JPH0424364Y2 - - Google Patents

Info

Publication number
JPH0424364Y2
JPH0424364Y2 JP1986062467U JP6246786U JPH0424364Y2 JP H0424364 Y2 JPH0424364 Y2 JP H0424364Y2 JP 1986062467 U JP1986062467 U JP 1986062467U JP 6246786 U JP6246786 U JP 6246786U JP H0424364 Y2 JPH0424364 Y2 JP H0424364Y2
Authority
JP
Japan
Prior art keywords
gas pipe
valve
pressure gas
pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986062467U
Other languages
Japanese (ja)
Other versions
JPS62173671U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986062467U priority Critical patent/JPH0424364Y2/ja
Publication of JPS62173671U publication Critical patent/JPS62173671U/ja
Application granted granted Critical
Publication of JPH0424364Y2 publication Critical patent/JPH0424364Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は複数の室内機を1基の室外機に並列的
に接続して可逆圧縮冷凍サイクルを形成してなる
多室形空気調和機に関する。
[Detailed description of the invention] (Field of industrial application) The present invention relates to a multi-room air conditioner in which multiple indoor units are connected in parallel to one outdoor unit to form a reversible compression refrigeration cycle. .

(従来の技術) この種の多室形空気調和機において、冷房のみ
暖房のみのほかに、一部を冷房、残りを暖房と併
行した運転が可能なものが特開昭55−12372号公
報によつて示されるように、公知したものがあ
る。
(Prior art) This type of multi-room air conditioner is disclosed in Japanese Patent Laid-Open No. 12372/1983, which is capable of operating not only cooling and heating, but also cooling a portion of the air conditioner and heating the rest of the air conditioner. As shown above, there are some known methods.

(考案が解決しようとする問題点) ところで、従来の冷暖房同時運転が可能な多室
形空気調和機は前記公報で示される装置のように
室内ユニツトの数の3倍の開閉弁例えば電磁弁が
必要であつて装置が複雑、高いコストとなる不利
があり、制御回路も同様複雑になる問題を有して
いる。
(Problems to be solved by the invention) By the way, a conventional multi-room air conditioner capable of simultaneous heating and cooling operations has three times as many on-off valves as the number of indoor units, such as solenoid valves, as shown in the above-mentioned publication. However, the disadvantage is that the required device is complicated and expensive, and the control circuit is similarly complicated.

かかる問題点を解決するために第3図に示す如
く、冷房用膨脹弁3と室内コイル4との直列冷媒
回路を備えた複数の室内機2−1,2−2…の各液
管7を室外機1の高圧液管14に接続し、各ガス
管8を三方切換弁26−1,26−2…を夫々介し
て室外機1の高圧ガス管16と低圧ガス管17と
に切換え可能に接続して、冷房運転時は前記各切
換弁26−1,26−2…を低圧ガス管17への接
続側に切換えると共に、室外コイル12を凝縮器
として作用させる一方、暖房運転時は各切換弁2
6−1,26−2…を高圧ガス管16への接続側に
切換えると共に、室外コイル12を蒸発器として
作用させるようにする制御形態が考えられる。
In order to solve this problem, as shown in FIG. 3, each liquid pipe 7 of a plurality of indoor units 2-1 , 2-2 , . It is connected to the high pressure liquid pipe 14 of the outdoor unit 1, and each gas pipe 8 can be switched to the high pressure gas pipe 16 and the low pressure gas pipe 17 of the outdoor unit 1 via the three-way switching valves 26-1, 26-2 , respectively. During cooling operation, the switching valves 26-1 , 26-2... are switched to the connection side to the low-pressure gas pipe 17, and the outdoor coil 12 acts as a condenser, while during heating operation, the switching valves 26-1, 26-2 ... are switched to the connection side to the low-pressure gas pipe 17. valve 2
6-1 , 26-2 ... may be switched to the connection side to the high-pressure gas pipe 16, and a control form may be considered in which the outdoor coil 12 is made to function as an evaporator.

かかる制御形態をとる場合、暖房運転のときの
停止モードでは、室内コイル4内には冷媒液が滞
溜するのを防止するために、前記三方切換弁26
1,26−2…を冷房運転と同様に低圧ガス管1
7への接続側に切換えるように制御するのが好ま
しいのであるが、この場合、高圧ガス管16と三
方切換弁26−1,26−2…のポートとを接続す
る配管内で高圧冷媒が周囲温度まで冷却され液化
して滞溜することから、冷房運転開始のために、
三方切換弁26−1,26−2…を切換え作動させ
た際、前述した滞溜液が室内コイル4に向けて急
激に流れ込み、その結果、冷媒液ハンマにより室
内機のコイルが損傷を受けるおそれがある。
When such a control mode is adopted, in the stop mode during heating operation, the three-way switching valve 26 is closed in order to prevent refrigerant liquid from accumulating in the indoor coil 4.
- 1 , 26- 2 ... are connected to the low pressure gas pipe 1 in the same way as in the cooling operation.
In this case, the high-pressure refrigerant is connected to the surroundings in the piping connecting the high-pressure gas pipe 16 and the ports of the three-way switching valves 26-1 , 26-2 ... As it cools down to a certain temperature, liquefies and accumulates, in order to start cooling operation,
When the three-way switching valves 26-1 , 26-2 ... are switched and operated, the above-mentioned accumulated liquid suddenly flows toward the indoor coil 4, and as a result, there is a risk that the coil of the indoor unit will be damaged by the refrigerant liquid hammer. There is.

本考案はかかる欠点の解消をはかるべく案出さ
れるに至つたものであつて、高圧ガス管と冷房サ
イクル、暖房サイクルの切換えを行わせる切換弁
とを接続する配管内の滞溜液を逃がすバイパス路
を設けることによつて、液ハンマの発生予防を確
実にはからせることを目的とするものである。
The present invention has been devised to eliminate such drawbacks, and is a bypass that releases accumulated liquid in the piping that connects the high-pressure gas pipe and the switching valve that switches between the cooling cycle and the heating cycle. By providing a channel, the purpose is to reliably prevent the occurrence of liquid hammer.

(問題点を解決するための手段) そこで本考案は、多室形空気調和機において、
冷房用膨脹弁3と室内コイル4との直列冷媒回路
を備えた複数の室内機2−1,2−2…の各液管7
を1基の室外機1の高圧液管14に接続し、各ガ
ス管8を四路切換弁15−1,15−2…を夫々介
して前記室外機1の高圧ガス管16と低圧ガス管
17とに切換え可能に接続し、さらに、冷房サイ
クル時は高圧域、暖房サイクル時は低圧域に切換
わる前記各四路切換弁15−1,15−2…の余剰
ポートをキヤピラリーチユーブ18によつて低圧
ガス管17に接続したことを特徴とする。
(Means for solving the problem) Therefore, the present invention provides a multi-room air conditioner that
Each liquid pipe 7 of a plurality of indoor units 2-1 , 2-2 ... equipped with a series refrigerant circuit including a cooling expansion valve 3 and an indoor coil 4
are connected to the high-pressure liquid pipe 14 of one outdoor unit 1, and each gas pipe 8 is connected to the high-pressure gas pipe 16 of the outdoor unit 1 and the low-pressure gas pipe via four-way switching valves 15-1 , 15-2 , respectively. The surplus ports of the four-way switching valves 15-1 , 15-2 , which switch to the high pressure range during the cooling cycle and to the low pressure range during the heating cycle, are connected to the capillary reach tube 18 in a switchable manner. Therefore, it is characterized in that it is connected to a low pressure gas pipe 17.

(作用) 本考案は暖房運転中の停止時に、四路切換弁1
5−1,15−2…を室内側のガス管8が室外機1
の低圧ガス管17に連通するように切換操作する
ことによつて、前記四路切換弁15−1,15−2
…に接続した高圧ガス管内の高圧冷媒ガスはキヤ
ピラリーチユーブ18を通じて絶えず流れるよう
になり、その結果、前記高圧ガス管の温度を常に
高温に維持して液溜りを防止できる。
(Function) The present invention allows the four-way switching valve 1 to
5-1 , 15-2 ..., the gas pipe 8 on the indoor side is connected to the outdoor unit 1
By switching the four-way switching valves 15-1 and 15-2 so as to communicate with the low pressure gas pipe 17 of
The high-pressure refrigerant gas in the high-pressure gas pipe connected to the high-pressure gas pipe constantly flows through the capillary reach tube 18, and as a result, the temperature of the high-pressure gas pipe can be maintained at a high temperature to prevent liquid accumulation.

(実施例) 以下、本考案の実施例を添付図面によつて詳細
に説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本考案の1例に係る2室用空気調和機
の装置回路図であり、1は室外機、2−1,2−2
は室内機であり、各室内機2−1,22には、室内
コイル4を有しており、それ等は同じ構造である
ので一方の室内機2−1について説明すると、室
内フアン5を有する室内コイル4に対して、暖房
運転の際に冷媒を流通させるための例えば逆止弁
を有するバイパス管6が並列に接続されてなる冷
房用膨脹弁3を直列に接続せしめて、この直列回
路における前記膨脹弁3の入口側に液管7が、ま
た室内コイル4のコイル端部にガス管8が夫々接
続されている。
FIG. 1 is a device circuit diagram of a two-room air conditioner according to one example of the present invention, where 1 is an outdoor unit, 2-1 , 2-2
is an indoor unit, and each of the indoor units 2-1 and 2-2 has an indoor coil 4, and they have the same structure, so to explain one indoor unit 2-1 , the indoor fan 5 will be explained. A cooling expansion valve 3 in which a bypass pipe 6 having, for example, a check valve for circulating a refrigerant during heating operation is connected in parallel is connected in series to the indoor coil 4 having the above-mentioned indoor coil 4. A liquid pipe 7 is connected to the inlet side of the expansion valve 3, and a gas pipe 8 is connected to the coil end of the indoor coil 4.

前記各膨脹弁3はガス管8の温度を所定の過熱
度に保持せしめるために感温膨脹弁が使用され、
弁を開弁作動、あるいは閉弁不作動に制御するパ
イロツト弁として三方電磁弁24を付設せしめて
おり、この三方電磁弁24は付勢によりガス管8
の圧力を膨脹弁3に作用させ、消勢により液管7
の圧力を膨脹弁3に作用させるように設けてい
る。
Each of the expansion valves 3 is a temperature-sensitive expansion valve in order to maintain the temperature of the gas pipe 8 at a predetermined degree of superheat,
A three-way solenoid valve 24 is attached as a pilot valve to control the valve to open or close, and when energized, the three-way solenoid valve 24 opens the gas pipe 8.
pressure is applied to the expansion valve 3, and the liquid pipe 7 is deenergized.
The pressure is applied to the expansion valve 3.

一方、室外機1は2基の室内機2−1,2−2
共通させた単基構造であつて圧縮機9、この圧縮
機9の吸入口に接続される低圧ガス管17、該低
圧ガス管17中に介設したアキユムレータ10、
圧縮機9の吐出口に接続される高圧ガス管16、
各室内機2−1,2−2における各液管7に対し一
括させ接続せしめた高圧液管14、この高圧液管
14に一端を接続したレシーバ11、同じく高圧
液管14に入口を接続した暖房用膨脹弁13、該
膨脹弁13の出口に直列接続した凝縮器・蒸発器
兼用の室外コイル12、この室外コイル12の端
部を高圧ガス管16と低圧ガス管17とに選択的
に接続可能となして設けた室外コイル用切換弁1
9、暖房用膨脹弁13の出口とレシーバ11の他
端とに亘らせ、かつ途中に逆止弁を介設してなる
第1バイパス回路21、高圧ガス管16とレシー
バ11の他端とを接続せしめると共に、途中に比
例制御弁23を介設して有する第2バイパス回路
22、高圧ガス管16と低圧ガス管17と各室内
機2−1,2−2のガス管8との間に夫々介設して
室内ユニツト2−1,2−2の各ガス管8を高圧ガ
ス管16又は低圧ガス管17に切換接続せしめる
複数個の四路切換弁15−1,15−2、前記暖房
用膨脹弁13に対し開弁作動、閉弁不作動に制御
するためのパイロツト弁として付設せしめた三方
電磁弁25の各部材によつて構成される。
On the other hand, the outdoor unit 1 has a single unit structure common to the two indoor units 2-1 and 2-2 , and includes a compressor 9, a low-pressure gas pipe 17 connected to the inlet of the compressor 9, and a low-pressure gas pipe 17 connected to the inlet of the compressor 9. an accumulator 10 interposed in the gas pipe 17;
a high-pressure gas pipe 16 connected to the discharge port of the compressor 9;
A high-pressure liquid pipe 14 is connected to each liquid pipe 7 in each indoor unit 2-1 , 2-2 , a receiver 11 has one end connected to this high-pressure liquid pipe 14, and an inlet is also connected to the high-pressure liquid pipe 14. A heating expansion valve 13, an outdoor coil 12 serving as a condenser and evaporator connected in series to the outlet of the expansion valve 13, and an end of the outdoor coil 12 selectively connected to a high pressure gas pipe 16 and a low pressure gas pipe 17. Switching valve 1 for outdoor coil provided as possible
9. A first bypass circuit 21 extending between the outlet of the heating expansion valve 13 and the other end of the receiver 11 and having a check valve interposed therebetween, the high-pressure gas pipe 16 and the other end of the receiver 11; and a second bypass circuit 22 having a proportional control valve 23 interposed therebetween, between the high pressure gas pipe 16, the low pressure gas pipe 17, and the gas pipe 8 of each indoor unit 2-1 , 2-2 . a plurality of four-way switching valves 15-1, 15-2, which are respectively interposed in the four-way switching valves 15-1 , 15-2 , to selectively connect each gas pipe 8 of the indoor units 2-1 , 2-2 to the high-pressure gas pipe 16 or the low-pressure gas pipe 17; It is constituted by each member of a three-way solenoid valve 25 attached as a pilot valve for controlling the heating expansion valve 13 to open or close.

なお、暖房用膨脹弁13は感温膨脹弁が使用さ
れ、低圧ガス管17の温度、すなわち、圧縮機9
に吸入されるガス冷媒の温度を、所定過熱度に保
持するように弁制御が成されるが、前記三方電磁
弁25は付勢により低圧ガス管内の圧力を膨脹弁
13に作用させ、消勢により、前記高圧液管14
内の圧力を膨脹弁13に作用させるようになつて
いる。
Note that a temperature-sensitive expansion valve is used as the heating expansion valve 13, and the temperature of the low-pressure gas pipe 17, that is, the compressor 9
Valve control is performed to maintain the temperature of the gas refrigerant sucked into the gas refrigerant at a predetermined degree of superheat. Accordingly, the high pressure liquid pipe 14
The pressure inside is applied to the expansion valve 13.

叙上の構成を有する空気調和機において、四路
切換弁15−1,15−2及び室外コイル用切換弁
19は、第2図に略示する如きソレノイド制御・
パイロツト操作形スライド式の構造の四方弁を使
用していて、高圧ガス管16に接続する高圧ポー
トAと低圧ガス管17に接続する低圧ポートCと
に切換つて連通せしめられる2つのポートB,D
のうち、普通は閉塞させておくポートである余剰
ポートBと、前記低圧ポートCとの間をキヤピラ
リーチユーブ18及び20で夫々接続して実質的
に三方切換弁として利用している。
In the air conditioner having the above configuration, the four-way switching valves 15-1 , 15-2 and the outdoor coil switching valve 19 are operated by solenoid control as schematically shown in FIG.
A four-way valve with a pilot-operated sliding structure is used, and two ports B and D are switched and communicated with a high-pressure port A connected to a high-pressure gas pipe 16 and a low-pressure port C connected to a low-pressure gas pipe 17.
Of these, the surplus port B, which is normally a closed port, and the low pressure port C are connected by capillary reach tubes 18 and 20, respectively, and are essentially used as a three-way switching valve.

この場合、キヤピラリーチユーブ18は四路切
換弁15−1,15−2冷房サイクル時に高圧域、
暖房サイクル時に低圧域となる余剰ポートBを低
圧ガス管17に連通させるための抵抗管であり、
一方、キヤピラリーチユーブ20は冷房サイクル
時に低圧域、暖房サイクル時に高圧域となる余剰
ポートBを低圧ガス管17に連通させるための抵
抗管である。
In this case, the capillary reach tube 18 operates in the high pressure region during the four-way switching valves 15-1 and 15-2 during the cooling cycle.
It is a resistance pipe for communicating surplus port B, which becomes a low pressure region during the heating cycle, with the low pressure gas pipe 17,
On the other hand, the capillary reach tube 20 is a resistance pipe for communicating with the low pressure gas pipe 17 the surplus port B which becomes a low pressure region during the cooling cycle and a high pressure region during the heating cycle.

次にこの空気調和機の運転作動を第1図及び第
2図によつて以下説明する。
Next, the operation of this air conditioner will be explained below with reference to FIGS. 1 and 2.

() 全暖房運転モードの場合、 四路切換弁15−1,15−2及び室外コイル用
切換弁19を第1図に実線で示した弁位置に切換
え作動せしめ、三方電磁弁24は消勢させて冷房
用膨脹弁3を全閉せしめ、さらに三方電磁弁25
を付勢せしめて暖房用膨脹弁13を流量制御状態
に保持し、第2バイパス通路22を比例制御弁2
3の作動により高圧圧力が所定値になるように流
量制御させる。
() In the case of full heating operation mode, the four-way switching valves 15-1 , 15-2 and the outdoor coil switching valve 19 are switched to the valve positions shown by solid lines in FIG. 1, and the three-way solenoid valve 24 is deenergized. to fully close the cooling expansion valve 3, and then close the three-way solenoid valve 25.
is energized to maintain the heating expansion valve 13 in a flow rate control state, and the second bypass passage 22 is connected to the proportional control valve 2.
3, the flow rate is controlled so that the high pressure becomes a predetermined value.

かくして圧縮機9を出た高圧は高圧ガス管16
→四路切換弁15−1,15−2の高圧ポートA,
A→同じくポートD,D→ガス管8,8→室内コ
イル4,4→バイパス回路6,6→液管7,7→
高圧液管14→暖房用膨脹弁13→室外コイル1
2室外コイル用切換弁19のポートD→同じく低
圧ポートC→低圧ガス管17→アキユムレータ1
0の順に流れて圧縮機9の吸入口に戻り、室内コ
イル4,4が凝縮器、室外コイル12が蒸発器に
夫々作用して室内コイル4,4と室外コイル12
との間で熱収支が均衡する。
Thus, the high pressure leaving the compressor 9 is transferred to the high pressure gas pipe 16.
→High pressure port A of four-way switching valve 15-1 , 15-2 ,
A→Same ports D, D→Gas pipes 8, 8→Indoor coils 4, 4→Bypass circuits 6, 6→Liquid pipes 7, 7→
High pressure liquid pipe 14 → heating expansion valve 13 → outdoor coil 1
2 Port D of outdoor coil switching valve 19 → Low pressure port C → Low pressure gas pipe 17 → Accumulator 1
0 and returns to the suction port of the compressor 9, the indoor coils 4, 4 act on the condenser, and the outdoor coil 12 acts on the evaporator, respectively, so that the indoor coils 4, 4 and the outdoor coil 12 act on the evaporator.
The heat balance is balanced between

この暖房運転の場合に、室内機2−1,2−2
停止するにはフアン5を停止すると同時に対応す
る四路切換弁15−1,15−2を第1図の破線示
弁位置に切換えることによつて、室内コイル4,
4を低圧ガス管17に導通せしめ、コイル内に液
冷媒が溜るのを防止するようになすものである。
In the case of this heating operation, to stop the indoor units 2-1 and 2-2 , stop the fan 5 and at the same time move the corresponding four-way switching valves 15-1 and 15-2 to the valve positions indicated by the broken lines in Fig. 1. By switching the indoor coil 4,
4 is connected to the low pressure gas pipe 17 to prevent liquid refrigerant from accumulating in the coil.

() 全冷房運転モードの場合、 四路切換弁15−1,15−2及び室外コイル用
切換弁19を第1図に破線で示した弁位置に切換
え作動せしめ、三方電磁弁24は付勢させて冷房
用膨脹弁3を流量制御状態に保持し、さらに三方
電磁弁25を消勢させて暖房用膨脹弁13を全閉
せしめ、そして第2バイパス通路22は比例制御
弁23の作動により高圧圧力が所定値になるよう
に流量制御させる。
() In the case of full cooling operation mode, the four-way switching valves 15-1 , 15-2 and the outdoor coil switching valve 19 are switched to the valve positions shown by broken lines in FIG. 1, and the three-way solenoid valve 24 is energized. The cooling expansion valve 3 is held in the flow rate control state, the three-way solenoid valve 25 is deenergized, the heating expansion valve 13 is fully closed, and the second bypass passage 22 is set to high pressure by the operation of the proportional control valve 23. The flow rate is controlled so that the pressure is at a predetermined value.

圧縮機9を出た高圧ガスは高圧ガス管16→室
外コイル用切換弁19の高圧ポート→同じくポー
トD→室外コイル12→第1バイパス回路21→
レシーバ11→高圧液管14→液管7,7→冷房
用膨脹弁3,3→室内コイル4,4→ガス管8,
8→四路切換弁15−1,15−2のポートD,D
→同じく低圧ポートC,C→低圧ガス管17→ア
キユムレータ10の順に流れて圧縮機9の吸入口
に戻り、室外コイル12が凝縮器、室内コイル
4,4が蒸発器に夫々作用して両者の間で熱収支
が均衡する。
The high-pressure gas exiting the compressor 9 is routed through the high-pressure gas pipe 16 → the high-pressure port of the outdoor coil switching valve 19 → the same port D → the outdoor coil 12 → the first bypass circuit 21 →
Receiver 11 → High pressure liquid pipe 14 → Liquid pipe 7, 7 → Cooling expansion valve 3, 3 → Indoor coil 4, 4 → Gas pipe 8,
8→Four-way switching valve 15-1 , 15-2 ports D, D
→ Similarly, it flows in the order of low pressure ports C, C → low pressure gas pipe 17 → accumulator 10 and returns to the inlet of compressor 9, and the outdoor coil 12 acts on the condenser and the indoor coils 4, 4 act on the evaporator, respectively. The heat balance is balanced between

なお、冷房運転中、室内機2−1,2−2の停止
は、三方電磁弁24を消勢して冷房用膨脹弁3の
全閉を行わせれば良い。
During the cooling operation, the indoor units 2-1 and 2-2 can be stopped by deenergizing the three-way solenoid valve 24 and fully closing the cooling expansion valve 3.

() 冷暖房併行運転モードの場合、 四路切換弁151を第1図に実線で示した弁位置
に切換え作動せしめ、室内機2−1の三方電磁弁
24は消勢させてその冷房用膨脹弁3を全閉せし
め、一方、四路切換弁15−2を第1図に破線で
示した弁位置に切換え作動せしめ、室内機2−2
の三方電磁弁24は付勢させてその冷房用膨脹弁
3を流量制御状態に保持し、また、室外コイル用
切換弁19は図の実線示弁状態に切換え、さらに
三方電磁弁25を消勢させて暖房用膨脹弁13を
全閉せしめ、そして第2バイパス通路22は同じ
ように流量制御の状態にする。
() In the case of the cooling/heating simultaneous operation mode, the four-way switching valve 151 is switched to the valve position shown by the solid line in Fig. 1, and the three-way solenoid valve 24 of the indoor unit 2-1 is deenergized and its cooling expansion is activated. The valve 3 is fully closed, and the four-way selector valve 15-2 is switched to the valve position shown by the broken line in FIG .
The three-way solenoid valve 24 is energized to maintain the cooling expansion valve 3 in the flow rate control state, the outdoor coil switching valve 19 is switched to the state indicated by the solid line in the figure, and the three-way solenoid valve 25 is de-energized. The heating expansion valve 13 is then fully closed, and the second bypass passage 22 is similarly brought into a state of flow rate control.

かくして室内機2−1は暖房運転、室内機2−2
は冷房運転が夫々行われるのであつて、圧縮機9
を出た高圧ガスは高圧ガス管16→四路切換弁1
1の高圧ポートA→同じくポートD→室内機2
1のガス管8→同じく室内コイル4→同じくバ
イパス回路6→同じく液管7→高圧液管14→室
内機2−2の液管7→同じく冷房用膨張弁3→同
じく室内コイル4→同じくガス管8→四路切換弁
15−2のポートD→同じく低圧ポートC→低圧
ガス管17→アキユムレータ10の順に流れて圧
縮機9の吸入口に戻り、室内機2−1の室内コイ
ル4が凝縮器、室内機2−2の室内コイル4が蒸
発器として作用し両者間の熱収支が略々均衡す
る。
In this way, indoor unit 2-1 is in heating operation, and indoor unit 2-2 is in heating operation.
The cooling operation is performed respectively, and the compressor 9
The high-pressure gas that exits is transferred to high-pressure gas pipe 16 → four-way switching valve 1
5 High pressure port A of 1 → same port D → indoor unit 2
- 1 gas pipe 8 → same indoor coil 4 → same bypass circuit 6 → same liquid pipe 7 → high pressure liquid pipe 14 → indoor unit 2- 2 liquid pipe 7 → same cooling expansion valve 3 → same indoor coil 4 → same The gas flows in the order of gas pipe 8 → port D of four-way switching valve 15-2 → low pressure port C → low pressure gas pipe 17 → accumulator 10 and returns to the suction port of compressor 9, and indoor coil 4 of indoor unit 2-1 The condenser and the indoor coil 4 of the indoor unit 2-2 act as an evaporator, and the heat balance between them is approximately balanced.

なお、暖房に必要な冷媒量と冷房に必要な冷媒
量との差はレシーバ11によつて調整され、一
方、室外コイル12は低圧ラインに連通し、かつ
暖房用膨脹弁13により入口側が閉じられて不作
動状態となる。
The difference between the amount of refrigerant required for heating and the amount of refrigerant required for cooling is adjusted by the receiver 11, while the outdoor coil 12 is connected to a low pressure line, and the inlet side is closed by a heating expansion valve 13. It becomes inactive.

以上、各運転モードについて説明したが、四路
切換弁15−1が冷房サイクルの状態のときは第
2図に実線示した弁作動状態となり、高圧ポート
Aに臨み、かつ椀形の弁の外側に形成される弁本
体内空間はポートBに接続したキヤピラリーチユ
ーブ18を経て低圧ポートCに通じているので、
高圧ポートAに接続した高圧ガス管16には僅か
ではあるが高圧ガスが絶えず流れることとなつて
高圧ガス管16の温度を高温に維持できて運転開
始の即暖性能が向上する。
Each operation mode has been explained above, but when the four-way switching valve 15-1 is in the cooling cycle state, it is in the valve operating state shown by the solid line in Fig. 2, facing the high pressure port A and outside the bowl-shaped valve. The internal space of the valve body formed in is connected to the low pressure port C via the capillary reach tube 18 connected to the port B.
A small amount of high-pressure gas constantly flows through the high-pressure gas pipe 16 connected to the high-pressure port A, so that the temperature of the high-pressure gas pipe 16 can be maintained at a high temperature, and the immediate warming performance at the start of operation is improved.

勿論、四路切換弁15−1の前記弁体内に高圧
冷媒が液となつて溜るようなことがあつても、キ
ヤピラリーチユーブ18を通じて減圧されながら
低圧ガス管17に流れるため、液が四路切換弁内
に停滞するおそれはなく、運転開始時の液ハンマ
は予防される。
Of course, even if the high-pressure refrigerant turns into liquid and accumulates in the valve body of the four-way switching valve 15-1 , the liquid flows to the low-pressure gas pipe 17 while being depressurized through the capillary reach tube 18. There is no risk of stagnation in the switching valve, and liquid hammer at the start of operation is prevented.

なお、液ハンマー現象は、冷房運転中に高圧ガ
ス管16が外気で冷却されて液が溜つたときに四
路切換弁15−1を暖房運転側に切換えた際に発
生する。
The liquid hammer phenomenon occurs when the four-way selector valve 15-1 is switched to the heating operation side when the high-pressure gas pipe 16 is cooled by outside air and liquid accumulates during the cooling operation.

一方、冷房運転時は冷房用膨脹弁3により流量
制御されるので、各室内機2−1,2−2のコイル
出口における過熱度は適正値例えば5°に制御され
ているが、室内機2−1,2−2と室外機1とが離
れていて連絡配管が長い場合は、圧縮機9入口に
おいて外気との熱交換により、さらに過熱度が大
きくなつて吐出ガス温度が上昇するおそれがあ
る。
On the other hand, during cooling operation, the flow rate is controlled by the cooling expansion valve 3, so the degree of superheat at the coil outlet of each indoor unit 2-1 , 2-2 is controlled to an appropriate value, for example, 5°. - If 1 , 2-2 and outdoor unit 1 are far apart and the connecting piping is long, there is a risk that the degree of superheat will further increase due to heat exchange with outside air at the compressor 9 inlet, and the discharge gas temperature will rise. .

このようなとき、四路切換弁15−1,15−2
において高圧ポートA及びポートBに臨む弁本体
内の高温高圧ガスは、ポートD及び低圧ポートC
に臨む椀形の弁の内側を流れる低圧低温ガスとの
熱交換によつて充分に液化し低圧ガス管17に向
けインジエクシヨンされるため、吸入冷媒ガスの
過熱度を5℃前後まで下げさせることが可能であ
る。
In such a case, the four-way switching valves 15-1 , 15-2
The high-temperature, high-pressure gas inside the valve body facing high-pressure port A and port B at port D and low-pressure port C
The refrigerant gas is sufficiently liquefied through heat exchange with the low-pressure low-temperature gas flowing inside the bowl-shaped valve facing the refrigerant gas pipe 17, and is injected into the low-pressure gas pipe 17, making it possible to reduce the degree of superheating of the suction refrigerant gas to around 5°C. It is possible.

(考案の効果) 本考案は以上詳述した構成及び作用を有するも
のであり、特に暖房運転中の停止時に、四路切換
弁15−1,15−2内において冷媒液をキヤピラ
リーチユーブ18によつて低圧ガス管17に流出
させることができるので、冷房運転又は暖房停止
から暖房運転に切換わる際に生じ易い液ハンマを
解消して、室内機2−1,2−2の損傷を起生しな
いようにでき装置の安全性を高め得る。
(Effects of the invention) The present invention has the configuration and operation detailed above, and in particular, when the heating operation is stopped, the refrigerant liquid is transferred to the capillary reach tube 18 in the four-way switching valves 15-1 and 15-2 . Therefore, the liquid can flow out into the low-pressure gas pipe 17, eliminating the liquid hammer that tends to occur when switching from cooling operation or heating stop to heating operation, which can cause damage to indoor units 2-1 and 2-2. This can increase the safety of the device.

しかも四路切換弁15−1,15−2に接続する
高圧ガス管16の管温度を高く保持して、暖房運
転立上りの際の即暖性能を向上することが可能で
ある。
Furthermore, it is possible to maintain a high pipe temperature of the high-pressure gas pipe 16 connected to the four-way switching valves 15-1 and 15-2 , thereby improving the instant heating performance at the start of heating operation.

さらに、前述したように冷房運転時には四路切
換弁15−1,15−2において高圧液冷媒を減圧
させながら低圧ガス管17に噴出させるリキツド
インジエクシヨンが行われるので、吸入冷媒の過
熱度を低下させて吐出管温度の異常上昇を抑える
ことができる。
Furthermore, as mentioned above, during cooling operation, liquid injection is performed in which the high-pressure liquid refrigerant is depressurized and injected into the low-pressure gas pipe 17 at the four-way switching valves 15-1 and 15-2 . It is possible to suppress an abnormal rise in the discharge pipe temperature by lowering the temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の1実施例に係る装置回路図、
第2図は第1図中の四路切換弁の略示構造図、第
3図は従来の空気調和機の装置回路図である。 1……室外機、2−1,2−2………室内機、3
……冷房用膨脹弁、4……室内コイル、7……液
管、8……ガス管、14……高圧液管、15−1
15−2……四路切換弁、16……高圧ガス管、
17……低圧ガス管、18……キヤピラリーチユ
ーブ。
FIG. 1 is a device circuit diagram according to an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of the four-way switching valve shown in FIG. 1, and FIG. 3 is a circuit diagram of a conventional air conditioner. 1...Outdoor unit, 2-1 , 2-2 ...Indoor unit, 3
...Air conditioning expansion valve, 4...Indoor coil, 7...Liquid pipe, 8...Gas pipe, 14...High pressure liquid pipe, 15-1 ,
15-2 ...Four-way switching valve, 16...High pressure gas pipe,
17...Low pressure gas pipe, 18...Capillary reach tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷房用膨脹弁3と室内コイル4との直列冷媒回
路を備えた複数の室内機2−1,2−2…の各液管
7を1基の室外機1の高圧液管14に接続し、各
ガス管8を四路切換弁15−1,15−2…を夫々
介して前記室外機1の高圧ガス管16と低圧ガス
管17とに切換え可能に接続し、さらに、冷房サ
イクル時は高圧域、暖房サイクル時は低圧域に切
換わる前記各四路切換弁15−1,15−2…の余
剰ポートをキヤピラリーチユーブ18によつて低
圧ガス管17に接続したことを特徴とする多室形
空気調和機。
Each liquid pipe 7 of a plurality of indoor units 2-1 , 2-2 , etc., each equipped with a series refrigerant circuit including a cooling expansion valve 3 and an indoor coil 4, is connected to the high-pressure liquid pipe 14 of one outdoor unit 1, Each gas pipe 8 is switchably connected to a high pressure gas pipe 16 and a low pressure gas pipe 17 of the outdoor unit 1 through four-way switching valves 15-1 , 15-2 , etc. The surplus port of each of the four-way switching valves 15-1 , 15-2 , which switches to the low-pressure region during the heating cycle and heating cycle, is connected to the low-pressure gas pipe 17 by a capillary reach tube 18. Shape air conditioner.
JP1986062467U 1986-04-24 1986-04-24 Expired JPH0424364Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986062467U JPH0424364Y2 (en) 1986-04-24 1986-04-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986062467U JPH0424364Y2 (en) 1986-04-24 1986-04-24

Publications (2)

Publication Number Publication Date
JPS62173671U JPS62173671U (en) 1987-11-04
JPH0424364Y2 true JPH0424364Y2 (en) 1992-06-09

Family

ID=30896774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986062467U Expired JPH0424364Y2 (en) 1986-04-24 1986-04-24

Country Status (1)

Country Link
JP (1) JPH0424364Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751940B2 (en) * 2009-03-31 2011-08-17 日立アプライアンス株式会社 Air conditioner
JP6006664B2 (en) * 2013-03-28 2016-10-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2016211832A (en) * 2015-04-28 2016-12-15 ダイキン工業株式会社 Use-side unit and freezer
CN105588362A (en) * 2015-11-09 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system and control method thereof

Also Published As

Publication number Publication date
JPS62173671U (en) 1987-11-04

Similar Documents

Publication Publication Date Title
EP1816416A1 (en) Air conditioner
CN102109202A (en) Air conditioner
JP6671558B1 (en) Air conditioning hot water supply system
JP6198945B2 (en) Air conditioner
WO2021065156A1 (en) Heat source unit and refrigeration device
JPH0424364Y2 (en)
JPH0544675Y2 (en)
JPH04324069A (en) Refrigerating plant
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
CN113175707A (en) Heat recovery air conditioning system and control method thereof
CN112524834A (en) HVAC system
JP2007163011A (en) Refrigeration unit
JPH0252964A (en) Multiroom type refrigerating circuit
CN109341160A (en) Circulation system for air conditioner and air conditioner
JP2508306B2 (en) Operation control device for air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JPS6018757Y2 (en) air conditioner
JPH07293975A (en) Air conditioner
JPS6115345B2 (en)
JPS592832B2 (en) Heat recovery air conditioner
JPH0243012Y2 (en)
JPS5926221B2 (en) Heat recovery air conditioner
CN116906985A (en) Control method of air conditioner
JPS6018756Y2 (en) Refrigeration equipment
JPS5850211Y2 (en) Air conditioner