JPH08178445A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH08178445A
JPH08178445A JP32765094A JP32765094A JPH08178445A JP H08178445 A JPH08178445 A JP H08178445A JP 32765094 A JP32765094 A JP 32765094A JP 32765094 A JP32765094 A JP 32765094A JP H08178445 A JPH08178445 A JP H08178445A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
flow
row
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32765094A
Other languages
Japanese (ja)
Inventor
Shinji Watanabe
伸二 渡辺
Yasushi Watabe
安司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32765094A priority Critical patent/JPH08178445A/en
Publication of JPH08178445A publication Critical patent/JPH08178445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To reduce in size a heat exchanger, to improve the performance of the exchanger and to improve COP (coefficient of performance) by forming an opposite flow at the time of cooling or heating using a pseudo-opposite flow type heat exchanger as the exchanger in a heat pump type air conditioner using nonazeotrope refrigerant. CONSTITUTION: A user side heat exchanger 3 and a heat source side heat exchanger 5 are formed of a plurality of two or more of rows of heat exchangers. At the time of cooling, refrigerant flows from a leeward side row to the windward side row at the exchanger 3 so that the flow of the air cross- counters the flow of the refrigerant. At the time of cooling, the refrigerant flows from the leeward side row to the windward side row at the exchanger 5, and the flow of the air cross-counters the flow of the refrigerant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒として沸点が異な
る2種類以上の冷媒を所定の比率で混合した非共沸混合
冷媒を用いたヒートポンプ式空気調和機の高効率化に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the efficiency of a heat pump type air conditioner using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio.

【0002】[0002]

【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
オロカーボン)についても1996年より総量規制が開
始され、将来的には全廃されることが決定している。し
たがって、冷媒としてフロンを用いた機器について、そ
の代替冷媒の開発が進められており、オゾン層を破壊し
ないHFC(ハイドロフルオロカーボン)が検討されて
いるが、冷凍機や空調機に用いられているHCFCの代
替冷媒として単独で用いることのできるものはHFCの
中には見あたらず、したがって2種類以上のHFC系冷
媒を混合させた非共沸の混合冷媒が有望視されている。
2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, regulations on CFCs that destroy the ozone layer have been strengthened, and it has been decided to abolish CFC (chlorofluorocarbon), which has a particularly high destructive power, at the end of 1995. Also, regarding the FCFC (hydrochlorofluorocarbon), which has a relatively small destructive power, the total amount regulation was started in 1996, and it has been decided that it will be completely abolished in the future. Therefore, for devices that use CFCs as refrigerants, alternative refrigerants are being developed, and HFCs (hydrofluorocarbons) that do not destroy the ozone layer are being studied, but HCFCs used in refrigerators and air conditioners are being investigated. No substitute refrigerant that can be used alone in HFC is found, and therefore a non-azeotropic mixed refrigerant obtained by mixing two or more kinds of HFC refrigerants is considered promising.

【0003】従来、CFCやHCFC等の単一冷媒もし
くは共沸混合冷媒を用いた冷凍機や空気調和機の蒸発温
度および凝縮温度はそれぞれ等温である。しかし、非共
沸混合冷媒を用いた場合には飽和冷媒液温度と飽和冷媒
蒸気温度とが異なり、飽和冷媒液温度は飽和冷媒蒸気温
度より低くなるという非等温性を有している。このた
め、非共沸混合冷媒を用いた冷凍機はこの非等温性を効
果的に利用できる対向流型熱交換器を使用しているもの
もある。以下、図面を参照しながら従来の空気調和機の
冷凍サイクルについて説明する。
Conventionally, the evaporation temperature and the condensation temperature of a refrigerator or an air conditioner using a single refrigerant such as CFC or HCFC or an azeotropic mixed refrigerant are isothermal. However, when a non-azeotropic mixed refrigerant is used, the saturated refrigerant liquid temperature and the saturated refrigerant vapor temperature are different, and the saturated refrigerant liquid temperature is lower than the saturated refrigerant vapor temperature, which is non-isothermal. For this reason, some refrigerators using a non-azeotropic mixed refrigerant use a counterflow heat exchanger that can effectively utilize this non-isothermal property. Hereinafter, a refrigeration cycle of a conventional air conditioner will be described with reference to the drawings.

【0004】図6は、従来のヒートポンプ式空気調和機
の冷凍サイクル図である。同図において、1は圧縮機,
2は四方弁,3は利用側熱交換器,4は絞り弁,5は熱
源側熱交換器であり、これらは順次環状に連結されてお
り、6,7はそれぞれ利用側熱交換器,熱源側熱交換器
用の送風ファンである。
FIG. 6 is a refrigeration cycle diagram of a conventional heat pump type air conditioner. In the figure, 1 is a compressor,
2 is a four-way valve, 3 is a use side heat exchanger, 4 is a throttle valve, 5 is a heat source side heat exchanger, and these are sequentially connected in an annular shape. 6 and 7 are the use side heat exchanger and the heat source, respectively. It is a blower fan for the side heat exchanger.

【0005】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、暖房運転について説明する。暖
房運転時の冷媒の流れ方向を実線矢印で示しており、圧
縮機1で圧縮された冷媒ガスは四方弁2を通り利用側熱
交換器3で凝縮液化され減圧器4で減圧膨張され熱源側
熱交換器5で蒸発気化して四方弁2を経て圧縮機1へと
戻る。ここで、利用側熱交換器3および熱源側熱交換器
5はそれぞれ空気と冷媒の流れ方向は対向流になるよう
に送風ファン6,7を設置している。
Next, the specific operation of this refrigeration cycle will be described. First, the heating operation will be described. The flow direction of the refrigerant during heating operation is indicated by a solid arrow, and the refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 to be condensed and liquefied in the heat exchanger 3 on the use side and decompressed and expanded by the decompressor 4 to the heat source side. It evaporates in the heat exchanger 5 and returns to the compressor 1 via the four-way valve 2. Here, the use side heat exchanger 3 and the heat source side heat exchanger 5 are provided with the blower fans 6 and 7 so that the air and the refrigerant flow in opposite directions.

【0006】次に、冷房運転に切り換えた場合について
説明する。冷房運転時の冷媒の流れ方向を破線矢印で示
しており、圧縮機1で圧縮された冷媒ガスは四方弁2を
通り熱源側熱交換器5で凝縮液化され減圧器4で減圧膨
張され利用側熱交換器3で蒸発気化して四方弁2を経て
圧縮機1へと戻り、冷媒の流れ方向が暖房時に対して逆
転するため利用側熱交換器3および熱源側熱交換器5に
おける空気と冷媒の流れ方向は並行流となる。
Next, the case where the cooling operation is switched to will be described. The flow direction of the refrigerant during the cooling operation is indicated by a broken line arrow, and the refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 to be condensed and liquefied in the heat source side heat exchanger 5, decompressed and expanded in the decompressor 4, and used. Air and refrigerant in the use side heat exchanger 3 and the heat source side heat exchanger 5 are evaporated and vaporized in the heat exchanger 3 and return to the compressor 1 via the four-way valve 2 and the flow direction of the refrigerant reverses to that during heating. The flow directions of are parallel flows.

【0007】[0007]

【発明が解決しようとする課題】このように、上記従来
のヒートポンプ式空気調和機は以下のような課題があっ
た。
As described above, the conventional heat pump type air conditioner has the following problems.

【0008】利用側熱交換器3および熱源側熱交換器5
に対向流型熱交換器を使用しているため熱交換器を多パ
ス化する、あるいは風回路を長くする必要があり、熱交
換器の構成が複雑化する。また、送風機としても高静圧
が必要になり装置が大型化するという課題があった。
Utilization side heat exchanger 3 and heat source side heat exchanger 5
Since the counterflow type heat exchanger is used in the above, it is necessary to make the heat exchanger multi-pass or to lengthen the wind circuit, which complicates the structure of the heat exchanger. Further, there is a problem that a high static pressure is required for the blower and the device becomes large.

【0009】本発明の冷凍サイクルは上記課題に鑑み、
非共沸混合冷媒を用いた冷凍サイクルにおいて、簡単な
熱交換器の構成で熱交換器の性能向上を図り、システム
のCOPの向上を図るものである。
In view of the above problems, the refrigeration cycle of the present invention is
In a refrigeration cycle using a non-azeotropic mixed refrigerant, the performance of the heat exchanger is improved with a simple heat exchanger configuration, and the COP of the system is improved.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷凍サイクルは、冷媒として沸点が異なる2
種類以上の冷媒を所定の比率で混合した非共沸混合冷媒
を用い、圧縮機,四方弁,利用側熱交換器,減圧器,熱
源側熱交換器を順次配管にて環状に連結して冷媒回路を
構成し、前記利用側熱交換器および前記熱源側熱交換器
を2列以上の複数列の熱交換器で構成し、冷房運転時に
前記利用側熱交換器に風下側列から風上側列へ冷媒を流
し、風の流れと冷媒の流れがクロスカウンターになる構
成とし、かつ冷房運転時に前記熱源側熱交換器に風下側
列から風上側列へ冷媒を流し、風の流れと冷媒の流れが
クロスカウンターになる構成を有するものである。
In order to solve the above-mentioned problems, the refrigerating cycle of the present invention has two different boiling points as refrigerants.
A non-azeotropic mixed refrigerant in which more than one kind of refrigerant is mixed in a predetermined ratio is used, and the compressor, four-way valve, utilization side heat exchanger, pressure reducer, and heat source side heat exchanger are connected in an annular shape by piping in sequence. A circuit is configured, and the use side heat exchanger and the heat source side heat exchanger are configured by a plurality of rows of heat exchangers of two or more rows, and the use side heat exchanger is moved from the leeward side row to the windward side row during cooling operation. Refrigerant to flow, the flow of the wind and the flow of the refrigerant to be a cross counter, and during the cooling operation to flow the refrigerant from the leeward row to the windward row to the heat source side heat exchanger, the flow of the wind and the flow of the refrigerant. Is a cross counter.

【0011】また、本発明の他の冷凍サイクルは、冷媒
として沸点が異なる2種類以上の冷媒を所定の比率で混
合した非共沸混合冷媒を用い、圧縮機,四方弁,利用側
熱交換器,減圧器,熱源側熱交換器を順次配管にて環状
に連結して冷媒回路を構成し、前記利用側熱交換器およ
び前記熱源側熱交換器を2列以上の複数列の熱交換器で
構成し、暖房運転時に前記利用側熱交換器に風下側列か
ら風上側列へ冷媒を流し、風の流れと冷媒の流れがクロ
スカウンターになる構成とし、かつ冷房運転時に前記熱
源側熱交換器に風下側列から風上側列へ冷媒を流し、風
の流れと冷媒の流れがクロスカウンターになる構成を有
するものである。
In another refrigeration cycle of the present invention, a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a four-way valve, a heat exchanger on the utilization side are used. , A decompressor and a heat source side heat exchanger are sequentially connected in an annular shape to form a refrigerant circuit, and the use side heat exchanger and the heat source side heat exchanger are heat exchangers in two or more rows. The heating side heat exchanger is configured to flow a refrigerant from the downwind side row to the upwind side row during the heating operation, and the flow of the air and the flow of the refrigerant serve as a cross counter, and the heat source side heat exchanger during the cooling operation. In this configuration, the refrigerant flows from the leeward side row to the leeward side row, and the flow of the wind and the flow of the refrigerant serve as a cross counter.

【0012】また、本発明の他の冷凍サイクルは、冷媒
として沸点が異なる2種類以上の冷媒を所定の比率で混
合した非共沸混合冷媒を用い、圧縮機,四方弁,利用側
熱交換器,減圧器,熱源側熱交換器を順次配管にて環状
に連結して冷媒回路を構成し、前記利用側熱交換器およ
び前記熱源側熱交換器を2列以上の複数列の熱交換器で
構成し、冷房運転時に前記利用側熱交換器に風下側列か
ら風上側列へ冷媒を流し、風の流れと冷媒の流れがクロ
スカウンターになる構成とし、かつ暖房運転時に前記熱
源側熱交換器に風下側列から風上側列へ冷媒を流し、風
の流れと冷媒の流れがクロスカウンターになる構成を有
するものである。
In another refrigeration cycle of the present invention, a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a four-way valve, a heat exchanger on the utilization side are used. , A decompressor and a heat source side heat exchanger are sequentially connected in an annular shape to form a refrigerant circuit, and the use side heat exchanger and the heat source side heat exchanger are heat exchangers in two or more rows. And a configuration in which refrigerant flows from the leeward side row to the upwind side row in the use side heat exchanger during cooling operation, and the flow of the wind and the flow of the refrigerant become a cross counter, and the heat source side heat exchanger during heating operation. In this configuration, the refrigerant flows from the leeward side row to the leeward side row, and the flow of the wind and the flow of the refrigerant serve as a cross counter.

【0013】また、本発明の他の冷凍サイクルは、冷媒
として沸点が異なる2種類以上の冷媒を所定の比率で混
合した非共沸混合冷媒を用い、圧縮機,四方弁,利用側
熱交換器,減圧器,熱源側熱交換器を順次配管にて環状
に連結して冷媒回路を構成し、前記利用側熱交換器およ
び前記熱源側熱交換器を2列以上の複数列の熱交換器で
構成し、暖房運転時に前記利用側熱交換器に風下側列か
ら風上側列へ冷媒を流し、風の流れと冷媒の流れがクロ
スカウンターになる構成とし、かつ暖房運転時に前記熱
源側熱交換器に風下側列から風上側列へ冷媒を流し、風
の流れと冷媒の流れがクロスカウンターになる構成を有
するものである。
In another refrigeration cycle of the present invention, a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a four-way valve, a heat exchanger on the use side are used. , A decompressor and a heat source side heat exchanger are sequentially connected in an annular shape to form a refrigerant circuit, and the use side heat exchanger and the heat source side heat exchanger are heat exchangers in two or more rows. The heating source side heat exchanger is configured such that a refrigerant flows from the leeward side row to the windward side row in the use side heat exchanger during heating operation, and the flow of the wind and the refrigerant flow become a cross counter, and the heat source side heat exchanger during heating operation. In this configuration, the refrigerant flows from the leeward side row to the leeward side row, and the flow of the wind and the flow of the refrigerant serve as a cross counter.

【0014】[0014]

【作用】本発明は、上記手段により次のような作用を有
する。
The present invention has the following actions due to the above means.

【0015】すなわち、本発明は、非共沸混合冷媒を用
いたヒートポンプ式空気調和機を提供するものであり、
前記利用側熱交換器および前記熱源側熱交換器を2列以
上の複数列の熱交換器で構成し、冷房運転時に前記利用
側熱交換器に風下側列から風上側列へ冷媒を流し、風の
流れと冷媒の流れがクロスカウンターになる構成とし、
かつ冷房運転時に前記熱源側熱交換器に風下側列から風
上側列へ冷媒を流し、風の流れと冷媒の流れがクロスカ
ウンターになる構成にして、冷房運転時に利用側熱交換
器と熱源側熱交換器を通過する空気と熱交換器中を流れ
る冷媒の流れ方向を直行流と対向流を混合したクロスカ
ウンターフロー(疑似対向流)とすることにより、熱交
換器の小型化、および冷房運転時の蒸発器と凝縮器の熱
交換性能の向上を図り冷房COPの著しい向上を図るこ
とができる。
That is, the present invention provides a heat pump type air conditioner using a non-azeotropic mixed refrigerant,
The utilization-side heat exchanger and the heat-source-side heat exchanger are composed of a plurality of rows of heat exchangers of two or more rows, and the refrigerant is caused to flow from the leeward side row to the windward side row in the use-side heat exchanger during cooling operation, With a configuration in which the flow of air and the flow of refrigerant become a cross counter,
Moreover, during the cooling operation, the refrigerant flows from the leeward side row to the windward side row in the heat source side heat exchanger, and the flow of the wind and the flow of the refrigerant become a cross counter, and the use side heat exchanger and the heat source side during the cooling operation. The size of the heat exchanger can be reduced and the cooling operation can be performed by changing the flow direction of the air passing through the heat exchanger and the refrigerant flowing in the heat exchanger to a cross counter flow (pseudo-counterflow) that mixes a direct flow and a counterflow. In this case, the heat exchange performance of the evaporator and the condenser can be improved and the cooling COP can be significantly improved.

【0016】また、暖房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ冷房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、冷房運転に熱源側熱交換器を通過する空
気と熱交換器中を流れる冷媒の流れ方向をクロスカウン
ターフローとして動作させ、暖房運転には利用側熱交換
器を通過する空気と熱交換器中を流れる冷媒の流れ方向
をクロスカウンターフローとして動作させることによ
り、熱交換器の小型化、および冷房運転時の凝縮器の熱
交換性能の向上を図り冷房COPの向上を図ることがで
きる。また、暖房運転時の凝縮器の熱交換性能の向上を
図り暖房COPの向上も図ることができる。
Further, during the heating operation, a refrigerant is made to flow from the leeward side row to the upwind side row in the utilization side heat exchanger so that the flow of the wind and the flow of the refrigerant form a cross counter, and the heat source side heat exchanger is operated during the cooling operation. Refrigerant flows from the leeward row to the leeward row in the exchanger, and the flow of the air and the refrigerant becomes a cross counter, and flows through the heat source side heat exchanger and the air in the heat exchanger during cooling operation. The flow direction of the refrigerant is operated as a cross counter flow, and the air flowing through the heat exchanger on the utilization side and the flow direction of the refrigerant flowing through the heat exchanger are operated as a cross counter flow for the heating operation. The cooling COP can be improved by downsizing and improving the heat exchange performance of the condenser during the cooling operation. Further, the heat exchange performance of the condenser during the heating operation can be improved, and the heating COP can be improved.

【0017】また、冷房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ暖房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、冷房運転に利用側熱交換器を通過する空
気と熱交換器中を流れる冷媒の流れ方向をクロスカウン
ターフローとして動作させ、暖房運転には熱源側熱交換
器を通過する空気と熱交換器中を流れる冷媒の流れ方向
をクロスカウンターフローとして動作させることによ
り、熱交換器の小型化、および冷房運転時の蒸発器の熱
交換性能の向上を図り冷房COPの向上を図ることがで
きる。また、暖房運転時にも蒸発器の熱交換性能の向上
を図り着霜防止および暖房COPの向上を図ることがで
きる。
Further, during the cooling operation, a refrigerant is made to flow from the leeward side row to the upwind side row in the utilization side heat exchanger so that the flow of the wind and the flow of the refrigerant form a cross counter, and the heat source side heat exchanger is operated during the heating operation. Refrigerant flows from the leeward row to the upwind row in the exchanger, and the flow of the air and the refrigerant becomes a cross counter, and flows through the heat exchanger and the air that passes through the heat exchanger on the use side for cooling operation. The flow direction of the refrigerant is operated as a cross counter flow, and in the heating operation, the air flowing through the heat source side heat exchanger and the flow direction of the refrigerant flowing through the heat exchanger are operated as a cross counter flow, thereby It is possible to improve the cooling COP by downsizing and improving the heat exchange performance of the evaporator during the cooling operation. Further, even during the heating operation, the heat exchange performance of the evaporator can be improved to prevent frost formation and improve the heating COP.

【0018】また、暖房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ暖房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、暖房運転時に利用側熱交換器と熱源側熱
交換器を通過する空気と熱交換器中を流れる冷媒の流れ
方向をクロスカウンターフローとすることにより、熱交
換器の小型化、および暖房運転時の蒸発器と凝縮器の熱
交換性能の向上を図り暖房COPの著しい向上および着
霜防止を図ることができる。
Further, during the heating operation, a refrigerant is made to flow from the leeward side row to the upwind side row in the utilization side heat exchanger so that the flow of the wind and the flow of the refrigerant become a cross counter, and the heat source side heat exchanger is operated during the heating operation. Refrigerant flows from the leeward side row to the exchanger side, and the flow of the air and the refrigerant flow becomes a cross counter, and the air that passes through the use side heat exchanger and the heat source side heat exchanger during heating operation By making the flow direction of the refrigerant flowing through the heat exchanger a cross counter flow, the heat exchanger can be downsized, and the heat exchange performance of the evaporator and the condenser during heating operation can be improved to significantly improve the heating COP and It is possible to prevent frost formation.

【0019】[0019]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。なお、従来の技術の項で説明したものと同
一の機能を有するものには同一の番号を付して詳細な説
明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that components having the same functions as those described in the section of the related art are designated by the same reference numerals and detailed description thereof will be omitted.

【0020】まずはじめに、本発明の第1の実施例につ
いて図1,2を用いて説明する。図1は、本発明の第1
の実施例における冷凍サイクル図であり、図2は、本発
明の第1〜4の実施例の利用側熱交換器3,熱源側熱交
換器5に用いているクロスカウンターフロー型熱交換器
の側面図である。
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the first of the present invention.
2 is a refrigeration cycle diagram in the embodiment of FIG. 2, and FIG. 2 shows a cross-counter flow type heat exchanger used in the utilization side heat exchanger 3 and the heat source side heat exchanger 5 of the first to fourth examples of the present invention. It is a side view.

【0021】図1において、1は圧縮機,2は四方弁,
3は利用側熱交換器,4は減圧器,5は熱源側熱交換器
であり順次配管にて環状に連結されている。冷媒として
非共沸混合冷媒を用いている。
In FIG. 1, 1 is a compressor, 2 is a four-way valve,
3 is a heat exchanger on the use side, 4 is a decompressor, and 5 is a heat exchanger on the heat source side, which are sequentially connected in an annular shape by piping. A non-azeotropic mixed refrigerant is used as the refrigerant.

【0022】図2において、11は熱交換器本体であ
り、12は熱交換フィン、13はチューブで構成されて
おり、風下側列から冷媒が流入し風と直行し風上側列を
経て熱交換器11から流出する。
In FIG. 2, 11 is a heat exchanger body, 12 is a heat exchange fin, and 13 is a tube. Refrigerant flows in from the leeward row, goes straight to the wind, and exchanges heat through the windward row. It flows out of the container 11.

【0023】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、暖房運転について説明する。暖
房運転時の冷媒の流れ方向を実線の矢印で示しており、
圧縮機1で圧縮された冷媒ガスは四方弁2を通り利用側
熱交換器3で凝縮液化され減圧器4で減圧膨張され熱源
側熱交換器5で蒸発気化して四方弁2を経て圧縮機1へ
と戻る。
Next, the specific operation of this refrigeration cycle will be described. First, the heating operation will be described. The flow direction of the refrigerant during heating operation is indicated by a solid arrow,
The refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, is condensed and liquefied by the use-side heat exchanger 3, is decompressed and expanded by the decompressor 4, is evaporated and vaporized by the heat-source-side heat exchanger 5, and is passed through the four-way valve 2 to be a compressor. Return to 1.

【0024】次に、冷房運転に切り換えた場合について
説明する。冷房運転時の冷媒の流れ方向を破線の矢印で
示しており、圧縮機1で圧縮された冷媒ガスは四方弁2
を通り熱源側熱交換器5で凝縮液化され減圧器4で減圧
膨張され利用側熱交換器3で蒸発気化して四方弁2を経
て圧縮機1へと戻る。
Next, the case of switching to the cooling operation will be described. The flow direction of the refrigerant during the cooling operation is indicated by a dashed arrow, and the refrigerant gas compressed by the compressor 1 is the four-way valve 2
Through the heat source side heat exchanger 5, condensed and liquefied by the pressure reducer 4, evaporated and vaporized by the use side heat exchanger 3, and returned to the compressor 1 via the four-way valve 2.

【0025】このように、冷房運転時に利用側熱交換器
3および熱源側熱交換器5における冷媒の流れ方向は空
気の流れ方向とを疑似的な対向流(クロスカウンターフ
ロー)にすることにより、熱交換器の小型化、および冷
房運転時の蒸発器と凝縮器の熱交換性能の向上を図り、
冷房COPの著しい向上を図ることができる。
As described above, during the cooling operation, the flow direction of the refrigerant in the use side heat exchanger 3 and the heat source side heat exchanger 5 is set to a pseudo counter flow (cross counter flow) with the air flow direction. We aim to reduce the size of the heat exchanger and improve the heat exchange performance of the evaporator and condenser during cooling operation.
It is possible to significantly improve the cooling COP.

【0026】次に、本発明の第2の実施例について、図
面を参照しながら説明する。図3は、本発明の第2の実
施例における冷凍サイクル図である。第1の実施例と異
なる点は、暖房運転時に前記利用側熱交換器3に風下側
列から風上側列へ冷媒を流し、風の流れと冷媒の流れが
クロスカウンターになる構成とし、かつ冷房運転時に前
記熱源側熱交換器5に風下側列から風上側列へ冷媒を流
し、風の流れと冷媒の流れがクロスカウンターになる構
成にしている。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a refrigeration cycle diagram in the second embodiment of the present invention. The difference from the first embodiment is that during the heating operation, the refrigerant flows through the utilization side heat exchanger 3 from the leeward side row to the windward side row, and the flow of the wind and the flow of the refrigerant serve as a cross counter, and the cooling is performed. At the time of operation, the heat source side heat exchanger 5 is made to flow a refrigerant from the leeward side row to the leeward side row, and the flow of the wind and the flow of the refrigerant serve as a cross counter.

【0027】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、暖房運転について説明する。暖
房運転時の冷媒の流れ方向を実線の矢印で示しており、
圧縮機1で圧縮された冷媒ガスは四方弁2を通り利用側
熱交換器3で凝縮液化され減圧器4で減圧膨張され熱源
側熱交換器5で蒸発気化して四方弁2を経て圧縮機1へ
と戻る。
Next, the specific operation of this refrigeration cycle will be described. First, the heating operation will be described. The flow direction of the refrigerant during heating operation is indicated by a solid arrow,
The refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, is condensed and liquefied by the use-side heat exchanger 3, is decompressed and expanded by the decompressor 4, is evaporated and vaporized by the heat-source-side heat exchanger 5, and is passed through the four-way valve 2 to be a compressor. Return to 1.

【0028】次に、冷房運転に切り換えた場合について
説明する。冷房運転時の冷媒の流れ方向を破線の矢印で
示しており、圧縮機1で圧縮された冷媒ガスは四方弁2
を通り熱源側熱交換器5で凝縮液化され減圧器4で減圧
膨張され利用側熱交換器3で蒸発気化して四方弁2を経
て圧縮機1へと戻る。
Next, the case of switching to the cooling operation will be described. The flow direction of the refrigerant during the cooling operation is indicated by a dashed arrow, and the refrigerant gas compressed by the compressor 1 is the four-way valve 2
Through the heat source side heat exchanger 5, condensed and liquefied by the pressure reducer 4, evaporated and vaporized by the use side heat exchanger 3, and returned to the compressor 1 via the four-way valve 2.

【0029】このように、暖房運転時に利用側熱交換器
3を、冷房運転時に熱源側熱交換器5における冷媒の流
れ方向は空気の流れ方向とを疑似的な対向流にすること
により、熱交換器の小型化、および暖房運転時の凝縮器
と、冷房運転時の凝縮器の熱交換性能の向上を図り冷房
COPと暖房COPの向上を図ることができる。
As described above, the flow direction of the refrigerant in the utilization side heat exchanger 3 during the heating operation and the flow direction of the air in the heat source side heat exchanger 5 during the cooling operation are set to be pseudo counter-currents to generate heat. It is possible to improve the cooling COP and the heating COP by downsizing the exchanger and improving the heat exchange performance of the condenser during the heating operation and the condenser during the cooling operation.

【0030】次に、本発明の第3の実施例について、図
面を参照しながら説明する。図4は、本発明の第3の実
施例における冷凍サイクル図である。第1,2の実施例
と異なる点は、冷房運転時に前記利用側熱交換器3に風
下側列から風上側列へ冷媒を流し、風の流れと冷媒の流
れがクロスカウンターになる構成とし、かつ暖房運転時
に前記熱源側熱交換器5に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にしている。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a refrigeration cycle diagram in the third embodiment of the present invention. The difference from the first and second embodiments is that the refrigerant flows from the leeward side row to the windward side row in the use side heat exchanger 3 during the cooling operation, and the flow of the air and the flow of the refrigerant are cross counters. In addition, during the heating operation, the refrigerant flows from the leeward side row to the windward side row in the heat source side heat exchanger 5, and the flow of the wind and the flow of the refrigerant serve as a cross counter.

【0031】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、暖房運転について説明する。暖
房運転時の冷媒の流れ方向を実線の矢印で示しており、
圧縮機1で圧縮された冷媒ガスは四方弁2を通り利用側
熱交換器3で凝縮液化され減圧器4で減圧膨張され熱源
側熱交換器5で蒸発気化して四方弁2を経て圧縮機1へ
と戻る。
Next, the specific operation of this refrigeration cycle will be described. First, the heating operation will be described. The flow direction of the refrigerant during heating operation is indicated by a solid arrow,
The refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, is condensed and liquefied by the use-side heat exchanger 3, is decompressed and expanded by the decompressor 4, is evaporated and vaporized by the heat-source-side heat exchanger 5, and is passed through the four-way valve 2 to be a compressor. Return to 1.

【0032】次に、冷房運転に切り換えた場合について
説明する。冷房運転時の冷媒の流れ方向を破線の矢印で
示しており、圧縮機1で圧縮された冷媒ガスは四方弁2
を通り熱源側熱交換器5で凝縮液化され減圧器4で減圧
膨張され利用側熱交換器3で蒸発気化して四方弁2を経
て圧縮機1へと戻る。
Next, the case of switching to the cooling operation will be described. The flow direction of the refrigerant during the cooling operation is indicated by a dashed arrow, and the refrigerant gas compressed by the compressor 1 is the four-way valve 2
Through the heat source side heat exchanger 5, condensed and liquefied by the pressure reducer 4, evaporated and vaporized by the use side heat exchanger 3, and returned to the compressor 1 via the four-way valve 2.

【0033】このように、暖房運転時に熱源側熱交換器
3を、冷房運転時に利用側熱交換器5における冷媒の流
れ方向は空気の流れ方向とを疑似的な対向流にすること
により、熱交換器の小型化、および暖房運転時の蒸発器
と、冷房運転時の蒸発器の熱交換性能の向上を図り冷房
COPと暖房COPの向上および着霜防止を図ることが
できる。
As described above, the flow direction of the refrigerant in the heat source side heat exchanger 3 during the heating operation and the flow direction of the refrigerant in the utilization side heat exchanger 5 during the cooling operation are set to be a pseudo counter-flow to thereby generate heat. By reducing the size of the exchanger and improving the heat exchange performance of the evaporator during heating operation and the evaporator during cooling operation, it is possible to improve cooling COP and heating COP and prevent frost formation.

【0034】次に、本発明の第4の実施例について、図
面を参照しながら説明する。図5は、本発明の第4の実
施例における冷凍サイクル図である。第1,2,3の実
施例と異なる点は、暖房運転時に前記利用側熱交換器3
に風下側列から風上側列へ冷媒を流し、風の流れと冷媒
の流れがクロスカウンターになる構成とし、かつ暖房運
転時に前記熱源側熱交換器5に風下側列から風上側列へ
冷媒を流し、風の流れと冷媒の流れがクロスカウンター
になる構成にしている。
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a refrigeration cycle diagram in the fourth embodiment of the present invention. The difference from the first, second, and third embodiments is that the heat exchanger 3 on the use side during the heating operation.
The refrigerant is made to flow from the leeward row to the windward row, and the flow of the air and the refrigerant become a cross counter, and the heat source side heat exchanger 5 is made to flow the refrigerant from the leeward row to the leeward row during heating operation. The flow is such that the flow of the wind and the flow of the refrigerant become a cross counter.

【0035】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、暖房運転について説明する。暖
房運転時の冷媒の流れ方向を実線の矢印で示しており、
圧縮機1で圧縮された冷媒ガスは四方弁2を通り利用側
熱交換器3で凝縮液化され減圧器4で減圧膨張され熱源
側熱交換器5で蒸発気化して四方弁2を経て圧縮機1へ
と戻る。
Next, the specific operation of this refrigeration cycle will be described. First, the heating operation will be described. The flow direction of the refrigerant during heating operation is indicated by a solid arrow,
The refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, is condensed and liquefied by the use-side heat exchanger 3, is decompressed and expanded by the decompressor 4, is evaporated and vaporized by the heat-source-side heat exchanger 5, and is passed through the four-way valve 2 to be a compressor. Return to 1.

【0036】次に、冷房運転に切り換えた場合について
説明する。冷房運転時の冷媒の流れ方向を破線の矢印で
示しており、圧縮機1で圧縮された冷媒ガスは四方弁2
を通り熱源側熱交換器5で凝縮液化され減圧器4で減圧
膨張され利用側熱交換器3で蒸発気化して四方弁2を経
て圧縮機1へと戻る。
Next, the case of switching to the cooling operation will be described. The flow direction of the refrigerant during the cooling operation is indicated by a dashed arrow, and the refrigerant gas compressed by the compressor 1 is the four-way valve 2
Through the heat source side heat exchanger 5, condensed and liquefied by the pressure reducer 4, evaporated and vaporized by the use side heat exchanger 3, and returned to the compressor 1 via the four-way valve 2.

【0037】このように、暖房運転時に利用側熱交換器
3および熱源側熱交換器5における冷媒の流れ方向は空
気の流れ方向とを疑似的な対向流にすることにより、暖
房運転時の蒸発器と凝縮器の熱交換性能の向上を図り暖
房COPの著しい向上および着霜防止を図ることができ
る。
In this way, during the heating operation, the flow direction of the refrigerant in the use side heat exchanger 3 and the heat source side heat exchanger 5 is made to be a pseudo counterflow to the air flow direction, so that the evaporation in the heating operation is performed. It is possible to improve the heat exchange performance of the condenser and the condenser, and to significantly improve the heating COP and prevent frost formation.

【0038】また、本発明の冷凍サイクルは、フロン系
冷媒に限らず非共沸混合冷媒であれば、他の冷媒にも適
用可能である。また、本実施例においては2列、上に凸
の2パスの疑似対向流型熱交換器を示したが、2列以
上、下に凸、上に凸と下に凸との混合、X型のパスを使
用してもよい。
Further, the refrigerating cycle of the present invention is not limited to the Freon type refrigerant, but can be applied to other refrigerants as long as it is a non-azeotropic mixed refrigerant. Further, in this embodiment, a two-row, upward-convex, two-pass, quasi-counterflow type heat exchanger is shown. However, two or more rows, downward convex, mixed upward convex and downward convex, X-type You may use the path of.

【0039】[0039]

【発明の効果】上記実施例より明かなように本発明は、
非共沸混合冷媒を用いたヒートポンプ式空気調和機を提
供するものであり、冷房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ冷房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、冷房運転時に利用側熱交換器と熱源側熱
交換器を通過する空気と熱交換器中を流れる冷媒の流れ
方向を直行流と対向流を混合したクロスカウンターフロ
ー(疑似対向流)とすることにより、熱交換器の小型
化、および冷房運転時の蒸発器と凝縮器の熱交換性能の
向上を図り冷房COPの著しい向上を図ることができ
る。
As apparent from the above embodiment, the present invention is
It is intended to provide a heat pump type air conditioner using a non-azeotropic mixed refrigerant, flowing the refrigerant from the leeward side row to the windward side row in the utilization side heat exchanger during the cooling operation, the flow of the wind and the refrigerant flow. It is configured to be a cross counter, and the refrigerant is made to flow from the leeward row to the upwind row in the heat source side heat exchanger during cooling operation so that the flow of the wind and the refrigerant flow become a cross counter, which is used during cooling operation. By changing the flow direction of the air passing through the side heat exchanger and the heat source side heat exchanger and the refrigerant flowing in the heat exchanger to a cross counter flow (pseudo-counterflow) in which a direct flow and a counterflow are mixed, And the heat exchange performance of the evaporator and the condenser during the cooling operation can be improved, and the cooling COP can be significantly improved.

【0040】また、暖房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ冷房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、冷房運転に熱源側熱交換器を通過する空
気と熱交換器中を流れる冷媒の流れ方向をクロスカウン
ターフローとして動作させ、暖房運転には利用側熱交換
器を通過する空気と熱交換器中を流れる冷媒の流れ方向
をクロスカウンターフローとして動作させることによ
り、熱交換器の小型化、および冷房運転時の凝縮器の熱
交換性能の向上を図り冷房COPの向上を図ることがで
きる。また、暖房運転時の凝縮器の熱交換性能の向上を
図り暖房COPの向上も図ることができる。
Further, during the heating operation, a refrigerant is made to flow from the leeward side row to the upwind side row in the utilization side heat exchanger so that the flow of the air and the refrigerant flow become a cross counter, and the heat source side heat exchanger is operated during the cooling operation. Refrigerant flows from the leeward row to the leeward row in the exchanger, and the flow of the air and the refrigerant becomes a cross counter, and flows through the heat source side heat exchanger and the air in the heat exchanger during cooling operation. The flow direction of the refrigerant is operated as a cross counter flow, and the air flowing through the heat exchanger on the utilization side and the flow direction of the refrigerant flowing through the heat exchanger are operated as a cross counter flow for the heating operation. The cooling COP can be improved by downsizing and improving the heat exchange performance of the condenser during the cooling operation. Further, the heat exchange performance of the condenser during the heating operation can be improved, and the heating COP can be improved.

【0041】また、冷房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ暖房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、冷房運転に利用側熱交換器を通過する空
気と熱交換器中を流れる冷媒の流れ方向をクロスカウン
ターフローとして動作させ、暖房運転には熱源側熱交換
器を通過する空気と熱交換器中を流れる冷媒の流れ方向
をクロスカウンターフローとして動作させることによ
り、熱交換器の小型化、および冷房運転時の蒸発器の熱
交換性能の向上を図り冷房COPの向上を図ることがで
きる。また、暖房運転時にも蒸発器の熱交換性能の向上
を図り着霜防止および暖房COPの向上を図ることがで
きる。
Further, during the cooling operation, a refrigerant is made to flow from the leeward side row to the upwind side row in the utilization side heat exchanger so that the flow of the air and the flow of the refrigerant form a cross counter, and the heat source side heat exchanger is operated during the heating operation. Refrigerant flows from the leeward row to the upwind row in the exchanger, and the flow of the air and the refrigerant becomes a cross counter, and flows through the heat exchanger and the air that passes through the heat exchanger on the use side for cooling operation. The flow direction of the refrigerant is operated as a cross counter flow, and in the heating operation, the air flowing through the heat source side heat exchanger and the flow direction of the refrigerant flowing in the heat exchanger are operated as a cross counter flow, thereby It is possible to improve the cooling COP by downsizing and improving the heat exchange performance of the evaporator during the cooling operation. Further, even during the heating operation, the heat exchange performance of the evaporator can be improved to prevent frost formation and improve the heating COP.

【0042】また、暖房運転時に前記利用側熱交換器に
風下側列から風上側列へ冷媒を流し、風の流れと冷媒の
流れがクロスカウンターになる構成とし、かつ暖房運転
時に前記熱源側熱交換器に風下側列から風上側列へ冷媒
を流し、風の流れと冷媒の流れがクロスカウンターにな
る構成にして、暖房運転時に利用側熱交換器と熱源側熱
交換器を通過する空気と熱交換器中を流れる冷媒の流れ
方向をクロスカウンターフローとすることにより、熱交
換器の小型化、および暖房運転時の蒸発器と凝縮器の熱
交換性能の向上を図り暖房COPの著しい向上および着
霜防止を図ることができる。
Further, during the heating operation, the refrigerant is caused to flow from the leeward side row to the upwind side row in the utilization side heat exchanger so that the flow of the air and the flow of the refrigerant serve as a cross counter, and the heat source side heat is applied during the heating operation. Refrigerant flows from the leeward side row to the exchanger side, and the flow of the air and the refrigerant flow becomes a cross counter, and the air that passes through the use side heat exchanger and the heat source side heat exchanger during heating operation By making the flow direction of the refrigerant flowing through the heat exchanger a cross counter flow, the heat exchanger can be downsized, and the heat exchange performance of the evaporator and the condenser during heating operation can be improved to significantly improve the heating COP and It is possible to prevent frost formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるヒートポンプ式
空気調和機の冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1〜4の実施例の利用側熱交換器,
熱源側熱交換器に用いているクロスカウンターフロー型
熱交換器の側面図
FIG. 2 is a utilization side heat exchanger according to first to fourth embodiments of the present invention,
Side view of cross counter flow type heat exchanger used for heat source side heat exchanger

【図3】本発明の第2の実施例におけるヒートポンプ式
空気調和機の冷凍サイクル図
FIG. 3 is a refrigeration cycle diagram of the heat pump type air conditioner in the second embodiment of the present invention.

【図4】本発明の第3の実施例におけるヒートポンプ式
空気調和機の冷凍サイクル図
FIG. 4 is a refrigeration cycle diagram of a heat pump type air conditioner according to a third embodiment of the present invention.

【図5】本発明の第4の実施例におけるヒートポンプ式
空気調和機の冷凍サイクル図
FIG. 5 is a refrigeration cycle diagram of a heat pump type air conditioner according to a fourth embodiment of the present invention.

【図6】従来例におけるヒートポンプ式空気調和機の冷
凍サイクル図
FIG. 6 is a refrigeration cycle diagram of a heat pump type air conditioner in a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 利用側熱交換器 4 減圧器 5 熱源側熱交換器 6 送風ファン(利用側熱交換器) 7 送風ファン(熱源側熱交換器) 1 Compressor 2 Four-way valve 3 Use side heat exchanger 4 Pressure reducer 5 Heat source side heat exchanger 6 Blower fan (use side heat exchanger) 7 Blower fan (heat source side heat exchanger)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒として沸点が異なる2種類以上の冷
媒を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機,四方弁,利用側熱交換器,減圧器,熱源側熱交換器
を順次配管にて環状に連結して冷媒回路を構成し、前記
利用側熱交換器および前記熱源側熱交換器を2列以上の
複数列の熱交換器で構成し、冷房運転時に前記利用側熱
交換器に風下側列から風上側列へ冷媒を流し、風の流れ
と冷媒の流れがクロスカウンターになる構成とし、かつ
冷房運転時に前記熱源側熱交換器に風下側列から風上側
列へ冷媒を流し、風の流れと冷媒の流れがクロスカウン
ターになる構成とするヒートポンプ式空気調和機。
1. A compressor, a four-way valve, a use side heat exchanger, a pressure reducer, a heat source side heat exchanger, wherein a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as the refrigerant. Are connected to each other in an annular shape to form a refrigerant circuit, and the heat exchanger on the use side and the heat exchanger on the heat source side are constituted by heat exchangers in a plurality of rows of two or more rows. Refrigerant flows from the downwind side row to the upwind side row in the heat exchanger, and the flow of the air and the refrigerant flow becomes a cross counter, and the heat source side heat exchanger moves from the downwind side row to the upwind side row during cooling operation. A heat pump type air conditioner in which the refrigerant flows and the flow of the air and the flow of the refrigerant become a cross counter.
【請求項2】 冷媒として沸点が異なる2種類以上の冷
媒を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機,四方弁,利用側熱交換器,減圧器,熱源側熱交換器
を順次配管にて環状に連結して冷媒回路を構成し、前記
利用側熱交換器および前記熱源側熱交換器を2列以上の
複数列の熱交換器で構成し、暖房運転時に前記利用側熱
交換器に風下側列から風上側列へ冷媒を流し、風の流れ
と冷媒の流れがクロスカウンターになる構成とし、かつ
冷房運転時に前記熱源側熱交換器に風下側列から風上側
列へ冷媒を流し、風の流れと冷媒の流れがクロスカウン
ターになる構成とするヒートポンプ式空気調和機。
2. A compressor, a four-way valve, a utilization side heat exchanger, a pressure reducer, a heat source side heat exchanger, wherein a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as the refrigerant. Are connected to each other in an annular shape to form a refrigerant circuit, and the heat exchanger on the use side and the heat exchanger on the heat source side are constituted by heat exchangers in a plurality of rows of two or more rows, and the heat exchanger on the use side during heating operation. Refrigerant flows from the downwind side row to the upwind side row in the heat exchanger, and the flow of the air and the refrigerant flow becomes a cross counter, and the heat source side heat exchanger moves from the downwind side row to the upwind side row during cooling operation. A heat pump type air conditioner in which the refrigerant flows and the flow of the air and the flow of the refrigerant become a cross counter.
【請求項3】 冷媒として沸点が異なる2種類以上の冷
媒を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機,四方弁,利用側熱交換器,減圧器,熱源側熱交換器
を順次配管にて環状に連結して冷媒回路を構成し、前記
利用側熱交換器および前記熱源側熱交換器を2列以上の
複数列の熱交換器で構成し、冷房運転時に前記利用側熱
交換器に風下側列から風上側列へ冷媒を流し、風の流れ
と冷媒の流れがクロスカウンターになる構成とし、かつ
暖房運転時に前記熱源側熱交換器に風下側列から風上側
列へ冷媒を流し、風の流れと冷媒の流れがクロスカウン
ターになる構成とするヒートポンプ式空気調和機。
3. A compressor, a four-way valve, a utilization side heat exchanger, a pressure reducer, a heat source side heat exchanger, wherein a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as the refrigerant. Are connected to each other in an annular shape to form a refrigerant circuit, and the heat exchanger on the use side and the heat exchanger on the heat source side are constituted by heat exchangers in a plurality of rows of two or more rows. Refrigerant flows from the leeward row to the windward row in the heat exchanger, and the flow of the air and the refrigerant flow becomes a cross counter, and the heating source side heat exchanger moves from the leeward row to the upwind row during heating operation. A heat pump type air conditioner in which the refrigerant flows and the flow of the air and the flow of the refrigerant become a cross counter.
【請求項4】 冷媒として沸点が異なる2種類以上の冷
媒を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機,四方弁,利用側熱交換器,減圧器,熱源側熱交換器
を順次配管にて環状に連結して冷媒回路を構成し、前記
利用側熱交換器および前記熱源側熱交換器を2列以上の
複数列の熱交換器で構成し、暖房運転時に前記利用側熱
交換器に風下側列から風上側列へ冷媒を流し、風の流れ
と冷媒の流れがクロスカウンターになる構成とし、かつ
暖房運転時に前記熱源側熱交換器に風下側列から風上側
列へ冷媒を流し、風の流れと冷媒の流れがクロスカウン
ターになる構成とするヒートポンプ式空気調和機。
4. A compressor, a four-way valve, a utilization side heat exchanger, a pressure reducer, a heat source side heat exchanger, wherein a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as the refrigerant. Are connected to each other in an annular shape to form a refrigerant circuit, and the heat exchanger on the use side and the heat exchanger on the heat source side are constituted by heat exchangers in a plurality of rows of two or more rows, and the heat exchanger on the use side during heating operation. Refrigerant flows from the leeward row to the windward row in the heat exchanger, and the flow of the air and the refrigerant flow becomes a cross counter, and the heating source side heat exchanger moves from the leeward row to the upwind row during heating operation. A heat pump type air conditioner in which the refrigerant flows and the flow of the air and the flow of the refrigerant become a cross counter.
JP32765094A 1994-12-28 1994-12-28 Heat pump type air conditioner Pending JPH08178445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32765094A JPH08178445A (en) 1994-12-28 1994-12-28 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32765094A JPH08178445A (en) 1994-12-28 1994-12-28 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH08178445A true JPH08178445A (en) 1996-07-12

Family

ID=18201435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32765094A Pending JPH08178445A (en) 1994-12-28 1994-12-28 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH08178445A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108483A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Air conditioner
JP2000320917A (en) * 1999-05-06 2000-11-24 Hitachi Ltd Heat pump cold/hot water machine
KR100666469B1 (en) * 2004-06-23 2007-01-09 코오롱건설주식회사 Spiral type geothermal exchanger
JP2013104620A (en) * 2011-11-14 2013-05-30 Daikin Industries Ltd Refrigeration device
JP6595125B1 (en) * 2018-06-11 2019-10-23 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
JP2019215161A (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Outdoor machine of air conditioner, and air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108483A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Air conditioner
JP2000320917A (en) * 1999-05-06 2000-11-24 Hitachi Ltd Heat pump cold/hot water machine
KR100666469B1 (en) * 2004-06-23 2007-01-09 코오롱건설주식회사 Spiral type geothermal exchanger
JP2013104620A (en) * 2011-11-14 2013-05-30 Daikin Industries Ltd Refrigeration device
JP6595125B1 (en) * 2018-06-11 2019-10-23 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
JP2019215161A (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Outdoor machine of air conditioner, and air conditioner
CN112204312A (en) * 2018-06-11 2021-01-08 三菱电机株式会社 Outdoor unit of air conditioner and air conditioner
EP3805651A4 (en) * 2018-06-11 2021-06-16 Mitsubishi Electric Corporation Air conditioner outdoor unit and air conditioner
CN112204312B (en) * 2018-06-11 2022-06-28 三菱电机株式会社 Outdoor unit of air conditioner and air conditioner
US11506402B2 (en) 2018-06-11 2022-11-22 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus and air-conditioning apparatus
EP4279850A3 (en) * 2018-06-11 2024-03-06 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus and air-conditioning apparatus

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP4118254B2 (en) Refrigeration equipment
US5660056A (en) Air conditioner
JPH0875290A (en) Heat pump type air conditioner
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
Song et al. Experimental study on improved performance of an automotive CO2 air conditioning system with an evaporative gas cooler
CN113339909B (en) Heat pump air conditioning system
JPH07280375A (en) Air conditioner
JPH08178445A (en) Heat pump type air conditioner
JP2000304380A (en) Heat exchanger
JPH0854149A (en) Refrigerating device
JP2002081777A (en) Refrigeration cycle
JP2007051788A (en) Refrigerating device
JP3286038B2 (en) Air conditioner
JP3650358B2 (en) Air conditioner
US10782048B2 (en) Deep freezer
JPH10160269A (en) Refrigerating device
JP3298225B2 (en) Air conditioner
JPH10306952A (en) Secondary refrigerant system refrigerating apparatus
JPH08233386A (en) Heat exchanger
JPH1068560A (en) Refrigeration cycle device
JPH07190528A (en) Heat pump type air conditioner
JPH0861799A (en) Air conditioner
JPH07103622A (en) Air-conditioner