JPS62252843A - Multichamber type air conditioner - Google Patents

Multichamber type air conditioner

Info

Publication number
JPS62252843A
JPS62252843A JP61057682A JP5768286A JPS62252843A JP S62252843 A JPS62252843 A JP S62252843A JP 61057682 A JP61057682 A JP 61057682A JP 5768286 A JP5768286 A JP 5768286A JP S62252843 A JPS62252843 A JP S62252843A
Authority
JP
Japan
Prior art keywords
coil
outdoor
outdoor coil
indoor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61057682A
Other languages
Japanese (ja)
Inventor
Hitoshi Jinno
神野 仁志
Takeo Ueno
武夫 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61057682A priority Critical patent/JPS62252843A/en
Publication of JPS62252843A publication Critical patent/JPS62252843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to carry out a stable and smooth air conditioning operation throughout a year by making the first outdoor coil of a condenser and a second outdoor coil of an evaporator operative or inoperative and switching the third outdoor coil used concurrently for the condenser and evapora tor to the condenser or the evaporator. CONSTITUTION:In a space cooling operation mode for all the rooms, first outdoor coils 12A and 12B, a third outdoor coil 14 are set for evaporators, and a heat balance is kept between respective indoor coils 4-1A-4-nB of the evaporator. In this case, a second output coil 13 becomes inoperative. In a space cooling <space heating mode, a heat balance is kept between the indoor coils 4-1A and 4-1B, the second outdoor coil 13, the third outdoor coil 14 and the indoor coils 4-1A-4-2B, which are used as evaporators and the indoor coils 4-2A-4-3B which are used as condensers. In a space cooling >space heating mode, the indoor units 4-1A-4-2B the second indoor coil 13. Which are used as evaporators, and the indoor coils 4-3A, 4-3B, the first outdoor coils 12A and 12B, and the third outdoor coil 14, which are used as evaporators. As described above, an air-conditioning operation in which the heat balance is kept, becomes possible in accordance with various operational modes.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分計) 本発明は1基の室外ユニットに対し2系統以上復数系統
の室内ユニツ)?多重的に接続して、全冷房、全暖房、
均衡したあるいは不均衡の冷房・暖房併行運転の5種の
運転モードを、成績係数並びにエネルギー有効比の向上
が果されながら容易に実行可能となした多室形空気調和
機に関する。 (従来の技術〕 この種の多室形空気調和機において、冷房のみ。 暖房のみのほかに、一部全冷房、残りを暖房と併行した
運転が可能なものが特開昭55−12372号公報に上
って示されるように、公知のものがある。 (発明が解決しようとする問題点) ところで、従来の冷暖房同時運転か可能な多室形空気調
和機は前記公報に示される装置のように室内ユニットの
数の3倍の開閉弁例えば電磁弁が必要であって装置が複
雑、高コストとなる不利があり、さらに、適切な容量制
御システムが確立されていないために、冷房負荷と暖房
負荷との間に相当な差が生じるような運転の場合には、
熱収支がバランスしなくなって冷凍回路内の圧力変動が
生じ安定した運転が維持できなかったり、成績係数の低
下を招くなどの問題点があった。 このような従来の問題点を解消せしめるために本発明は
成されたものであって、冷房と暖房との切換えに必要な
制御弁の数を室内ユニット数よりも1つ多いだけに減少
し得ると共に、室外ユニット側だけで熱収支のバランス
を的曙に、かつ、容易に行い得るシステムを確立するこ
とによって、運転面、経済面での合理化をはかり、もっ
て多室形空気調和機を汎用装置として推進せしめようと
することを本発明の目的とする。 C問題点を解決するための手段) しかして本発明は実施例を示す図面により明らかな如く
、冷房用膨脹弁C3−IA −3−IB 、・・・・・
曲3nA・3−uB)  と1室内コイル(4−IA 
−4−IB S″@0°°。 ・・・4.A、4−1IB)との直列回路及び室内ファ
ン(51A5−IB、・・・・・・・・・5−tlA 
、5−tB)を夫々有する複数系統の室内ユニツ)(2
1,・・・・・・・・・2−4)に対して室外ユニット
…を共用せしめて多室形空IjLm和機を構成したもの
である。 さらに本発明は前記室外ユニット’+11に対して、圧
縮a
(Industrial usage) Is the present invention an indoor unit with two or more systems for one outdoor unit? Multiple connections can be made for total cooling, total heating,
The present invention relates to a multi-room air conditioner that can easily perform five types of operation modes, including balanced and unbalanced simultaneous cooling and heating operations, while improving the coefficient of performance and effective energy ratio. (Prior art) In this type of multi-room air conditioner, in addition to cooling only and heating only, a part of the air conditioner can be completely cooled and the rest can be operated concurrently with heating, as disclosed in Japanese Patent Application Laid-open No. 55-12372. (Problems to be Solved by the Invention) Incidentally, the conventional multi-room air conditioner capable of simultaneous cooling and heating operation is similar to the device shown in the above-mentioned publication. This requires three times the number of on-off valves, such as solenoid valves, as the number of indoor units, making the equipment complex and costly.Furthermore, since an appropriate capacity control system has not been established, cooling loads and heating In the case of operation where there is a considerable difference between the
There were problems such as the heat balance becoming unbalanced, causing pressure fluctuations in the refrigeration circuit, making it impossible to maintain stable operation, and causing a drop in the coefficient of performance. The present invention has been made to solve these conventional problems, and it is possible to reduce the number of control valves required for switching between cooling and heating to one more than the number of indoor units. At the same time, by establishing a system that can accurately and easily balance the heat balance only on the outdoor unit side, we aim to streamline operations and economics, thereby turning multi-room air conditioners into general-purpose devices. It is an object of the present invention to promote this. Means for Solving Problem C) As is clear from the drawings showing the embodiments, the present invention includes cooling expansion valves C3-IA-3-IB, . . .
3nA/3-uB) and 1 indoor coil (4-IA
-4-IB S″@0°°. ...4.A, 4-1IB) and indoor fan (51A5-IB, ......5-tlA
, 5-tB), each with multiple systems of indoor units) (2
1, 2-4), a multi-chamber air IjLm machine is constructed by sharing the outdoor unit. Furthermore, the present invention provides compression a for the outdoor unit '+11.

【71と、各室内ユニット(2−1,・・・・・曲
2−一の冷房用膨脹弁(3−IA 、 3−IB・・・
・・・川31mA 、3−t、B)各入口に共通させ接
続した高圧液管+Il+と、吐出ガス管・前記高圧液管
(111間に亘らせ接続した凝縮器専用の第1室外コイ
ル(12A 、 12B)  と、前記高圧液管(11
1に入口を夫々接続した第1暖房用膨張弁+Ift+及
び第2暖房用膨張弁αGと、前記第1暖房用膨張弁aω
出口・吸入ガス管間に亘らせ接続した蒸発器専用の第2
室林フイルa3と、前記第2暖房用膨張弁αGの出口に
直列接続した凝縮器・蒸発器兼用の第3室外コイルα引
と、第2暖房用膨張弁ue出口・第1室外コイル(12
A 、 12B)出口間に亘らせ接続し、かつ、第3室
外コイル041を凝縮器として作用させる際高圧冷媒の
流通を許容する弁Q71が介設された連絡管a81と、
第3室外コイルα41を吐出ガス管又は吸入ガス管に切
換接続可能に設けた室外フィル用切換弁a9と、前記各
室内ユニツ)(21,・・・・川・・2−1)に対応さ
せて複数個設け、各室内コイルC4−IA 、 4−I
B 、・・・・・・・°・4−mA −4−nB ) 
t″暖房運転のときは吐出ガス管に)冷房運転のときは
吸入ガス管に切換え接続苛能となした室内コイル用切換
弁(20−1・・・・・・・・・20.)  とを備え
しめていると共に、前記第1暖房用膨張弁α6)を、全
室冷房運転及び冷房負荷と暖房負荷とが均衡する運転の
ときに閉弁させ、第2暖房用膨張弁αeを、冷房負荷と
暖房負荷とが均衡する運転のときに閉弁させ、室外コイ
ル用切換弁α珈を、全室冷房運転及び冷房負荷が暖房負
荷に比し相当大きい運転のときに、第3室外フイル(1
41と吐出ガス管とが連通ずる側に切換えさせる如くし
たことを特徴とする。 また、本発明は、第1室外フイル(12A 、 12B
)、第2室外コイルa3及び第3室外コイル+141を
対空気形態交換器により形成した熱回収方式であること
、第1室外フイル(12A 、 12B)と第2室外コ
イルα3とを互いに熱交換可能な一体構造となすこと、
第1室外コイル(12A 、 12B)が、バイパス流
量t−制御し得るバイパス通路f211備えて熱交換能
力の調節可能な構造となすことを夫々好ましい実施態様
とするものである。 (作用) 本発明は前述の構成としたことによって、全室冷房、全
室暖房、均衡した冷房・暖房併行(冷房中暖房)、不均
衡度が大きい冷房・暖房併行(冷房〉暖房又は冷房く暖
房)の5種の運転モードに夫々対応して安定した冷凍運
転が行えるのであって、この容量制御運転は実施例につ
いての説明でかつ円滑に成される。 すなわち、(イ)全室冷房運転モード(第1図参照)で
は、第1室外コイル(12A 、 12B)、第3室外
コイル圓が凝縮器として作用し、蒸発器として作用する
各室内フィル(4−IA〜4.B)との間で熱収支が均
衡する。この場合第2室外コイルQ3は不作動となる。 次に、(四冷房中暖房運転モード〔第2図参照)では、
蒸発器として作用する室内コイル(4−IA)。 (41B)  と凝縮器として作用する室内コイル(4
−2a) 、 (4−2B)との間で熱収支が均衡し、
−万、第1室外フイル(12A 、 12]3)は高圧
液冷媒の液留めとに作用し、第2室外フイルQ3、第3
室外コイルf14は不作動となる。 また、し1冷房(暖房運転モード(第3図参照)では蒸
発器となる室内コイル(4−4A) 、 (4−IB)
 、第2室外フイル(13及び第3室外コイル圓と、凝
縮器となる室内コイル(4−2A)  〜 (4−3B
)との間で熱収支が均衡する。 一万、μ】冷房)暖房運転モード(第4図参照)では、
蒸発器として作用する室内ユニツ) (4LA3〜(4
2B)、第2室内コイルa3と、凝縮器として作用する
室内フィル(4−3A)、(4−3B)  、第1室外
フイル(12A 、 12B)及び第3室外コイルa4
との間で熱収支が均衡する。 また、(ポ全室暖房運転モード(第5図参照)では凝縮
器として作用する全室内コイル(4−1A)〜(43B
)と、蒸発器として作用する第2室外コイルa3及び第
3室外フイルIとの間で熱収支が均衡する。 なお、この場合には、W、1室外フイル(12A、12
B)ハ高圧液冷媒の液留めとして作用させる。 以上の如く、種々の運転態様に応じて熱収支の均衡した
空調運転が可能である。 (実施例〕 以下、本発明の実施例を添付図面にもとづいて説明する
。 第1図乃至第5図において、(1)は室外ユニット。 (2l)〜(23)は室内ユニットであり、各室内ユニ
ッ)(2−1)〜(23)には夫々2基の室内コイル(
4−IA) −(4−IB) 、(4−2A) 、 (
4−2B) 、(4−3A) 、 (4−sB)ft並
列に有していて同構造であるので、そのうちの1つの室
内ユニツ) (21)について説明すると、室内ファン
(5−IA )及び室内7アン(51B)を夫々有する
室内フィル(4−1人)及び室内フィル(41B)に対
して、暖房運転の際冷媒を流通させるための例えば逆上
弁を有するバイパス管(61が並列接続されてなる冷房
用膨脹弁(3mA)及び冷房用膨脹弁(3l、B)  
を天々直列に接続せしめて、この両直列回路における各
膨張弁(3−IA) 、 (3−1B)  の入口側に
室内側高圧液管が、また、各室内コイル(4−IA) 
、 (41B)のコイル端部にガス管が夫々接続されて
、両直列回路を並列関係となしているー前記各膨張弁(
3−IA) 、(3−IB)は前記ガス管の温度を所定
の過熱度に保持せしめるために感温膨張弁が使用され、
弁を作動、不作動に制御するバイロット弁として三方電
磁弁(26−IA) 、 (26−IB)  を付設せ
しめて旧り、この三方電磁弁セ付勢により前記ガス管の
圧力を膨張弁に作用させ、消勢により前記室内側高圧液
管の圧力を膨張弁に作用させるようになっている。 一万・gRユニツ) +11は複数個の室内ユニット(
2l)〜C2−3)に共通させた単基構造であって、圧
縮機(7)、この圧縮機(71の吸入口に接続される吸
入ガス管中に介設したアキュムレータ【81、前記圧縮
機(71の吐出口に接続される吐出ガス管中にコイルを
介設した温水熱交換器(9]、各室内ユニット(2−1
)〜(2=33  における前記室内側高圧液管に対し
一括させて接続せしめた高圧液管(111、温水熱交換
器(91のコイル出口に人口側を接続した凝縮器専用の
2バス形t−なす第1室外コイル(12A 、 12B
)、この第1室外コイル(12A 、 12B)の出口
側と前記高圧縮管曲との間に亘らせて設けたレシーバ[
101、前記高圧液管(!11に入口を夫々接続した第
1暖房用膨張弁(I5)及び第2暖房用膨張弁161.
!l暖房用膨張弁α61の出口と前記アキュムレータ1
81の入口に接続される吸入ガス管との間に亘らせて接
続し、かつ前記第1室外コイル(12A 、 12B)
とフィンを共用はせて相互間での熱交換全可能となした
蒸発器専用の第2室外コイルt131.第2暖房用膨張
弁11B+の出口に直列的に接続した凝縮器・蒸発器兼
用の第3室外コイルα引、弁aη例えば逆上弁を介して
有し〜かつ第2暖房用膨張弁αGの出口と第1室外フイ
ル(12A 、 12B)の出口との間に亘らせて接続
した連絡管α&、第3室外コイル114Iの端部と第1
室外フイル(12A 、 12B)の入口と、アキュム
レータtel入口側の吸入ガス管との間に介設して、第
3呈外コイルα4の前記端部を吐出ガス管又は吸入ガス
管に切換え接続させる室外コイル用切換弁瞳、前記吸入
ガス管ト各室内ユニツ) (2l)〜(2−3)におけ
る前記各ガス管と前記吐出ガス管との間に夫々介設して
案内ユニツ)(2−1)〜(2−3)の各ガス管を吸入
ガス管又は吐出ガス管に切換え接続させる複数個の室内
コイル用切換弁(2(LX )〜(z□−3)、比例制
御弁のを有する第1バイパス管のとバイノぐスミ磁弁四
を有する第2バイパス管にとが並列に接続されてなり、
この並列管路を第1室外コイル(12A 、 12B)
に並列に接続せしめたバイパス通路にυ、前記各膨張弁
α51.u61に対し作動、不作動に制御するためのパ
イロット弁として付設せしめた三万電磁弁鰭。 (281の各機器によって構成される◎前記各膨張弁α
51.IlGは感温膨張弁が使用され、いずれもアキュ
ムレータ+81の人口に接続される吸入ガス管の温度を
所定過熱度に保持するように弁制御が成されるが、前記
三万電磁弁額、怒は付勢により前記吸入ガス管の圧力を
膨張弁IIか、HIC作用させ、消勢により前記高圧液
管(111の圧力を膨張弁に作用させるようになってい
る。 −万、室外コイル用切換弁珀及び室内フィル用切換弁(
20l)〜(203)は三方弁でも良いが、本実施例は
第6図に略示する如きソレノイド制御・パイロット操作
形スライド式の構造の四方弁を使用して吐出ガス管に接
続する高圧ボート(A)と吸入ガス管に接続する低圧ボ
ート(0とに切換えて連通せしめられる非接続用のボー
ト【司と、前記低圧ボー1+01との間をキャピラリー
チューブ翰で接続して実質的に三方切換弁として利用し
ている。 この場合、キャピラリーチュー7@は高圧ボート(4)
に臨み、かつ椀形の弁の外側に形成される弁本体内空間
に高圧冷媒が液として溜ることがあり、これが弁不作動
の原因となるところから、キャピラリーチューブ四を通
じ減圧下で吸入ガス管側に冷媒液を逃がすようにして正
常な弁作動が行われるようにするためのものである。 次に、この空気調和機の運転態様を5種の運転モード別
に説明する□ 【イ) 全室冷房運転モード(第1図参照)案内コイル
用切換弁(20−1)〜(20−3)は、室内側からの
冷房指令によって吸入ガス管と各室内コイル(41A、
・・、・・・・・・43B)とが連通ずるよう切換えさ
せ、第1暖房用膨張弁1151は閉弁させて第2室外フ
イルQ3を不作動にし、第2暖房用膨張弁aQハ弁開閉
任意とさせ、−万・室外コイル用切換弁瞳は第3室外コ
イルα市が吐出ガス管に連通ずる側に切換えさせる。 かくして・第1室外コイル(12A、12B)  、第
3室外コイル圓は凝縮器として作用し、蒸発器として作
用する全室内フィル(41A〜4−nB)との間で熱収
支が均衡する。 r(E、この場合、バイパス通路f211の比例制御弁
にの作動により、高圧液ラインの圧力を一定制御するこ
とにより凝縮器の能力を調節することができる。 (口] 冷房中暖房運転モード(第2図参照)、室内コ
イル(4−1A) 、 (41B)が冷房、室内コイル
(4−2A) 、 (4−2B)が暖房、室内フィル(
4−3A)。 (43B)  が停止に設定されているとする。 室内フィル用切換弁(20−13は室内側からの冷房指
令によって吸入ガス管への連通側に、室内コイル用切換
弁(20−2) 11室内側からの暖房指令によって吐
出ガス管への連通側に夫々切換えさせ、第1・第2両暖
房用膨張弁αω、 Q61は共に閉弁すせ、−万、室外
コイル用切換弁α91は吸入ガス管への連通側に切換え
させる。 かぐして、蒸発器となる室内コイル(41A) 。 (41B)  と凝縮器となる室内コイル(4−2A)
、(4−2B)との間で熱収支が均衡し、−万、第1室
外コイル(12A、12B)  i4レシーバ皿ととも
に高圧液冷媒の液溜めとして作動し、第2室外コイルt
l:l及び第3室外コイル!I41は低圧ラインに存し
て不作動となる・ し→ 冷房(暖房運転モード(第3図参照)室内フィル
(4−IA) 、 (4−IB)  が冷房、室内フィ
ル(4−2A)・・・・・・・・・(4−3B)が暖房
に設定されているとする。 室内フィル用切換弁(20−1)  は冷房指令によっ
て吸入ガス管への連通側に、室内コイル用切換弁(20
2)、 (20−3)は暖房指令によって吐出ガス管へ
の連通側に夫々切換えさせ、第1・第2両暖房用膨張弁
α6)、α印は開弁作動させ、−万、室外コイル用切換
弁α91は吸入ガス管への連通側に切換えさせる。 かぐして、蒸発器となる室内フィル(4−mA)。 (4113)、第2室外コイル[31及び第3室外コイ
ルα引と、凝縮器となる室内フィル(4−2A)〜(4
−3B)との間で熱収支が均衡する。 なお、この場合に、前記バイパス通路e211を比例制
御弁のの全開又はバイパス弁四の開放により、最大バイ
パス量で作動させることによって、第1室外フイル(1
2A 、 12B社圧力上昇させ、熱交換能力を低下せ
しめて最低能力の凝縮器或いは液溜めとして使用させる
^ (に) 冷房)暖房運転モード(第4図参照)室内コイ
ル(4−IA)〜(4−2B)が冷房、室内コイル(4
−3A ) 、 (4−313)  が暖房に設定され
ているとする。 室内コイル用切換弁(20l) 、 (202)  は
冷房指令によって吸入ガス管への連通側に、室内コイル
用切換弁(20−33は暖房指令によって吐計ガス管へ
の連通側に夫々切換えさせ、第1暖房用膨張弁α5)は
閉弁作動させ、−万、第2暖房用膨張弁αeは弁開閉任
意とさせ、また、室外コイル用切換弁α9)ハ吐出ガス
管への連通側に切換えさせる。 かぐして、蒸発器となる室内コイル(4−IA)〜(4
−2B)、第2室内コイルα3と、凝縮器となる室内コ
イル(4−3A) 、 (4−3B)  ・第1富外コ
イル(12A 、 12B)  及び第3呈外コイルα
引との間で熱収支が均衡する。 (ホ)全室暖房モード(第5図参照) 室内コイル(4−LA)〜(43B)の全部が暖房に設
定されているとする。 室内フィル用切換弁(20−1)〜(20−3)は暖房
指令によって吐出ガス管への連通側に夫々切換させ、室
外コイル用切換弁相に吸入ガス管への連通側に切換えさ
せ、−万第1−第2暖房用膨張弁Q51.G61は開弁
作動させる。 かぐして凝縮器となる全室内コイル(4−IA)〜(4
3B)  と、蒸発器となる第2室外フイル13+及び
第3室外コイルα引との間で熱収支が均衡する。 なお、この場合に、バイパス通路21+の比例制御弁ム
の作動により、高圧液ラインの圧力が例えば20Y4一
定となるようにバイパス量の比例制御を行わせる。 これにより−第1室外コイル(12A 、 12B)は
液溜めとして作用せしめられる。 以上のように各運転モードにおける運転状態に、いずれ
も#縮器と蒸発器との間で熱収支が均衡するようになる
ので、円滑かつ安定した運転が可能である。 しかして各室内ユニツ)(4−IA)〜(4−31)に
おける冷房運転の発停制御は三方電磁弁(26−IA)
〜(26−3B)の付勢°消勢と室内ファン(5lA)
〜(53B)の発停によって行わせ、−万、暖房運転の
発停制御は室内ファン(51A)〜(53B)の発停に
よって行わせる。 ところで、凝縮器とrzる第1室外コイル(12A。 12B)と蒸発器となる第2室外コイルα3とは、図示
例においてに、第1室外フイル(L2A 、 12B)
  f 7アン■の気流方向を基準として上流、下流に
配置された2バス形の構造となすと共に、第2室外コイ
ルα31i前後から挾むように配置したフィン共用構造
となしているが、かかる構成とすることによって以下述
べる如き利点がある。 すなわち、第2室外コイルa3とその下流倶に存する第
1室外コイルの半部(12B )とは、通過空気の作用
によって熱伝導が成されて凝縮器として作用するコイル
(12B )の能力が向上する一万、第2室外コイルα
31はその上流側に存する第1室外コイルの半部(12
A )の作用によって加熱されるので着霜の防止がはか
れると共に着霜時のデフロスト運転の容易化も果される
〇 (発明の効果) 以上述べた構成を有し、作用を成す本発明によれば、冷
房、暖房の負荷の間に均衡がとれている場合はもとより
、不均衡でその程度が大きい場合でも、凝縮器として作
用する第1室外コイル(12A 、 12B)’を作動
又は液溜めとして実質的に不作動となし、また、蒸発器
として作用する第2室外フイルα3を作動又は不作動と
なし、さらに凝縮器・蒸発器兼用の第3室外フイルt1
41を凝縮器あるいは蒸発器に切換え作動せしめること
によって、装置全体にBける凝縮器・蒸発器間の熱収支
を均衡させることが可能となり、従って年1lffを通
じ安定かつ円滑な空調運転が行えると共に、エネルギー
有効比(1!:ER)ならびに成績係数(OOP)の大
巾l向上が期されて運転経済性にすぐれた装置を提供し
得る。 ざらに本発明は、室内ユニット(2−IA )〜(2−
4B)からの冷暖房運転信号を受けるだけで室外ユニッ
) Ill側だけで各運転モードに適合した運転制御が
行え、しかも、制御弁がxiの室外コイルm1換弁u9
と、室内ユニットと同数の室内コイル用切換弁(2Q−
1)〜(20−n)との少数で済むことから制御系統の
単純化がはかれ、かくして汎用装置としての利点を有す
る本発明に実用価値が大きい多室形空気調和機である。
[71 and the cooling expansion valves (3-IA, 3-IB...) of each indoor unit (2-1, 2-1)
...River 31mA, 3-t, B) High-pressure liquid pipe +Il+ commonly connected to each inlet, and the first outdoor coil dedicated to the condenser connected between the discharge gas pipe and the high-pressure liquid pipe (111) (12A, 12B) and the high pressure liquid pipe (11
1, a first heating expansion valve +Ift+ and a second heating expansion valve αG, each having an inlet connected to the first heating expansion valve aω.
A second dedicated evaporator connected between the outlet and suction gas pipes.
Murobashi filter a3, a third outdoor coil α that serves as a condenser and evaporator connected in series to the outlet of the second heating expansion valve αG, and a first outdoor coil (12
A, 12B) A connecting pipe a81 connected between the outlets and interposed with a valve Q71 that allows high-pressure refrigerant to flow when the third outdoor coil 041 acts as a condenser;
The third outdoor coil α41 is connected to the outdoor fill switching valve a9, which is provided so as to be able to be connected to the discharge gas pipe or the suction gas pipe, and to each of the indoor units) (21, . . . 2-1). Each indoor coil C4-IA, 4-I
B , ......°・4-mA -4-nB)
t'' Indoor coil switching valve (20-1...20.) which is connected to the discharge gas pipe during heating operation and to the intake gas pipe during cooling operation. At the same time, the first heating expansion valve α6) is closed during the all-room cooling operation and the operation in which the cooling load and the heating load are balanced, and the second heating expansion valve αe is closed when the cooling load is balanced. The switching valve α for the outdoor coil is closed during operation where the heating load and the heating load are balanced, and the third outdoor coil (1
41 and the discharge gas pipe are switched to the side where they communicate with each other. Further, the present invention provides first outdoor films (12A, 12B).
), the heat recovery system is such that the second outdoor coil a3 and the third outdoor coil +141 are formed by an air-to-air type exchanger, and the first outdoor film (12A, 12B) and the second outdoor coil α3 can exchange heat with each other. be made into an integral structure,
In a preferred embodiment, each of the first outdoor coils (12A, 12B) is provided with a bypass passage f211 that can control the bypass flow rate t, so that the heat exchange capacity can be adjusted. (Function) By having the above-described configuration, the present invention achieves all-room cooling, all-room heating, balanced cooling and heating (heating during cooling), and simultaneous cooling and heating with a large degree of imbalance (cooling > heating or cooling). Stable refrigeration operation can be performed corresponding to each of the five operating modes (heating), and this capacity control operation is performed smoothly in the explanation of the embodiment. That is, in (a) all-room cooling operation mode (see Figure 1), the first outdoor coil (12A, 12B) and the third outdoor coil circle act as a condenser, and each indoor filter (4) acts as an evaporator. -The heat balance is balanced between IA and 4.B). In this case, the second outdoor coil Q3 becomes inactive. Next, in the (four-cooling/heating operation mode [see Figure 2)],
Indoor coil (4-IA) that acts as an evaporator. (41B) and an indoor coil (4) that acts as a condenser.
The heat balance is balanced between -2a) and (4-2B),
- 10,000, the first outdoor film (12A, 12]3) acts on the liquid retainer of the high-pressure liquid refrigerant, and the second outdoor film Q3, the third
The outdoor coil f14 becomes inactive. In addition, the indoor coil (4-4A), (4-IB) which becomes the evaporator in the first cooling (heating operation mode (see Figure 3))
, the second outdoor film (13) and the third outdoor coil round, and the indoor coil (4-2A) to (4-3B) that becomes the condenser.
) and the heat balance is balanced. 10,000 μ] In the cooling (cooling) heating operation mode (see Figure 4),
Indoor unit that acts as an evaporator) (4LA3~(4
2B), the second indoor coil a3, the indoor filters (4-3A) and (4-3B) that act as condensers, the first outdoor filters (12A, 12B), and the third outdoor coil a4
The heat balance is balanced between In addition, in the all-room heating operation mode (see Figure 5), all-indoor coils (4-1A) to (43B) act as condensers.
), and the second outdoor coil a3 and third outdoor film I that act as an evaporator. In this case, W, 1 outdoor film (12A, 12
B) Act as a liquid retainer for high-pressure liquid refrigerant. As described above, air conditioning operation with balanced heat balance is possible according to various operating modes. (Embodiment) Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In Figs. 1 to 5, (1) is an outdoor unit. (2l) to (23) are indoor units, and each Indoor units) (2-1) to (23) each have two indoor coils (
4-IA) -(4-IB), (4-2A), (
4-2B), (4-3A), (4-sB) ft in parallel and have the same structure, so one of them is an indoor unit) (21) To explain, the indoor fan (5-IA) The indoor fill (4-1 person) and the indoor fill (41B) each have an indoor 7 am (51B) and an indoor fill (41B), for example, a bypass pipe (61 is parallel Connected cooling expansion valve (3mA) and cooling expansion valve (3l, B)
are connected in series, and the indoor high-pressure liquid pipe is connected to the inlet side of each expansion valve (3-IA) and (3-1B) in both series circuits, and each indoor coil (4-IA) is connected to the inlet side of each expansion valve (3-IA) and (3-1B).
, (41B), gas pipes are connected to the coil ends of each of the expansion valves (41B) to establish a parallel relationship between the two series circuits.
In 3-IA) and (3-IB), a temperature-sensitive expansion valve is used to maintain the temperature of the gas pipe at a predetermined degree of superheat,
In the old days, three-way solenoid valves (26-IA) and (26-IB) were installed as pilot valves to control whether the valves were activated or not. The pressure of the indoor high-pressure liquid pipe is applied to the expansion valve by deenergizing the valve. 10,000 gR units) +11 means multiple indoor units (
2l) to C2-3), the compressor (7), the accumulator [81, the compressor A hot water heat exchanger (9) with a coil interposed in the discharge gas pipe connected to the discharge port of the machine (71), each indoor unit (2-1
) to (2=33) High-pressure liquid pipes (111, hot water heat exchanger (2-bus type t exclusively for condenser with artificial side connected to the coil outlet of 91) connected to the indoor high-pressure liquid pipes in 2=33 - Eggplant first outdoor coil (12A, 12B
), a receiver [
101, a first heating expansion valve (I5) and a second heating expansion valve 161, each having an inlet connected to the high-pressure liquid pipe (!11).
! l The outlet of the heating expansion valve α61 and the accumulator 1
81 and the first outdoor coil (12A, 12B).
The second outdoor coil t131. is dedicated to the evaporator and shares the same fins with the fins to enable complete heat exchange between them. A third outdoor coil α, which serves as a condenser and evaporator, is connected in series to the outlet of the second heating expansion valve 11B+, and has a valve aη, for example, via a reversal valve, and the second heating expansion valve αG. A connecting pipe α & connected between the outlet and the outlet of the first outdoor film (12A, 12B), an end of the third outdoor coil 114I and the first
It is interposed between the inlet of the outdoor film (12A, 12B) and the suction gas pipe on the inlet side of the accumulator tel, and the end of the third external coil α4 is switched and connected to the discharge gas pipe or the suction gas pipe. A switching valve pupil for the outdoor coil, a guide unit interposed between each of the gas pipes and the discharge gas pipe in (2l) to (2-3), respectively (2- 1) - (2-3) A plurality of indoor coil switching valves (2 (LX) - (z□-3)) to switch and connect each gas pipe to the suction gas pipe or discharge gas pipe, and a proportional control valve. A first bypass pipe having a first bypass pipe and a second bypass pipe having four binogusumi magnetic valves are connected in parallel,
This parallel conduit is connected to the first outdoor coil (12A, 12B)
υ, each of the expansion valves α51. The 30,000 solenoid valve fin was attached to the U61 as a pilot valve to control activation and inactivation. (Comprised of 281 devices ◎Each expansion valve α
51. IlG uses a temperature-sensitive expansion valve, and the valve is controlled to maintain the temperature of the intake gas pipe connected to the accumulator +81 at a predetermined degree of superheat. By energizing, the pressure of the suction gas pipe is applied to the expansion valve II or HIC, and by deenergizing, the pressure of the high pressure liquid pipe (111) is applied to the expansion valve. Switching valve for valve and indoor fill (
20l) to (203) may be three-way valves, but in this embodiment, a high-pressure boat is connected to the discharge gas pipe using a solenoid-controlled, pilot-operated, sliding four-way valve as schematically shown in FIG. (A) and the low-pressure boat connected to the suction gas pipe (0) and the low-pressure boat 1+01 connected to the low-pressure boat 1+01 for communication by connecting with a capillary tube, essentially creating a three-way switch. It is used as a valve. In this case, capillary tube 7@ is used as a high pressure boat (4)
High-pressure refrigerant may accumulate as a liquid in the space inside the valve body, which is formed on the outside of the bowl-shaped valve, and this can cause the valve to malfunction. This is to allow normal valve operation by allowing refrigerant to escape to the side. Next, the operating mode of this air conditioner will be explained for each of the five operating modes □ [A] All-room cooling operating mode (see Figure 1) Guide coil switching valves (20-1) to (20-3) The intake gas pipe and each indoor coil (41A,
. . . 43B), the first heating expansion valve 1151 is closed and the second outdoor film Q3 is inactivated, and the second heating expansion valve aQC valve It can be opened and closed arbitrarily, and the outdoor coil switching valve pupil is switched to the side where the third outdoor coil α communicates with the discharge gas pipe. Thus, the first outdoor coil (12A, 12B) and the third outdoor coil circle act as a condenser, and the heat balance is balanced between all the indoor fills (41A to 4-nB) that act as an evaporator. r (E, in this case, the capacity of the condenser can be adjusted by controlling the pressure of the high-pressure liquid line at a constant level by operating the proportional control valve of the bypass passage f211. (see Figure 2), indoor coils (4-1A) and (41B) are for cooling, indoor coils (4-2A) and (4-2B) are for heating, and indoor filter (
4-3A). (43B) is set to stop. Indoor fill switching valve (20-13 is connected to the intake gas pipe in response to a cooling command from the indoor side, indoor coil switching valve (20-2) 11 is connected to the discharge gas pipe in response to a heating command from the indoor side) Both the first and second heating expansion valves αω and Q61 are closed, and the outdoor coil switching valve α91 is switched to the side communicating with the suction gas pipe. , an indoor coil (41A) that serves as an evaporator. (41B) and an indoor coil (4-2A) that serves as a condenser.
, (4-2B), the first outdoor coil (12A, 12B) acts as a reservoir for high-pressure liquid refrigerant together with the i4 receiver plate, and the second outdoor coil t
l:l and third outdoor coil! I41 is in the low pressure line and becomes inactive. ...... (4-3B) is set to heating. The indoor fill switching valve (20-1) is set to the indoor coil switching valve (20-1) on the side communicating with the intake gas pipe according to the cooling command. Valve (20
2), (20-3) are respectively switched to the communication side to the discharge gas pipe by the heating command, both the first and second heating expansion valves α6), the α mark are opened, and -10,000, the outdoor coil is activated. The switching valve α91 is switched to the side communicating with the suction gas pipe. Indoor filter (4-mA) that acts as an evaporator. (4113), the second outdoor coil [31 and the third outdoor coil α pull, and the indoor filter (4-2A) to (4-4
The heat balance is balanced between -3B). In this case, by operating the bypass passage e211 at the maximum bypass amount by fully opening the proportional control valve or opening the bypass valve 4, the first outdoor film (1
2A, 12B Increase the pressure and reduce the heat exchange capacity to use it as the lowest capacity condenser or liquid reservoir. 4-2B) is the air conditioner, indoor coil (4
-3A) and (4-313) are set to heating. The indoor coil switching valves (20l) and (202) are switched to the side communicating with the suction gas pipe by the cooling command, and the indoor coil switching valves (20-33 are switched to the communicating side to the discharge meter gas pipe by the heating command). , the first heating expansion valve α5) is operated to close, the second heating expansion valve αe is opened or closed as desired, and the outdoor coil switching valve α9) is connected to the side communicating with the discharge gas pipe. Make the switch. Indoor coil (4-IA) ~ (4
-2B), the second indoor coil α3, the indoor coils (4-3A), (4-3B) that serve as condensers, the first outer coil (12A, 12B) and the third outer coil α
The heat balance is balanced between the (e) All room heating mode (see FIG. 5) It is assumed that all indoor coils (4-LA) to (43B) are set to heating mode. The indoor fill switching valves (20-1) to (20-3) are respectively switched to the communication side to the discharge gas pipe by the heating command, and the outdoor coil switching valve phase is switched to the communication side to the intake gas pipe, - 1st - 2nd heating expansion valve Q51. G61 operates to open the valve. All indoor coils (4-IA) to (4
3B), the heat balance is balanced between the second outdoor film 13+ serving as an evaporator, and the third outdoor coil α. In this case, by operating the proportional control valve of the bypass passage 21+, the bypass amount is proportionally controlled so that the pressure of the high pressure liquid line is constant, for example, 20Y4. This causes the first outdoor coils (12A, 12B) to act as a liquid reservoir. As described above, the heat balance is balanced between the condenser and the evaporator in each operating mode, so smooth and stable operation is possible. Therefore, the start/stop control of cooling operation in each indoor unit) (4-IA) to (4-31) is performed using a three-way solenoid valve (26-IA).
~ (26-3B) energization ° deenergization and indoor fan (5lA)
- (53B) are turned on and off, and - 10,000, the heating operation is turned on and off by turning on and off of the indoor fans (51A) to (53B). By the way, in the illustrated example, the first outdoor coil (12A, 12B) that serves as the condenser and the second outdoor coil α3 that serves as the evaporator are the first outdoor coil (L2A, 12B).
It has a two-bus type structure arranged upstream and downstream with respect to the airflow direction of f7an■, and has a common structure with fins arranged so as to sandwich it from the front and rear of the second outdoor coil α31i. This has the following advantages. That is, the second outdoor coil a3 and the half part (12B) of the first outdoor coil located downstream thereof conduct heat through the action of the passing air, and the ability of the coil (12B) to act as a condenser is improved. 10,000, 2nd outdoor coil α
31 is a half part (12
Since heating is achieved by the action of A), frost formation is prevented and defrost operation is facilitated during frost formation.〇 (Effects of the Invention) According to the present invention having the above-mentioned configuration and operating. For example, not only when there is a balance between the cooling and heating loads, but also when there is a large imbalance, the first outdoor coils (12A, 12B), which act as condensers, are activated or used as a liquid reservoir. The second outdoor filter α3, which acts as an evaporator, is activated or inactivated, and the third outdoor filter t1, which serves as both a condenser and an evaporator, is substantially inactivated.
By switching operation of 41 to the condenser or evaporator, it is possible to balance the heat balance between the condenser and evaporator in the entire system, and therefore stable and smooth air conditioning operation can be performed throughout the year. It is expected that the energy effective ratio (1!:ER) and the coefficient of performance (OOP) will be greatly improved, and a device with excellent operating economy can be provided. Roughly speaking, the present invention provides indoor units (2-IA) to (2-IA).
By simply receiving the heating/cooling operation signal from the outdoor unit (4B), operation control suitable for each operation mode can be performed only on the Ill side.Moreover, the control valve is the outdoor coil m1 switching valve U9 of xi
and the same number of indoor coil switching valves (2Q-
Since only a small number of units 1) to (20-n) are required, the control system can be simplified, and the multi-room air conditioner of the present invention has great practical value as it has the advantage of being a general-purpose device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の実施例を各運転モード別に
示す装置回路図、第6図は前記実施例に係る切換弁の概
要示構造図である。 il+・・・室外ユニット。 (2−1)〜(2、)・・・室内ユニット。 (31A)〜(3−n!])・・・冷房用膨脹弁。 (41A)〜(4−nB)・・・室内コイル。 (5−ユA〕〜(5−nB)・・・室内ファン。 161・・・バイパスIF、  171・・・圧縮機。 (11]・・・高圧液管、   (12A、12B) 
 ・・・第1室外コイル、  [+31・・・第2室外
コイル。 (+41・・・第3室外フイル。 α5)・・・第2暖房眉膨張弁。 αG・・・第2暖房眉膨張弁。 a7I・・・弁、 αト・・連絡管。 瞳・・・室外フィル用切換弁。 (2(Ll)〜(20、)・・・室内コイル用切換弁。 の)・・・バイパス通路。 (1)−−−−−一書外二ラット。 第1図 第2図 第3図 第4図 第5図
1 to 5 are device circuit diagrams showing an embodiment of the present invention according to each operation mode, and FIG. 6 is a schematic structural diagram of a switching valve according to the embodiment. il+...Outdoor unit. (2-1) to (2,)... Indoor unit. (31A) to (3-n!])...Air conditioning expansion valve. (41A) to (4-nB)... Indoor coil. (5-UA] ~ (5-nB)...Indoor fan. 161...Bypass IF, 171...Compressor. (11)...High pressure liquid pipe, (12A, 12B)
...First outdoor coil, [+31...Second outdoor coil. (+41...Third outdoor film. α5)...Second heating eyebrow expansion valve. αG...Second heating eyebrow expansion valve. a7I...valve, αto...communicating pipe. Pupil...Switching valve for outdoor fill. (2(Ll) to (20,)...Indoor coil switching valve.)...Bypass passage. (1)-----Issho Gai Nirat. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、冷房用膨脹弁(3_−_1_A、3_−_1_B、
………3_−_n_A、3_−_n_B)と室内コイル
(4_−_1_A、4_−_1_B………4_−_n_
A、4_−_u_B)との直列回路及び室内ファン(5
_−_1_A、5_−_1_B………5_−_n_A、
5_−_n_B)を夫々有する複数系統の室内ユニツト
(2_−_1、………2_−_n)に対して室外ユニツ
ト(1)を共用せしめてなり、前記室外ユニツト(1)
は、圧縮機(7)と、前記各室内ユニツト(2_−_1
、………2_−_n)の冷房用膨脹弁(3_−_1_A
、3_−_1_B、………3_−_n_A、3_−_n
_B)各入口に共通させ接続した高圧液管(11)と、
吐出ガス管・前記高圧液管(11)間に亘らせ接続した
凝縮器専用の第1室外コイル(12A、12B)と、前
記高圧液管(11)に入口を夫々接続した第1暖房用膨
脹弁(15)及び第2暖房用膨脹弁(16)と、前記第
1暖房用膨脹弁(15)出口・吸入ガス管間に亘らせ接
続した蒸発器専用の第2室外コイル(13)と、前記第
2暖房用膨脹弁(16)の出口に直列接続した凝縮器・
蒸発器兼用の第3室外コイル(14)と、第2暖房用膨
脹弁(16)出口・第1室外コイル(12A、12B)
出口間に亘らせ接続し、かつ、第3室外コイル(14)
を凝縮器として作用させる際、高圧冷媒の流通を許容す
る弁(17)が介設された連絡管(18)と、第3室外
コイル(14)を吐出ガス管又は吸入ガス管に切換接続
可能に設けた室外コイル用切換弁(19)と、前記各室
内ユニツト(2_−_1………2_−_n)に対応させ
て複数個設け、各室内コイル(4_−_1_A、4_−
_1_B、………4_−_n_A、4_−_n_B)を
暖房運転のときは吐出ガス管に、冷房運転のときは吸入
ガス管に切換え接続可能となした室内コイル用切換弁(
20_−_1………20_−_n)とを備えていると共
に、前記第1暖房用膨脹弁(15)を、全室冷房運転及
び冷房負荷と暖房負荷とが均衡する運転のときに閉弁さ
せ、第2暖房用膨脹弁(16)を、冷房負荷と暖房負荷
とが均衡する運転のときに閉弁させ、室外コイル用切換
弁(19)を、全室冷房運転及び冷房負荷が暖房負荷に
比し相当大きい運転のときに、第3室外コイル(14)
と吐出ガス管とが連通する側に切換えさせる如くしたこ
とを特徴とする多室形空気調和機。 2、第1室外コイル(12A、12B)、第2室外コイ
ル(13)及び第3室外コイル(14)が対空気形熱交
換器である特許請求の範囲第1項記載の多室形空気調和
機。 3、第1室外コイル(12A、12B)と第2室外コイ
ル(13)とが互いに、熱交換可能な一体構造をなして
いる特許請求の範囲第1項又は第2項記載の多室形空気
調和機。 4、第1室外コイル(12A、12B)が、バイパス流
量を制御し得るバイパス通路(21)を備えている特許
請求の範囲第1項乃至第3項記載の多室形空気調和機。
[Claims] 1. Expansion valve for cooling (3_-_1_A, 3_-_1_B,
………3_-_n_A, 3_-_n_B) and indoor coil (4_-_1_A, 4_-_1_B……4_-_n_
Series circuit with A, 4_-_u_B) and indoor fan (5
____1_A, 5_-_1_B……5_-_n_A,
The outdoor unit (1) is shared by a plurality of systems of indoor units (2_-_1, ......2_-_n) each having a
is a compressor (7) and each indoor unit (2_-_1).
,...2_-_n) cooling expansion valve (3_-_1_A
, 3_-_1_B, ......3_-_n_A, 3_-_n
_B) A high-pressure liquid pipe (11) commonly connected to each inlet,
A first outdoor coil (12A, 12B) dedicated to the condenser connected between the discharge gas pipe and the high-pressure liquid pipe (11), and a first heating coil whose inlet is connected to the high-pressure liquid pipe (11), respectively. a second outdoor coil (13) dedicated to the evaporator connected between the expansion valve (15), the second heating expansion valve (16), and the outlet of the first heating expansion valve (15) and the intake gas pipe; and a condenser connected in series to the outlet of the second heating expansion valve (16).
A third outdoor coil (14) that also serves as an evaporator, and a second heating expansion valve (16) outlet/first outdoor coil (12A, 12B)
A third outdoor coil (14) connected across the outlet
When acting as a condenser, the connecting pipe (18) equipped with a valve (17) that allows high-pressure refrigerant to flow and the third outdoor coil (14) can be connected to the discharge gas pipe or the suction gas pipe. A plurality of switching valves (19) for the outdoor coils are provided corresponding to the indoor units (2_-_1...2_-_n), and each indoor coil (4_-_1_A, 4_-
_1_B, ......4_-_n_A, 4_-_n_B) can be switched and connected to the discharge gas pipe during heating operation and to the intake gas pipe during cooling operation.
20_-_1......20_-_n), and the first heating expansion valve (15) is closed during an all-room cooling operation and an operation in which the cooling load and the heating load are balanced. , the second heating expansion valve (16) is closed when the cooling load and the heating load are balanced, and the outdoor coil switching valve (19) is closed when the cooling load is in balance with the heating load, and the outdoor coil switching valve (19) is closed when the cooling load is in balance with the heating load. When the operation is considerably larger than that of the third outdoor coil (14),
A multi-room air conditioner characterized in that the air conditioner is switched to the side where the gas pipe and the discharge gas pipe communicate with each other. 2. The multi-room air conditioner according to claim 1, wherein the first outdoor coil (12A, 12B), the second outdoor coil (13), and the third outdoor coil (14) are air-to-air heat exchangers. Machine. 3. The multi-chamber air according to claim 1 or 2, wherein the first outdoor coil (12A, 12B) and the second outdoor coil (13) have an integral structure capable of exchanging heat with each other. harmonizer. 4. The multi-room air conditioner according to claims 1 to 3, wherein the first outdoor coil (12A, 12B) is provided with a bypass passage (21) that can control the bypass flow rate.
JP61057682A 1986-03-15 1986-03-15 Multichamber type air conditioner Pending JPS62252843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057682A JPS62252843A (en) 1986-03-15 1986-03-15 Multichamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057682A JPS62252843A (en) 1986-03-15 1986-03-15 Multichamber type air conditioner

Publications (1)

Publication Number Publication Date
JPS62252843A true JPS62252843A (en) 1987-11-04

Family

ID=13062699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057682A Pending JPS62252843A (en) 1986-03-15 1986-03-15 Multichamber type air conditioner

Country Status (1)

Country Link
JP (1) JPS62252843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219045A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219045A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner

Similar Documents

Publication Publication Date Title
JPWO2019053876A1 (en) Air conditioner
JP2804527B2 (en) Air conditioner
CN115038916A (en) Air conditioner
JP2698118B2 (en) Air conditioner
WO2022239212A1 (en) Air conditioner and air conditioning system
JPS62252843A (en) Multichamber type air conditioner
JP3511161B2 (en) Air conditioner
JPH01167561A (en) Multi-room type air-conditioning equipment
JPH0424364Y2 (en)
JPS62252865A (en) Multi-chamber type air conditioner
JPS6011787B2 (en) Heat pump type multi-room air conditioning system
JPS6146347Y2 (en)
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
JPH0117007Y2 (en)
JP3268967B2 (en) Air conditioner
JPS60133274A (en) Multi-chamber type air conditioner
JPS6327626B2 (en)
JPH02106668A (en) Air conditioner
JPS6018757Y2 (en) air conditioner
JPS6145145B2 (en)
JPS592832B2 (en) Heat recovery air conditioner
JPS5815822Y2 (en) air conditioner
JPS5912525Y2 (en) Multi-room air conditioner
JPH0634219A (en) Air conditioning system
JPS586857B2 (en) Air conditioning equipment