JPS59180253A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner

Info

Publication number
JPS59180253A
JPS59180253A JP5341183A JP5341183A JPS59180253A JP S59180253 A JPS59180253 A JP S59180253A JP 5341183 A JP5341183 A JP 5341183A JP 5341183 A JP5341183 A JP 5341183A JP S59180253 A JPS59180253 A JP S59180253A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor
heating
cooling
gas side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5341183A
Other languages
Japanese (ja)
Other versions
JPH0245795B2 (en
Inventor
良則 井上
杉浦 修史
森信 滋夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Original Assignee
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Takenaka Komuten Co Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP5341183A priority Critical patent/JPH0245795B2/en
Publication of JPS59180253A publication Critical patent/JPS59180253A/en
Publication of JPH0245795B2 publication Critical patent/JPH0245795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多室形空気調和機、詳しくは4外ユニツ) R
−複数の室内ユニットを従続し、多電の空調を行なうご
とくした多室形仝′″A調和例に関する一般に多室形空
気調和機は、四路切快弁などの冷暖房切換機構を用いて
多室の冷暖房を行なうごとく成しているが、D−11記
切侠4クエドqにより冷房及び暖房の一方を選択すると
丁べての′室内ユニットが冷房又は暖房運転を行なうこ
とになり、複数の室内ユニットを、これら室内ユニット
?設ける室内負荷Iこ対応して自由に冷房を行なったり
暖房を行なったりTることができない問題があった。 そこで、この問題番こ対応するため、特開昭55 12
372号公報に示され、また、勇5図1こ示したごとく
多室形空気調和機において、冷房運転時高圧ガスが流れ
る管路(0)に、室内ユニット(B)・・・の台数に対
応した複数の分岐管(D)・・・ご接続して、これら各
分岐管+D)・・・を、ガス側主管(E)に設けるガス
側支管(F)・・・の開閉弁(v1]・・・と、これら
各支管(F)に接続する各室内ユニ7)(B)・・・の
室内側熱交換器(G)・・・との間における各ガス側支
管(F)・・・lこ接続して、ごれら各分岐管(F)・
−弓こ開閉弁(V2]・・・を介装し、目1■記室内ユ
ニツ) (B)・・・の1台を冷房運転しているときで
も、残りの室内ユニットCB)・・・の1台又は複数台
分暖房運転可能にしたものを提案した。 尚、第5図において、(A)は室外ユニット、(H)は
この室外ユニツ) (A)に装備する圧縮機、(J)は
同じく藁外側熱交換器、(K)は受液器である。 所が、この多室形空気調和機によれば、−室を冷房して
いる場合でも他至を暖房できる(すれども、各室内ユニ
フ) (BJ・・・にはそれそJ−シ一つの室内側熱交
換器(())を設け、これらの熱交換器4(1)を蒸発
器とし1こり、凝1イd器としたりするものであって、
冷房とe房との何れか一方を選択するものであるから、
@湿)幾11目はなく、室内負(A5 iこ対応したき
め細力)な空調は行なえないし、また、室内負荷に対応
して+iil記室内側熱交換器CG)を蒸発器としたり
、dt44としたりするものであるから、次の問題も・
qする。 即ち、第1に、例えば凝縮器として暖房していた室内側
熱交換器(G)を、室内負何番こ応じて蒸発器に切換え
て冷房下る場合、膨張弁の感温節が吐出ガスで暖められ
ているとか、jj”J記熱父侠器(G)自体の熱容量な
どの影響で)IiJ記膨張弁の追従性が悪く、その結果
湿り運転となったり、乾き運転となったりする不都合を
起工問題かあり、また、同様に蒸発器として冷房してい
た室内側熱交換器(G)を凝縮器に切換えて暖房する場
合、前記熱交換器自体の熱容量のため、切換後前記熱交
俣a(G)に液冷媒が溜り込み、その結果切換直後は充
分な能力?発揮できず、負荷に対する応答性が悪くなり
、しかも、前記熱交換器CG)に溜り込んだ液冷媒のた
め、他の室内ユニツ) CB)において冷媒曖が不足し
、能力が出ない問題が生ずるのであって、冷媒側611
が難しく頻繁な室内ユニットの冷暖房切換えが困難とな
るのである。 また、第2に、以上の如く冷暖房の切換えを行なうのは
、主として中間期であって、中18工期における冷房負
荷及び暖房負荷は、夏期及び冬期におけるピーク時の各
負荷に比絞して非常に小さい。所が、前記室内側熱交換
D (G )は、何れもヒ゛−ク時の負荷に合わせて大
容濯に選定しており、斯かる大容駄の前記熱交換器CG
)を蒸発器又は凝縮器として冷暖房を行なうのであるか
ら、能力が過大となり室内ユニツ) CB)・・・での
連転停止が頻繁に生じ、そのため室内温度のばらつ′ぎ
が大きくなる間@が生ずる。 本発明は以上の如き問題に踏み発明したもので、目的は
、室内ユニットに室内側熱交換器とともに補助熱交換器
を設けて、各室内ユニットを他の室内ユニットの運転に
関係なく f?J房、中間期の冷1援房、除湿及び暖房
の各運転の選択ができ、しかも、中間期にはその各負荷
に応じた適正な冷暖房が行なえ、全体としてきめ細かな
 空、7,7が行なえるようにする点にある。 また、本発明の構成は、圧縮機、4外側熱交換器及び冷
暖房切換仮購牙fliffえた4外ユニット1こ室内側
熱交換器を備えた複数の¥内ユニツ)K接続した多室形
空気調和機番こおいて、削記菟外ユニットの数個主管に
複数の数個支管を設け、かつ。 冷房時低圧となり暖房時高圧となるガス側第1主管に複
数のガス側第1支官を、また、暖房時低)−Eとなり冷
房時高圧となるガス側第2主管に複数の力゛ス側第2支
管をそれぞれ設けると共に、所■記各室内ユニットに、
補助熱交換器をそれぞれ設けて、これら各室内ユニット
lこおけるDTJ記各熱交侠イgを、前記数個支管に対
し並列に接続Tる一方、fjiJ記室内側室内側熱交換
器ガス側第1支管に、また、前記補助熱交換器をt4i
J記ガス側ダS2支管にそれぞれ接続し、tj!J記各
熱交換器ごとに冷媒の流通を阻止できる開閉弁をそれぞ
れ付設したことにより、目1J記各至内ユニットを、他
の室内ユニットの運転状)頻に関りなく室内負荷に応じ
て適正な、きめ補かな空調運転が行なえるようにしたも
のである次に本発明の一実施例ご第1図に基づいて説明
する。 第1N番こ示したものは、1台の室外ユニット(A) 
iこ4台の室内ユニッ) (B)・・・を後続したもの
で、前記室外ユニッ) [A)は、圧縮g(1)、室外
側熱交換器〔2〕、受液器(6)及びアキュムレータ(
4〕と主として四路切換弁から成る冷暖房切換機構(5
]と2備え、冷媒配管(6〕によりそれぞれ連結してい
る。そして、前記室外側熱交換器(2〕と受液器(6)
とを結ぶ液管(61〕には暖房用膨張弁(7)と逆止弁
(8]七の4p列回路を介装しており、また、前記冷媒
配管(6)のr夜側主管(62)には、前記室内ユニツ
) (B)・・・の台数に対応した4本の数個支管(6
6]・・・を設けると共に、IJ11記冷媒配管(6)
の、冷房時低圧となり暖房時高圧となるカスj1111
第1主’1f(64)に開閉弁(9]・・・をらち、M
TJ記室内ユニット(B)・・・の台故に対応した4本
のガス側第1支管(65)・・・企、また、暖房時低圧
となり冷房時高圧となるガス側第2主管(66)iこ、
開閉弁(10)−・・をもち、i7U記室内ユニット(
E)・・・の台数に対応した4本のガス側第2支骨(6
7)・・・をそれぞれ設けるのである。 又一方、前記室内ユニツ) CD)・・・け、何れも、
室内側熱交換器(11)と冷房用膨張弁(12〕及び該
膨張弁(12)を暖房時l!!回路−[るバイパス回路
に介装する逆止弁(16)を装置1ii7 L 、冷媒
配管(14)により各連結すると共に、補助熱交換器(
15)をそれぞれ設−って、前記型内+ti、lI熱交
換器(11]と補助熱交換器(15)とを、連絡管(2
0)を介して前記室外ユニット(A] における数個支
管(66)に対し並列番こ接続し、かつ、rFI記室内
室内側熱交換器1)のガス11IIを、それぞれ前記ガ
ス側第1支管(65]・・・に、また、MjI記補助熱
交換5(15)のガス側を、前記ガス側第2支管(67
]・・・に連絡管(21)及び(22)を介してそれぞ
れ接続するのである。 hjJ記補助熱交換器(15)・・・は、li′7J記
ガス側第1支骨(65]・・・及びガス側第2支管(6
7〕ζこ介装する開閉弁(9)、(10)・・・の開閉
により、蒸発器としたり凝縮器としたりするもので、そ
の容宗は、中間期jこ必要な冷1援房負荷lこ対応して
設定するのであって、例えば室内側熱交換器(11ンの
20〜40%好ましくは60%に設定するのである。 又、前記補助熱交換器(15]・・・の数個には、該補
助熱交換器(15〕を蒸発器として用いる場合作用する
膨張弁(16〕と、凝縮器として用いる場合前記膨張弁
(16]を側路するバイパス路に介装する逆止弁(17
]とを設けている。 尚、第1図において〔18)は室外ファン、(19〕は
室内ファンである。また、以上の実施例においては、各
開閉弁(9)、(10)は、各ガス側第1支管(lls
5)、第2支’l#(67)にそれぞれ介設したが、こ
れら支骨(65)、  (67)に限定されることなく
、1可記各熱交侠器(11>  、(15)ごとに′?
?j媒の流通を阻止できる位Kに付設すれば良いことは
もちろんである。 次に以上の如く構成する空気調和機ζこおける前記開閉
弁(9)、(10)の開閉制御2行なう′電気回路を第
2図に基づいて説明する。 前記開閉弁(9)、(101は、主としてrl(磯舟を
用いると共に、室内温度を検出して動作°[る温闇検I
OB器(60)と室内湿度を検出して・tUJ作する湿
度検出器(61〕とを用いて1jiJ記開閉弁(9)、
(10)F開閉制御するごとく成すのである。 即ち、前記温度検出器(60〕には、設定温度が異なり
、室内負荷が冷房を要求する温度条件において閉動作す
る第1スイツチ(30a)と、暖房を要求する温度条件
で閉動作する第2スイツチC50b)と+Sけて、これ
ら各スイッチ(6Qa)、(3Qb) 7i:電源線路
に対しそれぞれリレー(T+)  、  (Tz)と直
列に接続すると共に、前記を雇度検出器(61)に・お
ける除湿を要求Tる湿間条件で閉動作するスイッチ(3
1&) Tt、D’J記リレー(Tt)  、  (T
z)の常閉接点(TIb)  、  (’Db]の直列
回路と、リレー(Tx)とlこ直列lこ接続するのであ
る。 そしてN iJ記電源線路には、室外ユニット(B)の
電気回路に介装され、前記冷暖房切換機構(5]の切換
操作に応動して動作するリレー(図示せず〕の動作で閉
じる接点(S)とリレー(R1)とをIR列に接続する
と共に、前記開閉弁(9)ノソレノイト(SVI)ヲ、
m■記IJ レ−(Rs)の常開接点(RIIIL )
と前記リレー(Tz)の常開接点(Tza)との直列回
路と、giJ記リレー(R1)の常閉接点(Rsb)と
前記リレー(TI)の常開接点(Tla)との直列回路
及び前記リレー(T3)の常開接点(Tsa )とを並
列に接続した並列回路と直列に接続し、また、前記開閉
弁(10)のソレノイド(SV2)を、前記リレー(R
1)の常開接点(R+a]と前記リレー(TI)の常開
接点(TIaJとの直列回路と、前記リレー(R1)の
常閉接点(Rxb )と前記リレー(Tz)の常開接点
(Tsa)との(ば列回路及び、前記リレー(T8)の
常開接点(TB & ]とを並列に接続した並列回路に
直列に接続するのである。 以上の如く構成する屯気回路は、旧記各室内ユニッ) 
(B)・・・ごとに設けて、前記室外ユニット(A)の
′電気回路と接続するのであって、!711記各案内ユ
ニット(B’)・・・(こ対1)6シて設けるOjJ記
各開閉弁(9)、(10)の開閉制御により、各室内ユ
ニツ) (E)・・・の運転をその室内負荷に応じたさ
め細かに行なうことができる。 次に以上の如く構成する皆気調和機の運転パターンを説
明する。 先ず、前記冷暖房切換+:13Hf+j(5’)を第1
図実線のごとく冷房に切換えると、冷房主体運転か行な
えるのである。冷房主体運転は各室の冷房負荷の合計が
残りの至の暖房負荷の合計よりも大きいときに選択する
のである。 この冷房主体運転での運転パターンは次の通りである。 (1)  冷房運転 このパターンは、各室とも冷房負荷のみの場合に用いる
のであって、前記開閉弁(10)を閉じ、開閉弁(9〕
を開いて、tiiJ記室内側室内側熱交換器]を蒸発器
とし通常の冷房サイクル−C運転を行なうのである。 (2)  除湿運転 このパターンは、前記室内側熱交換器(1’] )を蒸
発器として冷却を行なうと共に、該当する室内ユニツ)
 (E)の前記開閉弁(,9)、(10)をともに開き
、前記補助熱交換f、+(15)に吐出ガス?流して、
その凝縮熱により冷却した空気を再熱して行なうのであ
る。 この除湿運転は、除湿を必要とする室内に設置の室内ユ
ニット(B)においてのみ行なうもので、他の室内ユニ
ット(B)で冷房運転を行なっている場合でも行なえる
のであり、また第2図番こ示した″電気回路から明らか
な通り、湿度検出器(61)が動作してリレー〔T8)
が励磁されることにより自動的に行なえるのである。 尚、前記除湿M転において、前記補助熱交換器 (15
〕で凝縮した液冷媒は、MiJ記逆正逆止弁7)t’通
り、室内側熱交換器(11〕に前記冷房用膨張弁(12
)を介して供給され、空気冷却に使用される。 (3)  中間期の暖房M転 このパターンは、室内側熱交換器(11)を用いずに補
助熱交換器(15)に吐出ガスを流して行なうもので、
該当する室内ユニツ) CB〕のmJ記開開閉弁10)
’2開き、開閉弁(9)を閉じることにより行なえる。 この暖房運転は、暖房を必要とする室内に設置の室内ユ
ニツ) (Bl iこおいてのみ行なうのであって、冷
房負荷のある他室では冷房運転ご行なったり、除湿負荷
のある他室では除湿運転を行なうのであり、また、室内
負荷が冷房負荷から暖房負荷に変化しても、冷房は蚕内
側熱父換器
The present invention relates to a multi-chamber air conditioner, specifically a 4-unit air conditioner) R
- Regarding multi-room air conditioners that connect multiple indoor units and perform multi-current air conditioning, multi-room air conditioners generally use a heating/cooling switching mechanism such as a four-way switching valve. It is designed to perform air conditioning and heating in multiple rooms, but if either cooling or heating is selected according to D-11 Kiriki 4 Quad q, all indoor units will perform cooling or heating operation, and multiple There was a problem in which the indoor units could not be freely cooled or heated in response to the indoor load installed on these indoor units. 55 12
No. 372, and as shown in Figure 1, in a multi-room air conditioner, the pipe (0) through which high-pressure gas flows during cooling operation is connected to the number of indoor units (B)... Connect multiple corresponding branch pipes (D)... and connect these branch pipes +D)... to the gas side main pipe (E) to open/close the gas side branch pipe (F)... valve (v1). ]... and each gas side branch pipe (F)... and the indoor heat exchanger (G)... of each indoor unit 7) (B)... connected to each of these branch pipes (F).・Connect each branch pipe (F)・
- By installing a Yuko on-off valve (V2)..., even when one indoor unit (B)... is in cooling operation, the remaining indoor unit CB)... We proposed a system that enables heating operation for one or more units. In Figure 5, (A) is the outdoor unit, (H) is the compressor installed in (A), (J) is the straw outside heat exchanger, and (K) is the liquid receiver. be. However, according to this multi-room air conditioner, even when one room is being cooled, another room can be heated (but each indoor unit is heated). An indoor heat exchanger (()) is provided, and these heat exchangers 4(1) are used as an evaporator and a condenser,
Since it is a choice between air conditioning and e-air conditioning,
@Humidity) In most cases, negative indoor air conditioning (fine air conditioning corresponding to A5 i) cannot be performed, and in response to the indoor load, the indoor heat exchanger CG) can be used as an evaporator. dt44, so the next problem is also...
q. That is, firstly, when the indoor heat exchanger (G), which was used as a condenser for heating, is switched to an evaporator for cooling depending on the indoor temperature, the temperature-sensitive node of the expansion valve is the discharge gas. Due to the heat capacity of the heating device (G) itself, etc.), the followability of the expansion valve is poor, resulting in wet or dry operation. Similarly, if the indoor heat exchanger (G), which was used as an evaporator for cooling, is switched to a condenser for heating, due to the heat capacity of the heat exchanger itself, the heat exchanger (G) Liquid refrigerant accumulates in the heat exchanger CG), and as a result, it is not possible to achieve sufficient capacity immediately after switching, resulting in poor response to the load.Moreover, due to the liquid refrigerant accumulating in the heat exchanger CG), This is due to the lack of refrigerant in the other indoor units (CB) and the problem of insufficient capacity.
This makes it difficult to frequently switch between heating and cooling the indoor unit. Secondly, switching between air conditioning and heating as described above is mainly done during the interim period, and the cooling and heating loads during the middle 18th construction period are extremely high compared to the peak loads in the summer and winter. small. However, the indoor heat exchanger D (G) is selected to have a large capacity according to the peak load, and the heat exchanger CG with such a large capacity
) is used as an evaporator or condenser to perform air conditioning and heating, so the capacity becomes excessive and the continuous operation of indoor units (CB)... frequently stops, resulting in large variations in indoor temperature. occurs. The present invention was developed in view of the above-mentioned problems, and its purpose is to provide an indoor unit with an auxiliary heat exchanger together with an indoor heat exchanger so that each indoor unit can operate independently of the operation of other indoor units. It is possible to select between J air conditioning, cooling 1 support air conditioning during the intermediate period, dehumidification, and heating operation, and in addition, appropriate air conditioning and heating can be performed in the intermediate period according to each load, and the overall air quality is finely tuned. The point is to make it possible. In addition, the configuration of the present invention includes a compressor, 4 external heat exchangers, and a plurality of 4 external units (1) with an indoor heat exchanger (1) connected multi-chamber air In accordance with the harmonization machine number, several main pipes of the recording unit are provided with several branch pipes, and. A plurality of gas side first branches are installed in the first gas side main pipe, which becomes low pressure during cooling and high pressure during heating, and a plurality of power branches are connected to the second gas side main pipe, which becomes low pressure during heating and high pressure during cooling. In addition to providing a second branch pipe on each side, each indoor unit described in
An auxiliary heat exchanger is provided, and each of the DTJ heat exchangers in each of these indoor units is connected in parallel to the several branch pipes, while the indoor heat exchanger gas side 1 branch pipe, and also the auxiliary heat exchanger t4i
Connect to J gas side da S2 branch pipe respectively, tj! By installing an on-off valve that can prevent the flow of refrigerant for each heat exchanger listed in J, each indoor unit listed in J is controlled according to the indoor load regardless of the operating conditions of other indoor units. Next, one embodiment of the present invention will be described with reference to FIG. 1, which enables proper and detailed air conditioning operation. The number 1N shown is one outdoor unit (A)
4 indoor units) (B)..., which is a successor to the above outdoor unit) [A] is a compression unit (1), an outdoor heat exchanger [2], and a liquid receiver (6). and accumulator (
4] and a heating/cooling switching mechanism (5) mainly consisting of a four-way switching valve.
] and 2, and are connected by refrigerant piping (6).Then, the outdoor heat exchanger (2) and the liquid receiver (6)
A heating expansion valve (7) and a check valve (8) (7) 4p row circuit are interposed in the liquid pipe (61) connecting the refrigerant pipe (6). 62) has four branch pipes (6) corresponding to the number of indoor units) (B)...
6]... and IJ11 refrigerant piping (6)
The cass j1111 has low pressure during cooling and high pressure during heating.
The first main '1f (64) has an on-off valve (9)..., M
Four gas-side first branch pipes (65) corresponding to the fault of the TJ indoor unit (B)...In addition, the gas-side second main pipe (66) has low pressure during heating and high pressure during cooling. i-ko,
It has an on-off valve (10)... and an i7U internal unit (
E) 4 gas side second pillars (6
7)... are provided respectively. On the other hand, the above-mentioned indoor units) CD)...
A device 1ii7L includes an indoor heat exchanger (11), an expansion valve for cooling (12), and a check valve (16) interposed in a bypass circuit that connects the expansion valve (12) to a bypass circuit during heating. Each connection is made by a refrigerant pipe (14), and an auxiliary heat exchanger (
15) are installed to connect the in-mold +ti, lI heat exchanger (11) and the auxiliary heat exchanger (15) to the connecting pipe (2).
0) in parallel to several branch pipes (66) in the outdoor unit (A), and the gas 11II of the rFI-recorded indoor heat exchanger 1) is connected to the first branch pipe on the gas side, respectively. (65) ..., the gas side of the auxiliary heat exchanger 5 (15) described in MjI is connected to the second branch pipe (67) on the gas side.
]... through connecting pipes (21) and (22), respectively. hjJ auxiliary heat exchanger (15)... is li'7J gas side first branch (65)... and gas side second branch pipe (6
7] This is used as an evaporator or a condenser by opening and closing the on-off valves (9), (10)... For example, it is set to 20 to 40%, preferably 60% of the indoor heat exchanger (11). Also, the auxiliary heat exchanger (15)... Some of them include an expansion valve (16) that acts when the auxiliary heat exchanger (15) is used as an evaporator, and a reverse valve that is installed in a bypass passage that bypasses the expansion valve (16) when it is used as a condenser. Stop valve (17
]. In Fig. 1, [18] is an outdoor fan, and (19) is an indoor fan.In addition, in the above embodiment, each on-off valve (9), (10) is connected to each gas side first branch pipe ( lls
5) and the second support (67), but without being limited to these support bones (65) and (67), each heat exchanger (11>, (15) ) per′?
? Of course, it is sufficient to attach it to K to the extent that it can prevent the circulation of medium J. Next, an electric circuit for controlling the opening and closing of the on-off valves (9) and (10) in the air conditioner ζ constructed as above will be explained with reference to FIG. The opening/closing valves (9) and (101) mainly use RL (isofune) and operate by detecting the indoor temperature.
Using an OB device (60) and a humidity detector (61) that detects indoor humidity and generates a
(10) This is done as if controlling the F opening/closing. That is, the temperature detector (60) has a first switch (30a) which has different set temperatures, and which operates to close when the indoor load requires cooling, and a second switch (30a) which closes when the indoor load requires heating. These switches (6Qa) and (3Qb) 7i are connected in series with the relays (T+) and (Tz), respectively, to the power supply line, and the above are connected to the employment rate detector (61).・Switch that closes under humidity conditions that require dehumidification (3)
1 &) Tt, D'J relay (Tt), (T
The normally closed contact (TIb) of z) and the series circuit of ('Db) are connected in series with the relay (Tx).Then, the N iJ power line is connected to the outdoor unit (B) electricity. Connecting a contact (S) and a relay (R1) that are interposed in the circuit and closed by the operation of a relay (not shown) that operates in response to a switching operation of the heating/cooling switching mechanism (5) to the IR column, The on-off valve (9) no solenoid (SVI),
Normally open contact (RIIIL) of IJ Ray (Rs)
and a normally open contact (Tza) of the relay (Tz), a series circuit of a normally closed contact (Rsb) of the relay (R1) described in giJ, and a normally open contact (Tla) of the relay (TI), and The normally open contact (Tsa) of the relay (T3) is connected in series with a parallel circuit that is connected in parallel, and the solenoid (SV2) of the on-off valve (10) is connected to the normally open contact (Tsa) of the relay (R).
A series circuit of the normally open contact (R+a) of 1) and the normally open contact (TIaJ) of the relay (TI), and the normally open contact (Rxb) of the relay (R1) and the normally open contact (Tz) of the relay (Tz). Tsa) is connected in series to a parallel circuit in which the normally open contacts (TB & ) of the relay (T8) are connected in parallel. each indoor unit)
(B)... and is connected to the electric circuit of the outdoor unit (A). 711 Each guide unit (B')... (Pair 1) Each indoor unit) (E)... is operated by opening/closing control of the OjJ on-off valves (9) and (10) provided in 6 sets. This can be done in detail according to the indoor load. Next, the operation pattern of the all-air conditioner configured as above will be explained. First, the heating/cooling switch +: 13Hf+j (5') is set to the first
By switching to cooling mode as shown by the solid line in the figure, cooling-based operation can be performed. Cooling-based operation is selected when the total cooling load for each room is greater than the total heating load for the remaining rooms. The operation pattern in this cooling-based operation is as follows. (1) Cooling operation This pattern is used when there is only a cooling load in each room, and the on-off valve (10) is closed and the on-off valve (9) is closed.
Then, normal cooling cycle-C operation is performed using the indoor heat exchanger described in J as an evaporator. (2) Dehumidifying operation In this pattern, the indoor heat exchanger (1') is used as an evaporator to perform cooling, and the corresponding indoor unit)
Both the on-off valves (, 9) and (10) of (E) are opened, and the discharge gas is transferred to the auxiliary heat exchanger f, + (15). Let it flow,
This is done by reheating the cooled air using the heat of condensation. This dehumidification operation is performed only in the indoor unit (B) installed in the room that requires dehumidification, and can be performed even when other indoor units (B) are performing cooling operation. As is clear from the electric circuit shown in the figure, the humidity detector (61) is activated and the relay [T8]
This can be done automatically by being excited. In addition, in the dehumidification M rotation, the auxiliary heat exchanger (15
] The liquid refrigerant condensed in MiJ passes through the reverse check valve 7)t' and is transferred to the cooling expansion valve (12) into the indoor heat exchanger (11).
) and used for air cooling. (3) This heating M-turn pattern in the intermediate period is performed by flowing the discharge gas through the auxiliary heat exchanger (15) without using the indoor heat exchanger (11).
Applicable indoor unit) mJ on-off valve 10) of CB]
This can be done by opening '2 and closing the on-off valve (9). This heating operation is performed only in the indoor unit installed in the room that requires heating.In other rooms with a cooling load, cooling operation is performed, and in other rooms with a dehumidifying load, dehumidification is performed. Even if the indoor load changes from cooling load to heating load, cooling is carried out by the heat exchanger inside the silkworm.

【11]で行ない、暖房は補助熱交換器(1
5)で行なうため、換言すると一つの熱交換器を冷房か
ら暖房又は逆(こ切換えるものでないため、iFI記し
た従来装置における冷奴制御上の問題は生じない。 また、中間期ζこおける前記暖房運転は、前記補助情交
換器(15)の容置を、中間期に必要な容量としている
ため、中間期の小さい負荷にマツチした能力で運転でき
、それだけ運転停止の頻度を/J>なくでき、従って室
温のバラツキも小さくできるのである。 また、前記暖房運転は、前記温度検出器〔60〕の第2
スイツチ(3Qb)の動作でリレー〔’1ax)を励磁
させることにより自動的lこ行なえる。 尚、この暖房運転において前記補助熱交換器(15)で
W Haした液冷媒は、前記逆止弁(17)’を通り、
連絡管(20]を介して冷房運転を行なっている室内ユ
ニツ) (B)の室内側熱交換器(11)に供給される
。 次に暖房主体運転での運転バター〉・を説明すると次の
通りである。なお、暖房主体運転は各室の暖房負荷の合
計が残りの室の冷房負荷の合計よりも大きいときに選択
Tるのである。 ′1ノ 暖房運転 このパターンは、各≧≦とも暖房負荷のみの場合Cご用
いるのであって、前記開閉弁(10〕を閉じ、開閉弁(
9)を開き1)1(記室内+ttll熱交1笑恭(11
)を凝縮器として、通常の暖房サイクルで運転するので
ある。 (2)  除湿運転 このパターンは、目jI記室内側熱交換器(11)を凝
縮器として空気の加熱を行なうと」赴番こ、該当するM
iI記開閉弁(9)、+10)をとも1こυ1jいて、
MiJ記補助熱父挾器(15)iこ、液冷媒をHij記
膨張弁(16)・を介して供給し、その蒸発潜熱により
空気冷却することによつ行なうのでアリ、他の室内ユニ
ツ) (B)では暖房運転を行なえるのである。 このパターンは前記冷房主体運転【こおける除湿運転と
同様であるが、[j11記補助熱交換器(15]の容態
選定により前記冷房主体運転(こよる除湿運転は冷房気
味になるの番こ対し、この、<ターンにおける除湿運転
は暖房気味となる。 また、この除湿運転も、除湿を必要とする室内に設置の
室内ユニット(B〕においてのみ行なえるし、また、湿
度検出器(61〕の動作によるリレー(T3)の励磁番
こより自動的りこ行なえる0 尚、口の除湿運転において、前記補助熱交換器(15)
で蒸発したガス冷媒は、連絡管(22)とガス側第2支
管【67】及び低圧となっているガス側主管(66〕を
介して圧縮機(1)の1吸入口に戻される。 (乙 中間期の冷房運転 このパターンは、室内側熱交換器(11〕を用いずに、
補助熱交換a(15)に液冷媒を流して行なうもので、
該当する室内ユニット(B)のNil紀開開開閉弁0)
を開き、開閉弁
[11], and heating is performed using an auxiliary heat exchanger (1
5), in other words, one heat exchanger is not switched from cooling to heating or vice versa, so there is no problem with cooling control in the conventional equipment described in iFI. In operation, since the capacity of the auxiliary information exchanger (15) is set to the capacity required for the intermediate period, it can be operated at a capacity that matches the small load during the intermediate period, and the frequency of operation stoppages can be reduced accordingly. , Therefore, the variation in room temperature can also be reduced. Also, the heating operation is performed when the second temperature sensor [60]
This can be done automatically by energizing the relay ['1ax] by operating the switch (3Qb). In addition, in this heating operation, the liquid refrigerant that has undergone W Ha in the auxiliary heat exchanger (15) passes through the check valve (17)',
It is supplied to the indoor heat exchanger (11) of the indoor unit (B) which is performing cooling operation via the connecting pipe (20). Next, the operating conditions in heating-based operation are explained as follows. Note that heating-based operation is selected when the total heating load of each room is greater than the total cooling load of the remaining rooms. '1 No. Heating operation This pattern is used when there is only a heating load for each ≧≦, and the on-off valve (10) is closed and the on-off valve (10) is closed.
9) Open 1) 1 (recording room + ttll heat exchange 1 smile (11
) is used as a condenser and is operated in a normal heating cycle. (2) Dehumidification operation In this pattern, if the indoor heat exchanger (11) described in item 1 is used as a condenser to heat the air, the corresponding M
i Open and close the on-off valves (9) and +10) by 1 υ1j,
This is done by supplying the liquid refrigerant through the expansion valve (16) and cooling the air with its latent heat of vaporization (not applicable to other indoor units). In (B), heating operation can be performed. This pattern is similar to the dehumidifying operation in the cooling-dominant operation (dehumidifying operation in contrast to the cooling-dominant operation), but depending on the condition of the auxiliary heat exchanger (15) described in [j11], the cooling-dominant operation (in contrast to the dehumidifying operation in , This dehumidifying operation in the < turn has a heating effect. Also, this dehumidifying operation can only be performed in the indoor unit (B) installed in a room that requires dehumidification, and the humidity detector (61) This can be done automatically from the excitation number of the relay (T3) by operation.
The gas refrigerant evaporated is returned to the first suction port of the compressor (1) via the communication pipe (22), the second gas side branch pipe [67], and the low pressure gas side main pipe (66). ( B Cooling operation during the intermediate period This pattern does not use the indoor heat exchanger (11).
This is done by flowing liquid refrigerant through auxiliary heat exchange a (15).
Nil period on-off valve 0) of the applicable indoor unit (B)
Open the on-off valve

〔9〕をl1I4しることにより行なえ
る。また、この運転は、冷房を必要とする室内番こ設置
の室内ユニット(B]においてのみ行なうのであって、
暖房負荷のある他室では冷房を行なったり、暖房負この
パターンの冷房運転は、前記冷房主体運転シこおける中
間期の暖房運転のごとく補助熱交換器を使用するのであ
って、主体運転が変更(こなっているだけである。 従って、冷房を必要とする室内に設置の室内ユニッ) 
(E)のみにおいて行なえるし、また、例えば日照がな
くなり室内負荷が冷房負荷力)ら暖房負荷に変化しても
、暖房はν≦内側熱交換器(11〕で行なうのであるか
ら、冷媒制御上の問題はないし、また、中間期の小さい
負荷にマツチした能力で冷房運転が行なえるのである。 また、この冷房運転は、前記温度検出器(ろO)の第1
スイツチ(3Q a)の動作でリレー(Tl)を励磁さ
せること(こより自動曲番こ行なえるし、また、この冷
房運転において前記補助熱交換器(15〕で蒸発したガ
ス冷媒は前記除湿運転と同様、圧縮機(1)の吸入口に
戻される。 以上、説明した実施例は、冷房主体運転及び暖房主体M
転の冷房運転パターン及び暖房運転バ休させているが、
第6図のごとく構成することにより、■iJ記補助熱交
換器(15)’E−利用して冷房又は暖房の能力を増大
させられる。 即ち、第6図に示したものは、第1図1こ示した冷媒配
管系番こおいて、前記ガス側第1支管(65ンとガス側
第2支管(67)との間、更に詳記すると、■iJ記各
支管(65)、(67)の開閉弁(9)、(10)に対
し前記ガスO1!l第1及び第2主管(64)、C66
)への接続側と反対側で、同一系の各支管(65)、(
67)間に、開閉弁(60)をもった連通管(68)・
・・をそれぞれ介装したものである。 斯かる構成において、前記開閉弁(10)を閉じ、開閉
弁(9)、(30)を開くことにより、前記補助熱交換
器(15)を、室内側熱交換器(11〕と同様、蒸発器
又は凝縮器として、これら画然交換器(11)、(15
)で同時に冷房又は暖房を行なうことができ、それだけ
能力を増加させ得るのである。 この実施例の考え方は、外気温度が高い場合の冷房時、
又は、外気温度が低い場合の(1νω時、一般に冷暖房
負荷が共存することはないことと、中間期における程除
湿の必要も少ないことから、補助熱交換器(15)が用
いられることが殆んどなく遊休していることに着目し、
遊休する前記補助熱交換器(15)をより有効に利用す
べく戎したもので、前記室内側熱交換器(11)の能力
をピーク時の冷暖房負荷に応じて選定した場合には、前
記室内ユニッ) CB)における能力増加lこ上り立上
り運転時間を短縮でき、立上りの良い運転が行なえるし
、また能力の増加が得られることから、前記各熱交換器
(11)、(15)のトータル能力?ピーク時の冷暖房
負荷に応じて選定できるから、それたけ前記室内側熱交
換器(11)の8量を小さくできるのである。 尚、以上の如く構成する場合の前記開閉弁(30)の開
閉制御は、第4図のごとく、第4図に示した電気回路に
、制御スイッチ(S S)とリレ(Rt)との直列回路
P追加し、前記開閉弁(60)のソレノイド(S Vs
)を、前記リレー(R2)の常開接点(R2a )と、
次の並列回路、即ち前記リレー(R+)  、(’f+
)の各常開接点(Rla)  +  (Tt a )の
直列回路と前記リレー(R1)の常閉接点(R+b)と
前記リレー(T2)の′;イ開接点(Tta)と−の直
列回路とを並列に接続した並列回路とに直列I・。 に接続するのである。 前記制御スイッチ(S S)は主として手動式とするの
であるが、その他外気温度検出器を設け、この検出器に
より作動させるごとく成してもよいし、室内温度検出器
1設けて、この検出器により作動させるごとく成しても
よい。 この場合前記室内?′l!度検出器は冷暖房時に対応し
た温度に設定する2段サーモスタットを用いるのが好ま
しい。 尚、IN 31XJ及び第4図番こおいて、第1図及び
第2図に示した実施例と同じ構成のものは同一符号?記
入している。 以上の如く本発明は、圧縮機(1)、室外側熱交換器(
2)及び冷暖房切換機構(5)を備えた室外ユニツ) 
(A) iこ室内jill熱交換器(11〕を備えた仮
数の室内ユニツ) CB)・・・を接続した多室形空気
調和機において、前記室外ユニット(A〕の数個主%F
 (62)+こ複数の数個支管(66)・・・を設け、
かつ、冷房時低圧となり暖房時調圧となる力“ス側第1
主管(64)に炭数のガス側第1支管〔65〕・・・を
、また暖房時低圧となり冷房時扁圧となるガス側第2主
’ej’c66)に仮数のガス側第2支管(67)・・
・をそれぞれ設けると共に、前記各室内ユニツ) (B
)・・・(こ、補助熱交換器(15)・・・をそれぞれ
設けて、これら各室内ユニツ) CB)・−・における
前記各熱交換器(11)。 (15)を、前記数個支管(66〕・・・に対し並列に
接続する一方、iiJ記室内側熱交PA諸(11)を前
記ガス側第1支管(65)・・・に、また、前記補助熱
交換器(15)を前記ガス1AIli第2支管(67)
・・・にそれぞれ接続し、’A’J記各熱交換器(11
1゜(15〕ごとに冷媒の流通ご阻止できる開閉弁(9
)、(103をそれぞれ付設したものであるから、各室
内ユニットCB)・・−の連転は、他の室内ユニツ) 
(B)・・・の4転状悪14J何に拘わらず、冷房又は
暖房及び除湿運転が可能となる。 IUIも、−rべての室内ユニツ) (B)・・・で冷
房又は暖房運転が行なえることは勿論、例えば一つの室
内ユニツ) CB)で冷房又は暖房運転を行なっている
場合でも、残りの¥内ユニツ) (B)では、J勇lこ
]匿房又は冷房が行なえるし、しかも除湿連中べも行な
えるのである。 し力)も、冷房主体運転での暖房及び暖房主体運転での
冷房は、補助熱交換器(15ンを用いて行なうのである
から、室内負荷の変化で冷房から暖房又は暖房から冷房
lこ切換える場合、rM記室内III!l熱交侠器(1
1)F蒸発器と凝縮器との一方に切換える必要がなく、
従って、湿り運転となったり、乾き運転となったりする
不都合はないし、室内側熱交換器(11)iこ液冷媒が
溜り込むことの間顯もないのであり、@贅な冷暖房の切
換えも可f指となるのである。 その上、RiJ記補助熱交換器(15)4′i、中間期
に必要な負荷に対応した容量に選択できるので、前記補
助熱交換器(15)を用いて行なう中間期の暖房又は冷
房は、負荷lこマツチした能力で運転でき、中間期の負
荷に対し過大な能力での運転による室内温度のバラツギ
を小さくできるのである。 以上のよう(こ、単に冷房及び暖房の選択のみならず、
中間期の室内負荷番こ応した暖房及び冷房もでき、しか
も除湿運転も叶11シであるから、きめ細かな空調運転
が行なえるのである。
This can be done by performing l1I4 on [9]. In addition, this operation is performed only in the indoor unit (B) installed with an indoor air conditioner that requires air conditioning.
In other rooms with heating load, cooling is performed, and in this pattern of cooling operation with negative heating, an auxiliary heat exchanger is used, as in the heating operation in the intermediate period of the above-mentioned cooling-main operation, and the main operation is changed. (Therefore, the indoor unit installed in a room that requires air conditioning)
(E) alone, and even if, for example, there is no sunlight and the indoor load changes from cooling load to heating load, heating is performed by ν≦inner heat exchanger (11), so refrigerant control is required. There is no problem with the above, and cooling operation can be performed with a capacity that matches the small load in the intermediate period.
The relay (Tl) is excited by the operation of the switch (3Q a) (this allows automatic tune numbering), and the gas refrigerant evaporated in the auxiliary heat exchanger (15) during this cooling operation is used in the dehumidifying operation. Similarly, it is returned to the suction port of the compressor (1).
However, the cooling operation pattern and heating operation pattern have been suspended.
By configuring as shown in FIG. 6, cooling or heating capacity can be increased by utilizing the auxiliary heat exchanger (15)'E-. That is, what is shown in FIG. 6 is the refrigerant piping system number shown in FIG. To write, ■ iJ for the on-off valves (9), (10) of each branch pipe (65), (67), the gas O1!l first and second main pipe (64), C66
), each branch pipe (65) of the same system, on the side opposite to the connection side to (
67) A communication pipe (68) with an on-off valve (60) between
... are interposed respectively. In such a configuration, by closing the on-off valve (10) and opening the on-off valves (9) and (30), the auxiliary heat exchanger (15) can be used for evaporation, similar to the indoor heat exchanger (11). As vessels or condensers, these exchangers (11), (15
) can perform cooling or heating at the same time, increasing capacity accordingly. The idea behind this example is that during cooling when the outside temperature is high,
Alternatively, when the outside air temperature is low (at 1νω), the auxiliary heat exchanger (15) is rarely used because there is generally no coexistence of heating and cooling loads and there is less need for dehumidification than in the intermediate period. Focusing on the fact that it is somehow idle,
This is done to make more effective use of the idle auxiliary heat exchanger (15), and if the capacity of the indoor heat exchanger (11) is selected according to the heating and cooling load at peak times, the indoor Increase in capacity in unit) CB) The start-up operation time can be shortened, smooth start-up operation can be performed, and the capacity can be increased, so the total of each heat exchanger (11) and (15) can be reduced. ability? Since it can be selected according to the heating and cooling load at the peak time, the amount of the indoor heat exchanger (11) can be reduced accordingly. In addition, the opening/closing control of the on-off valve (30) in the case of the above configuration is performed by connecting a control switch (SS) and a relay (Rt) in series to the electric circuit shown in FIG. 4, as shown in FIG. Circuit P is added, and the solenoid (S Vs) of the on-off valve (60) is added.
), the normally open contact (R2a) of the relay (R2),
The next parallel circuit, namely the relay (R+), ('f+
), a series circuit of each normally open contact (Rla) + (Tt a ), a normally closed contact (R+b) of the relay (R1), and a series circuit of the relay (T2)'s open contact (Tta) and - and a parallel circuit connected in parallel with I. It connects to. The control switch (SS) is mainly a manual type, but it may also be operated by an outside temperature sensor provided, or an indoor temperature sensor 1 may be provided and this sensor It may also be configured such that it is operated by. In this case, the room? 'l! As the degree detector, it is preferable to use a two-stage thermostat that sets the temperature corresponding to cooling/heating. Regarding IN 31XJ and Figure 4, are the parts with the same configuration as the embodiment shown in Figures 1 and 2 the same reference numerals? I have filled it out. As described above, the present invention includes a compressor (1), an outdoor heat exchanger (
2) and an outdoor unit equipped with a heating/cooling switching mechanism (5))
(A) A mantissa indoor unit equipped with an indoor heat exchanger (11) CB)... In a multi-room air conditioner connected to the indoor unit (A), several main % F of the outdoor unit (A)
(62) + several branch pipes (66)... are provided,
In addition, the pressure is low during cooling and the pressure is regulated during heating.
The first branch pipe on the gas side of the coal number [65] is connected to the main pipe (64), and the second branch pipe on the gas side of the mantissa is connected to the second main pipe on the gas side, which becomes low pressure during heating and low pressure during cooling (66). (67)...
・In addition to providing each of the above indoor units) (B
)...(Auxiliary heat exchangers (15)... are provided in each of these indoor units) CB)... Each of the heat exchangers (11) in... (15) are connected in parallel to the several branch pipes (66)..., while iiJ indoor heat exchanger PAs (11) are connected to the first gas side branch pipe (65)... , the auxiliary heat exchanger (15) is connected to the gas 1AIli second branch pipe (67).
... and each heat exchanger marked 'A'J (11
An on-off valve (9) that can block the flow of refrigerant every 1° (15)
), (103 are attached respectively, so each indoor unit CB)...- is connected to other indoor units)
(B) Cooling or heating and dehumidifying operation are possible regardless of the four conditions of...14J. Of course, IUI can perform cooling or heating operation on all indoor units) (B)..., for example, even if one indoor unit) CB) is performing cooling or heating operation, the remaining In (B), it is possible to carry out air conditioning or air conditioning, and also to dehumidify the air. Also, heating during cooling-based operation and cooling during heating-based operation are performed using an auxiliary heat exchanger (15 cm), so it is possible to switch from cooling to heating or from heating to cooling depending on changes in the indoor load. In the case, rM storage chamber III!l heat exchanger (1
1) There is no need to switch between the F evaporator and the condenser,
Therefore, there is no inconvenience such as wet or dry operation, there is no problem of liquid refrigerant accumulating in the indoor heat exchanger (11), and it is possible to switch between heating and cooling modes. This becomes the f finger. Furthermore, the capacity of the RiJ auxiliary heat exchanger (15) 4'i can be selected to correspond to the load required during the intermediate period, so that heating or cooling performed using the auxiliary heat exchanger (15) during the intermediate period can be , it is possible to operate at a capacity that matches the load, and it is possible to reduce variations in indoor temperature caused by operation at an excessive capacity for the load during the intermediate period. As mentioned above (not only the selection of air conditioning and heating, but also
It is possible to perform heating and cooling according to the indoor load during the intermediate period, and since the dehumidification operation is also possible, detailed air conditioning operation can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷媒配管系統図、第2
図はこの電気回路図、第6図は別の実施例を示す冷媒配
管系統図、第4図はその電気回路図、第5図は従来例を
示す冷媒配管系統図である。 (1)・・・圧縮機 (2]・・・室外側熱交換器 (5]・・・冷暖房切換機構 (9)、(10)・・・開閉弁 (11)・・・室内側熱交換器 (15]・・・補助熱交換器 (62)・・一部側主管 (66) ・・・液イtわ1支管 (64)・・・ガス側第1主管 (65)・・・ガス側第1支管 (66]・・・ガスイlll第2主管 (67)・・・ガス側第2支晋 (A)・・・¥外ユニット CB)・・・室内ユニット 第2図 第3図
Fig. 1 is a refrigerant piping system diagram showing one embodiment of the present invention;
6 is a refrigerant piping system diagram showing another embodiment, FIG. 4 is an electric circuit diagram thereof, and FIG. 5 is a refrigerant piping system diagram showing a conventional example. (1) Compressor (2) Outdoor heat exchanger (5) Air conditioning/heating switching mechanism (9), (10) Open/close valve (11) Indoor heat exchanger Heat exchanger (15)...Auxiliary heat exchanger (62)...Part side main pipe (66)...Liquid side 1st branch pipe (64)...Gas side first main pipe (65)...Gas Side first branch pipe (66)...Gas side second main pipe (67)...Gas side second branch pipe (A)...¥External unit CB)...Indoor unit Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)  +E縮機(1]、室外側熱交換器(2)及び
冷暖房切換gA61(5)をイ)Mえた室外ユニツ) 
(A)1こ、室内側熱交換器(11)を鋪えた仮数の’
4内ユニツ) (E)・・・を接続した多室形空気調和
機において、前記室外ユニット(A)の数個主管(62
)に複数の数個支管(66)・・・を設け、かつ、冷房
時低圧となり暖房時高圧となるガス側第1主’#(64
)に(−M@のガス側第1支管(65〕・・・を、また
暖房時低圧となり冷房時高圧となるガス側第2主管C6
6)+こ複数のガス側第2支管(67]・・・をそれぞ
れ設けると共に、+iJ記各室内ユニ7)(E)・・・
に、補助熱交換器(15)・・・をそれぞれ設けて、こ
れら各室内ユニッ) CB)・・・における前記各熱交
換器(11)、(15)を、前記数個支管(66)・・
・に対し並列に接続する一方、前記¥内側熱交換器(1
1)を1ITS記ガス側第1支管(65)・・・に、ま
たjjjl記補助熱交換器(15)’rMiJ記ガス側
第2支管(67)・・・;こそれぞれ従続し、piJ記
各記文熱交換器1)、(’15)ごとに冷媒の流通を阻
止できる開閉弁(9)、(10)kそnぞれ付設したこ
とf:特徴とする多室形空気調和機
(1) Outdoor unit with +E compressor (1), outdoor heat exchanger (2), and air conditioning/heating switch gA61 (5)
(A) 1, the mantissa of the indoor heat exchanger (11)
In a multi-room air conditioner connected to 4 indoor units) (E)..., several main pipes (62
) is provided with a plurality of branch pipes (66)..., and the gas side first main '# (64) has low pressure during cooling and high pressure during heating.
) to the gas side first branch pipe (65) of (-M@), and the gas side second main pipe C6, which has low pressure during heating and high pressure during cooling.
6) In addition to providing a plurality of gas side second branch pipes (67)..., +iJ each indoor unit 7) (E)...
, an auxiliary heat exchanger (15)... is provided respectively, and each of the heat exchangers (11), (15) in each of these indoor units (CB)... is connected to the several branch pipes (66)...・
・While connected in parallel to
1) to the first branch pipe (65) on the gas side described in 1ITS, and the second branch pipe on the gas side (67) described in jjjl, respectively, Each of the heat exchangers 1) and ('15) is equipped with an on-off valve (9) and (10) that can block the flow of refrigerant f: Features of multi-room air conditioner
JP5341183A 1983-03-28 1983-03-28 TASHITSUGATAKUKICHOWAKI Expired - Lifetime JPH0245795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341183A JPH0245795B2 (en) 1983-03-28 1983-03-28 TASHITSUGATAKUKICHOWAKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341183A JPH0245795B2 (en) 1983-03-28 1983-03-28 TASHITSUGATAKUKICHOWAKI

Publications (2)

Publication Number Publication Date
JPS59180253A true JPS59180253A (en) 1984-10-13
JPH0245795B2 JPH0245795B2 (en) 1990-10-11

Family

ID=12942081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341183A Expired - Lifetime JPH0245795B2 (en) 1983-03-28 1983-03-28 TASHITSUGATAKUKICHOWAKI

Country Status (1)

Country Link
JP (1) JPH0245795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296063A (en) * 1988-05-24 1989-11-29 Sanyo Electric Co Ltd Multiple-room type air conditioner
US5277034A (en) * 1991-03-22 1994-01-11 Hitachi, Ltd. Air conditioning system
JP2017089940A (en) * 2015-11-05 2017-05-25 菱名工業株式会社 Air conditioner and control method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296063A (en) * 1988-05-24 1989-11-29 Sanyo Electric Co Ltd Multiple-room type air conditioner
JP2692856B2 (en) * 1988-05-24 1997-12-17 三洋電機株式会社 Multi-room air conditioner
US5277034A (en) * 1991-03-22 1994-01-11 Hitachi, Ltd. Air conditioning system
JP2017089940A (en) * 2015-11-05 2017-05-25 菱名工業株式会社 Air conditioner and control method of the same

Also Published As

Publication number Publication date
JPH0245795B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US2893218A (en) Air conditioning systems
CA1288961C (en) Integrated heat pump system
CA1288606C (en) Heat pump system with hot water device
CA2123202C (en) Method and apparatus for latent heat extraction
US6385985B1 (en) High latent circuit with heat recovery device
US3777508A (en) Heat pump type air conditioning systems
US5228302A (en) Method and apparatus for latent heat extraction
US5802862A (en) Method and apparatus for latent heat extraction with cooling coil freeze protection and complete recovery of heat of rejection in Dx systems
US4189929A (en) Air conditioning and dehumidification system
US2801524A (en) Heat pump including hot gas defrosting means
JPS5984053A (en) Climate regulator
GB2428470A (en) A re-heat air conditioning system
US3939905A (en) System for regulating the temperature in rooms, more particularly for cooling rooms
JPS59180253A (en) Multi-chamber type air conditioner
JPH02290476A (en) Air-conditioning and hot water feeding system equipment
JPS581711Y2 (en) Header device for cooling or heating
JPS6011787B2 (en) Heat pump type multi-room air conditioning system
JPS6011785B2 (en) Heat pump type multi-room air conditioning system
JPS60133274A (en) Multi-chamber type air conditioner
JPS60598Y2 (en) Separate air conditioner/heater
JP3142897B2 (en) Cooling and heating system with heat storage function
JP2730934B2 (en) Heat pump refrigeration system
JPH0615275Y2 (en) Air-conditioning heat source device
JPH0413576Y2 (en)
JPH09145190A (en) Air conditioner