JP3650358B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3650358B2
JP3650358B2 JP2001344787A JP2001344787A JP3650358B2 JP 3650358 B2 JP3650358 B2 JP 3650358B2 JP 2001344787 A JP2001344787 A JP 2001344787A JP 2001344787 A JP2001344787 A JP 2001344787A JP 3650358 B2 JP3650358 B2 JP 3650358B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
transfer tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001344787A
Other languages
Japanese (ja)
Other versions
JP2002195675A (en
Inventor
哲夫 佐野
秀明 本橋
康弘 新井
隆喜 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001344787A priority Critical patent/JP3650358B2/en
Publication of JP2002195675A publication Critical patent/JP2002195675A/en
Application granted granted Critical
Publication of JP3650358B2 publication Critical patent/JP3650358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、冷媒に非共沸混合冷媒を用いた空気調和装置に関する。
【0002】
【従来の技術】
一般に空気調和装置にあっては、圧縮機と利用側熱交換器と減圧装置と熱源側熱交換器とにより構成され、冷房モード時には、利用側熱交換器を蒸発器として、熱源側熱交換器を凝縮器として使用する。また、暖房モード時には、利用側熱交換器を凝縮器として、熱源側熱交換器を蒸発器として使用する冷凍サイクルが構成され、サイクル内を冷媒が循環するようになっている。
【0003】
【発明が解決しようとする課題】
冷凍サイクル内を循環する冷媒は、一般にフロンガスが用いられ、地球環境に悪影響を与える所から全廃される方向にあり、その代替用として、地球環境に優しい非共沸混合冷媒が有力視されている。
【0004】
非共沸混合冷媒は、冷凍サイクルにおいて、各冷媒の沸点の違いにより、蒸発過程、凝縮過程において蒸発温度、凝縮温度が変化する現象がある。これを温度勾配という。
【0005】
冷媒回路の蒸発器では、冷媒液は気液平衡を保ちながら冷媒蒸気となる。この間、蒸発温度は次第に上昇していく。凝縮器では全くこの逆で、凝縮温度は次第に低下していく。一方、空気は蒸発器では熱を奪われて低温となり、凝縮器では熱を得て高温となる。これらの温度関係をまとめると表ー1の如くとなる。
【0006】
【表1】

Figure 0003650358
この非共沸混合冷媒の冷媒回路は、対向流方式の熱交換を行なうことにより、相変化の温度が濃度に依存する特性を利用して冷媒を冷気流体、あるいは加熱流体との熱交換損失を減少させ、成績係数を向上させることができる。対向流方式とは、空気流に対して、冷媒の入口が最も風下の列にあり、出口が最も風上の列にあって、冷媒の風下の列から順次風上の列に流れるように配置された場合をいう。これと逆の場合を並行流方式とよばれており、凝縮器として用いる時に、対向流とする特開昭53−104456号公報や、冷房モード時、暖房モード時に対向流となるよう構成する特開昭59−115945号公報及び特開昭63−302264号公報のものが提案されている。
【0007】
しかしながら、前者にあっては、利用側熱交換器を凝縮器として用いる時に、対向流として設定すると、蒸発器として用いる時は並行流となるため、冷房モード時での熱交換効率が低下する問題を招来する。
【0008】
また、後者にあっては、冷媒の流れを制御する制御弁、回路等が増えて複雑化し、組付性、コスト性の面において望ましくなく、しかも複雑化することで、流動抵抗などによる効率損失が起こる問題がある。
【0009】
また、温度勾配のある冷媒を用いた際に、考慮しなければならない事項に、対向流または並行流による純伝熱現象的な熱交換率の変化以外に、空気を冷却する熱交換器(蒸発器)として用いる場合、被冷却空気中の水蒸気の結露による通風抵抗の増加を生じ、通風量の低下による熱交換量の低下を考慮しなければならない。蒸発器におけるフィンと入口空気温度の差が大きくなる並行流空気中の水蒸気は、フィン前端部表面に集中して結露し、フィン間の通路を狭くし、風量低下による熱交換量の低下も生じる。逆に小さくなる対向流ではフィン前端部への水蒸気結露量は前者より減少し中央から後端にかけてより平均的に結露することが知られている。
【0010】
そこで、この発明は、簡単な構造によって、効率の良い冷房運転及び暖房運転ができるようにした空気調和装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
前記目的を達成するために、この発明の請求項1にあっては、冷房モード時又は暖房モード時に、熱交換器を蒸発器として、あるいは凝縮器として使用する非共沸混合冷媒を用いた空気調和装置において、凝縮器として使用する熱交換器は、熱交換器を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管と、対向流となる伝熱管とを備え、前記熱交換器の伝熱管の冷媒入口と冷媒出口とを、熱交換器を通過する空気流に対して風上側で、かつ、同一位置の配置構造としたことを特徴とする。
【0012】
請求項2にあっては、冷房モード時又は暖房モード時に、熱交換器を蒸発器として、あるいは凝縮器として使用する非共沸混合冷媒を用いた空気調和装置において、蒸発器として使用する熱交換器は、熱交換器を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管と、対向流となる伝熱管とを備え、前記熱交換器の伝熱管の冷媒入口と冷媒出口とを、熱交換器を通過する空気流に対して風上側で、かつ、同一位置の配置構造としたことを特徴とする。
【0015】
【作用】
かかる空気調和装置において、請求項1にあっては、凝縮器として使用する熱交換器は、並行流で熱交換効率が少し低下するが、対向流で凝縮液の過冷却が効率よくとれて熱交換効率が向上し、総合的に凝縮能力を確保し、簡単な構造で効率の高い冷房運転、暖房運転が行える。と同時に、伝熱管の冷媒入口と冷媒出口が、風上側の温度の低い空気と熱交換するため簡単な構造で過冷却が確実にとれるようになる。
【0016】
また、請求項2にあっては、蒸発器として使用する熱交換器は、並行流で熱交換効率が少し低下するが、対向流で熱交換効率が向上し、総合的に蒸発能力を確保し、簡単な構造で効率の高い冷房運転、暖房運転が行える。と同時に、伝熱管の冷媒入口と冷媒出口が、風上側の温度の高い空気と熱交換するために適正な過熱度がとれ、湿り冷媒が圧縮機に戻ることによる効率低下および圧縮機の寿命低下等の問題を簡単な構造で解消できる。
【0019】
【実施例】
以下、図面を参照しながらこの発明の実施例を詳細に説明する。
【0020】
まず、図1と図2に基づき説明すると、図1は冷媒に、例えば、R32とR134a等の非共沸混合冷媒が用いられたヒートポンプタイプの空気調和装置の配管図を示している。
【0021】
空気調和装置は、圧縮機1と、利用側熱交換器3と、減圧装置5と、熱源側熱交換器7とを有し、冷・暖房モードに応じて四方弁9を操作することで、圧縮機1から吐出される冷媒は、点線矢印の如く利用側熱交換器3側へ、または、実線矢印の如く熱源側熱交換器7側へ向かう流れの冷凍サイクルを構成するようになり、運転モードに対応した切換制御が可能となっている。
【0022】
利用側熱交換器3は、連続した伝熱管11と所定のピッチで配置されたフィン13とから成り、冷媒が実線矢印の如く回路15内を流れることで、蒸発器として機能する一方、点線矢印の如く冷媒が流れることで、凝縮器として機能する。
【0023】
空気流は横流ファン17が回転することで矢印の如く流れ、フィン13の間を通過するようになっており、a側が風上側、b側が風下側となっている。
【0024】
また、利用側熱交換器3の伝熱管11の風上a側の端末部19は、四方弁9と、伝熱管11の風下b側の端末部21は、減圧装置5とそれぞれ接続連通している。これにより、冷房モード時において、風下b側の端末部21は、冷媒の入口側、風上a側の端末部19は出口側となる対向流となるよう設定され、暖房モード時には、風上a側の端末部19は冷媒の入口側、風下b側の端末部21は出口側となる並行流となるよう設定されている。
【0025】
熱源側熱交換器7は、連続した伝熱管23と所定のピッチで配置されたフィン25とから成り、冷媒が実線矢印の如く回路15内を流れることで凝縮器として機能する一方、点線矢印の如く冷媒が流れることで、蒸発器として機能する。空気流はファン27が回転することで矢印の如く流れ、フィン25の間を通過するようになっており、a側が風上側、b側が風下側となっている。
【0026】
また、熱源側熱交換器7の伝熱管23の風上a側の端末部29は、四方弁9と、伝熱管23の風下b側の端末部31は、減圧装置5とそれぞれ接続連通している。これにより冷房モード時において、風上a側の端末部29は冷媒の入口側、風下側の端末部31は出口側となる並行流となるよう設定され、暖房モード時には、風下b側の端末部31は冷媒の入口側、風上a側の端末部29は出口側となる対向流となるよう設定されている。
【0027】
このように構成された空気調和装置において、冷房モード時は、圧縮機1から吐出した高温・高圧の冷媒蒸気は、四方弁9を介して熱源側熱交換器7に入り、室外空気に放熱して凝縮する。凝縮した冷媒は減圧装置5で減圧され低温・低圧となり利用側熱交換器3で室内空気から吸熱して気化する。気化した冷媒は圧縮機1に吸入され、再び高温・高圧の蒸気になって、冷凍サイクルを繰返すようになる。一方、ヒートポンプ暖房モード時は、圧縮機1から吐出した高温・高圧の冷媒蒸気は四方弁9を介してまず利用側熱交換器3に入り、室内空気に放熱して凝縮する。凝縮した冷媒は減圧装置5で減圧され低温・低圧となり熱源側熱交換器7で室外空気から吸熱して気化する。気化した冷媒は圧縮機1に吸入され、再び高温・高圧の蒸気になって、暖房サイクルを繰返すようになる。
【0028】
この冷房モード時及び暖房モード時において、利用側熱交換器3及び熱源側熱交換器7がいずれも蒸発器として使用する運転モード時にあっては、対向流になると共に、凝縮器として使用する場合は並行流となる。この場合、対向流となる蒸発器にあっては、入口側、出口側の温度差が小さいため、フィン前端部への水蒸気結露量は全体的に小さく抑えられ、通風量の減少は見られず、総合的に効率の高い冷・暖房運転が行なえるようになる。
【0029】
その結果を、図2に示す。図2において凝縮器にあっては、構成上、並行流となりマイナスとなるが、これは、フィンの枚数を増やすことで、回復可能な値である。
【0030】
一般には、フィンの枚数を増やすと、蒸発器として使用する時に、通風抵抗が増加し、性能の低下が認められるが、この発明にあっては、対向流とすることで、通風量の向上が図れるため、凝縮器として使用時の性能改善が十分達成できる。
【0031】
図3は本発明に係る空気調和装置の配管図を示したもので、冷媒の冷媒入口と冷媒出口との配置構造に特徴をもたせたものである。
【0032】
即ち、利用側熱交換器3の伝熱管11の冷媒入口及び冷媒出口となる端末部19,21と、熱源側熱交換器7の伝熱管23の冷媒入口及び冷媒出口となる端末部29,31とを、それぞれ風上a側に配置し、風上a側において、図面垂直軸線に対して同一位置で、しかも、近接した配置構造とするものである。
【0033】
利用側熱交換器3の伝熱管11において、一方の端末部19は、四方弁を介して熱源側熱交換器7となる伝熱管23の一方の端末部29と、他方の端末部21は、減圧装置5を介して熱源側熱交換器7となる伝熱管23の他方の端末部31とそれぞれ接続し、閉サイクルを構成している。
【0034】
したがって、利用側熱交換器3と熱源側熱交換器7は、冷房モード時あるいは、暖房モード時に、圧縮機1から吐出された冷媒が四方弁9を介して実線矢印、あるいは、点線矢印のように流れることで、蒸発器として、あるいは、凝縮器としてそれぞれ機能するようになっている。
【0035】
この点について、まず、利用側熱交換器3について具体的に説明する。
【0036】
冷房モード時には冷媒が実線矢印の如く流れることで、蒸発器として機能し、伝熱管11の端末部21は冷媒入口、端末部19は冷媒出口となる。この時の伝熱管11についてみると、図において冷媒入口となる端末部21を含む平行に配置された伝熱管11の下半部が、熱交換器3を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管領域となっている。また、冷媒出口となる端末部19を含む平行に配置された伝熱管11の上半部が、熱交換器3を通過する空気流に対して冷媒の流れ方向が対向流となる伝熱管領域となっている。
【0037】
一方、暖房モード時に、圧縮機1から吐出された冷媒が点線矢印のように流れることで、利用側熱交換器3は凝縮器として機能し、伝熱管11の端末部19は冷媒入口、端末部21は冷媒出口となる。この時の伝熱管11についてみると、図において、冷媒入口となる端末部19を含む平行に配置された上半部が、熱交換器3を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管領域となっている。また、冷媒出口となる端末部21を含む平行に配置された下半部が、熱交換器3を通過する空気流に対して冷媒の流れ方向が対向流となる伝熱管領域となっている。
【0038】
次に、熱源側熱交換器7について具体的に説明する。
【0039】
冷房モード時には冷媒が実線矢印の如く流れることで、凝縮器として機能し、伝熱管23の端末部29は冷媒入口、端末部31は冷媒出口となる。この時の伝熱管23についてみると、図において冷媒入口となる端末部29を含む平行に配置された伝熱管23の上半部が、熱交換器7を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管領域となっている。また、冷媒出口となる端末部31を含む平行に配置された伝熱管23の下半部が、熱交換器7を通過する空気流に対して冷媒の流れ方向が対向流となる伝熱管領域となっている。
【0040】
一方、暖房モード時に、圧縮機1から吐出された冷媒が点線矢印のように流れることで、熱源側熱交換器7は蒸発器として機能し、伝熱管23の端末部31は冷媒入口、端末部29は冷媒出口となる。この時の伝熱管23についてみると、図において、冷媒入口となる端末部31を含む平行に配置された下半部が、熱交換器7を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管領域となっている。また、冷媒出口となる端末部29を含む平行に配置された上半部が熱交換器7を通過する空気流に対して冷媒の流れ方向が対向流となる伝熱管領域となっている。
【0041】
したがって、熱交換器3又は7を凝縮器として使用する時に、並行流となる伝熱管11,23により、熱交換効率が少し低下するが、対向流で凝縮液の過冷却が効率よくとれて熱交換効率が向上し、総合的に凝縮能力を確保し、簡単な構造で効率の高い冷房運転、暖房運転が行えるようになる。
【0042】
また、熱交換器3又は7を蒸発器として使用する時に並行流となる伝熱管11,23により、熱交換効率が少し低下するが、対向流で熱交換効率が向上し、総合的に蒸発能力を確保し、簡単な構造で効率の高い冷房運転、暖房運転が行えるようになる。
【0043】
一方、例えば、利用側熱交換器3の伝熱管11の冷媒入口と冷媒出口とを熱交換器3を通過する空気流に対して風上a側で、かつ、同一位置としたので、凝縮器として使用するときには、伝熱管11の冷媒入口19と冷媒出口21が、風上a側の温度の低い空気と熱交換するため簡単な構造で過冷却が確実にとれるようになる。蒸発器として使用するときには、伝熱管11の冷媒入口21と冷媒出口19が、風上a側の温度の高い空気と熱交換するために適正な過熱度がとれ、湿り冷媒が圧縮機1に戻ることによる効率低下および圧縮機1の寿命低下等の問題を簡単な構造で解消できる。
【0044】
また、熱交換器3又は7を、例えば、蒸発器として使用する時に、伝熱管11の冷媒入口及び冷媒出口となる端末部19,21と端末部29,31とをそれぞれ近接させたので、冷媒入口及び冷媒出口相互に熱交換が行なわれ、低温度運転時に発生する着霜、凍結現象、あるいは結露現象が解消される結果、簡単な構造で効率のよい通風量が確保できるようになる。
【0045】
この場合、図4及び図5に示す手段を採用することで、さらに能力の向上が図れる。即ち、伝熱管11,23の各端末部19・21,29・31を風上a側に配置し、伝熱管11側にあっては、各端末部19,21を離して配置し、一方の端末部21を、風上a側の伝熱管11に隣設させる。また、他方の伝熱管23側にあっては、各端末部29,31を離して配置し、一方の端末部31を、風上a側の伝熱管23に隣設し、利用側、熱源側熱交換器3,7を蒸発器として使用する際に、空気流に対し、冷媒の入口側を風上に設けた並行流にすると共に、冷媒の出口側が風上a側に配置され、一部出口側領域を対向流とするものである。
【0046】
なお、他の構成要件は、前記実施例と同一であり、同一符号を符して説明は省略する。
【0047】
この実施例によれば、図3の実施例の効果に加えて、入口側のもっとも低い伝熱管に近接して蒸発器出口側が配設されるため、入口側からの熱の影響がなくなり、冷却能力の損失が小さく抑えられる。したがって、図6に示す実線の如く、入口側のフィン温度が上昇し、出口側のフィン温度が低下することにより効率よくフィン温度の平均化が図れるメリットがある。
【0048】
【発明の効果】
以上、説明したように、この発明の請求項1によれば、熱交換器を凝縮器として使用する際に、並行流で熱交換効率が少し低下するが、対向流で凝縮液の過冷却が効率よくとれて熱交換効率が向上し、総合的に凝縮能力を確保し、簡単な構造で効率の高い冷房運転、暖房運転を行なうことができる。また、伝熱管の冷媒入口と冷媒出口が、風上側の温度の低い空気と熱交換するため簡単な構造で過冷却が確実にとれるようになる。
【0049】
また、この発明の請求項2によれば、熱交換器を蒸発器として使用する際に、並行流で熱交換効率が少し低下するが、対向流で熱交換効率が向上し、総合的に蒸発能力を確保し、簡単な構造で効率の高い冷房運転、暖房運転を行なうことができる。また、伝熱管の冷媒入口と冷媒出口が、風上側の温度の高い空気と熱交換するために適正な過熱度がとれ、湿り冷媒が圧縮機に戻ることによる効率低下および圧縮機の寿命低下等の問題を簡単な構造で解消できる。
【図面の簡単な説明】
【図1】空気調和装置の一実施形態を示した配管図の概要説明図。
【図2】対向流及び並行流とした時の蒸発器と凝縮器の温度勾配のみによる効率変化と、通風抵抗による効率変化を示した説明図。
【図3】この発明にかかる空気調和装置の配管図を示した概要説明図。
【図4】冷媒の入口側と出口側の変形例を示した図3と同様の説明図。
【図5】図4のさらに別の変形例を示した一部分の熱交換器の説明図。
【図6】伝熱管の入口側と出口側の温度を示した説明図。
【符号の説明】
1 コンプレッサ
3 利用側熱交換器
5 減圧装置
7 熱源側熱交換器
9 四方弁
11,23 伝熱管
19,21 一方の伝熱管側の冷媒入口又は冷媒出口となる端末部
29,31 他方の伝熱管側の冷媒入口又は冷媒出口となる端末部
a 風上
b 風下[0001]
[Industrial application fields]
The present invention relates to an air conditioner using a non-azeotropic refrigerant mixture as a refrigerant.
[0002]
[Prior art]
In general, an air conditioner is composed of a compressor, a use side heat exchanger, a decompression device, and a heat source side heat exchanger. In the cooling mode, the use side heat exchanger is used as an evaporator, and the heat source side heat exchanger is used. Is used as a condenser. In the heating mode, a refrigeration cycle is configured in which the use side heat exchanger is used as a condenser and the heat source side heat exchanger is used as an evaporator, and the refrigerant circulates in the cycle.
[0003]
[Problems to be solved by the invention]
The refrigerant that circulates in the refrigeration cycle is generally chlorofluorocarbon gas and is in the direction of being completely abolished from the place where it adversely affects the global environment. As an alternative, non-azeotropic refrigerants that are friendly to the global environment are considered promising. .
[0004]
The non-azeotropic refrigerant mixture has a phenomenon in which the evaporation temperature and the condensation temperature change in the evaporation process and the condensation process due to the difference in boiling point of each refrigerant in the refrigeration cycle. This is called a temperature gradient.
[0005]
In the evaporator of the refrigerant circuit, the refrigerant liquid becomes refrigerant vapor while maintaining gas-liquid equilibrium. During this time, the evaporation temperature gradually rises. In the condenser, the opposite is true, and the condensation temperature gradually decreases. On the other hand, air is deprived of heat in the evaporator and becomes low temperature, and the condenser gets heat and becomes high temperature. These temperature relationships are summarized as shown in Table-1.
[0006]
[Table 1]
Figure 0003650358
The refrigerant circuit of this non-azeotropic refrigerant mixture performs countercurrent flow heat exchange, thereby reducing the heat exchange loss between the refrigerant and the chilled or heated fluid by utilizing the characteristic that the temperature of the phase change depends on the concentration. Decrease and improve coefficient of performance. The counter-flow system is such that the refrigerant inlet is in the most leeward row and the outlet is in the most windward row with respect to the air flow, and flows from the refrigerant leeward row to the windward row in sequence. This is the case. The opposite case is called a parallel flow method, and is used in Japanese Patent Application Laid-Open No. 53-104456, which is a counter flow when used as a condenser, or a configuration in which a counter flow is used in the cooling mode and the heating mode. JP-A-59-115945 and JP-A-63-302264 have been proposed.
[0007]
However, in the former case, when the use side heat exchanger is used as a condenser, if it is set as a counter flow, it becomes a parallel flow when used as an evaporator, so that the heat exchange efficiency in the cooling mode is reduced. Invite
[0008]
In the latter case, the number of control valves and circuits that control the flow of refrigerant increases, making it complicated and undesirable in terms of assembly and cost. There is a problem that happens.
[0009]
In addition, when using a refrigerant with a temperature gradient, the heat exchanger (evaporation) that cools the air, in addition to the change in the heat exchange rate that is a pure heat transfer phenomenon due to counterflow or parallel flow, must be taken into consideration. In the case of use as an air conditioner), it is necessary to take into consideration a decrease in heat exchange amount due to a decrease in ventilation rate due to an increase in ventilation resistance due to condensation of water vapor in the cooled air. Water vapor in parallel flow air where the difference between the fin and inlet air temperature in the evaporator becomes large is condensed on the surface of the fin front end, narrowing the passage between the fins, and reducing the amount of heat exchange due to reduced air flow . On the other hand, it is known that in the counterflow that becomes smaller, the amount of water vapor condensation on the front end of the fin is smaller than the former, and condensation is more averaged from the center to the rear end.
[0010]
Accordingly, an object of the present invention is to provide an air conditioner capable of performing efficient cooling operation and heating operation with a simple structure.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1 of the present invention, air using a non-azeotropic refrigerant mixture that uses a heat exchanger as an evaporator or a condenser in a cooling mode or a heating mode. in conditioner, heat exchanger used as a condenser is provided with a heat exchanger tube flow direction of the refrigerant becomes parallel flow relative to the air flow passing through the heat exchanger, and a heat transfer tube to be a counter flow, the heat The refrigerant inlet and the refrigerant outlet of the heat exchanger tube of the exchanger are arranged on the windward side with respect to the air flow passing through the heat exchanger and at the same position .
[0012]
According to claim 2, heat exchange used as an evaporator in an air-conditioning apparatus using a non-azeotropic refrigerant mixture that uses a heat exchanger as an evaporator or a condenser in a cooling mode or a heating mode. The heat exchanger includes a heat transfer tube in which the flow direction of the refrigerant is parallel to the air flow passing through the heat exchanger, and a heat transfer tube that is a counter flow, and a refrigerant inlet and a refrigerant outlet of the heat exchanger tube of the heat exchanger Are arranged on the windward side and in the same position with respect to the air flow passing through the heat exchanger .
[0015]
[Action]
In such an air conditioner, in claim 1, the heat exchanger used as a condenser has a heat exchange efficiency that is slightly reduced due to the parallel flow. Exchange efficiency is improved, condensing capacity is comprehensively secured, and efficient cooling and heating operations can be performed with a simple structure. At the same time, the refrigerant inlet and the refrigerant outlet of the heat transfer tube exchange heat with air at a low temperature on the windward side, so that supercooling can be reliably achieved with a simple structure.
[0016]
Further, in claim 2, the heat exchanger used as an evaporator is slightly reduced in heat exchange efficiency in the parallel flow, but the heat exchange efficiency is improved in the counter flow, and the evaporation capacity is ensured comprehensively. With a simple structure, efficient cooling and heating operations can be performed. At the same time, the refrigerant inlet and the refrigerant outlet of the heat transfer tube have an appropriate degree of superheat for exchanging heat with high-temperature air on the windward side, reducing efficiency and reducing the life of the compressor by returning wet refrigerant to the compressor. Such problems can be solved with a simple structure.
[0019]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020]
1 and FIG. 2, FIG. 1 shows a piping diagram of a heat pump type air conditioner in which a non-azeotropic refrigerant mixture such as R32 and R134a is used as a refrigerant.
[0021]
The air conditioner has a compressor 1, a use side heat exchanger 3, a decompression device 5, and a heat source side heat exchanger 7, and by operating the four-way valve 9 according to the cooling / heating mode, The refrigerant discharged from the compressor 1 constitutes a refrigeration cycle in which the refrigerant flows toward the use side heat exchanger 3 as indicated by the dotted arrow or toward the heat source side heat exchanger 7 as indicated by the solid arrow. Switching control corresponding to the mode is possible.
[0022]
The use-side heat exchanger 3 is composed of continuous heat transfer tubes 11 and fins 13 arranged at a predetermined pitch, and the refrigerant flows in the circuit 15 as indicated by solid arrows, thereby functioning as an evaporator, while dotted arrows As the refrigerant flows, it functions as a condenser.
[0023]
The airflow flows as indicated by the arrow by the rotation of the crossflow fan 17 and passes between the fins 13. The a side is the windward side and the b side is the leeward side.
[0024]
Further, the terminal portion 19 on the upwind a side of the heat transfer tube 11 of the use side heat exchanger 3 is connected to the four-way valve 9 and the terminal portion 21 on the leeward b side of the heat transfer tube 11 is connected to the decompression device 5. Yes. Thus, in the cooling mode, the terminal portion 21 on the leeward b side is set to be a counter flow that is on the refrigerant inlet side, and the terminal portion 19 on the leeward a side is on the outlet side. The terminal portion 19 on the side is set to be a parallel flow that is the inlet side of the refrigerant, and the terminal portion 21 on the leeward b side is the outlet side.
[0025]
The heat source side heat exchanger 7 includes continuous heat transfer tubes 23 and fins 25 arranged at a predetermined pitch. The refrigerant flows in the circuit 15 as indicated by solid arrows, and functions as a condenser. Thus, the refrigerant flows to function as an evaporator. The airflow flows as indicated by the arrows as the fan 27 rotates, and passes between the fins 25. The a side is the windward side and the b side is the leeward side.
[0026]
The terminal portion 29 on the windward side a of the heat transfer tube 23 of the heat source side heat exchanger 7 is connected to the four-way valve 9 and the terminal portion 31 on the windward side b of the heat transfer tube 23 is connected to the decompression device 5. Yes. Thus, in the cooling mode, the terminal portion 29 on the leeward side a is set to be a parallel flow that is the refrigerant inlet side, and the terminal portion 31 on the leeward side is the outlet side, and in the heating mode, the terminal portion on the leeward b side is set. 31 is set so as to be a counter flow on the refrigerant inlet side and the windward side a terminal portion 29 on the outlet side.
[0027]
In the air conditioner configured as described above, in the cooling mode, the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 enters the heat source side heat exchanger 7 through the four-way valve 9 and dissipates heat to the outdoor air. Condensed. The condensed refrigerant is depressurized by the decompression device 5 to become low temperature and low pressure and is vaporized by absorbing heat from the indoor air in the use side heat exchanger 3. The vaporized refrigerant is sucked into the compressor 1 and becomes high-temperature and high-pressure steam again, and the refrigeration cycle is repeated. On the other hand, in the heat pump heating mode, the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 first enters the use-side heat exchanger 3 via the four-way valve 9 and dissipates heat to the indoor air and condenses. The condensed refrigerant is decompressed by the decompression device 5 to become low temperature and low pressure, and is absorbed by the heat source side heat exchanger 7 from the outdoor air and vaporized. The vaporized refrigerant is sucked into the compressor 1 and becomes high-temperature / high-pressure steam again to repeat the heating cycle.
[0028]
In the cooling mode and the heating mode, in the operation mode in which both the use side heat exchanger 3 and the heat source side heat exchanger 7 are used as an evaporator, the counterflow and the condenser are used as a condenser. Becomes parallel flow. In this case, since the temperature difference between the inlet side and the outlet side is small in the counterflow evaporator, the amount of water vapor condensation on the front end of the fin is suppressed to be small as a whole, and the reduction of the ventilation rate is not seen. Therefore, it becomes possible to perform cooling and heating operations with high efficiency overall.
[0029]
The result is shown in FIG. In FIG. 2, the condenser has a parallel flow due to the configuration and becomes negative, but this is a recoverable value by increasing the number of fins.
[0030]
In general, when the number of fins is increased, when used as an evaporator, the ventilation resistance increases, and a decrease in performance is recognized. Therefore, the performance improvement when used as a condenser can be sufficiently achieved.
[0031]
FIG. 3 shows a piping diagram of the air conditioner according to the present invention, which is characterized by the arrangement structure of the refrigerant inlet and the refrigerant outlet.
[0032]
That is, the terminal portions 19 and 21 that are the refrigerant inlet and the refrigerant outlet of the heat transfer tube 11 of the use side heat exchanger 3 and the terminal portions 29 and 31 that are the refrigerant inlet and the refrigerant outlet of the heat transfer tube 23 of the heat source side heat exchanger 7. Are arranged on the windward a side, and on the windward a side, the arrangement structure is the same and close to the vertical axis in the drawing.
[0033]
In the heat transfer tube 11 of the use side heat exchanger 3, one end portion 19 includes one end portion 29 of the heat transfer tube 23 serving as the heat source side heat exchanger 7 and the other end portion 21 via a four-way valve. It connects with the other terminal part 31 of the heat exchanger tube 23 used as the heat source side heat exchanger 7 via the decompression device 5, respectively, and comprises the closed cycle.
[0034]
Therefore, in the use side heat exchanger 3 and the heat source side heat exchanger 7, the refrigerant discharged from the compressor 1 through the four-way valve 9 in the cooling mode or the heating mode is indicated by a solid line arrow or a dotted line arrow. It functions as an evaporator or a condenser.
[0035]
In this regard, first, the use side heat exchanger 3 will be described in detail.
[0036]
In the cooling mode, the refrigerant flows as indicated by a solid line arrow, thereby functioning as an evaporator. The terminal portion 21 of the heat transfer tube 11 serves as a refrigerant inlet and the terminal portion 19 serves as a refrigerant outlet. Looking at the heat transfer tube 11 at this time, the lower half of the heat transfer tube 11 arranged in parallel including the terminal portion 21 serving as the refrigerant inlet in the drawing shows the flow of the refrigerant with respect to the air flow passing through the heat exchanger 3. It is a heat transfer tube area whose direction is parallel flow. Further, the upper half of the heat transfer tube 11 arranged in parallel including the terminal portion 19 serving as the refrigerant outlet has a heat transfer tube region in which the flow direction of the refrigerant is opposite to the air flow passing through the heat exchanger 3. It has become.
[0037]
On the other hand, in the heating mode, the refrigerant discharged from the compressor 1 flows as indicated by a dotted arrow, so that the use-side heat exchanger 3 functions as a condenser, and the terminal portion 19 of the heat transfer tube 11 is a refrigerant inlet and a terminal portion. 21 becomes a refrigerant | coolant exit. Looking at the heat transfer tube 11 at this time, in the figure, the upper half portion arranged in parallel including the terminal portion 19 serving as the refrigerant inlet has the refrigerant flow direction parallel to the air flow passing through the heat exchanger 3. It is a heat transfer tube area that becomes a flow. Moreover, the lower half part arrange | positioned in parallel including the terminal part 21 used as a refrigerant | coolant exit becomes the heat exchanger tube area | region where the flow direction of a refrigerant | coolant becomes a counterflow with respect to the air flow which passes the heat exchanger 3. FIG.
[0038]
Next, the heat source side heat exchanger 7 will be specifically described.
[0039]
In the cooling mode, the refrigerant flows as indicated by a solid line arrow, thereby functioning as a condenser. The terminal portion 29 of the heat transfer tube 23 serves as a refrigerant inlet and the terminal portion 31 serves as a refrigerant outlet. Looking at the heat transfer tube 23 at this time, the upper half of the heat transfer tube 23 arranged in parallel including the terminal portion 29 serving as the refrigerant inlet in the figure shows the flow of the refrigerant with respect to the air flow passing through the heat exchanger 7. It is a heat transfer tube area whose direction is parallel flow. In addition, the lower half of the heat transfer tube 23 arranged in parallel including the terminal portion 31 serving as the refrigerant outlet has a heat transfer tube region in which the flow direction of the refrigerant is opposed to the air flow passing through the heat exchanger 7. It has become.
[0040]
On the other hand, in the heating mode, the refrigerant discharged from the compressor 1 flows as indicated by a dotted arrow, so that the heat source side heat exchanger 7 functions as an evaporator, and the terminal portion 31 of the heat transfer tube 23 is a refrigerant inlet and a terminal portion. 29 becomes a refrigerant | coolant exit. Looking at the heat transfer tube 23 at this time, in the drawing, the lower half portion arranged in parallel including the terminal portion 31 serving as the refrigerant inlet is parallel to the air flow passing through the heat exchanger 7. It is a heat transfer tube area that becomes a flow. Moreover, the upper half part arrange | positioned in parallel including the terminal part 29 used as a refrigerant | coolant exit becomes the heat exchanger tube area | region where the flow direction of a refrigerant | coolant becomes a counterflow with respect to the air flow which passes the heat exchanger 7. FIG.
[0041]
Accordingly, when the heat exchanger 3 or 7 is used as a condenser, the heat exchange efficiency is slightly reduced by the heat transfer tubes 11 and 23 that are in parallel flow. Exchange efficiency is improved, condensing capacity is comprehensively secured, and efficient cooling and heating operations can be performed with a simple structure.
[0042]
In addition, the heat transfer tubes 11 and 23 that are in parallel flow when the heat exchanger 3 or 7 is used as an evaporator slightly reduces the heat exchange efficiency, but the countercurrent flow improves the heat exchange efficiency and comprehensively evaporates. This makes it possible to perform highly efficient cooling and heating operations with a simple structure.
[0043]
On the other hand, for example, the refrigerant inlet and the refrigerant outlet of the heat transfer tube 11 of the use side heat exchanger 3 are on the upwind a side with respect to the air flow passing through the heat exchanger 3 and at the same position. Therefore, since the refrigerant inlet 19 and the refrigerant outlet 21 of the heat transfer tube 11 exchange heat with air having a low temperature on the windward side a, it is possible to reliably perform supercooling with a simple structure. When used as an evaporator, the refrigerant inlet 21 and the refrigerant outlet 19 of the heat transfer tube 11 exchange heat with high-temperature air on the windward side a so that an appropriate degree of superheat is obtained, and the wet refrigerant returns to the compressor 1. Thus, problems such as a decrease in efficiency and a decrease in the life of the compressor 1 can be solved with a simple structure.
[0044]
In addition, when the heat exchanger 3 or 7 is used as, for example, an evaporator, the terminal portions 19 and 21 and the terminal portions 29 and 31 that serve as the refrigerant inlet and the refrigerant outlet of the heat transfer tube 11 are brought close to each other. Heat exchange is performed between the inlet and the refrigerant outlet, and frost formation, freezing phenomenon, or dew condensation phenomenon that occurs during low-temperature operation is eliminated. As a result, an efficient air flow rate can be secured with a simple structure.
[0045]
In this case, the ability can be further improved by employing the means shown in FIGS. That is, the end portions 19, 21, 29, 31 of the heat transfer tubes 11, 23 are arranged on the upwind a side, and the end portions 19, 21 are arranged separately on the heat transfer tube 11 side, The terminal portion 21 is provided adjacent to the heat transfer tube 11 on the windward side a. Further, on the other heat transfer tube 23 side, the terminal portions 29 and 31 are arranged apart from each other, and the one end portion 31 is provided adjacent to the heat transfer tube 23 on the windward a side, and the use side, the heat source side When the heat exchangers 3 and 7 are used as evaporators, the refrigerant inlet side is arranged in parallel with the airflow, and the refrigerant outlet side is arranged on the windward a side. The exit side region is a counter flow.
[0046]
Other constituent elements are the same as those in the above-described embodiment, and the same reference numerals are used for omitting the description.
[0047]
According to this embodiment, in addition to the effect of the embodiment of FIG. 3, the evaporator outlet side is disposed in the vicinity of the lowest heat transfer tube on the inlet side, so that the influence of heat from the inlet side is eliminated and cooling is performed. Loss of capacity is kept small. Therefore, as shown by the solid line in FIG. 6, the fin temperature on the inlet side rises and the fin temperature on the outlet side decreases, so that there is an advantage that the fin temperatures can be efficiently averaged.
[0048]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the heat exchanger is used as a condenser, the heat exchange efficiency is slightly reduced in the parallel flow, but the condensate is supercooled in the counter flow. It is efficient and heat exchange efficiency is improved, condensing capacity is comprehensively secured, and highly efficient cooling operation and heating operation can be performed with a simple structure. Further, since the refrigerant inlet and the refrigerant outlet of the heat transfer tube exchange heat with air having a low temperature on the windward side, supercooling can be reliably achieved with a simple structure.
[0049]
According to claim 2 of the present invention, when the heat exchanger is used as an evaporator, the heat exchange efficiency is slightly reduced in the parallel flow, but the heat exchange efficiency is improved in the counter flow, and the evaporation is comprehensively performed. Capability is ensured, and highly efficient cooling and heating operations can be performed with a simple structure. In addition, the refrigerant inlet and refrigerant outlet of the heat transfer tube have an appropriate degree of superheat to exchange heat with air at a high temperature on the windward side, resulting in reduced efficiency due to the return of wet refrigerant to the compressor and reduced compressor life. This problem can be solved with a simple structure.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a piping diagram showing an embodiment of an air conditioner.
FIG. 2 is an explanatory diagram showing an efficiency change only due to a temperature gradient of an evaporator and a condenser when an opposing flow and a parallel flow are used, and an efficiency change due to ventilation resistance.
FIG. 3 is a schematic explanatory diagram showing a piping diagram of the air conditioner according to the present invention.
4 is an explanatory view similar to FIG. 3, showing a modified example of the refrigerant inlet side and outlet side. FIG.
FIG. 5 is an explanatory view of a part of the heat exchanger showing still another modified example of FIG. 4;
FIG. 6 is an explanatory diagram showing temperatures on the inlet side and outlet side of the heat transfer tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 3 Use side heat exchanger 5 Pressure reducing device 7 Heat source side heat exchanger 9 Four-way valve 11, 23 Heat transfer tube 19, 21 Terminal part 29,31 used as refrigerant inlet or refrigerant outlet of one heat transfer tube side The other heat transfer tube Terminal part that becomes the refrigerant inlet or outlet on the side a Windward b Windward

Claims (2)

冷房モード時又は暖房モード時に、熱交換器を蒸発器として、あるいは凝縮器として使用する非共沸混合冷媒を用いた空気調和装置において、凝縮器として使用する熱交換器は、熱交換器を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管と、対向流となる伝熱管とを備え、前記熱交換器の伝熱管の冷媒入口と冷媒出口とを、熱交換器を通過する空気流に対して風上側で、かつ、同一位置の配置構造としたことを特徴とする空気調和装置。In an air conditioner using a non-azeotropic refrigerant mixture that uses a heat exchanger as an evaporator or a condenser in the cooling mode or the heating mode, the heat exchanger used as the condenser passes through the heat exchanger. A heat transfer tube in which the flow direction of the refrigerant is parallel to the air flow, and a heat transfer tube that is a counter flow, and passes through the heat exchanger through the refrigerant inlet and the refrigerant outlet of the heat exchanger tube An air conditioner characterized by having an arrangement structure on the windward side and at the same position with respect to the air flow . 冷房モード時又は暖房モード時に、熱交換器を蒸発器として、あるいは凝縮器として使用する非共沸混合冷媒を用いた空気調和装置において、蒸発器として使用する熱交換器は、熱交換器を通過する空気流に対して冷媒の流れ方向が並行流となる伝熱管と、対向流となる伝熱管とを備え、前記熱交換器の伝熱管の冷媒入口と冷媒出口とを、熱交換器を通過する空気流に対して風上側で、かつ、同一位置の配置構造としたことを特徴とする空気調和装置。In the air conditioner using the non-azeotropic refrigerant mixture that uses the heat exchanger as an evaporator or as a condenser in the cooling mode or the heating mode, the heat exchanger used as the evaporator passes through the heat exchanger. A heat transfer tube in which the flow direction of the refrigerant is parallel to the air flow, and a heat transfer tube that is a counter flow, and passes through the heat exchanger through the refrigerant inlet and the refrigerant outlet of the heat exchanger tube An air conditioner characterized by having an arrangement structure on the windward side and at the same position with respect to the air flow .
JP2001344787A 2001-11-09 2001-11-09 Air conditioner Expired - Fee Related JP3650358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344787A JP3650358B2 (en) 2001-11-09 2001-11-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344787A JP3650358B2 (en) 2001-11-09 2001-11-09 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24298493A Division JP3286038B2 (en) 1993-09-29 1993-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002195675A JP2002195675A (en) 2002-07-10
JP3650358B2 true JP3650358B2 (en) 2005-05-18

Family

ID=19158254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344787A Expired - Fee Related JP3650358B2 (en) 2001-11-09 2001-11-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP3650358B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
JP4922669B2 (en) * 2006-06-09 2012-04-25 日立アプライアンス株式会社 Air conditioner and heat exchanger for air conditioner
JP2008275218A (en) * 2007-04-26 2008-11-13 Daikin Ind Ltd Heat exchanger
JP5644889B2 (en) * 2013-04-30 2014-12-24 ダイキン工業株式会社 Air conditioner indoor unit
WO2015132963A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Heat exchanger and air conditioner
JP6572561B2 (en) * 2015-03-03 2019-09-11 ダイキン工業株式会社 Heat exchanger and air conditioner
EP3524917B1 (en) * 2016-10-04 2021-07-14 Mitsubishi Electric Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP2002195675A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
KR100697087B1 (en) Air-Condition
JP4428341B2 (en) Refrigeration cycle equipment
US5660056A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JP3286038B2 (en) Air conditioner
JPH11337104A (en) Air conditioner
JP2000304380A (en) Heat exchanger
JP6298992B2 (en) Air conditioner
WO2022211078A1 (en) Refrigeration cycle device
JP2013076485A (en) Air conditioner
EP2431685B1 (en) Air conditioner
US7814761B2 (en) Air conditioner
JPH10220911A (en) Air conditioner
CN206846873U (en) Heating unit
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JPH10196984A (en) Air conditioner
JPH11264629A (en) Cross fin coil type heat exchanger
JP2005009808A (en) Heat exchanger for air conditioner
JPH1068560A (en) Refrigeration cycle device
JPH0798166A (en) Air-conditioner
JPH08178445A (en) Heat pump type air conditioner
WO2011111602A1 (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees