JPS6011786B2 - Heat pump type multi-room air conditioning system - Google Patents

Heat pump type multi-room air conditioning system

Info

Publication number
JPS6011786B2
JPS6011786B2 JP5157178A JP5157178A JPS6011786B2 JP S6011786 B2 JPS6011786 B2 JP S6011786B2 JP 5157178 A JP5157178 A JP 5157178A JP 5157178 A JP5157178 A JP 5157178A JP S6011786 B2 JPS6011786 B2 JP S6011786B2
Authority
JP
Japan
Prior art keywords
pipe
liquid
refrigerant
indoor unit
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5157178A
Other languages
Japanese (ja)
Other versions
JPS54142852A (en
Inventor
真 小畑
譲治 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5157178A priority Critical patent/JPS6011786B2/en
Publication of JPS54142852A publication Critical patent/JPS54142852A/en
Publication of JPS6011786B2 publication Critical patent/JPS6011786B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は多室の冷暖房に使用するヒートポンプ式冷暖房
装置に関し、使用する部屋数に左右されることなく、安
定した冷暖房能力を発揮できるようにするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type air-conditioning device used for air-conditioning and heating multiple rooms, and is capable of exhibiting stable heating and cooling performance regardless of the number of rooms used.

一般にこの種従釆例の多室冷暖房装置は多室使用時の能
力に必要な冷媒量に設定している。しかし、使用しない
室が生じると、その運転休止中の室内ユニット側の管路
に冷媒が徐々に溜り込み、運転中の室内ユニット側の管
路に冷煤の不足が起り運転不能になるケースが起る。そ
こで、この問題を解決するため「休止中の室内ユニット
側の管路に溜り込む冷媒を、運転中の室内ユニット側の
管路へ送り込んでいる。しかし、このために必要以上の
冷蝶が運転中の室内ユニット側の管路に流れることにな
り好ましくないとともに次のような種々の欠点も残され
ていた。
Generally, the amount of refrigerant in this type of conventional multi-room air conditioning/heating system is set to the amount necessary for the capacity when multiple rooms are used. However, if a room is left unused, refrigerant will gradually accumulate in the pipes of the indoor unit that is not in operation, and there may be a shortage of cold soot in the pipes of the indoor unit that is in operation, making it impossible to operate. It happens. Therefore, in order to solve this problem, the refrigerant that accumulates in the pipes of the indoor unit that is inactive is sent to the pipes of the indoor unit that is in operation. This is not desirable as it flows into the pipes on the side of the indoor unit inside, and also has the following various drawbacks.

すなわち、第2図において1は室内ユニット、2,3は
室内ユニットで、この両者は各々一対のガス管4,5、
液管6,?により接続されている。
That is, in FIG. 2, 1 is an indoor unit, 2 and 3 are indoor units, and both are connected to a pair of gas pipes 4 and 5, respectively.
Liquid pipe 6,? connected by.

そして、二室の暖房運転時に室外ユニット1の圧縮機8
より吐出された袷煤ガスは四方弁9よりガス管18を通
り「分岐管11より複数路に分岐される。そして、ガス
側可逆流通電磁弁(または逆止弁内蔵電磁弁)(以下ガ
ス電磁弁という)12,13を通り、ガス管4,5より
室内ユニット2,3へ導かれる。そして、各室内側熱交
換器13,14にて左損熱凝縮され室が暖房される。そ
して冷媒液は冷房時に使用される室内側膨張弁15,1
6を側路し、これに並設した逆止弁17,18を通り液
管6,Tより再び室外ユニット1へ戻る。すなわち、冷
煤液は液側可逆流通電磁弁(または逆止弁内蔵電磁弁)
(以下液電磁弁という)19,20を通り分乳皮管21
で合流し、そして夜警22、受液器23を通り、暖房用
膨張弁24にて減圧膨張しながら、室外側熱交換器25
にて吸熱蒸発する。そして、冷煤は四方弁9を経てアキ
ュムレータ26より再び圧縮機8へ吸引されるのである
。27および28は暖房過負荷運転時における高圧制御
弁と管路、29は冷房時に暖房用膨張弁24を袷媒が側
路するべく設けた逆止弁である。
Then, during the heating operation of the two rooms, the compressor 8 of the outdoor unit 1
The soot gas discharged from the four-way valve 9 passes through the gas pipe 18 and is branched into multiple paths from the branch pipe 11. The refrigerant passes through gas pipes 4 and 5 to the indoor units 2 and 3 through gas pipes 4 and 5.Then, the heat is condensed in the indoor heat exchangers 13 and 14, heating the room. The liquid is supplied to the indoor expansion valve 15, 1 used during cooling.
6, passes through check valves 17 and 18 arranged in parallel thereto, and returns to the outdoor unit 1 via liquid pipes 6 and T. In other words, for cold soot liquid, use a reversible flow solenoid valve (or a solenoid valve with a built-in check valve) on the liquid side.
(hereinafter referred to as liquid solenoid valve) 19, 20, and the milk skin tube 21
It then passes through the night watchman 22 and the liquid receiver 23, and expands under reduced pressure at the heating expansion valve 24, and then flows into the outdoor heat exchanger 25.
It evaporates endothermically. The cold soot is then sucked back into the compressor 8 from the accumulator 26 via the four-way valve 9. Reference numerals 27 and 28 indicate a high-pressure control valve and a conduit during heating overload operation, and 29 indicates a check valve provided so that the heating medium bypasses the heating expansion valve 24 during cooling.

続いて、一室暖房運転するにはガス篭磁弁亀3、液電磁
弁20を閉じると、室内ユニット3側の管路が閉じられ
、室内ユニット2のみが運転される。
Subsequently, in order to perform one-room heating operation, when the gas grate valve 3 and the liquid solenoid valve 20 are closed, the pipe on the indoor unit 3 side is closed, and only the indoor unit 2 is operated.

しかし、この場合に休止中の室内ユニット3の配管内に
は冷煤が蟻溜し「またガス電磁弁13、液電磁弁傘0か
らの漏れにより配管内へ袷媒が侵入する。このため、室
内ユニット2の管賂を循環する袷蝶が不足し運転に支障
をきたすことになる。しかしながら「逆止弁38、キャ
ピラリチューブ3貫からなる直列回路32をt液管7と
暖房用膨張弁24の暖簾時に低圧となる側に接続してい
る。したがって、休止中の室内ユニット31ま直列管路
32を介して室外ユニット1の吸入側に接続できて低圧
に保持できるから、上述した残溜および侵入する冷嬢を
室内ユニット2側の管路に送られ、一室暖房運転の支障
は避けられる。しかし「室内ユニット2側の管路には必
要以上の冷蝶が循環し、好ましくないのである。そして
〜前記と同じく〜逆止弁33、キヤピラリチユーブ34
からなる直列管路36は室内ユニット2側に接続したも
ので「室内ユニット2が休止した時にも前記と同じよう
に作用するものである。また「冷煤の流量制御には暖房
用膨張弁24、室内側膨張弁16,】6を使用している
から、これら膨張弁の製作時の設定バラッキ「経年変化
「目語りもこより、その作動に安定性がなかった。
However, in this case, cold soot accumulates in the piping of the indoor unit 3 that is inactive, and the lining medium enters the piping due to leakage from the gas solenoid valve 13 and the liquid solenoid valve umbrella 0. There will be a shortage of ducts circulating through the pipes of the indoor unit 2, which will hinder operation. Therefore, the indoor unit 31 that is not in use can be connected to the suction side of the outdoor unit 1 via the series pipe line 32 and can be maintained at a low pressure, so that the above-mentioned residual and The invading cold butterflies are sent to the pipes on the indoor unit 2 side, avoiding any problems with single-room heating operation.However, "more cold butterflies than necessary circulate in the pipes on the indoor unit 2 side, which is not desirable. .And ~same as above~ check valve 33, capillary tube 34
A series pipe line 36 consisting of , indoor expansion valve 16, ]6, the operation of these expansion valves was unstable due to variations in the settings at the time of manufacture and changes over time.

その結果、多室冷暖房時に各室間の室内ユニット館力に
不均衡を生じ易く、これは多室冷暖房装置においては大
きな問題であった。さりこ室外ユニット1は圧縮器蟹「
四方弁g「室外熱交換器26、アキュムレー夕2蟹等の
通常機器以外にト室内ユニット29 3の数によって変
化するガス電磁弁12,亀3ト液電磁弁貴99 28、
直列管路32,35等が必要になるので、室外ユニット
の共通使用のできない不便なものであつた。
As a result, when heating and cooling multiple rooms, imbalances tend to occur in the indoor unit power between the rooms, which is a major problem in multi-room heating and cooling systems. Sariko outdoor unit 1 is a compressor crab.
In addition to normal equipment such as the four-way valve 26 and the accumulator 26, there are gas solenoid valves 12, 3 liquid solenoid valves 99 28, which vary depending on the number of indoor units 293,
Since the serial conduits 32, 35, etc. are required, it is inconvenient that the outdoor units cannot be used in common.

さらにまた、内外の熱交換器13,149 25に複数
の稔嫌流路を設ける際に「ディストリビュータを設けて
も、冷嬢の分配に不均衡を生じ易く、熱交換器全体を充
分に活用できない問題点も有していた。
Furthermore, when providing multiple anaerobic flow paths in the internal and external heat exchangers 13, 149, 25, ``even if a distributor is provided, it is easy to cause an imbalance in the distribution of cooling fluids, making it impossible to fully utilize the entire heat exchanger.'' It also had some problems.

第3図は従来の池実施例を示すもので、この構造におい
ても種々の問題点を有する。
FIG. 3 shows a conventional pond embodiment, and this structure also has various problems.

すなわち、&0は室外ユニット、年富,42は室内ユニ
ットで「 この両者は各々一対の冷煤管にて接続されて
いる。そして、一室暖房運転時に圧縮機43から吐出さ
れた袷蝶は配管44t四方電磁弁45、配管46の順に
通り分岐管47に至る。そして、電磁弁&8が閉じられ
て室内ユニット42は休止中であるから、関成している
電磁弁49を通り室内熱交換器58に入り放熱凝縮し、
室が暖房される。一方「凝縮した高圧の冷煤液は逆止弁
51を通って〜 さらに電磁弁52、分岐管53から室
外ユニット亀飢く入り〜キヤピラリチユーブ54により
減圧されて室外熱交換器55により外気から吸熱して蒸
発する。そして「 この室外熱交換器55より流出した
冷嬢ガスは配管56、四方電磁弁&ふ配管5?を通り圧
縮機43に吸入される。このように一室暖房運転時には
電磁弁亀8, 5覇が閉じて休止している室内ユニット
42側の管隣に冷嬢が残溜、または徐々に侵入すること
になりふ運転中の室内ユニット亀亀側を循環する冷煤量
に不足が起り、運転に支障をきたすことになる。しかし
「関成している電磁弁毎9により休止中の室内ユニット
亀2の室内熱交換器6Qが圧縮機鶴3の吸入側に接続さ
れている。したがって、室内ユニット42側の電磁弁4
8から電磁弁58までの冷嫌管路は圧縮機43の吸入側
に運通し低圧になるので「冷煤が圧縮機43に流入し、
休止中の室内ユニット42側の冷煤管路への冷蝶溜りは
なくなる。よって〜運転中の室内ユニット41は冷嬢不
足による支障はなくなる。しかし、二室暖房運転時より
袷煤量が多くなるので、逆に安定した暖房の運転ができ
なくなる。すなわち、室内負荷(室内ユニットの運転台
数)が変化した錫合ト各室内負荷に相当した最適冷嬢充
填量にて運転が不可能になり「良好なバランス状態にお
ける運転ができない。なお〜 61は前記の電磁弁59
と同じ働きする電磁弁でト室内ユニット41側のもので
ある。本発明は上記した従来例の欠点を解決するもので
、以下にその一実施例を第1図にしたがい説明する。
In other words, &0 is an outdoor unit, and Toshitomi, 42 is an indoor unit.These two are connected by a pair of cold soot pipes.Then, the dust discharged from the compressor 43 during room heating operation is connected to the pipe. It passes through the 44t square solenoid valve 45 and the piping 46 in that order to reach the branch pipe 47.Then, since the solenoid valve &8 is closed and the indoor unit 42 is inactive, it passes through the related solenoid valve 49 and reaches the indoor heat exchanger. 58 and heat dissipation and condensation,
The room is heated. On the other hand, the condensed high-pressure cold soot liquid passes through the check valve 51, enters the outdoor unit through the solenoid valve 52 and branch pipe 53, is depressurized by the capillary tube 54, and is removed from the outside air by the outdoor heat exchanger 55. It absorbs heat and evaporates.Then, the refrigerated gas flowing out from the outdoor heat exchanger 55 passes through the pipe 56, the four-way solenoid valve & the pipe 5?, and is sucked into the compressor 43. When solenoid valves 8 and 5 are closed, cold soot may remain or gradually invade the pipe on the indoor unit 42 side, which is inactive. However, the indoor heat exchanger 6Q of the indoor unit Kame 2, which is inactive, is connected to the suction side of the compressor Tsuru 3 by the associated solenoid valve 9. Therefore, the solenoid valve 4 on the indoor unit 42 side
The cold pipe line from 8 to the solenoid valve 58 runs to the suction side of the compressor 43 and has a low pressure, so "cold soot flows into the compressor 43,
There will be no accumulation of cold soot in the cold soot pipe on the indoor unit 42 side that is inactive. Therefore, the indoor unit 41 which is in operation will not be affected by the lack of cooling chamber. However, since the amount of soot increases compared to when operating two-room heating, stable heating operation becomes impossible. In other words, when the indoor load (the number of operating indoor units) changes, it becomes impossible to operate at the optimal refrigerating charge amount corresponding to each indoor load. The above-mentioned solenoid valve 59
This is a solenoid valve that operates in the same way as the one on the indoor unit 41 side. The present invention is intended to solve the above-mentioned drawbacks of the conventional example, and one embodiment thereof will be described below with reference to FIG.

本発明の多室冷暖房装置は室外ユニット62、複数の室
内ユニット63,64、そして、前記の両者を接続する
冷煤配管分岐器65とからなる。室外ユニット62は圧
縮機66、室外熱交換器67、四方弁68、アキュムレ
ータ69、暖房用キャピラリチューブ70およびこれに
並設した逆止弁71とからなり、これらを図のように接
続して構成する。そして、室外熱交換器67には配管に
よる圧力損失の減少と熱交換器の有効利用をはかるよう
に設けた複数の冷煤流路(図示せず)にそれぞれ対応し
てキャピラリチューブ72を並列に設け、冷煤の均等分
配により熱交換器を有効に働らかせている。さらに室外
ユニット62は室外熱交換器67と四方弁68との間に
接続した、暖房運転時に低圧、冷房運転時に高圧になる
低圧接続口73、圧縮機66の吐出側に通じる吐出口7
4、そして室外熱交換器67の吸入側に通じる流入口7
5が設けてある。室内ユニット63,64は通常のキャ
ピラリチューブ方式で、室内熱交換器76,77と「
これの一端部より導出した室内冷媒ガス管78,79と
、同じく他端部より導出したキャピラリチュープ80,
81、そしてこれの先に接続した室内液管82,83
とにより構成される。
The multi-room air conditioning system of the present invention includes an outdoor unit 62, a plurality of indoor units 63, 64, and a cold soot pipe branch 65 that connects the two. The outdoor unit 62 consists of a compressor 66, an outdoor heat exchanger 67, a four-way valve 68, an accumulator 69, a heating capillary tube 70, and a check valve 71 installed in parallel, and these are connected as shown in the figure. do. In the outdoor heat exchanger 67, capillary tubes 72 are arranged in parallel corresponding to a plurality of cold soot channels (not shown) provided to reduce pressure loss due to piping and effectively utilize the heat exchanger. The heat exchanger works effectively by distributing the cold soot evenly. Furthermore, the outdoor unit 62 has a low pressure connection port 73 connected between the outdoor heat exchanger 67 and the four-way valve 68 that becomes low pressure during heating operation and high pressure during cooling operation, and a discharge port 7 that communicates with the discharge side of the compressor 66.
4, and an inlet 7 leading to the suction side of the outdoor heat exchanger 67
5 is provided. The indoor units 63 and 64 are of the normal capillary tube type, and are connected to indoor heat exchangers 76 and 77.
Indoor refrigerant gas pipes 78 and 79 led out from one end of this, and a capillary tube 80 led out from the other end,
81, and indoor liquid pipes 82, 83 connected to the end of this
It is composed of

続いて冷煤配管分岐器65について説明すると「 84
は吐出口74に接続した冷嬢ガス管、85は一端を冷媒
ガス管84に接続した分岐冷煤ガス管で、室内ユニット
63,64の数に応じて分岐し、室内袷媒ガス管T8,
79に直接接続する。
Next, the cold soot piping branch 65 will be explained as follows.
85 is a branched cold soot gas pipe connected to the refrigerant gas pipe 84 at one end, which branches according to the number of indoor units 63 and 64, and is connected to the indoor medium gas pipe T8,
Connect directly to 79.

86は流入口75に一端を接続した液管、蟹7は一端を
液管86に接続した分岐液管でも室内ユニット63,6
4の数に応じて分岐し、室内液管82,83にそれぞれ
接続する。
86 is a liquid pipe whose one end is connected to the inlet 75, and crab 7 is a branch liquid pipe whose one end is connected to the liquid pipe 86.
4, and are connected to indoor liquid pipes 82 and 83, respectively.

88,89は各分岐液管87にそれぞれ設け、冷媒流を
制御する可逆流通型開閉電磁弁などよりなる開閉弁、9
0,91は開閉弁88,89より室内ユニット63,6
4側よりの分岐液管87に一端を接続し、池端を低圧接
続口73に接続している低圧管92に接続した第1のバ
イパス管路で、バイパス電磁弁93,94、逆止弁95
,96、キャピラリチューブ97,98の順に直列接続
して構成する。
Reference numerals 88 and 89 indicate on-off valves such as reversible flow-type on-off solenoid valves provided in each branch liquid pipe 87 to control the refrigerant flow;
0 and 91 are the indoor units 63 and 6 from the on-off valves 88 and 89.
The first bypass line is one end connected to the branch liquid pipe 87 from the fourth side and connected to the low pressure pipe 92 whose pond end is connected to the low pressure connection port 73.
, 96, and capillary tubes 97, 98 are connected in series in this order.

この第1のバイパス管路90,91は冷暖房運転におけ
る負荷減少(室内ユニットの運転数を減らす)時に休止
中(停止中)の室内ユニットの管路に冷煤量を適切に貯
溜するべく一部をバイパスし、負荷減少時の冷凍サイク
ルの運転が阻害されないようにする。99は低圧管92
に一端を接続し、他端を冷媒ガス管84に接続した冷房
負荷減少運転時の第3のバイパス管路で、冷媒ガス管8
4に向って逆止弁100キャピラリチューブ101の順
に直列接続する。
These first bypass pipes 90 and 91 are partially installed in order to appropriately store the amount of cold soot in the pipes of the indoor units that are inactive (stopped) when the load is reduced in heating and cooling operation (reducing the number of operating indoor units). Bypass the refrigeration cycle so that the operation of the refrigeration cycle is not hindered when the load is reduced. 99 is low pressure pipe 92
The third bypass line is connected at one end to the refrigerant gas pipe 84 and at the other end to the refrigerant gas pipe 84 during cooling load reduction operation.
4, a check valve 100 and a capillary tube 101 are connected in series in this order.

そして、第3のバイパス管路99は冷房一室運転時(負
荷減少)、室内ユニット63,64のキヤピラリチユー
プ80,81が冷房二室運転時に適正能力を発揮できる
ように設定しているため全体として管路の絞り過ぎとな
り、圧縮機66の吐出温度が上昇するのを防止する。例
えば、開閉弁89を閉じ(この時、バイパス電磁弁94
を連動して閉じる)室内ユニット64の運転を休止させ
ると、開閉弁88を通り室内ユニット63に流れる冷嬢
はその一部が、開閉弁88に連動して開いたバイパス電
磁弁93の第1のバイパス管路91に流れ、そして冷房
時に低圧となる袷媒ガス管84へ第3のバイパス管路9
9を経て流れ、圧縮機66の温度上昇を防止する。10
2は一端を液管86に、他端を冷媒ガス管84にそれぞ
れ接続し、暖房負荷減少時に開閉するバイパス管路で、
バイパス電磁弁103、キャピラリチューブ104、逆
止弁105の順に液管86へ向い直列接続する。
The third bypass conduit 99 is set so that the capillary tubes 80 and 81 of the indoor units 63 and 64 can exhibit their proper capacity when operating in a single cooling room (load reduction) and when operating in two cooling rooms. This prevents the pipe line from becoming too constricted as a whole and the discharge temperature of the compressor 66 from increasing. For example, close the on-off valve 89 (at this time, the bypass solenoid valve 94
When the operation of the indoor unit 64 is stopped, a part of the refrigerated liquid flowing into the indoor unit 63 through the on-off valve 88 is transferred to the first bypass solenoid valve 93, which is opened in conjunction with the on-off valve 88. The third bypass pipe 9 flows into the bypass pipe 91 and flows into the medium gas pipe 84 which becomes low pressure during cooling.
9 and prevents the temperature of the compressor 66 from rising. 10
2 is a bypass pipe which is connected to the liquid pipe 86 at one end and to the refrigerant gas pipe 84 at the other end, and is opened and closed when the heating load decreases;
Bypass solenoid valve 103, capillary tube 104, and check valve 105 are connected in series toward liquid pipe 86 in this order.

そして、第2のバイパス管路102は例えば室内ユニッ
ト64が運転を停止しているように暖房負荷が減少して
いる時にバイパス電磁弁103が開いているので、一部
の冷媒ガスを液管86に分流させ、高圧圧力を低下させ
る。106は低圧接続口73よりで低圧管92に設けた
逆止弁で、冷房運転時に第3のバイパス管路99を経て
冷媒ガス管84に冷媒が逆流するのを防止する。
Since the bypass solenoid valve 103 is open when the heating load is decreasing, such as when the indoor unit 64 is stopped operating, the second bypass pipe line 102 transfers a part of the refrigerant gas to the liquid pipe 86. Divert the flow to lower the high pressure. A check valve 106 is provided in the low pressure pipe 92 from the low pressure connection port 73, and prevents the refrigerant from flowing back into the refrigerant gas pipe 84 through the third bypass pipe line 99 during cooling operation.

上記一実施例において、二室暖房運転を説明すると、圧
縮機66より吐出された袷媒ガスは四方弁68→冷煤ガ
ス管84→分岐冷媒ガス管85を経て各室内ユニット6
3,64へ導かれ、室内熱交換器76,77にて放熱凝
縮され、二室が暖房される。
In the above embodiment, two-room heating operation will be explained. The medium gas discharged from the compressor 66 passes through the four-way valve 68 → cold soot gas pipe 84 → branch refrigerant gas pipe 85 to each indoor unit 6.
3 and 64, and is radiated and condensed by indoor heat exchangers 76 and 77, heating the two rooms.

さらに冷媒後はキャピラリチューブ80,81→開閉弁
88,89→分岐液管87→液管86→暖房用キャピラ
リチュープ70→キャピラIJチューブ72を経て室外
熱交換器67に入り吸熱蒸発する。そして、冷媒は四方
弁68、アキユムレータ69を通り再び圧縮機66へ吸
引される。続いて暖房一室運転について説明すると、先
ず開閉弁89を閉じ、室内ユニット64の運転を休止す
る。
Further, the refrigerant passes through the capillary tubes 80 and 81 → the on-off valves 88 and 89 → the branch liquid pipe 87 → the liquid pipe 86 → the heating capillary tube 70 → the capillary IJ tube 72, and enters the outdoor heat exchanger 67 where it absorbs heat and evaporates. Then, the refrigerant passes through the four-way valve 68 and the accumulator 69 and is sucked into the compressor 66 again. Next, the single room heating operation will be explained. First, the on-off valve 89 is closed and the operation of the indoor unit 64 is stopped.

したがって、開閉弁88の開いている室内ユニット63
のみが運転をするわけで、冷嬢の循環路は上記した二室
暖房運転時と同じ径賂となる。しかしながら、この時に
第2のバイパス管路102,91が動作するので、これ
らの作用効果について詳述する。
Therefore, the indoor unit 63 with the on-off valve 88 open
Since only one person is in charge of the operation, the circulation path for the cooling chamber is the same as in the two-room heating operation described above. However, since the second bypass conduits 102 and 91 operate at this time, their effects will be described in detail.

本装置は熱交換器の容量、そしてキャピラリチュープの
絞り度を、暖房二室運転時において適正なように設定さ
れている。これに対し、暖房一室運転時においては凝縮
器の作用をする室内熱交換器76,77の容量が相対的
に減少する。その結果、運転時に冷媒ガスの高圧圧力が
過度に上昇し運転に支障を生じることになる。しかしな
がら、冷煤ガス管84を流れる冷煤ガスの一部は開いた
バイパス電磁弁103−キャピラリチューブ104一逆
止弁105を経て直接に液管86へ分流し、液管86を
流れる液冷嬢に合流するので、上記した過度の高圧圧力
が低下する。また、袷煤ガス管84を流れる冷煤ガスは
分岐冷媒ガス管85を通り、休止中の室内ユニット64
の管路にも一部が流入し貯溜する。
In this device, the capacity of the heat exchanger and the degree of restriction of the capillary tube are set appropriately for two-room heating operation. On the other hand, during single-room heating operation, the capacities of the indoor heat exchangers 76 and 77, which function as condensers, are relatively reduced. As a result, the high pressure of the refrigerant gas increases excessively during operation, causing trouble in operation. However, a part of the cold soot gas flowing through the cold soot gas pipe 84 passes through the open bypass solenoid valve 103 - capillary tube 104 - check valve 105 and is directly diverted to the liquid pipe 86 . The above-mentioned excessively high pressure is reduced. In addition, the cold soot gas flowing through the soot gas pipe 84 passes through a branch refrigerant gas pipe 85 to
A portion also flows into the pipeline and is stored there.

そして、この貯溜により上記した過度の高圧圧力が降下
し、暖房一室運転の支障は解消される。しかし、この貯
溜する冷煤量が不必要に多くなると、逆に運転中の室内
ユニット63側の袷煤循環路の冷媒ガス不足になり、運
転に支障を生じる恐れがでてくる。
Then, due to this storage, the above-mentioned excessively high pressure is lowered, and the problem of single-room heating operation is resolved. However, if the amount of stored cold soot increases unnecessarily, there will be a shortage of refrigerant gas in the soot circulation path on the indoor unit 63 side during operation, which may cause problems in operation.

すなわち、室内ユニット64に接続している分岐冷媒ガ
ス管85は途中に弁などのない開放になっているから、
休止中の室内ユニット64の室内温度の高低(負荷変動
)により「室内ユニット64内に不必要な袷煤が過度に
溜り込むのである。しかしながら、このような状態にな
ると冷煤循環路の所定圧力が、それ以下になったことを
検知してバイパス電磁弁94が開くので、室内ユニット
64の管路に貯溜した冷媒がバイパス電磁弁94−逆止
弁96ーキャピラリチューブ98からなる第1のバイパ
ス管路91を経て低圧管92に流れ、四方弁68ーアキ
ュムレータ69を経て圧縮機66に吸引される。そして
、冷煤循環路の圧力が所定圧力に上昇すると、再びバイ
パス電磁弁94が閉じるのである。このような動作の鰹
返しをもって、休止中の室内ユニット64の管略に適切
な冷煤量を貯溜するのである。したがって、運転してい
る室内ユニット63の袷嬢循環路における袷媒不足は解
消され、暖房一室運転を安定して行える。なお、第1の
バイパス管路90のバイパス電磁弁93はこの時、閉じ
ておるので冷煤がバイパスされることはない。また、運
転する室内ユニット63の場合は上述したバイパス管路
および開閉弁の開閉動作は逆になる。さらに、上記した
第1のバイパス管路90あるいは91、そしてバイパス
管路102の轍らきで、液冷嬢の相対的減少により、高
圧圧力の降下と同時に、逆に圧縮機66の吸入側の低圧
圧力も影響を受けて低下し、蒸発器として作用する室外
熱交換器67に着霜を生じたり、圧縮機の吸入側が過熱
し、吐出側の温度も上昇する。しかし、第2のバイパス
管路102を通って液管86側に袷煤ガスの一部が流れ
るので、圧縮機の低圧圧力が上昇し、上記した着霜が防
止され、また吐世温度の低下も得られるのである。なお
「一般にキャピラリチューブ方式の場合「ホットガスバ
ィパス方式のみで〜冷凍サイクル制御をはかるのは極端
に成績係数(装置の入力と能力の比)が低下すると同時
に過負荷運転時の冷凍サイクルに安定性が欠ける。
That is, since the branch refrigerant gas pipe 85 connected to the indoor unit 64 is open without a valve or the like in the middle,
Due to the rise and fall of the indoor temperature (load fluctuations) of the indoor unit 64 while it is inactive, an excessive amount of unnecessary soot accumulates inside the indoor unit 64. However, the bypass solenoid valve 94 opens when it detects that the temperature has become lower than that, so that the refrigerant stored in the pipe line of the indoor unit 64 is transferred to the first bypass consisting of the bypass solenoid valve 94, check valve 96, and capillary tube 98. The soot flows through the pipe 91 to the low pressure pipe 92, passes through the four-way valve 68 and the accumulator 69, and is sucked into the compressor 66. Then, when the pressure in the cold soot circulation path rises to a predetermined pressure, the bypass solenoid valve 94 is closed again. By performing this kind of operation, an appropriate amount of cold soot is stored in the pipe of the indoor unit 64 that is not in use.Therefore, if there is a shortage of lining medium in the lining circulation path of the indoor unit 63 that is in operation, is resolved, and single-room heating operation can be performed stably. Note that the bypass solenoid valve 93 of the first bypass pipe line 90 is closed at this time, so cold soot is not bypassed. In the case of the indoor unit 63, the above-mentioned opening and closing operations of the bypass pipe and the on-off valve are reversed.Furthermore, due to the ruts in the first bypass pipe 90 or 91 and the bypass pipe 102, the liquid cooling Due to the relative decrease, at the same time as the high pressure drops, the low pressure on the suction side of the compressor 66 is also affected and decreases, causing frost to form on the outdoor heat exchanger 67 that acts as an evaporator, and causing the compressor to The suction side of the compressor becomes overheated, and the temperature on the discharge side also rises.However, since a part of the soot gas flows to the liquid pipe 86 side through the second bypass pipe line 102, the low pressure of the compressor increases, This prevents the above-mentioned frost formation and also lowers the discharge temperature.In general, in the case of the capillary tube method, it is extremely difficult to control the refrigeration cycle using only the hot gas bypass method. At the same time, the refrigeration cycle lacks stability during overload operation.

すなわち、本案は各バイパス管路を適切に組合せて各々
運転制御することによりキャピラリチューブ方式のヒー
トポンプ多室冷暖房装置においても、安定した一室(ま
たは少数室)暖房運転サイクルを構成することを可能に
している。このように本発明はバイパス管路が、運転休
止中の室内ユニットの管路に冷媒を貯溜するとともにこ
の貯溜冷煤をバィパスして運転中の室内ユニットの冷煤
循環路を正常な所定圧力に制御するものであるから、暖
房負荷の減少時に室内熱交換器の容量が相対的に減少す
るために生じる冷煤循環路の過度の高圧圧力を降下せし
めるとともに運転中の冷嬢循環路における冷媒不足も解
消できる。
In other words, this proposal makes it possible to configure a stable heating operation cycle for one room (or a small number of rooms) even in a capillary tube type heat pump multi-room heating and cooling system by appropriately combining the bypass pipes and controlling their respective operations. ing. In this way, the present invention has a bypass pipe that stores refrigerant in the pipe of an indoor unit that is not in operation, and bypasses this stored cold soot to bring the cold soot circulation path of an indoor unit that is in operation to a normal predetermined pressure. Since it is a control system, it reduces the excessively high pressure in the cold soot circulation path that occurs due to a relative decrease in the capacity of the indoor heat exchanger when the heating load decreases, and also prevents a shortage of refrigerant in the refrigerator circulation path during operation. can also be resolved.

したがって、室内ユニットを所定数から減らした暖房負
荷減少時にあっても安定した運転を行なうことができる
。また上記バイパス管路は各室内ユニットに接続してい
る分岐液管に設けた開閉弁より室内ユニットよりの分岐
液管に一端を接続し、池端を圧縮機の吸入側に通じる低
圧管へ接続しているから、冷嬢ガス管を分岐冷煤ガス管
を介して直接に室内ユニットへ接続できるので、袷煤循
環路の圧力損失が少なくなり冷暖房能力の効率を高める
ことができる。
Therefore, even when the heating load is reduced by reducing the number of indoor units from a predetermined number, stable operation can be performed. In addition, one end of the above-mentioned bypass pipe is connected to the branch liquid pipe from the indoor unit through the on-off valve provided on the branch liquid pipe connected to each indoor unit, and the pond end is connected to the low pressure pipe leading to the suction side of the compressor. Since the cooling gas pipe can be directly connected to the indoor unit via the branched cold soot gas pipe, the pressure loss in the soot circulation path is reduced and the efficiency of the heating and cooling capacity can be increased.

さらにバイパス管路を袷煤ガス管と液管の間に接続し、
冷煤ガスを室内ユニットの運転数を減じた暖房負荷減少
時に液管へバィパスしているから、上記した袷煤循環路
の過度の高圧圧力を降下せしめるとともに液冷煤の相対
的減少による高圧圧力の低下の影響を受けて降下する低
圧側の圧力を上昇せしめることもできる。
Furthermore, a bypass pipe is connected between the soot gas pipe and the liquid pipe,
Since the cold soot gas is bypassed to the liquid pipe when the heating load is reduced by reducing the number of indoor unit operations, the above-mentioned excessively high pressure in the liner soot circulation path is reduced, and the high pressure is reduced due to the relative reduction in liquid cooled soot. It is also possible to increase the pressure on the low-pressure side, which falls under the influence of the decrease in .

したがって、低圧圧力の降下により蒸発器として作用す
る室外熱交換器に生じる着霧も防止できる。さらに、分
岐液管に接続したバイパス管路より室外ユニット側より
の低圧管に一端を接続し、他端を冷媒ガス管に接続した
冷房負荷減少運転時の液バイパス管路を備えているから
、上記バイパス管路を介して冷嬢を袷煤ガス管へ流すこ
とができて、冷房負荷減少時における冷嬢循環路の絞り
過ぎによる圧縮機の吐出温度の上昇を防止することがで
きる。
Therefore, it is also possible to prevent fog from forming in the outdoor heat exchanger that acts as an evaporator due to a drop in low pressure. Furthermore, since the bypass pipe connected to the branch liquid pipe is connected at one end to a low-pressure pipe from the outdoor unit side, and the other end is connected to a refrigerant gas pipe, a liquid bypass pipe is provided during cooling load reduction operation. The refrigerant can be flowed to the soot gas pipe through the bypass pipe, and it is possible to prevent an increase in the discharge temperature of the compressor due to excessive throttling of the refrigerant circulation path when the cooling load is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ヒートポンプ式多室冷暖房装置の一実施
例を示す管路図、第2図、第3図はそれぞれ従来例を示
す管略図である。 6−2・・・・・・屋外ユニット、63,6亀・・・・
・・室内ユニット、84・・・…袷嬢ガス管、86……
液管、87・・…・分岐液管、88, 89…・・・開
閉弁、90,91……バイパス管路、99……液バイパ
ス管路、量02・・・・・・バイパス管路。 第1図 第2図 第3図
FIG. 1 is a pipe diagram showing one embodiment of the heat pump type multi-room air conditioning system of the present invention, and FIGS. 2 and 3 are pipe schematic diagrams showing conventional examples, respectively. 6-2...Outdoor unit, 63,6 turtle...
・・Indoor unit, 84 ・・Inside gas pipe, 86 ・・・
Liquid pipe, 87... Branch liquid pipe, 88, 89... Open/close valve, 90, 91... Bypass pipe line, 99... Liquid bypass pipe line, Volume 02... Bypass pipe line . Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 屋外ユニツトと、複数の室内ユニツトと、上記両者
を接続して冷媒循環路を形成する冷媒ガス管および液管
とで構成し、上記室内ユニツト数に応じて冷媒ガス管お
よび液管を分岐し、この分岐液管のみに各室内ユニツト
の運転、休止に応じ冷媒流を制御する開閉弁と、この開
閉弁より室内ユニツト側よりの分岐液管に一端を接続し
、他端を暖房運転時における圧縮機の吸入側に通じる低
圧管へ接続した第1のバイパス管路と、冷媒ガス管と液
管との間を接続し、暖房負荷減少時に冷媒を液管へ流す
第2のバイパス管路と、上記バイパス管路1の屋外ユニ
ツト側よりの低圧管に一端を接続し、他端を冷媒ガス管
へ接続し、冷房負荷減少時に冷媒を冷媒ガス管へ流す第
3のバイパス管路とを備えたヒートポンプ式多室冷暖房
装置。
1 Consisting of an outdoor unit, a plurality of indoor units, and refrigerant gas pipes and liquid pipes that connect the two to form a refrigerant circulation path, and branch the refrigerant gas pipes and liquid pipes according to the number of indoor units. This branch liquid pipe is connected only to an on-off valve that controls the refrigerant flow according to the operation or stop of each indoor unit, and one end of this on-off valve is connected to the branch liquid pipe from the indoor unit side, and the other end is connected to the a first bypass pipe connected to a low-pressure pipe leading to the suction side of the compressor; and a second bypass pipe connected between the refrigerant gas pipe and the liquid pipe and through which the refrigerant flows to the liquid pipe when the heating load decreases. , a third bypass pipe line having one end connected to the low pressure pipe from the outdoor unit side of the bypass pipe line 1 and the other end connected to the refrigerant gas pipe, and for flowing the refrigerant to the refrigerant gas pipe when the cooling load is reduced. A heat pump type multi-room air conditioning system.
JP5157178A 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system Expired JPS6011786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157178A JPS6011786B2 (en) 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157178A JPS6011786B2 (en) 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system

Publications (2)

Publication Number Publication Date
JPS54142852A JPS54142852A (en) 1979-11-07
JPS6011786B2 true JPS6011786B2 (en) 1985-03-28

Family

ID=12890640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157178A Expired JPS6011786B2 (en) 1978-04-27 1978-04-27 Heat pump type multi-room air conditioning system

Country Status (1)

Country Link
JP (1) JPS6011786B2 (en)

Also Published As

Publication number Publication date
JPS54142852A (en) 1979-11-07

Similar Documents

Publication Publication Date Title
US20060117770A1 (en) Multi-air condition system and method for controlling the same
CN102679609A (en) Air-cooled heat pump air conditioner
US6026654A (en) Multi-unit air conditioner having a by-pass section for adjusting a flow rate of refrigerant
JP3062824B2 (en) Air conditioning system
CN101715534A (en) Refrigerant reheat circuit and charge control
CN113970194B (en) Heat pump system
CN206488508U (en) Head phase-transition heat-storage frost removal type low-temperature air source heat pump unit
US4643002A (en) Continuous metered flow multizone air conditioning system
CN207350468U (en) Air-conditioning device
WO2023173847A1 (en) Air source heat pump water heater system
CN111059732A (en) Air conditioner and control method thereof
JPH0544675Y2 (en)
JP3143142B2 (en) Refrigeration equipment
WO2022007739A1 (en) Heat pump system
JPS6011787B2 (en) Heat pump type multi-room air conditioning system
JPS6011786B2 (en) Heat pump type multi-room air conditioning system
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
CN219243985U (en) Evaporator and air conditioner
KR101283252B1 (en) Thermal media equal distribution type air conditioning unit
JPS6146347Y2 (en)
CN213421283U (en) Multi-connected air conditioner outdoor unit capable of controlling heat exchangers of multiple outdoor units
CN220524225U (en) Two-pipe heat recovery type air conditioning system
CN219510905U (en) Air conditioning system
CN111998430B (en) Self-defrosting air source heat pump unit and operation method thereof
JPH04257661A (en) Two stage compression refrigerating cycle device