 and 64 and flows through the branch liquid pipes 87 and 87 → the on-off valves 90 and 91 → the liquid pipe 86 → the heating cavity tube 70 → the capillary tube 72, and is transferred to the outdoor heat exchanger. 67 and evaporates endothermically. The refrigerant then passes through the four-way valve 68 and the accumulator 69 and returns to the compressor 66 again. Next, I will explain about single room heating operation.
First, the on-off valves 89 and 91 on the gas side and the liquid side are closed, and the operation of the indoor unit 64 is stopped.

したがって、開閉弁88,90の開いている室内ユニッ
ト63のみが運転するわけで、この時の冷媒の循遠路は
上記した二室暖房運転時の一方の径路と同一である。し
かしながら、この暖房運転時において各バィパ誠管路9
9,103,108、そして圧力調整管路107がそれ
ぞれ動作するので、これらの作用効果について詳述する
Therefore, only the indoor unit 63 whose on-off valves 88 and 90 are open operates, and the refrigerant circulation path at this time is the same as one path during the two-room heating operation described above. However, during this heating operation, each bypass pipe 9
9, 103, 108 and the pressure adjustment pipe 107 operate, so their effects will be described in detail.

本装置は熱交換器の容量、キャピラリチューブの絞り度
を、暖房二室運転時において適正なように設定されてい
る。
In this device, the capacity of the heat exchanger and the degree of restriction of the capillary tube are set appropriately for two-room heating operation.

これに対し、暖房一室運転時においては凝縮器の作用を
する室内熱交換器76,77の容量が相対的に減少する
。そして、運転時に冷媒ガスの高圧圧力が過度に上昇し
運転に支障を生じてくる。しかしながら、冷煤ガス管8
4を流れる冷媒ガスの一部は開いたバイパス電磁弁10
0、キャピラリチューブ101、逆止弁102を怪て液
管86へ制御されて分流し、液管86を流れる液冷煤に
合流するので、上記した過度の高圧圧力が「 この第2
のバイパス管路103により低下される。
On the other hand, during single-room heating operation, the capacities of the indoor heat exchangers 76 and 77, which function as condensers, are relatively reduced. Then, during operation, the high pressure of the refrigerant gas increases excessively, causing problems in operation. However, the cold soot gas pipe 8
A portion of the refrigerant gas flowing through the bypass solenoid valve 10 is opened.
0, the capillary tube 101 and the check valve 102 are controlled to divert the liquid to the liquid pipe 86 and join the liquid cooled soot flowing through the liquid pipe 86, so that the above-mentioned excessively high pressure is
is lowered by the bypass line 103.

また、袷媒ガス管84を流れる冷煤ガスは一部が圧力調
整管路107を経て休止中の室内ユニット64の管路に
も貯溜する。すなわち、高圧圧力で開いた圧力制御弁1
04、逆止弁106を経て分岐冷煤ガス管85に流れた
冷媒ガスは開閉弁89,91にて休止中の室内ユニット
64の管路が冷煤循環路から隔離されているので、室内
冷嬢ガス管79、室内熱交換器77、キャピラリチュ−
ブ81、室内液管83、分岐液管87の管路に貯溜し圧
力低下を生じる。この時、開閉弁88を通る袷煤ガス圧
力が圧力調整管路107より高いので、逆止弁105を
介して運転中の室内ユニット63の冷媒循環路へ流れ込
むことはない。このようにして、運転休止中の室内ユニ
ット64の管路に袷煤ガスを貯溜して高圧圧力を低下さ
せられる。
Further, a part of the cold soot gas flowing through the medium gas pipe 84 passes through the pressure adjustment pipe 107 and is stored in the pipe of the indoor unit 64 that is inactive. That is, the pressure control valve 1 opened at high pressure
04, the refrigerant gas that has flowed into the branch cold soot gas pipe 85 via the check valve 106 is isolated from the cold soot circulation path by the on-off valves 89 and 91, so that the refrigerant gas is not cooled indoors. Missing gas pipe 79, indoor heat exchanger 77, capillary tube
The liquid is stored in the tube 81, the indoor liquid pipe 83, and the branch liquid pipe 87, causing a pressure drop. At this time, the soot gas pressure passing through the on-off valve 88 is higher than that in the pressure adjustment pipe 107, so it does not flow into the refrigerant circulation path of the indoor unit 63 in operation via the check valve 105. In this way, the soot gas is stored in the pipe line of the indoor unit 64 which is not in operation, and the high pressure can be reduced.

しかし、この貯溜する冷煤量が不必要に多くなってくる
と逆に運転中の室内ユニット63側の冷煤循環路の冷煤
ガス不足により、運転に支障を生じる恐れがある。しか
しながら「運転休止中の室内ユニット64に通じる逆止
弁109、キヤピラリチューブ111からの第1のバイ
パス管路108を径て低圧管98へ、上記した貯溜する
袷媒が充分に絞り込んだキャピラリチューブ111によ
り制御されて流れ、そして圧縮機66の吸入側へ戻る。
したがって、圧力制御弁104、キャピラリチューブ1
11により適正な冷煤量を運転休止中の室内ユニット6
4の管路に貯溜し、過度の液溜り、少度の液溜りによる
冷凍サイクルの運転支障を解消できる。また、このよう
にして液冷煤の相対的減少による高圧圧力の低下をはか
ると、一方では逆に圧縮機66の吸入側の低圧圧力も影
響を受けて低下し〜蒸発器として作用する室外熱交換器
67に着霜を生じたり「圧縮機66の吸入側が過熱し、
吐出側の温度も上昇する。
However, if the amount of stored cold soot becomes unnecessarily large, there is a risk that the operation will be hindered due to a shortage of cold soot gas in the cold soot circulation path on the indoor unit 63 side during operation. However, "the check valve 109 leading to the indoor unit 64 which is out of operation, the first bypass pipe 108 from the capillary tube 111 to the low pressure pipe 98, the capillary tube in which the above-mentioned stored medium has been sufficiently squeezed" 111 and returns to the suction side of the compressor 66.
Therefore, the pressure control valve 104, the capillary tube 1
11, the indoor unit 6 which is out of operation has an appropriate amount of cold soot.
By storing the liquid in the pipe line 4, it is possible to eliminate operational problems in the refrigeration cycle caused by excessive liquid accumulation or small liquid accumulation. Furthermore, when the high pressure is reduced by the relative reduction of liquid-cooled soot, the low pressure on the suction side of the compressor 66 is also affected and reduced ~ the outdoor heat that acts as an evaporator. Frost may form on the exchanger 67 or the suction side of the compressor 66 may overheat.
The temperature on the discharge side also increases.

しかし、液冷煤は第3のバイパス管路99を蓬て液管8
6より低圧管98にバィパスし、また第2のバイパス管
路103を径て冷媒ガスが液管86にバイパスする。
However, the liquid cooled soot flows down the third bypass pipe 99 and the liquid pipe 8
6, the refrigerant gas bypasses to the low pressure pipe 98, and also passes through the second bypass pipe line 103 to the liquid pipe 86.

したがって、低圧圧力は上昇され、室外熱交換器67に
は肴館が起らなくなり「そして吐出温度の低下も得られ
るのである。なお、キャピラリチューブ方式の場合、ホ
ットガスバィパス方式のみで、冷凍サイクル制御をはか
る場合は極端に成績係数(装置の入力と能力の比)が低
下すると同時に過負荷運転時の冷凍サイクルの安定性に
欠けることは明らかである。本案は4個のバイパス方式
を適切に組合せて各々運転制御することにより、キャピ
ラリチューブ方式のヒートポンプ多室冷暖房装置におい
て安定した一室(または少数室)暖房運転サイクルを構
成することが可能になる。また上記一実施例においては
4個のバイパス管路を併用する様に説明したが、室内ユ
ニットの容量比、接続台数によっては上記管路を選択す
ればよいことは明らかである。
Therefore, the low-pressure pressure is increased, and the outdoor heat exchanger 67 is prevented from being stale, and the discharge temperature is also lowered.In addition, in the case of the capillary tube method, only the hot gas bypass method is used to cool down the refrigeration. When implementing cycle control, it is clear that the coefficient of performance (ratio of equipment input and capacity) will drop significantly and at the same time the stability of the refrigeration cycle will be lacking during overload operation. By controlling the operation in combination with the above, it becomes possible to configure a stable heating operation cycle for one room (or a small number of rooms) in a capillary tube type heat pump multi-room heating and cooling system.Furthermore, in the above embodiment, four It has been explained that the above bypass pipes are used together, but it is clear that the above pipes may be selected depending on the capacity ratio of the indoor units and the number of connected units.

さらに、圧力制御弁104は必ずしも暖房一室運転時に
常時作動する設定でなく、例えば暖房一室運転過負荷時
のみ作動する構成でも同様の効果を奏することは明白で
ある。このように本発明は室外ユニットに複数の室内ユ
ニットを接続し冷媒循環路を形成した分岐冷媒ガス管、
および分M皮液管に開閉弁を設けるとともに、このガス
側の開閉弁には圧力調整管路を並列に接続し、液側の開
閉弁にはこの開閉弁より室内ユニット側において分岐液
管に一端を接続し、他端を暖房運転時の低圧管へ接続し
た第1のバイパス管路を設けているから、運転休止中の
室内ユニットの管路に冷煤を貯溜しつつ、一部をバィパ
スして運転中の室内ユニットの冷煤循環路を正常に保つ
ことができる。
Furthermore, it is clear that the pressure control valve 104 is not necessarily set to operate all the time during single-room heating operation, but may have a configuration in which it operates only when an overload occurs during single-room heating operation, for example, to achieve the same effect. In this way, the present invention provides a branch refrigerant gas pipe that connects a plurality of indoor units to an outdoor unit to form a refrigerant circulation path;
In addition to providing an on-off valve in the liquid pipe and the M skin liquid pipe, a pressure adjustment pipe is connected in parallel to this on-off valve on the gas side, and a branch liquid pipe is connected to the on-off valve on the liquid side on the indoor unit side from this on-off valve. The first bypass line is connected at one end and connected to the low-pressure pipe during heating operation at the other end, so cold soot is stored in the line of the indoor unit when the unit is out of operation, while a portion of it is bypassed. The cold soot circulation path of the indoor unit can be maintained normally during operation.

したがって、暖房負荷減少時に室内熱交換器の容量が相
対的に減少するために生じる冷煤循環路の過度の高圧圧
力を降下せしめるとともに運転中における冷媒不足も解
消でき「室内ユニットを所定数から減らした暖房負荷減
少時にあっても安定した運転を行なうことができる。ま
た冷媒ガス管と液管の間に、暖房負荷減少時に開く第2
のバイパス管路を接続し、液管へ冷媒ガスをバィパスし
ているから、上託した第2のバイパス管路「および圧力
調整管路とともに過度の高圧圧力の降下を確実にはかり
、暖房負荷減少時の運転を一層安定化させることができ
る。
Therefore, it is possible to reduce the excessively high pressure in the cold soot circulation path that occurs due to a relative decrease in the capacity of the indoor heat exchanger when the heating load is reduced, and also to eliminate refrigerant shortages during operation. It is possible to perform stable operation even when the heating load is reduced.Also, there is a second pipe between the refrigerant gas pipe and the liquid pipe that opens when the heating load is reduced.
By connecting the second bypass pipe and bypassing the refrigerant gas to the liquid pipe, the second bypass pipe and pressure adjustment pipe ensure that excessively high pressure is reduced, reducing the heating load. It is possible to further stabilize the operation at the time.

さらに一端を液管に接続し、他端を冷嬢ガス管および低
圧管へそれぞれ接続した冷暖房負荷減少時に開く第3の
バイパス管路を備え「冷房時に冷煤ガス管へ、および暖
房時に低圧管へそれぞれ冷煤をバィパスしているから、
暖房負荷減少時において過度の高圧圧力を降下させ「液
冷媒の相対的減少をはかった影響を受けて低下する低圧
側の圧力を上昇することもできる。
Furthermore, there is a third bypass line that opens when the cooling/heating load decreases, with one end connected to the liquid pipe and the other end connected to the refrigerating gas pipe and the low-pressure pipe. Bypassing cold soot to each
When the heating load decreases, it is also possible to lower the excessively high pressure and increase the pressure on the low pressure side, which is affected by the relative decrease in liquid refrigerant.

したがって、室外熱交換器に生じる着霜も防止でき、暖
房負荷減少時の運転を安定化できる。
Therefore, frost formation on the outdoor heat exchanger can be prevented, and operation can be stabilized when the heating load is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ヒートポンプ式多室冷暖房装置の−実施
例を示す管略図、第2図「第3図はそれぞれ従来例を示
す管略図である。 62・・…・屋外ュニットト63,64・・・・・・室
内ユニット、84M…冷嬢ガス管、85・…・・分岐袷
煤ガス管、86……液管、87…・・・分岐液管、88
,89;98り91……開閉弁、9ふ 99,竃03,
亀08……バイパス管路へ 竃Q7……圧力調整管路。 第1図第2図 第3図
Fig. 1 is a schematic diagram of pipes showing an embodiment of the heat pump type multi-room air conditioning system of the present invention, Fig. 2 is a schematic diagram of pipes showing a conventional example, respectively. ...Indoor unit, 84M...Refrigerant gas pipe, 85...Branch soot gas pipe, 86...Liquid pipe, 87...Branch liquid pipe, 88
,89;98ri91...Opening/closing valve,9fu 99,Kan03,
Tortoise 08...To the bypass pipe line Q7...Pressure adjustment pipe line. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 屋外ユニツトと、複数の室内ユニツトと、上記両者
を接続して、冷媒循環路を形成する冷媒ガス管および液
管とで構成し、上記室内ユニツト数に応じて冷媒ガス管
および液管より分岐し、この分岐冷媒ガス管および分岐
液管に設けた開閉弁と、このガス側の開閉弁をバイパス
するようにこの開閉弁と並列に設けた圧力調整管路と、
液側の開閉弁より室内ユニツトよりの分岐液管の一端に
接続し、他端を暖房運転時に圧縮機の吸入側に通じる低
圧管へ接続した第1のバイパス管路と、一端を冷媒ガス
管に接続し、他端を液管に接続し、暖房負荷減少時に冷
媒を流す第2のバイパス管路と、一端を液管に接続し、
他端を冷媒ガス管および低圧管へそれぞれ接続し、冷房
負荷減少時に冷媒ガス管へ、暖房負荷減少時に低圧管へ
それぞれ冷媒を流す第3のバイパス管路とを備えたヒー
トポンプ式多室冷暖房装置。
1 Consists of an outdoor unit, a plurality of indoor units, and refrigerant gas pipes and liquid pipes that connect the above two to form a refrigerant circulation path, and branch off from the refrigerant gas pipes and liquid pipes according to the number of indoor units. and an on-off valve provided on the branched refrigerant gas pipe and the branched liquid pipe, and a pressure regulating pipe line provided in parallel with the on-off valve so as to bypass the on-off valve on the gas side.
A first bypass pipe line is connected to one end of the branch liquid pipe from the indoor unit from the liquid side on-off valve, and the other end is connected to the low pressure pipe leading to the suction side of the compressor during heating operation, and one end is connected to the refrigerant gas pipe. a second bypass pipe line, the other end of which is connected to the liquid pipe, and the second bypass pipe line through which the refrigerant flows when the heating load decreases;
A heat pump type multi-room air-conditioning/heating system equipped with a third bypass pipe whose other ends are connected to the refrigerant gas pipe and the low-pressure pipe, respectively, and which allows the refrigerant to flow to the refrigerant gas pipe when the cooling load decreases and to the low-pressure pipe when the heating load decreases. .
JP5157078A 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system Expired JPS6011785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157078A JPS6011785B2 (en) 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157078A JPS6011785B2 (en) 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system

Publications (2)

Publication Number Publication Date
JPS54142851A JPS54142851A (en) 1979-11-07
JPS6011785B2 true JPS6011785B2 (en) 1985-03-28

Family

ID=12890613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157078A Expired JPS6011785B2 (en) 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system

Country Status (1)

Country Link
JP (1) JPS6011785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333401Y2 (en) * 1986-06-17 1991-07-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966668A (en) * 1982-10-06 1984-04-16 株式会社東芝 Refrigeration cycle
JPS60175973A (en) * 1984-02-22 1985-09-10 松下電器産業株式会社 Heat pump type floor heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333401Y2 (en) * 1986-06-17 1991-07-16

Also Published As

Publication number Publication date
JPS54142851A (en) 1979-11-07

Similar Documents

Publication Publication Date Title
US6026654A (en) Multi-unit air conditioner having a by-pass section for adjusting a flow rate of refrigerant
EP0760453A2 (en) Air conditioning system with subcooler coil and series expander devices
US4643002A (en) Continuous metered flow multizone air conditioning system
JP3091682B2 (en) Engine driven heat pump device
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
JPH0544675Y2 (en)
JP3356386B2 (en) Environmental test equipment using refrigerant switching type refrigerator
JPS6011787B2 (en) Heat pump type multi-room air conditioning system
JPH04340063A (en) Air conditioner and its operation control device
JPH0587426A (en) Air-conditioner
CN218627131U (en) Four-pipe system and air conditioning unit
JPS586857B2 (en) Air conditioning equipment
CN218379955U (en) Heat exchange system and refrigeration equipment
CN112229098B (en) Heat pump system, control method and control device thereof, refrigeration equipment and storage medium
JPS6011786B2 (en) Heat pump type multi-room air conditioning system
JP3378712B2 (en) Air conditioner
JPS60133274A (en) Multi-chamber type air conditioner
JPS5919255Y2 (en) air conditioner
JPS63286676A (en) Air conditioner
JPH0117007Y2 (en)
JPS6340764Y2 (en)
JPH04359764A (en) Refrigerant heating type multi freezing cycle
JPS59180253A (en) Multi-chamber type air conditioner
JPS593352Y2 (en) Air conditioning equipment
JPS5850212Y2 (en) Multi-room cooling system