JP3091682B2 - Engine driven heat pump device - Google Patents

Engine driven heat pump device

Info

Publication number
JP3091682B2
JP3091682B2 JP08031164A JP3116496A JP3091682B2 JP 3091682 B2 JP3091682 B2 JP 3091682B2 JP 08031164 A JP08031164 A JP 08031164A JP 3116496 A JP3116496 A JP 3116496A JP 3091682 B2 JP3091682 B2 JP 3091682B2
Authority
JP
Japan
Prior art keywords
temperature
engine
radiator
switching valve
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08031164A
Other languages
Japanese (ja)
Other versions
JPH09203567A (en
Inventor
訓 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08031164A priority Critical patent/JP3091682B2/en
Priority to KR1019970002017A priority patent/KR100199325B1/en
Publication of JPH09203567A publication Critical patent/JPH09203567A/en
Application granted granted Critical
Publication of JP3091682B2 publication Critical patent/JP3091682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒を圧縮する圧
縮機がガスエンジンなどによって駆動されるエンジン駆
動ヒートポンプ装置に関するものであり、特に詳しくは
エンジンを冷却する回路に排ガス熱交換器を備えたエン
ジン駆動ヒートポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine-driven heat pump device in which a compressor for compressing a refrigerant is driven by a gas engine or the like, and more particularly, to a circuit for cooling an engine provided with an exhaust gas heat exchanger. The present invention relates to an engine-driven heat pump device.

【0002】[0002]

【従来の技術】この種の技術としては、例えば図3に示
したように、冷媒圧縮に供する圧縮機1を駆動するエン
ジン2と、図示しないヒートポンプ冷媒回路の室外熱交
換器と並設などして外気との熱交換を行う放熱器3と、
ポンプP1と、エンジン2を駆動したときに出る排気ガ
スと冷却水との熱交換を行う排ガス熱交換器4とを、冷
却水管5によって直列閉回路に配管接続すると共に、エ
ンジン2と放熱器3との間の冷却水管5aに三つ口の温
度自動切り替わり弁であるサーモバルブV1(例えば、
ワックス弁)を設け、このサーモバルブV1の残余の接
続口と、排ガス熱交換器4とエンジン2との間の冷却水
管5dとをバイパス管6によって接続し、さらに、冷却
水管5aのエンジン2側と冷却水管5dのエンジン2側
とを、ポンプP2を備えたバイパス管7によって接続し
たエンジン駆動ヒートポンプ装置が周知である。
2. Description of the Related Art As this type of technology, for example, as shown in FIG. 3, an engine 2 for driving a compressor 1 for compression of a refrigerant and an outdoor heat exchanger of a heat pump refrigerant circuit (not shown) are provided side by side. A radiator 3 for exchanging heat with the outside air
A pump P1 and an exhaust gas heat exchanger 4 for exchanging heat between exhaust gas and cooling water generated when the engine 2 is driven are connected to a series closed circuit by a cooling water pipe 5, and the engine 2 and the radiator 3 are connected. A thermo valve V1 (for example, a three-port automatic switching valve)
A wax valve) is provided, and the remaining connection port of the thermo valve V1 is connected to the cooling water pipe 5d between the exhaust gas heat exchanger 4 and the engine 2 by a bypass pipe 6. Further, the cooling water pipe 5a is connected to the engine 2 side. An engine-driven heat pump device is known in which the cooling water pipe 5d and the engine 2 side are connected by a bypass pipe 7 having a pump P2.

【0003】なお、サーモバルブV1は、エンジン2の
側から流入する冷却水の温度が所定温度、例えば60℃
以下のときには、エンジン2→放熱器3の流路が全閉
し、バイパス管6→放熱器3の流路が全開し、エンジン
2の側から流入する冷却水の温度が60℃より高い所定
温度、例えば70℃以上あるときには、エンジン2→放
熱器3の流路が全開し、バイパス管6→放熱器3の流路
が全閉し、エンジン2の側から流入する冷却水の温度が
60〜70℃の間にあるときには、温度が高くなるほど
エンジン2→放熱器3の流路が比例的に開き、バイパス
管6→放熱器3の流路が比例的に閉じるように機能する
ものである。
The temperature of the cooling water flowing from the engine 2 side is set to a predetermined temperature, for example, 60 ° C.
In the following cases, the flow path from the engine 2 to the radiator 3 is completely closed, the bypass pipe 6 → the flow path from the radiator 3 is fully opened, and the temperature of the cooling water flowing from the engine 2 side is higher than 60 ° C. For example, when the temperature is 70 ° C. or more, the flow path from the engine 2 to the radiator 3 is fully opened, the flow path from the bypass pipe 6 to the radiator 3 is completely closed, and the temperature of the cooling water flowing from the engine 2 side is 60 to When the temperature is between 70 ° C., the function is such that as the temperature increases, the flow path from the engine 2 to the radiator 3 opens proportionally, and the flow path from the bypass pipe 6 to the radiator 3 closes proportionally.

【0004】したがって、上記構成のエンジン駆動ヒー
トポンプ装置におけるエンジン2は、このエンジン2を
冷却して吐出した冷却水の温度が低いときには、放熱器
3で外気に放熱することなくそのままバイパス管7を通
って還流する冷却水によって僅かに冷却され、温度が高
いときには放熱器3で放熱した冷却水によって効果的に
冷却される。
Accordingly, when the temperature of the cooling water discharged by cooling the engine 2 is low, the engine 2 in the engine-driven heat pump apparatus having the above-described structure passes through the bypass pipe 7 without being radiated to the outside air by the radiator 3. When the temperature is high, it is effectively cooled by the cooling water radiated by the radiator 3.

【0005】一方、排気管2Aを介して排気される60
0℃にもなるエンジン2の排気ガスは、放熱器3で外気
に常時放熱した冷却水により排ガス熱交換器において効
果的に冷却され、所要の温度以下にできる。
On the other hand, 60 exhausted through the exhaust pipe 2A
Exhaust gas of the engine 2, which reaches 0 ° C., is effectively cooled in the exhaust gas heat exchanger by cooling water constantly radiated to the outside air by the radiator 3, and can be cooled to a required temperature or lower.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来のエ
ンジン駆動ヒートポンプ装置においては、外気の温度が
大きく低下し、排ガス熱交換器を通る冷却水がエンジン
の内部を通過せずに放熱器で放熱して排ガス熱交換器に
還流すると、排気ガスの温度が下がり過ぎ、排気管の吹
き出し部で排気ガスに含まれる水蒸気が凍結すると云っ
た問題点があり、寒冷地においてこのような問題を引き
起こさないようにする必要があった。
However, in the above-mentioned conventional engine-driven heat pump device, the temperature of the outside air is greatly reduced, and the cooling water passing through the exhaust gas heat exchanger is radiated by the radiator without passing through the inside of the engine. When the exhaust gas is recirculated to the exhaust gas heat exchanger, the temperature of the exhaust gas becomes too low, and there is a problem that water vapor contained in the exhaust gas freezes at the outlet of the exhaust pipe, and such a problem does not occur in a cold region. I needed to do that.

【0007】[0007]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、外気との熱交
換を行う放熱器と、エンジンから出る排気ガスとの熱交
換を行う排ガス熱交換器とを備えた冷却回路を循環する
冷却流体によって冷却可能に構成したエンジンにより、
冷媒圧縮用の圧縮機を駆動するエンジン駆動ヒートポン
プ装置において、
According to the present invention, as a specific means for solving the above-mentioned problems of the prior art, a radiator for exchanging heat with outside air and an exhaust gas for exchanging heat with exhaust gas emitted from an engine are provided. With an engine configured to be able to be cooled by a cooling fluid circulating in a cooling circuit having a heat exchanger,
In an engine-driven heat pump device that drives a compressor for refrigerant compression,

【0008】前記冷却流体が前記放熱器・前記排ガス熱
交換器の順に経由して前記エンジンに還流するように前
記冷却回路を構成すると共に、前記冷却回路の前記エン
ジンと前記放熱器との間に三つ口の温度自動切り替わり
弁を直列に2個設置し、前記エンジンの側に設置する第
1の温度自動切り替わり弁の残余の接続口には前記冷却
回路の前記排ガス熱交換器出口側配管から分岐して延設
する第1のバイパス管を接続し、前記放熱器の側に設置
する第2の温度自動切り替わり弁の残余の接続口には前
記冷却回路の前記放熱器出口側配管から分岐して延設す
る第2のバイパス管を接続し、前記冷却回路の前記エン
ジン出口側配管と入口側配管とをポンプを備えた第3の
バイパス管によって接続するようにした第1の構成のエ
ンジン駆動ヒートポンプ装置と、
The cooling circuit is configured so that the cooling fluid flows back to the engine via the radiator and the exhaust gas heat exchanger in this order, and a cooling circuit is provided between the engine and the radiator in the cooling circuit. Two 3-port automatic temperature switching valves are installed in series, and the remaining connection port of the first automatic temperature switching valve installed on the engine side is connected to the exhaust gas heat exchanger outlet pipe of the cooling circuit. A first bypass pipe, which is branched and extended, is connected, and the remaining connection port of the second automatic temperature switching valve installed on the side of the radiator branches off from the radiator outlet side pipe of the cooling circuit. A second bypass pipe extending from the cooling circuit, and connecting the engine outlet pipe and the inlet pipe of the cooling circuit by a third bypass pipe having a pump. Heat And the pump apparatus,

【0009】前記第1の構成のエンジン駆動ヒートポン
プ装置において、第1の温度自動切り替わり弁として、
エンジンを経由して流入する冷却流体の温度が、第1の
所定温度以下のときには第1のバイパス管を経由した冷
却流体だけを放熱器の側に流し、前記第1の所定温度よ
り高い第2の所定温度以上であるときには前記エンジン
を経由した冷却流体だけを前記放熱器の側に流し、前記
第1の所定温度と前記第2の所定温度の間にあるときに
は、温度が高いほど前記エンジンを経由して前記放熱器
の側に流れる冷却流体の量を増加させ、前記第1のバイ
パス管を経由して前記放熱器の側に流れる冷却流体の量
を減少させる温度自動切り替わり弁を用い、第2の温度
自動切り替わり弁として、前記第1の温度自動切り替わ
り弁の側から流入する冷却流体の温度が、第3の所定温
度以下のときには全量を第2のバイパス管の側に流し、
前記第3の所定温度より高い第4の所定温度以上である
ときには全量を前記放熱器の側に流し、前記第3の所定
温度と前記第4の所定温度の間にあるときには、温度が
高いほど前記放熱器の側に流れる冷却流体の量を増加さ
せ、前記第2のバイパス管の側に流れる冷却流体の量を
減少させる温度自動切り替わり弁を用いるようにした第
2の構成のエンジン駆動ヒートポンプ装置と、
[0009] In the engine-driven heat pump device having the first configuration, the first temperature automatic switching valve may include:
When the temperature of the cooling fluid flowing through the engine is equal to or lower than the first predetermined temperature, only the cooling fluid that has passed through the first bypass pipe flows toward the radiator, and the second cooling fluid that is higher than the first predetermined temperature is used. When the temperature is equal to or higher than the predetermined temperature, only the cooling fluid that has passed through the engine flows to the radiator side. When the temperature is between the first predetermined temperature and the second predetermined temperature, the engine is operated as the temperature increases. A temperature automatic switching valve that increases the amount of cooling fluid flowing to the radiator through the first bypass pipe and decreases the amount of cooling fluid flowing to the radiator through the first bypass pipe; As a second temperature automatic switching valve, when the temperature of the cooling fluid flowing from the side of the first temperature automatic switching valve is equal to or lower than a third predetermined temperature, the entire amount flows to the second bypass pipe side;
When the temperature is equal to or higher than a fourth predetermined temperature that is higher than the third predetermined temperature, the entire amount is caused to flow toward the radiator, and when the temperature is between the third predetermined temperature and the fourth predetermined temperature, the higher the temperature, An engine-driven heat pump device having a second configuration, wherein a temperature automatic switching valve is used to increase the amount of cooling fluid flowing to the side of the radiator and decrease the amount of cooling fluid flowing to the side of the second bypass pipe. When,

【0010】前記冷却流体が前記放熱器・前記排ガス熱
交換器の順に経由して前記エンジンに還流するように前
記冷却回路を構成すると共に、前記冷却回路の前記エン
ジンと前記放熱器との間に三つ口の温度自動切り替わり
弁を設置し、前記冷却回路の前記放熱器と前記排ガス熱
交換器との間に電動三方切替弁を設置し、前記温度自動
切り替わり弁の残余の接続口には前記冷却回路の前記排
ガス熱交換器入口側配管から延設するバイパス管を接続
し、前記電動三方切替弁の残余の接続口には前記圧縮機
に還流する冷媒との熱交換を行う冷媒熱交換器を途中に
備えて前記冷却回路の前記排ガス熱交換器入口側配管か
ら延設した対冷媒用熱交換管を接続するようにした第3
の構成のエンジン駆動ヒートポンプ装置と、
The cooling circuit is configured so that the cooling fluid returns to the engine via the radiator and the exhaust gas heat exchanger in this order, and the cooling circuit is provided between the engine and the radiator in the cooling circuit. A three-port automatic temperature switching valve is installed, an electric three-way switching valve is installed between the radiator of the cooling circuit and the exhaust gas heat exchanger, and the remaining connection port of the automatic temperature switching valve is A refrigerant heat exchanger for connecting a bypass pipe extending from the exhaust gas heat exchanger inlet side pipe of the cooling circuit to a remaining connection port of the electric three-way switching valve to exchange heat with a refrigerant flowing back to the compressor. And a third heat exchanger tube for refrigerant connected from the exhaust gas heat exchanger inlet side pipe of the cooling circuit.
An engine-driven heat pump device having a configuration of

【0011】前記第3の構成のエンジン駆動ヒートポン
プ装置において、温度自動切り替わり弁として、エンジ
ンを経由して流入する冷却流体の温度が、第1の所定温
度以下のときには全量をバイパス管の側に流し、前記第
1の所定温度より高い第2の所定温度以上あるときには
全量を放熱器の側に流し、前記第1の所定温度と前記第
2の所定温度の間にあるときには、温度が高いほど前記
放熱器の側に流れる冷却流体の量を増加させ、前記バイ
パス管の側に流れる冷却流体の量を減少させる温度自動
切り替わり弁を用い、電動三方切替弁が、前記放熱器か
ら流入する冷却流体の全量を冷媒熱交換器の側に流す
か、前記冷媒熱交換器を迂回して全量を排ガス熱交換器
に直接流す切替弁であり、外気温度・室内熱交換器温度
・圧縮機に還流している冷媒の圧力などに基づいて前記
電動三方切替弁を操作する制御器を備えるようにした第
4の構成のエンジン駆動ヒートポンプ装置と、を提供す
ることにより、前記した従来技術の課題を解決するもの
である。
In the engine-driven heat pump apparatus having the third configuration, when the temperature of the cooling fluid flowing through the engine is equal to or lower than a first predetermined temperature, the entire amount flows to the bypass pipe side as an automatic temperature switching valve. When the temperature is equal to or higher than a second predetermined temperature higher than the first predetermined temperature, the entire amount is caused to flow toward the radiator. When the temperature is between the first predetermined temperature and the second predetermined temperature, the higher the temperature, the higher the temperature. Using an automatic temperature switching valve that increases the amount of cooling fluid flowing to the side of the radiator and reduces the amount of cooling fluid flowing to the side of the bypass pipe, an electric three-way switching valve controls the amount of cooling fluid flowing from the radiator. A switching valve that allows the entire amount to flow to the refrigerant heat exchanger side or bypasses the refrigerant heat exchanger and allows the entire amount to flow directly to the exhaust gas heat exchanger, returning to the outside air temperature, the indoor heat exchanger temperature, and the compressor. To solve the above-described problems of the related art by providing an engine-driven heat pump device having a fourth configuration, which is provided with a controller that operates the electric three-way switching valve based on the pressure of the refrigerant or the like. It is.

【0012】[0012]

【発明の実施の形態】以下、図1と2図に基づいて、本
発明になるエンジン駆動ヒートポンプ装置の実施形態例
を説明する。なお、理解を容易にするため、これらの図
においても前記図3において説明した部分と同様の機能
を有する部分には、同一の符号を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an engine-driven heat pump apparatus according to the present invention will be described below with reference to FIGS. In addition, in order to facilitate understanding, in these figures, parts having the same functions as those described in FIG. 3 are denoted by the same reference numerals.

【0013】第1の実施形態を図1に基づいて説明す
る。この図1に例示したエンジン駆動ヒートポンプ装置
においては、サーモバルブV1と放熱器3との間の冷却
水管5aに、もう一つの三つ口の温度自動切り替わり弁
であるサーモバルブV2(例えば、ワックス弁)を設置
すると共に、このサーモバルブV2の残余の接続口と、
放熱器3とポンプP1との間の冷却水管5bとを、バイ
パス管8を介して接続する。
A first embodiment will be described with reference to FIG. In the engine-driven heat pump device illustrated in FIG. 1, a cooling water pipe 5a between the thermo-valve V1 and the radiator 3 is connected to a thermo-valve V2 (for example, a wax valve) which is another three-port automatic temperature switching valve. ) And the remaining connection port of the thermo valve V2,
The cooling water pipe 5 b between the radiator 3 and the pump P 1 is connected via a bypass pipe 8.

【0014】なお、このサーモバルブV2は、サーモバ
ルブV1の側から流入する冷却水の温度が所定温度、例
えば60℃以下のときには全量をバイパス管8の側に流
し、例えば70℃以上あるときには全量を放熱器3の側
に流し、60〜70℃の間にあるときには、温度が高い
ほど放熱器3を流れる量が比例的に増加し、バイパス管
8を流れる量が比例的に減少するように機能するものを
使用する。
When the temperature of the cooling water flowing from the side of the thermo valve V1 is lower than a predetermined temperature, for example, 60.degree. C., the entire amount flows to the bypass pipe 8. When the temperature of the cooling water is 70.degree. To the radiator 3 side, and when the temperature is between 60 and 70 ° C., the higher the temperature is, the more the amount flowing through the radiator 3 increases and the amount flowing through the bypass pipe 8 decreases proportionally. Use something that works.

【0015】また、冷却水管5aのエンジン2からサー
モバルブV2に至る間は、エンジン2の内部を通って温
度上昇した冷却水が対流によってサーモバルブV1・V
2の方向に流動し易いように、昇り傾斜に配管するのが
望ましい。冷却水管5aを水平に配管するときには(昇
り傾斜に配管する場合ももちろん)、熱が伝わり易いよ
うに、冷却水管5aとバイパス管7の分岐点と、サーモ
バルブV1・V2とは接近して設置することが望まし
い。
During the period from the engine 2 of the cooling water pipe 5a to the thermo-valve V2, the cooling water whose temperature has increased through the interior of the engine 2 is convected by the thermo-valves V1.V
It is desirable that the pipes be provided with an upward slope so that the pipes can easily flow in the two directions. When piping the cooling water pipe 5a horizontally (even when piping it up and down), the junction between the cooling water pipe 5a and the bypass pipe 7 and the thermo valves V1 and V2 are installed close to each other so that heat is easily transmitted. It is desirable to do.

【0016】上記構成のエンジン駆動ヒートポンプ装置
においては、サーモバルブV2を通過する冷却水の温度
が所定の70℃より高いときには放熱器3で放熱して温
度が低下した冷却水が排ガス熱交換器4に流入し、所定
の60℃より低いときには放熱器3を迂回して温度低下
していない冷却水が排ガス熱交換器4に流入し、60〜
70℃の間にあるときにはその温度に基づいて放熱器3
とバイパス管8とに流れる比率が制御されて排ガス熱交
換器4に流入するので、排気管2Aを介して排気されて
いるエンジン2の排気ガスが排ガス熱交換器4において
冷却され過ぎることがない。このため、寒冷地などにお
いても排気ガス中に含まれている水蒸気が排気管2Aの
出口部で凍結することがない。
When the temperature of the cooling water passing through the thermovalve V2 is higher than a predetermined value of 70 ° C., the cooling water whose heat has been radiated by the radiator 3 and whose temperature has decreased is discharged to the exhaust gas heat exchanger 4. When the temperature is lower than a predetermined temperature of 60 ° C., the cooling water bypassing the radiator 3 and having not decreased in temperature flows into the exhaust gas heat exchanger 4,
When the temperature is between 70 ° C., the radiator 3
The flow ratio between the exhaust gas and the bypass pipe 8 is controlled and flows into the exhaust gas heat exchanger 4, so that the exhaust gas of the engine 2 exhausted through the exhaust pipe 2A is not excessively cooled in the exhaust gas heat exchanger 4. . Therefore, even in a cold region, the water vapor contained in the exhaust gas does not freeze at the outlet of the exhaust pipe 2A.

【0017】しかも、エンジン2を冷却した冷却水の温
度が低いときにも、ポンプP1によって循環する冷却水
が排ガス熱交換器4を循環して冷却し、ポンプP2によ
って循環する冷却水がエンジン2を循環して冷却し続け
ているので、排ガス熱交換器4においては600℃にも
なる排気ガスが流入する排ガス入口側で冷却水が沸騰す
ると云った不都合はないし、エンジン1においても省の
冷却が続けられる。
Further, even when the temperature of the cooling water for cooling the engine 2 is low, the cooling water circulated by the pump P1 circulates and cools the exhaust gas heat exchanger 4, and the cooling water circulated by the pump P2 cools the engine 2 Circulating and cooling, the exhaust gas heat exchanger 4 does not have the disadvantage that the cooling water boils at the exhaust gas inlet side where exhaust gas as high as 600 ° C. flows. Is continued.

【0018】すなわち、本発明では冷却水が放熱器3、
排ガス熱交換器4の順に経由してエンジン2に還流する
ように設けると共に、放熱器3とエンジン2をそれぞれ
迂回して流すこともできるようにしてあるので、排ガス
熱交換器4では冷却が過剰になって排ガス中に含まれる
水蒸気が凍結したり、冷却が不足して冷却水が沸騰する
こともないし、エンジン2においても冷却に過不足を生
じることがない。
That is, in the present invention, the cooling water is supplied to the radiator 3,
The exhaust gas heat exchanger 4 is provided so as to return to the engine 2 via the exhaust gas heat exchanger 4 in order, and can also flow around the radiator 3 and the engine 2 respectively. As a result, the water vapor contained in the exhaust gas does not freeze, the cooling water does not boil due to insufficient cooling, and the engine 2 does not have excessive or insufficient cooling.

【0019】第2の実施形態を図2に基づいて説明す
る。この図2に例示したエンジン駆動ヒートポンプ装置
は、図1に示した第1の実施形態のエンジン駆動ヒート
ポンプ装置から、サーモバルブV1と、バイパス管6
と、ポンプP2を備えたバイパス管7とを取り外す一
方、冷却水と冷媒との熱交換を行う冷媒熱交換器9を備
えた対冷媒用熱交換管10と電動三方切替弁V3とを設
置し、放熱器3で放熱した冷却水が冷媒熱交換器9に流
れたり、冷媒熱交換器9を迂回して排ガス熱交換器4に
直接流入するように構成する。
A second embodiment will be described with reference to FIG. The engine-driven heat pump device illustrated in FIG. 2 differs from the engine-driven heat pump device of the first embodiment illustrated in FIG.
And the bypass pipe 7 having the pump P2 is removed, and the heat exchange pipe 10 for the refrigerant having the refrigerant heat exchanger 9 for exchanging heat between the cooling water and the refrigerant and the electric three-way switching valve V3 are installed. The cooling water radiated by the radiator 3 is configured to flow into the refrigerant heat exchanger 9 or to flow directly into the exhaust gas heat exchanger 4 bypassing the refrigerant heat exchanger 9.

【0020】冷媒熱交換器9は、例えば冷媒が内側を流
れ、冷却水が外側を流れる二重管に形成し、内側の冷媒
通路には圧縮機1に還流する冷媒が通過するようにヒー
トポンプ冷媒回路11を配管接続する。なお、12はア
キュームレータ、13は四方切替弁である。
The refrigerant heat exchanger 9 is, for example, formed as a double pipe in which the refrigerant flows inside and the cooling water flows outside, and a heat pump refrigerant such that the refrigerant returning to the compressor 1 passes through the inside refrigerant passage. The circuit 11 is connected by piping. In addition, 12 is an accumulator, 13 is a four-way switching valve.

【0021】また、外気の温度を検出する温度センサS
1と、図示しない室内熱交換器の温度を検出する温度セ
ンサS2と、圧縮機1が吸い込む冷媒の圧力を検出する
圧力センサS3とを設置し、これらセンサが検出して出
力する信号に基づいて、電動三方切替弁V3の切り替え
制御を行う制御器14を設置する。
A temperature sensor S for detecting the temperature of the outside air
1, a temperature sensor S2 for detecting the temperature of an indoor heat exchanger (not shown), and a pressure sensor S3 for detecting the pressure of the refrigerant sucked by the compressor 1, and based on signals detected and output by these sensors. And a controller 14 for controlling the switching of the electric three-way switching valve V3.

【0022】そして、制御器14は、冷/暖房何れの運
転を行う場合にも、例えば運転開始時は放熱器3から流
出した冷却水の全量が対冷媒用熱交換管10を迂回して
排ガス熱交換器4に直接流入するように電動三方切替弁
V3を操作し、
In any of the cooling and heating operations, for example, at the start of the operation, the controller 14 allows the entire amount of the cooling water flowing out of the radiator 3 to bypass the refrigerant heat exchange pipe 10 and exhaust gas. Operate the electric three-way switching valve V3 so as to directly flow into the heat exchanger 4,

【0023】暖房運転時においては、温度センサS1が
検出する外気の温度が所定温度、例えば2℃以下に低下
すると、放熱器3から流出した冷却水を全て対冷媒用熱
交換管10に流して冷媒熱交換器9を通過するように電
動三方切替弁V3を操作し、電動三方切替弁V3をこの
ように操作した後は、圧力センサS3が検出する圧力が
所定圧力、例えば250kPa以上に上昇したときに、
放熱器3から流出した冷却水が全て冷媒熱交換器9を迂
回して排ガス熱交換器4に直接流入するように電動三方
切替弁V3を操作し、
During the heating operation, when the temperature of the outside air detected by the temperature sensor S1 drops to a predetermined temperature, for example, 2 ° C. or less, all the cooling water flowing out of the radiator 3 flows into the heat exchange pipe 10 for refrigerant. After operating the electric three-way switching valve V3 so as to pass through the refrigerant heat exchanger 9, and operating the electric three-way switching valve V3 in this manner, the pressure detected by the pressure sensor S3 has increased to a predetermined pressure, for example, 250 kPa or more. sometimes,
The electric three-way switching valve V3 is operated such that all the cooling water flowing out of the radiator 3 bypasses the refrigerant heat exchanger 9 and directly flows into the exhaust gas heat exchanger 4,

【0024】冷房運転時においては、温度センサS2が
検出する図示しない室内熱交換器の温度が所定温度、例
えば2℃以下に低下すると、放熱器3から流出した冷却
水を全て対冷媒用熱交換管10に流して冷媒熱交換器9
を通過するように電動三方切替弁V3を操作し、電動三
方切替弁V3をこのように操作した後は、室内熱交換器
の温度が前記所定温度より高い所定温度、例えば3℃以
上に上昇したときに、放熱器3から流出した冷却水が全
て冷媒熱交換器9を迂回して排ガス熱交換器4に直接流
入するように電動三方切替弁V3を操作する、などの切
替制御ができるように構成する。
In the cooling operation, when the temperature of the indoor heat exchanger (not shown) detected by the temperature sensor S2 falls to a predetermined temperature, for example, 2 ° C. or less, all the cooling water flowing out of the radiator 3 is exchanged for the refrigerant heat exchange. Flow through the pipe 10 and the refrigerant heat exchanger 9
After operating the electric three-way switching valve V3 so as to pass through, and operating the electric three-way switching valve V3 in this manner, the temperature of the indoor heat exchanger rises to a predetermined temperature higher than the predetermined temperature, for example, 3 ° C. or more. At this time, switching control such as operating the electric three-way switching valve V3 such that all the cooling water flowing out of the radiator 3 bypasses the refrigerant heat exchanger 9 and directly flows into the exhaust gas heat exchanger 4 can be performed. Constitute.

【0025】したがって、上記構成のエンジン駆動ヒー
トポンプ装置においても、サーモバルブV2を通過する
冷却水の温度が所定の70℃より高いときには放熱器3
で放熱して温度が低下した冷却水が排ガス熱交換器4に
流入し、所定の60℃より低いときには放熱器3を迂回
して温度低下していない冷却水が排ガス熱交換器4に流
入し、60〜70℃の間にあるときにはその温度に基づ
いて放熱器3とバイパス管8とに流れる比率が制御され
て排ガス熱交換器4に流入するので、排気管2Aを介し
て排気されているエンジン2の排気ガスが排ガス熱交換
器4において冷却され過ぎることがない。このため、寒
冷地などにおいても排気ガス中に含まれている水蒸気が
排気管2Aの出口部で凍結することがない。
Therefore, in the engine-driven heat pump apparatus having the above-described structure, when the temperature of the cooling water passing through the thermovalve V2 is higher than the predetermined 70 ° C.,
When the temperature is lower than a predetermined temperature of 60 ° C., the cooling water whose temperature has not decreased by flowing around the radiator 3 flows into the exhaust gas heat exchanger 4. When the temperature is between 60 and 70 ° C., the ratio flowing between the radiator 3 and the bypass pipe 8 is controlled based on the temperature and flows into the exhaust gas heat exchanger 4, so that the exhaust gas is exhausted through the exhaust pipe 2A. The exhaust gas of the engine 2 is not excessively cooled in the exhaust gas heat exchanger 4. Therefore, even in a cold region, the water vapor contained in the exhaust gas does not freeze at the outlet of the exhaust pipe 2A.

【0026】しかも、エンジン2を冷却した冷却水の温
度が低いときにも、ポンプP1の駆動力により放熱器3
を迂回して循環する冷却水が排ガス熱交換器4に供給さ
れ続けているので、600℃にもなる排気ガスが流入す
る排ガス熱交換器4の排ガス入口側で冷却水が沸騰する
と云った不都合もない。
Further, even when the temperature of the cooling water for cooling the engine 2 is low, the radiator 3 is driven by the driving force of the pump P1.
Since the cooling water circulating around the exhaust gas is continuously supplied to the exhaust gas heat exchanger 4, the cooling water boils on the exhaust gas inlet side of the exhaust gas heat exchanger 4 into which the exhaust gas of 600 ° C. flows. Nor.

【0027】また、制御器14によって上記のように作
動する電動三方切替弁V3を設置するので、放熱器3に
臨んで設置する図示しない送風機を停止して外気への放
熱量が減少した冷却水を冷媒熱交換器9に送って冷媒と
熱交換させ、低圧側冷媒の圧力を上昇させることが可能
であり、気温が著しく低下したときの暖房能力を向上さ
せることができる。また、気温が相当低いときに行う冷
房運転時(OA機器を装備した室内などでは必要になる
ことが多い)には、室内熱交換器の凍結を防ぐことがで
きるので、運転可能な下限外気温度を低下させることが
できる。
Further, since the electric three-way switching valve V3 which operates as described above is installed by the controller 14, the cooling water which has a reduced amount of heat radiation to the outside air is stopped by stopping the blower (not shown) installed facing the radiator 3. Can be sent to the refrigerant heat exchanger 9 to exchange heat with the refrigerant, thereby increasing the pressure of the low-pressure side refrigerant, and improving the heating capacity when the air temperature drops significantly. Also, during a cooling operation performed when the air temperature is considerably low (this is often necessary in a room equipped with OA equipment, etc.), the freezing of the indoor heat exchanger can be prevented, so that the operable lower limit outside air temperature Can be reduced.

【0028】なお、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the scope of the claims.

【0029】例えば、単に圧力センサS3が検出して出
力する低圧側の圧力データに基づいて、制御器14が電
動三方切替弁V3を制御するように構成しても良い。
For example, the controller 14 may be configured to control the electric three-way switching valve V3 simply based on the low-pressure side pressure data detected and output by the pressure sensor S3.

【0030】[0030]

【発明の効果】以上説明したように本発明のエンジン駆
動ヒートポンプ装置によれば、冷却水の温度が高いとき
には放熱器で放熱して温度低下した冷却水が排ガス熱交
換器に流入し、温度が低いときには放熱器を迂回し、温
度低下していない冷却水が排ガス熱交換器に流入するの
で、排気管を介して排気されているエンジンの排気ガス
が、排ガス熱交換器において冷却され過ぎることがな
い。
As described above, according to the engine-driven heat pump device of the present invention, when the temperature of the cooling water is high, the cooling water whose heat is radiated by the radiator and whose temperature is lowered flows into the exhaust gas heat exchanger, and the temperature of the cooling water decreases. When the temperature is low, the cooling water that bypasses the radiator and does not drop in temperature flows into the exhaust gas heat exchanger, so that the exhaust gas of the engine exhausted through the exhaust pipe may be excessively cooled in the exhaust gas heat exchanger. Absent.

【0031】このため、寒冷地においても排気ガス中に
含まれている水蒸気が出口部で凍結することがない。ま
た、冷却水が排ガス熱交換器を循環して冷却し続けてい
るので、排気ガスの入口側で冷却水が沸騰すると云った
不都合がないし、エンジンに対しても所要の冷却が行え
る。
Therefore, even in a cold region, the water vapor contained in the exhaust gas does not freeze at the outlet. In addition, since the cooling water circulates through the exhaust gas heat exchanger and keeps cooling, there is no inconvenience that the cooling water boils at the exhaust gas inlet side, and required cooling can be performed on the engine.

【0032】また、請求項3および4のエンジン駆動ヒ
ートポンプ装置においては、気温が著しく低下したとき
の暖房能力を向上させることが可能であり、また、気温
が相当低いときに行う冷房運転時(OA機器を装備した
室内などでは必要になることが多い)には、室内熱交換
器の凍結を防ぐことが可能で、運転可能な下限外気温度
を低下させることができる。
Further, in the engine driven heat pump device according to the third and fourth aspects, it is possible to improve the heating capacity when the air temperature drops significantly, and to perform the cooling operation (OA) when the air temperature is considerably low. In many cases, such as in an indoor room equipped with equipment, it is possible to prevent the indoor heat exchanger from freezing, and to lower the operable lower-limit outside air temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態を示す説明図である。FIG. 1 is an explanatory diagram showing a first embodiment.

【図2】第2の実施形態を示す説明図である。FIG. 2 is an explanatory diagram showing a second embodiment.

【図3】従来技術を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 エンジン 2A 排気管 3 放熱器 4 排ガス熱交換器 5・5a・5b・5c・5d 冷却水管 6・7・8 バイパス管 9 冷媒熱交換器 10 対冷媒用熱交換管 11 ヒートポンプ冷媒回路 12 アキュームレータ 13 四方切替弁 14 制御器 P1・P2 ポンプ S1・S2 温度センサ S3 圧力センサ V1・V2 サーモバルブ V3 電動三方切替弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 Engine 2A Exhaust pipe 3 Radiator 4 Exhaust gas heat exchanger 5.5, 5a, 5b, 5c, 5d Cooling water pipe 6, 7, 8 Bypass pipe 9 Refrigerant heat exchanger 10 Heat exchange pipe for refrigerant 11 Heat pump refrigerant circuit 12 Accumulator 13 Four-way switching valve 14 Controller P1, P2 Pump S1, S2 Temperature sensor S3 Pressure sensor V1, V2 Thermovalve V3 Electric three-way switching valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 27/02 F01N 5/02 F25B 27/00 F24F 5/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 27/02 F01N 5/02 F25B 27/00 F24F 5/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外気との熱交換を行う放熱器と、エンジ
ンから出る排気ガスとの熱交換を行う排ガス熱交換器と
を備えた冷却回路を循環する冷却流体によって冷却可能
に構成したエンジンにより、冷媒圧縮用の圧縮機を駆動
するエンジン駆動ヒートポンプ装置において、 前記冷却流体が前記放熱器・前記排ガス熱交換器の順に
経由して前記エンジンに還流するように前記冷却回路を
構成すると共に、前記冷却回路の前記エンジンと前記放
熱器との間に三つ口の温度自動切り替わり弁を直列に2
個設置し、前記エンジンの側に設置する第1の温度自動
切り替わり弁の残余の接続口には前記冷却回路の前記排
ガス熱交換器出口側配管から分岐して延設する第1のバ
イパス管を接続し、前記放熱器の側に設置する第2の温
度自動切り替わり弁の残余の接続口には前記冷却回路の
前記放熱器出口側配管から分岐して延設する第2のバイ
パス管を接続し、前記冷却回路の前記エンジン出口側配
管と入口側配管とをポンプを備えた第3のバイパス管に
よって接続したことを特徴とするエンジン駆動ヒートポ
ンプ装置。
An engine configured to be capable of being cooled by a cooling fluid circulating in a cooling circuit including a radiator for performing heat exchange with outside air and an exhaust gas heat exchanger for performing heat exchange with exhaust gas emitted from the engine. An engine-driven heat pump device that drives a compressor for refrigerant compression, wherein the cooling fluid is configured to return to the engine via the radiator and the exhaust gas heat exchanger in this order, and A three-port automatic switching valve is connected in series between the engine and the radiator of the cooling circuit.
A first bypass pipe, which is installed separately from the first exhaust gas heat exchanger outlet pipe of the cooling circuit and extends to the remaining connection port of the first automatic temperature switching valve installed on the engine side. A second bypass pipe, which is connected to and extends from the radiator outlet-side pipe of the cooling circuit, is connected to the remaining connection port of the second automatic temperature switching valve installed on the side of the radiator. An engine-driven heat pump device, wherein the engine outlet pipe and the inlet pipe of the cooling circuit are connected by a third bypass pipe having a pump.
【請求項2】 第1の温度自動切り替わり弁として、エ
ンジンを経由して流入する冷却流体の温度が、第1の所
定温度以下のときには第1のバイパス管を経由した冷却
流体だけを放熱器の側に流し、前記第1の所定温度より
高い第2の所定温度以上であるときには前記エンジンを
経由した冷却流体だけを前記放熱器の側に流し、前記第
1の所定温度と前記第2の所定温度の間にあるときに
は、温度が高いほど前記エンジンを経由して前記放熱器
の側に流れる冷却流体の量を増加させ、前記第1のバイ
パス管を経由して前記放熱器の側に流れる冷却流体の量
を減少させる温度自動切り替わり弁を用い、第2の温度
自動切り替わり弁として、前記第1の温度自動切り替わ
り弁の側から流入する冷却流体の温度が、第3の所定温
度以下のときには全量を第2のバイパス管の側に流し、
前記第3の所定温度より高い第4の所定温度以上である
ときには全量を前記放熱器の側に流し、前記第3の所定
温度と前記第4の所定温度の間にあるときには、温度が
高いほど前記放熱器の側に流れる冷却流体の量を増加さ
せ、前記第2のバイパス管の側に流れる冷却流体の量を
減少させる温度自動切り替わり弁を用いる、請求項1記
載のエンジン駆動ヒートポンプ装置。
2. A first temperature automatic switching valve, wherein when the temperature of the cooling fluid flowing through the engine is equal to or lower than a first predetermined temperature, only the cooling fluid passing through the first bypass pipe is used as the first radiator. When the temperature is equal to or higher than a second predetermined temperature that is higher than the first predetermined temperature, only the cooling fluid that has passed through the engine flows to the radiator side, and the first predetermined temperature and the second predetermined temperature When the temperature is between the temperatures, the higher the temperature, the greater the amount of cooling fluid flowing to the radiator through the engine, and the more the cooling fluid flows to the radiator through the first bypass pipe. A temperature automatic switching valve for reducing the amount of fluid is used, and as a second temperature automatic switching valve, when the temperature of the cooling fluid flowing from the side of the first temperature automatic switching valve is equal to or lower than a third predetermined temperature, the entire amount is reduced. To the side of the second bypass pipe,
When the temperature is equal to or higher than a fourth predetermined temperature that is higher than the third predetermined temperature, the entire amount is caused to flow toward the radiator, and when the temperature is between the third predetermined temperature and the fourth predetermined temperature, the higher the temperature, The engine-driven heat pump device according to claim 1, wherein an automatic temperature switching valve that increases an amount of the cooling fluid flowing toward the radiator and decreases an amount of the cooling fluid flowing toward the second bypass pipe is used.
【請求項3】 外気との熱交換を行う放熱器と、エンジ
ンから出る排気ガスとの熱交換を行う排ガス熱交換器と
を備えた冷却回路を循環する冷却流体によって冷却可能
に構成したエンジンにより、冷媒圧縮用の圧縮機を駆動
するエンジン駆動ヒートポンプ装置において、 前記冷却流体が前記放熱器・前記排ガス熱交換器の順に
経由して前記エンジンに還流するように前記冷却回路を
構成すると共に、前記冷却回路の前記エンジンと前記放
熱器との間に三つ口の温度自動切り替わり弁を設置し、
前記冷却回路の前記放熱器と前記排ガス熱交換器との間
に電動三方切替弁を設置し、前記温度自動切り替わり弁
の残余の接続口には前記冷却回路の前記排ガス熱交換器
入口側配管から延設するバイパス管を接続し、前記電動
三方切替弁の残余の接続口には前記圧縮機に還流する冷
媒との熱交換を行う冷媒熱交換器を途中に備えて前記冷
却回路の前記排ガス熱交換器入口側配管から延設する対
冷媒用熱交換管を接続したことを特徴とするエンジン駆
動ヒートポンプ装置。
3. An engine configured to be capable of being cooled by a cooling fluid circulating in a cooling circuit including a radiator for performing heat exchange with outside air and an exhaust gas heat exchanger for performing heat exchange with exhaust gas emitted from the engine. An engine-driven heat pump device that drives a compressor for refrigerant compression, wherein the cooling fluid is configured to return to the engine via the radiator and the exhaust gas heat exchanger in this order, and A three-port automatic temperature switching valve is installed between the engine and the radiator of the cooling circuit,
An electric three-way switching valve is installed between the radiator and the exhaust gas heat exchanger of the cooling circuit, and the remaining connection port of the automatic temperature switching valve is connected to the exhaust gas heat exchanger inlet side pipe of the cooling circuit. An extended bypass pipe is connected, and the remaining connection port of the electric three-way switching valve is provided with a refrigerant heat exchanger for performing heat exchange with the refrigerant flowing back to the compressor in the middle thereof, and the exhaust gas heat of the cooling circuit is provided. An engine-driven heat pump device, wherein a heat exchange pipe for refrigerant extending from an exchanger inlet side pipe is connected.
【請求項4】 温度自動切り替わり弁として、エンジン
を経由して流入する冷却流体の温度が、第1の所定温度
以下のときには全量をバイパス管の側に流し、前記第1
の所定温度より高い第2の所定温度以上あるときには全
量を放熱器の側に流し、前記第1の所定温度と前記第2
の所定温度の間にあるときには、温度が高いほど前記放
熱器の側に流れる冷却流体の量を増加させ、前記バイパ
ス管の側に流れる冷却流体の量を減少させる温度自動切
り替わり弁を用い、電動三方切替弁として、前記放熱器
から流入する冷却流体の全量を冷媒熱交換器の側に流す
か、前記冷媒熱交換器を迂回して全量を排ガス熱交換器
に直接流す切替弁を用い、外気温度・室内熱交換器温度
・圧縮機に還流している冷媒の圧力などに基づいて前記
電動三方切替弁を操作する制御器を備えた、請求項3記
載のエンジン駆動ヒートポンプ装置。
4. When the temperature of a cooling fluid flowing through an engine is equal to or lower than a first predetermined temperature, the entire amount flows to a bypass pipe side as an automatic temperature switching valve.
When the temperature is equal to or higher than a second predetermined temperature higher than the predetermined temperature, the entire amount is flowed to the radiator side, and the first predetermined temperature and the second
When the temperature is higher than the predetermined temperature, using a temperature automatic switching valve for increasing the amount of cooling fluid flowing to the radiator side and decreasing the amount of cooling fluid flowing to the bypass pipe side as the temperature is higher, As a three-way switching valve, a switching valve that allows the entire amount of the cooling fluid flowing from the radiator to flow toward the refrigerant heat exchanger or bypasses the refrigerant heat exchanger and directly flows the entire amount to the exhaust gas heat exchanger, The engine-driven heat pump device according to claim 3, further comprising a controller that operates the electric three-way switching valve based on a temperature, an indoor heat exchanger temperature, a pressure of a refrigerant flowing back to the compressor, and the like.
JP08031164A 1996-01-26 1996-01-26 Engine driven heat pump device Expired - Fee Related JP3091682B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08031164A JP3091682B2 (en) 1996-01-26 1996-01-26 Engine driven heat pump device
KR1019970002017A KR100199325B1 (en) 1996-01-26 1997-01-24 Engine driven heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08031164A JP3091682B2 (en) 1996-01-26 1996-01-26 Engine driven heat pump device

Publications (2)

Publication Number Publication Date
JPH09203567A JPH09203567A (en) 1997-08-05
JP3091682B2 true JP3091682B2 (en) 2000-09-25

Family

ID=12323807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08031164A Expired - Fee Related JP3091682B2 (en) 1996-01-26 1996-01-26 Engine driven heat pump device

Country Status (2)

Country Link
JP (1) JP3091682B2 (en)
KR (1) KR100199325B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146346A1 (en) * 2001-09-20 2003-04-10 Behr Gmbh & Co Coolant circuit
JP5821291B2 (en) * 2011-05-31 2015-11-24 アイシン精機株式会社 Engine driven air conditioner
KR101694603B1 (en) 2015-01-12 2017-01-09 엘지전자 주식회사 Air conditioner
KR101645845B1 (en) * 2015-01-12 2016-08-04 엘지전자 주식회사 Air conditioner
KR101694604B1 (en) 2015-01-12 2017-01-09 엘지전자 주식회사 Air conditioner
KR101635701B1 (en) 2015-01-12 2016-07-01 엘지전자 주식회사 Air Conditioner and method for controlling the same
KR101639516B1 (en) 2015-01-12 2016-07-13 엘지전자 주식회사 Air conditioner
EP3933297B1 (en) 2019-02-25 2023-11-08 ATS Japan Co., Ltd. Cooling system with a refrigerant control system

Also Published As

Publication number Publication date
KR100199325B1 (en) 1999-06-15
KR970059656A (en) 1997-08-12
JPH09203567A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP3237187B2 (en) Air conditioner
JP3091682B2 (en) Engine driven heat pump device
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP2989491B2 (en) Air conditioner
JP2901911B2 (en) Air conditioning unit
KR100423362B1 (en) Air conditioner
JP2836154B2 (en) Waste heat recovery heat pump
JP3600906B2 (en) Air conditioner
JPS63123962A (en) Heat pump device
JP3723402B2 (en) Air conditioner
JP2952357B1 (en) Air conditioner
JP3744763B2 (en) Air conditioner
JP3467294B2 (en) Engine driven heat pump device
CN215175579U (en) Heat storage module and multi-split system
JPS63290365A (en) Engine drive type air conditioner
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JPS60133274A (en) Multi-chamber type air conditioner
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
JPS5827342Y2 (en) air conditioner
KR100274259B1 (en) Multi-split air conditioner having bypass unit for controlling amount of heat exchange medium
JPS6256430B2 (en)
JPS6256428B2 (en)
JP2691423B2 (en) Engine driven heat pump air conditioner
JPH0635871U (en) Heat pump using engine exhaust heat
JPS6244277Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees