JPS586857B2 - Air conditioning equipment - Google Patents

Air conditioning equipment

Info

Publication number
JPS586857B2
JPS586857B2 JP15520877A JP15520877A JPS586857B2 JP S586857 B2 JPS586857 B2 JP S586857B2 JP 15520877 A JP15520877 A JP 15520877A JP 15520877 A JP15520877 A JP 15520877A JP S586857 B2 JPS586857 B2 JP S586857B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
pipe
liquid
bypass circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15520877A
Other languages
Japanese (ja)
Other versions
JPS5486843A (en
Inventor
鎌田譲治
小畑真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15520877A priority Critical patent/JPS586857B2/en
Publication of JPS5486843A publication Critical patent/JPS5486843A/en
Publication of JPS586857B2 publication Critical patent/JPS586857B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 従来、多室型冷暖房装置においては第1図に示すように
その冷媒流量制御には温度式(または定圧式)自動膨張
弁を使用するとともに、多室冷暖房のための室外側ユニ
ットは専用型の構造とするものであった。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, multi-room air conditioning systems use temperature-type (or constant-pressure type) automatic expansion valves to control the refrigerant flow rate, as shown in FIG. The outdoor unit had a dedicated structure.

すなわち、第1図において、1は室外ユニット2a,2
bは室内ユニットで、各々一対の冷媒ガス管3a・3b
,冷媒液管4a,4bにより相互に接続されている。
That is, in FIG. 1, 1 indicates the outdoor units 2a, 2
b is an indoor unit, each having a pair of refrigerant gas pipes 3a and 3b.
, are mutually connected by refrigerant liquid pipes 4a and 4b.

そして圧縮機5より吐出された冷媒は四方弁6より暖房
運転時は冷媒ガス管7を通り、分岐点8より複数路に分
岐し、ガス側可逆流通電磁弁(または逆止弁内蔵電磁弁
)9a,9bを通り前記冷媒ガス管3a,3bより室内
ユ;ニット2a,2bへ導かれる。
The refrigerant discharged from the compressor 5 passes through a four-way valve 6 during heating operation through a refrigerant gas pipe 7, branches into multiple paths at a branch point 8, and is connected to a gas side reversible flow solenoid valve (or a solenoid valve with a built-in check valve). The refrigerant gas passes through 9a and 9b and is guided to the indoor units 2a and 2b from the refrigerant gas pipes 3a and 3b.

そして室内側熱交換器1 0a , 1 0bにより放
熱凝縮された冷媒は、冷房運転時に使用される室内側膨
張弁11a,1lbをバイパスして並列に設置された逆
止弁1 2a , 1 2bを通り冷媒液管4a,4b
より再び室外ユニット1へ戻り、液側可逆流通電磁弁(
又は逆止弁内蔵電磁弁)13a,13bより分岐点14
で合流し冷媒液管15,受液器16を経て暖房用膨張弁
1Tにて減圧膨張しながら室外側熱交換器18にて吸熱
膨張し、四方弁6を経てアキュムレータ19より再び圧
縮機5へ吸引される。
The refrigerant heat-radiated and condensed by the indoor heat exchangers 10a and 10b bypasses the indoor expansion valves 11a and 1lb used during cooling operation and passes through the check valves 12a and 12b installed in parallel. Coolant liquid pipes 4a, 4b
Then return to the outdoor unit 1 again and close the liquid side reversible flow solenoid valve (
or a solenoid valve with a built-in check valve) Branch point 14 from 13a and 13b
The refrigerant flows through the refrigerant liquid pipe 15 and receiver 16, expands under reduced pressure at the heating expansion valve 1T, absorbs heat at the outdoor heat exchanger 18, passes through the four-way valve 6, and returns to the compressor 5 from the accumulator 19. It gets sucked in.

20および21は暖房過負荷運転時における高圧制御弁
と管路である。
20 and 21 are a high pressure control valve and a pipe line during heating overload operation.

以上暖房2室運転時の回路についてその作用を説明した
が、1室運転時においては例えば室内ユニット2bを使
用しない場合はガス側可逆流通電磁弁9bおよび液側可
逆流通電磁弁13bを閉鎖することにより1室運転が可
能になる。
The operation of the circuit during two-room heating operation has been explained above, but in one-room operation, for example, if the indoor unit 2b is not used, the gas side reversible flow solenoid valve 9b and the liquid side reversible flow solenoid valve 13b should be closed. This enables single-room operation.

この場合停止している室内ユニット2b側の配管内に残
溜し、または閉鎖したガス側可逆流通電磁弁9bや液側
可逆流通電磁弁13bよりの漏れにより配管内に侵入し
た冷媒を低圧側へ吸引するべく逆止弁23b,キャピラ
リチューブ24bよりなる管路22bを冷媒液管4bと
暖房用膨張弁17の暖房時低圧となる側との間に設置し
ている。
In this case, the refrigerant that remains in the piping on the indoor unit 2b side that is stopped or that has entered the piping due to leakage from the closed gas side reversible flow solenoid valve 9b or liquid side reversible flow solenoid valve 13b is transferred to the low pressure side. A conduit 22b consisting of a check valve 23b and a capillary tube 24b for suction is installed between the refrigerant liquid pipe 4b and the side of the heating expansion valve 17 that is at low pressure during heating.

すなわち、停止側ユニット内を低圧(吸入側圧力)に保
持して液溜りを防止するのである。
That is, the inside of the stop-side unit is maintained at a low pressure (suction-side pressure) to prevent liquid accumulation.

なお、23a,24aは他の室内ユニット2aに対する
逆止弁とキャピラリチューブであり、25は冷房運転時
に暖房用膨張弁17をバイパスするように設置された逆
止弁である。
Note that 23a and 24a are check valves and capillary tubes for other indoor units 2a, and 25 is a check valve installed so as to bypass the heating expansion valve 17 during cooling operation.

しかしながら、このような構成の従来の多室冷暖房装置
においては次のような問題点を有する。
However, the conventional multi-room air conditioning system having such a configuration has the following problems.

([)膨張弁方式を採用しているため、膨張弁の作動の
安定性に問題がある。
([) Since the expansion valve method is adopted, there is a problem with the stability of the operation of the expansion valve.

(製作時の設定の不均一や経年変化や目詰り。(Uneven settings during manufacturing, aging, and clogging.

)(11)膨張弁の設定や作動の平均一により2室間に
能力の平均衡を生じ易い。
) (11) It is easy to create an even balance in capacity between the two chambers by uniformly setting and operating the expansion valves.

(面 熱交換器に複数路の冷媒流路を設ける場合にデイ
ストリビュータを設けても冷媒分配の不均衡を生じ易く
熱交換器全面を完全に利用することが難しい。
(Surface) Even if a distributor is provided when a plurality of refrigerant flow paths are provided in a heat exchanger, imbalance in refrigerant distribution tends to occur, making it difficult to fully utilize the entire surface of the heat exchanger.

(1■)構造上、専用の室外ユニットを製作する必要が
あり、機種のシリーズ化が困難である。
(1) Due to the structure, it is necessary to manufacture a dedicated outdoor unit, making it difficult to create a series of models.

(v)膨張弁を使用するのでコスト的に高価となる。(v) Since an expansion valve is used, the cost is high.

特に膨張弁の信頼性と多数並列に使用した場合の熱交換
器流路における相互不均衡は多室冷暖房装置においては
大きな問題である。
In particular, the reliability of expansion valves and the mutual imbalance in heat exchanger flow paths when a large number of them are used in parallel are major problems in multi-room air conditioning systems.

本発明はこのような問題点を解決するべくなされたもの
である。
The present invention has been made to solve these problems.

そのための構成として、本発明は、冷凍サイクルの冷媒
流量制御をキャピラリチューブにて構成し、かつ室内ユ
ニットおよび室外ユニットそれぞれにキャピラリチュー
ブを配設した冷暖房装置の暖房運転時の高圧ガス管路お
よび室内ユニットから室外ユニットに至るまでの中圧液
管路の一対の管路の他に暖房運転時低圧となる管路に連
通する低圧吸入ラインを設け、暖房運転時室内ユニット
運転台数減少時には前記高圧ガス管路より分岐し前記低
圧吸入ラインまたは前記中圧液管路へ側路する第一のバ
イパス回路と、前記中圧液管路より分岐し前記低圧吸入
ラインへ側路する第二のバイパス回路を設け、前記第二
のバイパス回路中にはレシーバタンクと、前記レシーバ
タンクよりの冷媒の流出を制御するキャピラリチューブ
とを設けたものである。
As a configuration for this purpose, the present invention includes a capillary tube for controlling the refrigerant flow rate of the refrigeration cycle, and a high-pressure gas pipeline and an indoor unit during heating operation of an air-conditioning system in which capillary tubes are provided in each of the indoor unit and the outdoor unit. In addition to the pair of medium-pressure liquid pipes leading from the unit to the outdoor unit, a low-pressure suction line is provided that communicates with the pipe that becomes low-pressure during heating operation, and when the number of indoor units in operation during heating operation is reduced, the high-pressure gas a first bypass circuit branching from the pipeline and bypassing the low pressure suction line or the medium pressure liquid pipeline; and a second bypass circuit branching from the medium pressure liquid pipeline and bypassing the low pressure suction line. A receiver tank and a capillary tube for controlling outflow of refrigerant from the receiver tank are provided in the second bypass circuit.

以下本発明をその一実施例を示す第2図を参考に説明す
る。
The present invention will be explained below with reference to FIG. 2 showing one embodiment thereof.

30は室外ユニット、31 a ,3lbは室内ユニッ
ト、32は配管分岐ユニットで室外ユニット30内には
圧縮機33、室外側熱交換器23、四方弁35、アキュ
ムレータ36、暖房用キャピラリチューブ37および逆
止弁38を図示のように構成するとともに、室外側熱交
換器34には配管圧力損失の減少と熱交換器の有効利用
をはかるために複数路の冷媒流路を設けるとともに、各
冷媒流路には各々対応して複数のキャピラリチューブ4
6を並列に設けることにより、冷媒の均等分配による熱
交換器の有効利用を図っている。
30 is an outdoor unit, 31a, 3lb are indoor units, 32 is a piping branch unit, and the outdoor unit 30 includes a compressor 33, an outdoor heat exchanger 23, a four-way valve 35, an accumulator 36, a heating capillary tube 37, and an inverter. The stop valve 38 is configured as shown in the figure, and the outdoor heat exchanger 34 is provided with multiple refrigerant flow paths in order to reduce piping pressure loss and effectively utilize the heat exchanger. A plurality of capillary tubes 4 corresponding to each
6 in parallel, the effective use of the heat exchanger is achieved by uniformly distributing the refrigerant.

39は第三の管路すなわちチェックジョイント管路で、
冷房運転時には高圧部分となり暖房運転時には低圧部分
となる管部に連通しており、通常は運転圧力のチェック
用に使用されるいわゆるチェックジョイント管路である
39 is the third conduit, that is, the check joint conduit;
It communicates with a pipe section that becomes a high-pressure section during cooling operation and a low-pressure section during heating operation, and is a so-called check joint pipe line that is normally used to check the operating pressure.

室内ユニット31a,3lbにおいては、それぞれ室内
側熱交換器40a ,40b ,室内側キャピラリチュ
ーブ41a,41b、ガス管42a ,42b,液管4
3a ,43bとより構成される通常の冷媒回路が形成
されている。
In the indoor units 31a and 3lb, indoor heat exchangers 40a and 40b, indoor capillary tubes 41a and 41b, gas pipes 42a and 42b, and liquid pipe 4 are installed, respectively.
3a and 43b form a normal refrigerant circuit.

以上は通常のヒートポンプ冷暖房装置の室外ユニットお
よび室内ユニットの構成と同じであるが、さらに室外ユ
ニット30の構成と作用を説明すると、パッケージエア
コンのコンデンシングユニットにおいては、通常、ガス
側配管および液側配管の室内ユニット31a,31bと
の各接続端部には閉鎖弁としてフレア接続口と圧力点検
口とを廉ね備えたいわゆるサービスバルブ44 .45
が設けられている。
The above is the same as the configuration of the outdoor unit and indoor unit of a normal heat pump air conditioning system.To further explain the configuration and operation of the outdoor unit 30, in the condensing unit of a package air conditioner, usually the gas side piping and the liquid side Each connection end of the piping with the indoor units 31a, 31b is equipped with a so-called service valve 44, which is equipped with a flare connection port and a pressure check port as a closing valve. 45
is provided.

暖房運転時の圧力測定時において、高圧圧力はガス側サ
ービスバルブ44に設けられたサービスポートを利用し
て圧力チェックを行うことができる。
When measuring pressure during heating operation, high pressure can be checked using the service port provided in the gas side service valve 44.

しかしながら、低圧側の圧力チェックを行なおうとした
場合、液側サービスバルブ45は高圧圧力を示し、必要
な低圧圧力のチェックを行うことはできない。
However, when attempting to check the pressure on the low pressure side, the liquid side service valve 45 indicates a high pressure, making it impossible to check the necessary low pressure.

したがって低圧圧力を正確にチェックするとともに、必
要に応じて冷媒量の追加、調整をも行うように設けられ
たのが暖房運転時の低圧部分に連通したチェックジョイ
ント管路39である。
Therefore, the check joint line 39, which communicates with the low pressure portion during heating operation, is provided to accurately check the low pressure and also add or adjust the amount of refrigerant as necessary.

そしてチェックジョイント管路39は室外側熱交換器3
4と四方弁35との間の管部に設けることによりキャピ
ラリチューブ46,暖房用キャピラリチューブ37の減
圧効果の影響を受けることなく正確に暖房運転時に低圧
をチェックでき、また冷房運転時の高圧をチェックする
ことができる。
The check joint pipe line 39 is connected to the outdoor heat exchanger 3.
4 and the four-way valve 35, it is possible to accurately check low pressure during heating operation without being affected by the pressure reduction effect of capillary tube 46 and heating capillary tube 37, and to check high pressure during cooling operation. Can be checked.

なお、チェックジョイント管路39の端部69には適宜
サービスバルブ70等の閉鎖弁を設けるのがよい。
Note that it is preferable to provide a closing valve such as a service valve 70 as appropriate at the end 69 of the check joint conduit 39.

このような構成の室外ユニット30と複数の室内ユニッ
ト31a,3lbとを結合するための配管分岐ユニット
32の内部構成とその作用を暖房時の冷媒の流れを中心
に以下に詳述する。
The internal configuration and operation of the piping branch unit 32 for connecting the outdoor unit 30 with such a configuration and the plurality of indoor units 31a, 3lb will be described in detail below, focusing on the flow of refrigerant during heating.

ガス管47は分岐点48より複数路に分岐しパイロット
式四方弁49a,49b,分岐ガス管50a,50bよ
り室内ユニット31a,3lbへの接続ガス管51a,
5lbへ接続される。
The gas pipe 47 branches into a plurality of routes from a branch point 48 to pilot type four-way valves 49a, 49b, and branch gas pipes 50a, 50b connect to indoor units 31a, 3lb with gas pipes 51a,
Connected to 5lb.

また、四方弁49a,49bは電磁コイル通電時に分岐
ガス管50 a ,50bを開路するように接続される
Furthermore, the four-way valves 49a and 49b are connected to open the branch gas pipes 50a and 50b when the electromagnetic coil is energized.

そして室内ユニット31a ,31 bからは接続液管
52a,52bより分岐液管53a,53bへ接続され
液側可逆流通電磁弁54a,54bを経て液側分岐点5
5にて合流して室外ユニットまでが中圧の液管56とな
る。
The indoor units 31a and 31b are connected to branch liquid pipes 53a and 53b through connecting liquid pipes 52a and 52b, and then connected to liquid side branch point 5 via liquid side reversible flow solenoid valves 54a and 54b.
5 to form a medium-pressure liquid pipe 56 up to the outdoor unit.

57は逆止弁、58は冷房用キャピラリチューブで各々
並列に図示のように接続され液管56中に配置されてい
る。
Reference numeral 57 indicates a check valve, and reference numeral 58 indicates a cooling capillary tube, which are connected in parallel as shown in the figure and arranged in the liquid pipe 56.

59は冷房1室運転時のバイパス電磁弁で、キャピラリ
チューブ60を介して冷房時に中圧液となる液管56と
冷房時に低圧ガスとなるガス管47との間に設置される
Reference numeral 59 denotes a bypass electromagnetic valve for operation in one cooling room, which is installed via a capillary tube 60 between the liquid pipe 56 that becomes medium pressure liquid during cooling and the gas pipe 47 that becomes low pressure gas during cooling.

また、冷房2室運転時に適正に設定された室内側キャピ
ラリチューブ41a,4lbが1室運転時においてはそ
の特性から全体の系として絞り過ぎとなり、圧縮機33
の吐出温度が上昇するのを防止するために用いる吸入ラ
インへの液バイパス回路である。
In addition, the indoor capillary tubes 41a and 4lb, which are properly set during operation in two cooling rooms, become too constricted as a whole system during operation in one room due to their characteristics, and the compressor 33
This is a liquid bypass circuit to the suction line used to prevent the discharge temperature from rising.

61は暖房1室運転時のホットガスバイパス電磁弁で、
キャピラリチューブ62を介して暖房時に高圧ガス部と
なるガス管47と室外ユニット30のチェックジョイン
ト管路39と接続する配管分岐ユニット32内の第三の
管路63さを相互に接続し、暖房1室運転時の第一のバ
イパス回路を構成する。
61 is the hot gas bypass solenoid valve when operating one heating room.
The gas pipe 47 that becomes a high-pressure gas section during heating and the third pipe line 63 in the piping branch unit 32 that connects with the check joint pipe line 39 of the outdoor unit 30 are interconnected via the capillary tube 62, and the heating 1 Configures the first bypass circuit during room operation.

64は同じく暖房1室運転時にレシーバ65の回路を開
路する電磁弁で、暖房運転時の中圧液となる液管56よ
り液冷媒を抜いてレシーバ65へ導いて貯溜し、レシー
バ65の上部と下部に各々設けられレシーバ65の底部
より下方で合流し、電磁弁64の閉止時の液冷媒の抜け
をはかったキャピラリチューブ66,67および逆止弁
68を介して前記第三の管路63へ連通するように設け
られ、暖房1室運転時の第二のバイペス回路を構成する
Similarly, 64 is a solenoid valve that opens the circuit of the receiver 65 during single-room heating operation.The liquid refrigerant is drawn from the liquid pipe 56, which becomes medium-pressure liquid during heating operation, and is guided to the receiver 65 and stored. The liquid refrigerant flows to the third pipe line 63 through capillary tubes 66 and 67 and a check valve 68, which are provided at the lower part of the receiver 65 and join together below the bottom of the receiver 65 to allow the liquid refrigerant to escape when the solenoid valve 64 is closed. They are provided so as to communicate with each other, and constitute a second bypass circuit during single-room heating operation.

暖房1室運転時における前記二つのバイパス回路に関し
てその役割を更に説明すると、暖房2室運転時において
適正に設定された熱交換器容量とキャピラリチューブ絞
り度の設定に対して、暖房1室運転時においては凝縮器
として作用する室内側熱交換器40a,40bの容量が
相対的に減少するために運転時の高圧圧力が過度に上昇
し、運転に支障を生ずる。
To further explain the role of the two bypass circuits during single-room heating operation, the heat exchanger capacity and capillary tube orifice settings are properly set during two-room heating operation, but when operating one heating room, In this case, the capacity of the indoor heat exchangers 40a and 40b, which act as condensers, is relatively reduced, so that the high pressure during operation increases excessively, causing problems in operation.

したがってこの圧力を制御するべく前記第一のバイペス
回路においてホットガスバイパスによる高圧制御を行な
い、第二のバイパス回路において冷媒量の貯溜と液バイ
ペスにより圧力と温度制御とを各々行なっており、暖房
1室運転時の冷凍サイクルを適切に制御している。
Therefore, in order to control this pressure, the first bypass circuit performs high pressure control using a hot gas bypass, and the second bypass circuit performs pressure and temperature control using refrigerant storage and liquid bypass circuit, respectively. The refrigeration cycle is appropriately controlled during indoor operation.

また、暖房1室運転時においては停止側の室内ユニット
内に不必要に冷媒が溜り込み冷凍サイクルの運転に支障
を生じないように、停止側室内ユニットの配管を低圧ガ
スラインに連通してやるとともに室内ユニツト31a,
3lbの前後の四方弁49a ,49bおよび液側可逆
流通電磁弁54a,54bを閉止してやる必要がある。
In addition, when operating a single heating room, in order to prevent refrigerant from unnecessarily accumulating in the indoor unit on the stopping side and causing problems with the operation of the refrigeration cycle, the piping of the indoor unit on the stopping side is connected to the low-pressure gas line, and Unit 31a,
It is necessary to close the front and rear four-way valves 49a, 49b and the liquid side reversible flow solenoid valves 54a, 54b.

上記実施例の回路においてはガス管47側の弁として四
方弁49a ,49bを用い、室内ユニット31bの運
転時は四方弁49bは図示の実線のように動作するとと
もに液側可逆流通電磁弁54bも開状態に動作する。
In the circuit of the above embodiment, four-way valves 49a and 49b are used as valves on the gas pipe 47 side, and when the indoor unit 31b is operated, the four-way valve 49b operates as shown by the solid line in the figure, and the liquid side reversible flow solenoid valve 54b also operates. Operates in open state.

室内ユニット31bの停止時は液側可逆流通電磁弁54
bは閉動作するとともに四方弁49bは図示の破線のよ
うに動作し、停止側室内ユニット31bの配管は主の冷
媒循環回路から隔絶されると同時に第三の管路63を介
して圧縮機33の低圧吸入管側へ連通され、配管内には
低圧の過熱冷媒ガスのみとなり、液溜りにより冷凍サイ
クルの運転を阻害されることもない。
When the indoor unit 31b is stopped, the liquid side reversible flow solenoid valve 54
b is closed, and the four-way valve 49b is operated as shown by the broken line in the figure, and the piping of the stop-side indoor unit 31b is isolated from the main refrigerant circulation circuit, and at the same time, it is connected to the compressor 33 via the third piping 63. The refrigerating cycle is connected to the low-pressure suction pipe side, and only low-pressure superheated refrigerant gas is present in the pipe, and the operation of the refrigeration cycle is not hindered by liquid accumulation.

また、上記実施例に示すように四方弁49bへの各冷媒
配管の接続を図示のように暖房時に高圧ガス管となるガ
ス管47の分岐管を通常の四方弁高圧側Hに、チェック
ジョイント管路39に連通する第三の管路63の分岐管
を四方弁低圧側Lに、室内ユニット31 a ,3lb
への接続配管となる分岐ガス管50bを四方弁のE側で
通常使用時のコイル通電時に高圧側と連通ずる方向とし
、四方弁49bのC側は閉止している。
In addition, as shown in the above embodiment, the connection of each refrigerant pipe to the four-way valve 49b is such that the branch pipe of the gas pipe 47, which becomes a high-pressure gas pipe during heating, is connected to the high-pressure side H of the normal four-way valve, and the check joint pipe is connected to the four-way valve 49b. A branch pipe of the third pipe line 63 communicating with the pipe 39 is connected to the four-way valve low pressure side L, and the indoor unit 31a, 3lb
The branch gas pipe 50b, which is a connection pipe to the four-way valve 49b, is connected to the high-pressure side on the E side of the four-way valve when the coil is energized during normal use, and the C side of the four-way valve 49b is closed.

すなわち、暖房運転時に四方弁49bを通電励磁しない
場合は図示の破線のように閉止状態となる。
That is, when the four-way valve 49b is not energized and excited during heating operation, it is in a closed state as shown by the broken line in the figure.

一方、ヒートポンプユニットの冷房運転時はガス管47
,分岐ガス管50a ,50bは低圧ガス系路となり、
四方弁49a,49bは室内ユニット31a,3lbの
運転・停止に拘らず常時開動作していることが望ましい
On the other hand, when the heat pump unit is in cooling operation, the gas pipe 47
, branch gas pipes 50a and 50b become low pressure gas lines,
It is desirable that the four-way valves 49a, 49b are always open regardless of whether the indoor units 31a, 3lb are in operation or stopped.

上記実施例の場合においては冷房運転時においてはチェ
ックジョイント系路39,第三の管路63は高圧側とな
り、ガス管47が低圧側となるため、四方弁49a ,
49bの作動圧が暖房時と逆に働らくことになり、四方
弁49a,49bの電磁コイルを励磁せぬ状態で図示実
線のような回路となる。
In the case of the above embodiment, during cooling operation, the check joint line 39 and the third pipe line 63 are on the high pressure side, and the gas pipe 47 is on the low pressure side, so the four-way valve 49a,
The operating pressure of the four-way valve 49b works in the opposite direction to that during heating, and a circuit as shown by the solid line in the figure is formed when the electromagnetic coils of the four-way valves 49a and 49b are not excited.

したがって冷房運転時は四方弁49a49bを電気的に
作動させなくとも常時チェックジョイント系路からの圧
力により望ましい状態に回路を開路させておくことがで
き、電気的な制御が不要となる利点を有する。
Therefore, during cooling operation, even if the four-way valves 49a and 49b are not electrically actuated, the circuit can be kept open in a desired state by the pressure from the check joint system at all times, and there is an advantage that no electrical control is required.

また、第3図は本発明の他の実施例を示すもので、第2
図に示すシステムとの主な相違点はホットガスバイパス
電磁弁61’とキャピラリチューブ62′より構成され
る暖房1室運転時のホットガスバイパス回路(第一のバ
イパス回路)をガス管47と中圧の液管56とを連通す
る形で構成する点と、四方弁49a,49bの低圧側L
と、分岐液管53a,53bの液側可逆流路電磁弁54
a ,54bより室内ユニット31a,31b側の部
分とを連通管路71a,7lbにて連通して四方弁49
a ,49bの作動圧力を確保するとともに暖房2室運
転から1室運転に切換えた場合に、停止側室内ユニット
部分を密閉回路とする。
Further, FIG. 3 shows another embodiment of the present invention.
The main difference from the system shown in the figure is that the hot gas bypass circuit (first bypass circuit) during single room heating operation, which consists of a hot gas bypass solenoid valve 61' and a capillary tube 62', is connected to the gas pipe 47. The low pressure side L of the four-way valves 49a and 49b is configured to communicate with the pressure liquid pipe 56.
and the liquid side reversible flow path solenoid valve 54 of the branch liquid pipes 53a, 53b.
A, 54b communicates with the indoor units 31a, 31b side through communication pipes 71a, 7lb to form a four-way valve 49.
The operating pressure of a and 49b is ensured, and when switching from two-room heating operation to one-room heating operation, the stop-side indoor unit portion is made into a sealed circuit.

また前記密閉回路中に溜り込んだ冷媒液を吸引するよう
に第三の管路63と、前記密閉回路の一部で分岐液管5
3a,53bの液側可逆流通電磁弁54a,54bより
室内ユニット側とを逆止弁72a ,72b ,キャピ
ラリチューブ73a,73bを介して連通している。
Further, a third pipe line 63 is provided to suck the refrigerant liquid accumulated in the sealed circuit, and a branch liquid pipe 5 is provided in a part of the sealed circuit.
The liquid side reversible flow solenoid valves 54a, 54b of 3a, 53b communicate with the indoor unit via check valves 72a, 72b and capillary tubes 73a, 73b.

したがって暖房2室運転時においては常時分岐液管53
a ,53bより低圧吸入ラインヘ液冷媒がバイパスさ
れるようになるが冷媒の凝縮能力で表わす暖房能力には
何ら支障がない。
Therefore, during operation of two heating rooms, the branch liquid pipe 53 is
Although the liquid refrigerant is bypassed from a and 53b to the low-pressure suction line, there is no problem with the heating capacity expressed by the condensing capacity of the refrigerant.

前記二つの実施例に示すように、本発明の主眼をなす暖
房運転時のバイパス回路について更に若干の説明を加え
ると、キャピラリチューブ方式による冷媒制御方式の場
合、暖房運転室数を多室運転から例えば1室運転に切換
えた場合、凝縮器容量が相対的に減少し、主回路のキャ
ピラリチューブ絞り度が一定のために余剰冷媒が1室運
転時の室内側熱交換器(凝縮器)に溜り込むことにより
凝縮圧力が異常に上昇して冷凍サイクルの運転に支障を
きたす。
As shown in the above two embodiments, to further explain the bypass circuit during heating operation, which is the main focus of the present invention, in the case of a refrigerant control method using a capillary tube method, the number of heating operation rooms can be changed from multi-room operation to multi-room operation. For example, when switching to single-room operation, the condenser capacity decreases relatively, and because the degree of restriction of the capillary tube in the main circuit is constant, excess refrigerant accumulates in the indoor heat exchanger (condenser) during single-room operation. This causes the condensation pressure to rise abnormally, causing trouble in the operation of the refrigeration cycle.

高圧が上昇すること自体は室内側吹出空気温度が上昇し
運転室の暖房能力が向上することであり好ましいことで
あるが高圧側圧力が25〜26kg/cm’Gを超える
ことは好ましくない。
An increase in the high pressure itself is preferable because it increases the temperature of the air blown indoors and improves the heating capacity of the driver's cabin, but it is not preferable for the high pressure side pressure to exceed 25 to 26 kg/cm'G.

したがって、この高圧圧力を適切な水準まで降下させる
ように前述のように2回路のバイパス方式を採用してい
た。
Therefore, in order to reduce this high pressure to an appropriate level, a two-circuit bypass system has been adopted as described above.

すなわち、まずレシーバタンク方式を採用し、暖房1室
運転時の余剰冷媒を電磁弁64を開放することによって
レシーバ65へ液冷媒として貯溜し、高圧圧力の低下を
はかり、したがって液冷媒の相対的減少による高圧圧力
の低下と同時に低圧圧力も低下する傾向を示し、合せて
圧縮機吸入側の過熱度が増し吐出温度が上昇する。
That is, first, a receiver tank system is adopted, and by opening the solenoid valve 64, surplus refrigerant during single-room heating operation is stored as a liquid refrigerant in the receiver 65, thereby reducing the high pressure, thereby reducing the relative amount of liquid refrigerant. At the same time as the high pressure decreases, the low pressure also tends to decrease, and at the same time, the degree of superheating on the suction side of the compressor increases and the discharge temperature increases.

この吐出温度上昇防止の意味と低圧の若干の向上の意味
から前記レシーバ65の上下よりキャピラリチューブ6
6 .67により液冷媒を低圧吸入ラインに導く。
In order to prevent this discharge temperature rise and to improve the low pressure slightly, the capillary tube 6 is
6. 67 leads the liquid refrigerant to the low pressure suction line.

しかしながらレシーバタンク方式のみで充分に高圧低下
をはかることはサイクル的に好ましくないことが実験的
に判明している。
However, it has been experimentally found that achieving a sufficiently high pressure drop using only the receiver tank method is not desirable from a cycle standpoint.

すなわち、通常の設定圧力18〜20kg/cm’Gに
近い程に高圧圧力を低下させようとした場合に大容量の
レシーバを必要とすることと、高圧低下と同時に低圧圧
力も影響を受けて低下し、蒸発器として作用する室外熱
交換器に着霜を生じる程に低圧圧力が降下し、キャピラ
リチューブ66 .67による液バイパスでは対処しき
れない。
In other words, if you try to lower the high pressure to a level close to the normal set pressure of 18 to 20 kg/cm'G, you will need a large-capacity receiver, and at the same time as the high pressure drops, the low pressure will also be affected and drop. However, the low pressure drops to such an extent that frost forms on the outdoor heat exchanger, which acts as an evaporator, and the capillary tubes 66 . The liquid bypass provided by 67 is not enough to deal with the problem.

したがって、レシーバと液バイパスによる圧力降下を適
正幅に留めバイパス回路として、高圧のガス管47より
の吐出ガスをホットガスバイパス電磁弁61,61′,
キャピラリチューブ62 .62’を介して低圧吸入ラ
イン(第2図に示す実施例)や、あるいは中圧の液管5
6(第3図に示す実施例)にバイパスすることにより凝
縮器への冷媒循環量を減少させ高圧圧力の低下を図り、
同時に低圧(蒸発)圧力を大幅に上昇させ着霜問題を解
決し、合せて吐出温度も低下することを確認している。
Therefore, the pressure drop caused by the receiver and the liquid bypass is kept within an appropriate range, and as a bypass circuit, the gas discharged from the high pressure gas pipe 47 is transferred to the hot gas bypass solenoid valves 61, 61',
Capillary tube 62. 62' to a low pressure suction line (the embodiment shown in FIG. 2) or a medium pressure liquid line 5.
6 (embodiment shown in FIG. 3) to reduce the amount of refrigerant circulating to the condenser and lower the high pressure,
At the same time, it has been confirmed that the low pressure (evaporation) pressure is significantly increased to solve the frost formation problem, and the discharge temperature is also lowered.

また、キャピラリチューブ方式の場合ホットガスバイパ
ス方式のみでサイクル制御を図る場合は極端に成績係数
が低下すると同時に過負荷運転時のサイクルの安定性に
欠けることが明らかである。
Furthermore, in the case of the capillary tube system, if cycle control is attempted only by the hot gas bypass system, it is clear that the coefficient of performance will be extremely lowered and at the same time the stability of the cycle will be lacking during overload operation.

本発明によればレシーバタンクバイパス方式トホットガ
スバイパス方式とを適切に組合せて採用することにより
キャピラリチューブ方式のヒートポンプ多室冷暖房装置
においても安定した1室(または少数室)暖房運転サイ
クルを構成することが可能となる。
According to the present invention, by appropriately combining the receiver tank bypass method and the hot gas bypass method, a stable one-room (or a few rooms) heating operation cycle can be configured even in a capillary tube-type heat pump multi-room air conditioning system. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多室冷暖房装置の冷媒回路図、第2図、
第3図はそれぞれ本発明の実施例を示す冷暖房装置の冷
媒回路図である。 30・・・・・・室外ユニット、31a,31b・・・
・・・室内ユニット、47・・・・・・ガス管(高圧ガ
ス管)、56・・・・・・液管(中圧液管路)、61,
61’・・・・・・ホツトガスバイパス電磁弁(第一の
バイパス回路)、62,62’・・・・・・キャピラリ
チューブ(第一のバイパス回路)、65・・・・・・第
三の管路(低圧吸入ライン)、65・・・・・・レシー
バ(第二のバイパス回路)、66 ,67・・・・・・
キャピラリチューブ(第二のバイパス回路)。
Figure 1 is a refrigerant circuit diagram of a conventional multi-room air conditioning system;
FIG. 3 is a refrigerant circuit diagram of a heating and cooling system showing an embodiment of the present invention. 30...Outdoor unit, 31a, 31b...
...Indoor unit, 47...Gas pipe (high pressure gas pipe), 56...Liquid pipe (medium pressure liquid pipe), 61,
61'... Hot gas bypass solenoid valve (first bypass circuit), 62, 62'... Capillary tube (first bypass circuit), 65... Third pipe line (low pressure suction line), 65... Receiver (second bypass circuit), 66, 67...
Capillary tube (second bypass circuit).

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍サイクルの冷媒流量制御をキャピラリチューブ
にて構成し、かつ室内ユニットおよび室外ユニットそれ
ぞれにキャピラリチューブを配設した冷暖房装置の暖房
運転時の高圧ガス管路および室内ユニットから室外ユニ
ットに至るまでの中圧液管路の一対の管路の他に暖房運
転時低圧となる管路に連通する低圧吸入ラインを設け、
暖房運転時室内ユニット運転台数減少時には前記高圧ガ
ス管路より分岐し前記低圧吸入ラインまたは前記中圧液
管路へ側路する第一のバイパス回路と、前記中圧液管よ
り分岐し前記低圧吸入ラインへ側路する第二のバイパス
回路を設け、前記第二のバイパス回路中にはレシーバタ
ンクと、前記レシーバタンクよりの冷媒の流出を制御す
るキャピラリチューブとを設けた冷暖房装置。
1 The refrigerant flow rate control of the refrigeration cycle is configured using capillary tubes, and the high-pressure gas pipes and the connections from the indoor unit to the outdoor unit during heating operation of an air-conditioning system in which capillary tubes are installed in each of the indoor and outdoor units. In addition to the pair of medium-pressure liquid pipes, a low-pressure suction line is provided that communicates with the pipe that becomes low-pressure during heating operation.
a first bypass circuit that branches from the high-pressure gas pipe and bypasses the low-pressure suction line or the medium-pressure liquid pipe when the number of operating indoor units decreases during heating operation; and a first bypass circuit that branches from the medium-pressure liquid pipe and bypasses the low-pressure suction line. A heating and cooling device comprising: a second bypass circuit that bypasses a line; and a receiver tank and a capillary tube for controlling the outflow of refrigerant from the receiver tank in the second bypass circuit.
JP15520877A 1977-12-21 1977-12-21 Air conditioning equipment Expired JPS586857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15520877A JPS586857B2 (en) 1977-12-21 1977-12-21 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15520877A JPS586857B2 (en) 1977-12-21 1977-12-21 Air conditioning equipment

Publications (2)

Publication Number Publication Date
JPS5486843A JPS5486843A (en) 1979-07-10
JPS586857B2 true JPS586857B2 (en) 1983-02-07

Family

ID=15600859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15520877A Expired JPS586857B2 (en) 1977-12-21 1977-12-21 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JPS586857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320361Y2 (en) * 1984-03-14 1991-05-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191857A (en) * 1984-03-09 1984-10-31 松下冷機株式会社 Heat pump type multi-chamber air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320361Y2 (en) * 1984-03-14 1991-05-01

Also Published As

Publication number Publication date
JPS5486843A (en) 1979-07-10

Similar Documents

Publication Publication Date Title
US8074459B2 (en) Heat pump system having auxiliary water heating and heat exchanger bypass
US4399664A (en) Heat pump water heater circuit
JPH1068553A (en) Air conditioner
WO2019144616A1 (en) Heat pump system and defrosting control method therefor
US4643002A (en) Continuous metered flow multizone air conditioning system
JPH0544675Y2 (en)
JPS586857B2 (en) Air conditioning equipment
JP3010934B2 (en) Air conditioner
JPH04324069A (en) Refrigerating plant
JPS6011787B2 (en) Heat pump type multi-room air conditioning system
JP3511161B2 (en) Air conditioner
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
JPH0117007Y2 (en)
JPH0424364Y2 (en)
JPH04340063A (en) Air conditioner and its operation control device
JPS593352Y2 (en) Air conditioning equipment
EP4310416A1 (en) Hybrid multi-air conditioning system
US20240133602A1 (en) Air conditioner
JPH0587426A (en) Air-conditioner
CN114838538B (en) Defrosting system and method for air conditioner
CN113865089B (en) Double-condenser heat pump water heater system with auxiliary defrosting structure
JPS6018757Y2 (en) air conditioner
JPS6334385B2 (en)
JPH04222354A (en) Operation controller for refrigerating equipment
JPS5912529Y2 (en) Air conditioning equipment