JPH1068560A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPH1068560A
JPH1068560A JP22577096A JP22577096A JPH1068560A JP H1068560 A JPH1068560 A JP H1068560A JP 22577096 A JP22577096 A JP 22577096A JP 22577096 A JP22577096 A JP 22577096A JP H1068560 A JPH1068560 A JP H1068560A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat exchange
condenser
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22577096A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Norio Okaza
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22577096A priority Critical patent/JPH1068560A/en
Publication of JPH1068560A publication Critical patent/JPH1068560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the operating efficiency of a refrigeration cycle device by a method wherein a condenser is constituted so as to effect counterflow heat exchange and a refrigerant side flow passage is formed so that the number of outlet paths of refrigerant, which flows from a compressor into the condenser, becomes smaller than the number of inlet paths while mixed refrigerant is sealed into the refrigeration cycle device SOLUTION: During cooling operation, gas refrigerant, compressed by a scroll compressor 1 so as to have a high temperature and a high pressure, is introduced into an outdoor heat exchanger 3 through a four-way valve 2. In this case, the heat exchange of the gas refrigerant is effected with outdoor air through counterflow heat exchange while the refrigerant, branched into a larger number of inlet paths is being joined together into a smaller number of outlet paths, whereby the gas refrigerant dissipates heat and is condensed into liquid refrigerant. Further, the refrigerant, changed into liquid state by the condensing in the outdoor heat exchanger 3, is reduced in pressure in a throttling device 4 and, thereafter, is introduced into an indoor heat exchanger 5. The heat exchange of the refrigerant is effected in the indoor heat exchanger 5 with indoor air through parallel flow heat exchange while the refrigerant, branched into the smaller number of the inlet paths is being joined into the larger number of the outlet paths, whereby the refrigerant absorbs heat and is evaporated into the gas refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒として混合冷
媒を用いた冷凍サイクル装置に関するものである。
The present invention relates to a refrigeration cycle apparatus using a mixed refrigerant as a refrigerant.

【0002】[0002]

【従来の技術】従来より空気調和機などの圧縮機、四方
弁、室外熱交換器、絞り装置、室内熱交換器等からなる
冷凍サイクル装置の冷媒としてHCFC22が広く用い
られているが、HCFC22はわずかながら成層圏オゾ
ン層を破壊するために使用が規制され、その代替冷媒と
して分子中に塩素を含まない冷媒からなる混合冷媒が注
目されている。具体的には、HFC32/HFC125
からなる2成分混合冷媒や、HFC32/HFC125
/HFC134aからなる3成分混合冷媒が候補として
考えられている。
2. Description of the Related Art Conventionally, HCFC22 has been widely used as a refrigerant for a refrigeration cycle apparatus including a compressor such as an air conditioner, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger. Its use is regulated to slightly destroy the stratospheric ozone layer, and a mixed refrigerant comprising a refrigerant containing no chlorine in the molecule has been attracting attention as an alternative refrigerant. Specifically, HFC32 / HFC125
HFC32 / HFC125
/ HFC134a is considered as a candidate.

【0003】混合冷媒は、大なり小なり、二相域での等
圧下において温度勾配をもち、さらに実際の冷凍サイク
ル装置においては、特に凝縮器において圧力損失のため
に、二相域での等圧下における理想的な温度勾配に比べ
て、大きな温度勾配をもって凝縮時に温度低下する。ま
た蒸発器においては圧力損失のために、理想的な温度勾
配よりも小さく温度上昇する。
[0003] The mixed refrigerant has a large or small temperature gradient under equal pressure in the two-phase region, and furthermore, in an actual refrigeration cycle apparatus, especially in a condenser, due to a pressure loss in the two-phase region, the mixed refrigerant has an equal temperature. The temperature drops during condensation with a large temperature gradient compared to the ideal temperature gradient under pressure. In the evaporator, the temperature rises smaller than the ideal temperature gradient due to the pressure loss.

【0004】このため混合冷媒を用いた冷凍サイクル装
置の熱交換器において、対向流熱交換させることは公知
の技術であり、空気調和機の四方弁の切り換えによる冷
暖房運転のいづれにおいても、室内外熱交換器中の冷媒
と空気が対向流熱交換されるように、冷媒側の流路を切
り換えるように工夫したものがある。
[0004] Therefore, in a heat exchanger of a refrigeration cycle apparatus using a mixed refrigerant, it is a well-known technique to perform counter-flow heat exchange. There is a device in which the flow path on the refrigerant side is switched so that the refrigerant in the heat exchanger and the air exchange heat in opposite directions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、四方弁
をもった空気調和機における上記の工夫は冷媒側の流路
が複雑となり、空気調和機などの列数の少ない熱交換器
においては、厳密に冷媒と空気が対向流熱交換される構
成とはなりえないものであった。
However, the above-described device in an air conditioner having a four-way valve requires a complicated flow path on the refrigerant side, and strictly requires a heat exchanger with a small number of rows such as an air conditioner. The configuration cannot be such that the refrigerant and the air exchange heat in the opposite flow.

【0006】また冷暖房運転のいづれかにおいて、室内
外熱交換器のいづれも冷媒と空気が対向流熱交換される
ように、冷媒側の流路を構成すると、反対の運転モード
においては、室内外熱交換器のいづれも冷媒と空気が並
行流熱交換されるため、極端に運転効率が低下する場合
があるものであった。
[0006] In any of the cooling and heating operations, when the flow path on the refrigerant side is configured so that the refrigerant and the air exchange heat in the opposite flow in any of the indoor and outdoor heat exchangers, the indoor and outdoor heat exchangers are operated in the opposite operation mode. In any of the exchangers, since the refrigerant and the air exchange heat in parallel, the operation efficiency may be extremely reduced.

【0007】すなわち温度勾配のある混合冷媒を用いた
場合に、冷凍サイクル装置および熱交換器の設計におい
て、適切な設計手法がなく、試行錯誤によって構成して
いるのが実状であった。
That is, when a mixed refrigerant having a temperature gradient is used, there is no appropriate design method in designing a refrigeration cycle apparatus and a heat exchanger, and the actual situation is that it is configured by trial and error.

【0008】本発明は、従来のこのような冷凍サイクル
装置に鑑みてなされたもので、混合冷媒を用いた冷凍サ
イクル装置において、特にスクロール圧縮機をもった冷
凍サイクル装置の運転効率の向上を実現することを目的
とするものである。
The present invention has been made in view of such a conventional refrigeration cycle apparatus, and in a refrigeration cycle apparatus using a mixed refrigerant, improvement of the operation efficiency of a refrigeration cycle apparatus having a scroll compressor has been realized. It is intended to do so.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を実
現するためになされたものであり、スクロール圧縮機
と、複数の列数をもつ凝縮器と、絞り装置と、蒸発器と
を備える冷凍サイクル装置において、凝縮器を対向流熱
交換となし、圧縮機から流入する冷媒の出口パス数を入
口パス数より少なくなるように冷媒側の流路を構成し、
混合冷媒を封入したことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and comprises a scroll compressor, a condenser having a plurality of rows, a throttle device, and an evaporator. In the refrigeration cycle device, the condenser is counterflow heat exchange, and the refrigerant-side flow path is configured such that the number of outlet paths of the refrigerant flowing from the compressor is smaller than the number of inlet paths,
The mixed refrigerant is sealed.

【0010】また本発明は、スクロール圧縮機と、四方
弁と、室外熱交換器と、絞り装置と、室内熱交換器とを
備える冷凍サイクル装置において、複数の列数をもつ室
外熱交換器または/および室内熱交換器を凝縮器として
動作させる場合に対向流熱交換となし、圧縮機から流入
する冷媒の出口パス数を入口パス数より少なくなるよう
に冷媒側の流路を構成し、混合冷媒を封入したことを特
徴とするものである。
The present invention also provides a refrigeration cycle apparatus including a scroll compressor, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger. When the indoor heat exchanger is operated as a condenser, counterflow heat exchange is not performed, and the refrigerant-side flow path is configured so that the number of outlet paths of the refrigerant flowing from the compressor is smaller than the number of inlet paths, and mixing is performed. It is characterized in that a refrigerant is sealed.

【0011】さらに本発明は、スクロール圧縮機と、四
方弁と、室外熱交換器と、絞り装置と、室内熱交換器と
を備える冷凍サイクル装置において、特に複数の列数と
列毎に独立したフィンをもつ室外熱交換器を凝縮器とし
て動作させる場合に対向流熱交換となし、圧縮機から流
入する冷媒の出口パス数を入口パス数より少なくなるよ
うに冷媒側の流路を構成し、混合冷媒を封入したことを
特徴とするものである。
Further, the present invention relates to a refrigeration cycle apparatus including a scroll compressor, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger. When operating the outdoor heat exchanger having fins as a condenser, counterflow heat exchange is performed, and the refrigerant-side flow path is configured so that the number of outlet paths of the refrigerant flowing from the compressor is smaller than the number of inlet paths, The mixed refrigerant is sealed.

【0012】すなわち対向流熱交換となした凝縮器で
は、圧縮機から流入する冷媒の出口パス数を入口パス数
より少なくなるように冷媒側の流路を構成したため、入
口側での圧力損失が小さくなり、凝縮器の入口側での温
度低下が抑えられ、凝縮器の入口から出口までの温度勾
配は上に凸の形となり、対向流熱交換される凝縮器で
は、冷媒の出口側で空気と冷媒の温度差を最も小さくで
きて、凝縮圧力の低下に効果的である。ここでスクロー
ル圧縮機は、高圧シェルタイプと低圧シェルタイプに関
わらず、凝縮圧力が低い程、圧縮機入力が低減できると
いう特性をもつため、運転効率の向上を実現することが
可能となるものである。
That is, in the condenser in which the counter-flow heat exchange is performed, the flow path on the refrigerant side is configured so that the number of the outlet paths of the refrigerant flowing from the compressor is smaller than the number of the inlet paths. The temperature decreases from the inlet to the outlet of the condenser, and the temperature gradient from the inlet to the outlet of the condenser becomes convex upward. And the temperature difference between the refrigerant and the refrigerant can be minimized, which is effective in lowering the condensation pressure. Here, regardless of the high-pressure shell type and the low-pressure shell type, the scroll compressor has the characteristic that as the condensing pressure is lower, the compressor input can be reduced, so that it is possible to improve the operating efficiency. is there.

【0013】また四方弁をもった冷凍サイクル装置にお
いては、冷房運転時には凝縮器となる室外熱交換器、暖
房運転時には凝縮器となる室内熱交換器で、対向流熱交
換によって凝縮圧力を大きく低下できる。このためスク
ロール圧縮機の特性を利用して、冷暖房運転の運転効率
の向上を実現することが可能となるものである。
In a refrigeration cycle apparatus having a four-way valve, an outdoor heat exchanger serving as a condenser during cooling operation, and an indoor heat exchanger serving as a condenser during heating operation. it can. Therefore, it is possible to improve the operation efficiency of the cooling and heating operation by utilizing the characteristics of the scroll compressor.

【0014】さらに、特に冷房運転時に凝縮器となる室
外熱交換器において、複数の列数と列毎に独立したフィ
ンを形成することによって、冷房運転時には対向流熱交
換の効果を高め、凝縮圧力を大きく低下させることが可
能となり、冷房運転時の運転効率の向上を実現し、暖房
運転時に蒸発器となる室外熱交換器においては、暖房運
転時には絞り装置から流入する冷媒の入口パス数は少な
く、圧力損失の傾向からできるだけ均一の蒸発温度を形
成することが可能となり、暖房運転時の均一な着霜を実
現するという副次的な効果ももつものである。
Further, in the outdoor heat exchanger which becomes a condenser during the cooling operation, a plurality of rows and independent fins are formed for each row, so that the effect of the counter-flow heat exchange is enhanced during the cooling operation, and the condensing pressure is increased. In the outdoor heat exchanger that becomes an evaporator during the heating operation, the number of inlet paths of the refrigerant flowing from the expansion device during the heating operation is small. In addition, it is possible to form the evaporation temperature as uniform as possible from the tendency of the pressure loss, and there is also a secondary effect of realizing uniform frost formation during the heating operation.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1に本発明にかかる一実施の形態の空気
調和機を示す。図1において1はスクロール圧縮機、2
は冷房運転と暖房運転を切り替える四方弁、3は室外熱
交換器、4は絞り装置であり、これらと室外ファン(図
示せず)等とともに室外機Aを構成している。また5は
室内熱交換器であり、室内ファン(図示せず)等から室
内機Bを構成している。冷媒としては、分子中に塩素を
含まない冷媒からなる混合冷媒が封入されている。ここ
で複数の列数からなるフィン付きの室外熱交換器3は、
複数の列数に付設されるフィンが独立に切り離され、ま
た室外ファン(図示せず)によって図1中の一点鎖線の
矢印方向に室外の空気が室外熱交換器3に導入され、空
気の出口側に四方弁2に接続される配管が接続され、空
気の入口側に絞り装置4に接続される配管が接続され、
かくして冷房運転時に図1中の実線矢印方向に室外熱交
換器3に導入される冷媒と図1中の一点鎖線の矢印方向
に室外熱交換器3に導入される空気が対向流熱交換とな
り、スクロール圧縮機1から流入する冷媒の出口パス数
を入口パス数より少なくなるように冷媒側の流路を構成
している。さらに複数の列数からなるフィン付きの室内
熱交換器5は、複数の列数に付設されるフィンが独立に
切り離され、また室内ファン(図示せず)によって図1
中の一点鎖線の矢印方向に室内の空気が室内熱交換器5
に導入され、空気の出口側に四方弁2に接続される配管
が接続され、空気の入口側に絞り装置4に接続される配
管が接続され、かくして暖房運転時に図1中の点線矢印
方向に室内熱交換器5に導入される冷媒と図1中の一点
鎖線の矢印方向に室内熱交換器5に導入される空気が対
向流熱交換となり、絞り装置4から流入する冷媒の出口
パス数を入口パス数より多くなるように冷媒側の流路を
構成している。
FIG. 1 shows an air conditioner according to an embodiment of the present invention. In FIG. 1, 1 is a scroll compressor, 2
Is a four-way valve for switching between cooling operation and heating operation, 3 is an outdoor heat exchanger, 4 is a throttle device, and constitutes an outdoor unit A together with these and an outdoor fan (not shown). Reference numeral 5 denotes an indoor heat exchanger, which forms an indoor unit B from an indoor fan (not shown) and the like. As the refrigerant, a mixed refrigerant composed of a refrigerant containing no chlorine in the molecule is sealed. Here, the finned outdoor heat exchanger 3 having a plurality of rows is
Fins attached to a plurality of rows are cut off independently, and outdoor air is introduced into the outdoor heat exchanger 3 by an outdoor fan (not shown) in a direction indicated by a dashed line in FIG. The pipe connected to the four-way valve 2 is connected to the side, the pipe connected to the expansion device 4 is connected to the air inlet side,
Thus, during the cooling operation, the refrigerant introduced into the outdoor heat exchanger 3 in the direction of the solid line arrow in FIG. 1 and the air introduced into the outdoor heat exchanger 3 in the direction of the alternate long and short dash line in FIG. The refrigerant-side flow path is configured so that the number of outlet passes of the refrigerant flowing from the scroll compressor 1 is smaller than the number of inlet passes. Further, in the indoor heat exchanger 5 with fins having a plurality of rows, the fins provided for the plurality of rows are separated independently, and an indoor fan (not shown) shown in FIG.
The indoor air flows into the indoor heat exchanger 5 in the
The pipe connected to the four-way valve 2 is connected to the outlet side of the air, and the pipe connected to the expansion device 4 is connected to the inlet side of the air. Thus, during the heating operation, in the direction of the dotted arrow in FIG. The refrigerant introduced into the indoor heat exchanger 5 and the air introduced into the indoor heat exchanger 5 in the direction of an alternate long and short dash line in FIG. The refrigerant-side flow path is configured to be larger than the number of inlet paths.

【0017】上記構成による空気調和機の動作について
説明する。まず冷房運転時には、四方弁2を図1中実線
のように設定する。するとスクロール圧縮機1で圧縮さ
れて高温高圧となったガス冷媒は、四方弁2を経て室外
熱交換器3に導入される。ここで、ガス冷媒は、多い入
口パスに分岐された冷媒が少ない出口パスに合流されな
がら、室外の空気と対向流熱交換され、放熱して凝縮し
液冷媒となる。さらに、室外熱交換器3で凝縮して液状
態となった冷媒は、絞り装置4で減圧されて低温低圧の
二相状態となり、室内熱交換器5に導入される。室内熱
交換器5では、低温低圧の二相状態の冷媒は、少ない入
口パスから分岐された冷媒が多い出口パスに合流されな
がら、室内の空気と並行流熱交換され、吸熱して蒸発し
ガス冷媒となる。さらに、室内熱交換器5で蒸発してガ
ス状態となった冷媒は、四方弁2を経てスクロール圧縮
機1に導入される。
The operation of the air conditioner having the above configuration will be described. First, during the cooling operation, the four-way valve 2 is set as shown by the solid line in FIG. Then, the gas refrigerant which has been compressed by the scroll compressor 1 to have a high temperature and a high pressure is introduced into the outdoor heat exchanger 3 through the four-way valve 2. Here, the gas refrigerant is counter-flow heat-exchanged with outdoor air while the refrigerant branched into a large inlet path is joined to a small outlet path, and radiates heat to condense into a liquid refrigerant. Further, the refrigerant condensed in the outdoor heat exchanger 3 to be in a liquid state is decompressed by the expansion device 4 to be in a low-temperature and low-pressure two-phase state, and is introduced into the indoor heat exchanger 5. In the indoor heat exchanger 5, the low-temperature and low-pressure two-phase refrigerant is exchanged with the indoor air in parallel flow while being joined to the outlet path containing a large amount of refrigerant branched from the small number of inlet paths. It becomes a refrigerant. Further, the refrigerant evaporated into a gas state in the indoor heat exchanger 5 is introduced into the scroll compressor 1 through the four-way valve 2.

【0018】次に暖房運転時には、四方弁2を図1中点
線のように設定する。するとスクロール圧縮機1で圧縮
されて高温高圧となったガス冷媒は、四方弁2を経て室
内熱交換器5に導入される。ここで、ガス冷媒は、多い
入口パスに分岐された冷媒が少ない出口パスに合流され
ながら、室内の空気と対向流熱交換され、放熱して凝縮
し液冷媒となる。さらに、室内熱交換器5で凝縮して液
状態となった冷媒は、絞り装置4で減圧されて低温低圧
の二相状態となり、室外熱交換器3に導入される。室外
熱交換器3では、低温低圧の二相状態の冷媒は、少ない
入口パスから分岐された冷媒が多い出口パスに合流され
ながら、室外の空気と並行流熱交換され、吸熱して蒸発
し低温低圧のガス冷媒となる。さらに、室外熱交換器3
で蒸発して低温低圧のガス状態となった冷媒は、四方弁
2を経てスクロール圧縮機1に導入される。
Next, during the heating operation, the four-way valve 2 is set as shown by a dotted line in FIG. Then, the gas refrigerant which has been compressed by the scroll compressor 1 to have a high temperature and a high pressure is introduced into the indoor heat exchanger 5 through the four-way valve 2. Here, the gas refrigerant undergoes counter-current heat exchange with the indoor air while being joined to the outlet path where the refrigerant branched into the large inlet path and the small refrigerant is diverted, condenses and becomes a liquid refrigerant. Further, the refrigerant condensed in the indoor heat exchanger 5 to be in a liquid state is decompressed by the expansion device 4 to be in a low-temperature and low-pressure two-phase state, and is introduced into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, the low-temperature and low-pressure two-phase refrigerant is exchanged with the outdoor air in parallel flow while being joined to the outlet path where the refrigerant branched from the small inlet path is large. It becomes a low-pressure gas refrigerant. Furthermore, the outdoor heat exchanger 3
The refrigerant which has been evaporated to a low-temperature and low-pressure gas state through the four-way valve 2 is introduced into the scroll compressor 1.

【0019】ここで混合冷媒を用いる場合の動作状態
を、図2の温度−エントロピ線図を用いて説明する。冷
房運転時の動作状態は図2−(a)で示され、暖房運転
時の動作状態は図2−(b)で示される。冷暖房運転の
両方ともに、凝縮過程においては、圧力損失のために、
大きな温度勾配をもって温度低下する。蒸発過程におい
ては、理想的な温度勾配が大きい場合には圧力損失があ
っても温度上昇し、逆に理想的な温度勾配が小さい場合
には圧力損失のために温度低下するが、図2では前者の
例を示している。
The operation state when the mixed refrigerant is used will be described with reference to the temperature-entropy diagram of FIG. The operating state during the cooling operation is shown in FIG. 2- (a), and the operating state during the heating operation is shown in FIG. 2- (b). In both cooling and heating operations, during the condensation process, due to pressure loss,
The temperature drops with a large temperature gradient. In the evaporation process, when the ideal temperature gradient is large, the temperature rises even if there is a pressure loss, and conversely, when the ideal temperature gradient is small, the temperature decreases due to the pressure loss. The former example is shown.

【0020】冷房運転時の室外熱交換器3では、入口側
で多くのパス数に分岐されるため、入口側での圧力損失
が小さくなり、凝縮器の入口側での温度低下が抑えら
れ、凝縮器の入口から出口までの温度勾配は上に凸の形
となり、独立したフィンにおいて対向流熱交換される室
外熱交換器3では、冷媒の出口側で空気と冷媒の温度差
を最も小さくできる。ここで室外熱交換器3の出口側で
少ないパス数に合流させる理由は、出口側で圧力損失は
増大するものの、出口側で減少する冷媒側凝縮熱伝達率
を冷媒の流量を増大させて、凝縮器全域でできるだけ均
一に熱交換効率を向上させるためである。このため凝縮
圧力を大きく低下させることが可能となり、特にスクロ
ール圧縮機1をもった冷凍サイクル装置の運転効率の向
上に寄与する。
In the outdoor heat exchanger 3 during the cooling operation, the number of passes is branched at the inlet side, so that the pressure loss at the inlet side is reduced, and the temperature drop at the inlet side of the condenser is suppressed. The temperature gradient from the inlet to the outlet of the condenser has an upwardly convex shape, and in the outdoor heat exchanger 3 in which the counterflow heat is exchanged in the independent fins, the temperature difference between the air and the refrigerant at the refrigerant outlet side can be minimized. . Here, the reason for merging into a small number of passes on the outlet side of the outdoor heat exchanger 3 is that although the pressure loss increases on the outlet side, the refrigerant-side condensation heat transfer rate decreases on the outlet side and increases the flow rate of the refrigerant. This is to improve the heat exchange efficiency as uniformly as possible throughout the condenser. For this reason, the condensing pressure can be greatly reduced, and this contributes particularly to an improvement in the operation efficiency of the refrigeration cycle apparatus having the scroll compressor 1.

【0021】一方、冷房運転時の室内熱交換器5では、
入口側でパス数が少ないため、入口側での圧力損失が大
きくなり、蒸発器の入口側での温度上昇が抑えられ、蒸
発器の入口から出口までの温度勾配は上に凹の形とな
り、独立したフィンにおいて並行流熱交換される室内熱
交換器5では、冷媒の出口側で空気と冷媒の温度差が最
も小さくなる。ここで室内熱交換器5の出口側で多いパ
ス数に分岐させる理由は、出口側で圧力損失を減少させ
て、入口側で減少する冷媒側蒸発伝達率を冷媒の流量を
増大させて、蒸発器全域でできるだけ均一に熱交換効率
を向上させるためである。ここで対向流熱交換の場合に
比べ蒸発圧力は若干低下するため、運転効率にはマイナ
スの要因となる。
On the other hand, in the indoor heat exchanger 5 during the cooling operation,
Since the number of passes on the inlet side is small, the pressure loss on the inlet side increases, the temperature rise on the inlet side of the evaporator is suppressed, and the temperature gradient from the inlet to the outlet of the evaporator becomes concave upward, In the indoor heat exchanger 5 where parallel flow heat exchange is performed in the independent fins, the temperature difference between the air and the refrigerant at the outlet side of the refrigerant is the smallest. Here, the reason for branching into a large number of passes at the outlet side of the indoor heat exchanger 5 is to reduce the pressure loss at the outlet side and increase the refrigerant-side evaporation transmissibility at the inlet side to increase the flow rate of the refrigerant, thereby evaporating the refrigerant. This is to improve the heat exchange efficiency as uniformly as possible over the entire vessel. Here, since the evaporating pressure is slightly lower than in the case of the counter-flow heat exchange, the operation efficiency becomes a negative factor.

【0022】逆に暖房運転時の室内熱交換器5では、入
口側で多くのパス数に分岐されるため、入口側での圧力
損失が小さくなり、凝縮器の入口側での温度低下が抑え
られ、凝縮器の入口から出口までの温度勾配は上に凸の
形となり、独立したフィンにおいて対向流熱交換される
室内熱交換器5では、冷媒の出口側で空気と冷媒の温度
差を最も小さくできる。ここで室内熱交換器5の出口側
で少ないパス数に合流させる理由は、出口側で圧力損失
は増大するものの、出口側で減少する冷媒側凝縮熱伝達
率を冷媒の流量を増大させて、凝縮器全域でできるだけ
均一に熱交換効率を向上させるためである。このため凝
縮圧力を大きく低下させることが可能となり、特にスク
ロール圧縮機1をもった冷凍サイクル装置の運転効率の
向上に寄与する。
Conversely, in the indoor heat exchanger 5 during the heating operation, the number of passes is branched at the inlet side, so that the pressure loss at the inlet side is reduced and the temperature drop at the inlet side of the condenser is suppressed. The temperature gradient from the inlet to the outlet of the condenser has an upwardly convex shape, and in the indoor heat exchanger 5 in which counterflow heat exchange is performed in independent fins, the temperature difference between the air and the refrigerant at the refrigerant outlet side is minimized. Can be smaller. Here, the reason for merging with a small number of passes on the outlet side of the indoor heat exchanger 5 is that although the pressure loss increases on the outlet side, the refrigerant-side condensation heat transfer rate decreases on the outlet side and increases the flow rate of the refrigerant. This is to improve the heat exchange efficiency as uniformly as possible throughout the condenser. For this reason, the condensing pressure can be greatly reduced, and this contributes particularly to an improvement in the operation efficiency of the refrigeration cycle apparatus having the scroll compressor 1.

【0023】一方、暖房運転時の室外熱交換器3では、
入口側でパス数が少ないため、入口側での圧力損失が大
きくなり、蒸発器の入口側での温度上昇が抑えられ、蒸
発器の入口から出口までの温度勾配は上に凹の形とな
り、独立したフィンにおいて並行流熱交換される室外熱
交換器3では、冷媒の出口側で空気と冷媒の温度差が最
も小さくなる。ここで室外熱交換器3の出口側で多いパ
ス数に分岐させる理由は、出口側で圧力損失を減少させ
て、入口側で減少する冷媒側蒸発伝達率を冷媒の流量を
増大させて、蒸発器全域でできるだけ均一に熱交換効率
を向上させるためである。ここで対向流熱交換の場合に
比べ蒸発圧力は若干低下するため、運転効率にはマイナ
スの要因となる。
On the other hand, in the outdoor heat exchanger 3 during the heating operation,
Since the number of passes on the inlet side is small, the pressure loss on the inlet side increases, the temperature rise on the inlet side of the evaporator is suppressed, and the temperature gradient from the inlet to the outlet of the evaporator becomes concave upward, In the outdoor heat exchanger 3 in which the independent fins exchange heat in parallel, the temperature difference between the air and the refrigerant at the refrigerant outlet side is the smallest. Here, the reason for branching into a large number of passes on the outlet side of the outdoor heat exchanger 3 is that the pressure loss is reduced on the outlet side, the refrigerant-side evaporation transmissibility that decreases on the inlet side is increased, and the flow rate of the refrigerant is increased. This is to improve the heat exchange efficiency as uniformly as possible over the entire vessel. Here, since the evaporating pressure is slightly lower than in the case of the counter-flow heat exchange, the operation efficiency becomes a negative factor.

【0024】図2の例では、蒸発過程において理想的な
温度勾配が大きい場合を示したため、圧力損失があって
も温度上昇しており、暖房運転時の室外熱交換器3の入
口側が最も低温となる。逆に理想的な温度勾配が小さい
場合には、図示していないが、圧力損失のために温度低
下し、暖房運転時の室外熱交換器3の出口側が最も低温
となる。室外熱交換器3は、冷房運転時にスクロール圧
縮機1から流入する冷媒の出口パス数を入口パス数より
少なくなるように冷媒側の流路を構成したから、暖房運
転時には絞り装置4から流入する冷媒の入口パス数は少
なく、圧力損失の傾向からできるだけ均一の蒸発温度を
形成することが可能となり、暖房運転時の均一な着霜を
実現するという副次的な効果ももつものである。
In the example of FIG. 2, the case where the ideal temperature gradient is large in the evaporation process is shown, so that the temperature rises even if there is a pressure loss, and the inlet side of the outdoor heat exchanger 3 during the heating operation has the lowest temperature. Becomes Conversely, when the ideal temperature gradient is small, although not shown, the temperature drops due to pressure loss, and the outlet side of the outdoor heat exchanger 3 during the heating operation has the lowest temperature. Since the outdoor heat exchanger 3 is configured such that the number of outlet paths of the refrigerant flowing from the scroll compressor 1 during the cooling operation is smaller than the number of inlet paths, the outdoor heat exchanger 3 flows in from the expansion device 4 during the heating operation. Since the number of refrigerant inlet paths is small, it is possible to form as uniform an evaporation temperature as possible due to the tendency of pressure loss, and also has a secondary effect of realizing uniform frost formation during heating operation.

【0025】次に図3は、蒸発圧力を横軸、圧縮機入力
を縦軸、凝縮圧力をパラメータとして示したスクロール
圧縮機1の特性である。スクロール圧縮機1は、高圧シ
ェルタイプと低圧シェルタイプに関わらず、蒸発圧力に
はほとんど依存せず、凝縮圧力が低い程、圧縮機入力が
低減できるという特性をもつ。このため、冷凍サイクル
装置としては、凝縮圧力が大きく低下し、蒸発圧力も若
干低下するという運転特性は、スクロール圧縮機1の入
力を低減するのに効果的となり、運転効率の向上を実現
することが可能となるものである。
FIG. 3 shows the characteristics of the scroll compressor 1 in which the abscissa represents the evaporating pressure, the ordinate represents the compressor input, and the condensing pressure as a parameter. The scroll compressor 1 has a characteristic that it hardly depends on the evaporation pressure regardless of the high-pressure shell type and the low-pressure shell type, and the compressor input can be reduced as the condensation pressure is lower. For this reason, as the refrigeration cycle device, the operating characteristics that the condensing pressure is greatly reduced and the evaporating pressure is slightly reduced are effective in reducing the input of the scroll compressor 1, and the operating efficiency is improved. Is possible.

【0026】[0026]

【発明の効果】以上のように、本発明による冷凍サイク
ル装置では、凝縮器を対向流熱交換となし、圧縮機から
流入する冷媒の出口パス数を入口パス数より少なくなる
ように冷媒側の流路を構成し、混合冷媒を封入したか
ら、入口側での圧力損失が小さくなり、凝縮器の入口側
での温度低下が抑えられ、凝縮器の入口から出口までの
温度勾配は上に凸の形となり、対向流熱交換される凝縮
器では、冷媒の出口側で空気と冷媒の温度差を最も小さ
くできて、凝縮圧力を大きく低下でき、運転効率の向上
を実現することが可能となるものである。
As described above, in the refrigeration cycle apparatus according to the present invention, the condenser is provided with counter-flow heat exchange, and the number of outlet paths of the refrigerant flowing from the compressor is made smaller than the number of inlet paths. Since the flow path is formed and the mixed refrigerant is sealed, the pressure loss at the inlet side is reduced, the temperature drop at the inlet side of the condenser is suppressed, and the temperature gradient from the inlet to the outlet of the condenser is convex. In the condenser in which counterflow heat exchange is performed, the temperature difference between the air and the refrigerant at the refrigerant outlet side can be minimized, the condensing pressure can be greatly reduced, and the operation efficiency can be improved. Things.

【0027】また本発明による冷凍サイクル装置では、
複数の列数をもつ室外熱交換器または/および室内熱交
換器を凝縮器として動作させる場合に対向流熱交換とな
し、圧縮機から流入する冷媒の出口パス数を入口パス数
より少なくなるように冷媒側の流路を構成し、混合冷媒
を封入したから、冷房運転時には凝縮器となる室外熱交
換器、暖房運転時には凝縮器となる室内熱交換器で、対
向流熱交換によって凝縮圧力を大きく低下でき、冷暖房
運転の運転効率の向上を実現することが可能となるもの
である。
In the refrigeration cycle apparatus according to the present invention,
When the outdoor heat exchanger having a plurality of rows and / or the indoor heat exchanger is operated as a condenser, counterflow heat exchange is not performed, and the number of outlet passes of the refrigerant flowing from the compressor is smaller than the number of inlet passes. Since the refrigerant-side flow path is formed and the mixed refrigerant is sealed, the outdoor heat exchanger serving as a condenser during the cooling operation, and the indoor heat exchanger serving as the condenser during the heating operation. This can greatly reduce the temperature, and can improve the operation efficiency of the cooling and heating operation.

【0028】さらに本発明による冷凍サイクル装置で
は、複数の列数と列毎に独立したフィンをもつ室外熱交
換器を凝縮器として動作させる場合に対向流熱交換とな
し、圧縮機から流入する冷媒の出口パス数を入口パス数
より少なくなるように冷媒側の流路を構成し、混合冷媒
を封入したから、冷房運転時には対向流熱交換の効果を
高め、凝縮圧力を大きく低下させることが可能となり、
冷房運転時の運転効率の向上を実現し、暖房運転時に蒸
発器となる室外熱交換器においては、暖房運転時には絞
り装置から流入する冷媒の入口パス数は少なく、圧力損
失の傾向からできるだけ均一の蒸発温度を形成すること
が可能となり、暖房運転時の均一な着霜を実現するとい
う副次的な効果ももつものである。
Further, in the refrigeration cycle apparatus according to the present invention, when an outdoor heat exchanger having a plurality of rows and independent fins for each row is operated as a condenser, counterflow heat exchange is not performed, and refrigerant flowing from the compressor is used. The flow path on the refrigerant side is configured so that the number of outlet passes is smaller than the number of inlet passes, and the mixed refrigerant is sealed, so that during cooling operation, the effect of counterflow heat exchange can be enhanced and the condensing pressure can be greatly reduced. Becomes
In the outdoor heat exchanger that improves the operation efficiency during the cooling operation and becomes the evaporator during the heating operation, the number of inlet paths of the refrigerant flowing from the expansion device during the heating operation is small, and as much as possible due to the tendency of pressure loss, It is possible to form the evaporation temperature, and also has a secondary effect of realizing uniform frost during the heating operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による冷凍サイクル装置
の回路模式図。
FIG. 1 is a schematic circuit diagram of a refrigeration cycle device according to an embodiment of the present invention.

【図2】本発明の一実施の形態による冷凍サイクル装置
における温度−エントロピ線図。
FIG. 2 is a temperature-entropy diagram in the refrigeration cycle apparatus according to one embodiment of the present invention.

【図3】本発明の一実施の形態による冷凍サイクル装置
の構成要素であるスクロール圧縮機の入力特性の説図。
FIG. 3 is an explanatory diagram of input characteristics of a scroll compressor which is a component of the refrigeration cycle device according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:スクロール圧縮機 2:四方弁 3:室外熱交換器 4:絞り装置 5:室内熱交換器 A:室外機 B:室内機 1: scroll compressor 2: four-way valve 3: outdoor heat exchanger 4: throttle device 5: indoor heat exchanger A: outdoor unit B: indoor unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スクロール圧縮機と、複数の列数をもつ凝
縮器と、絞り装置と、蒸発器とを備え、前記凝縮器を対
向流熱交換となし、前記圧縮機から流入する冷媒の出口
パス数を入口パス数より少なくなるように冷媒側の流路
を構成し、混合冷媒を封入したことを特徴とする冷凍サ
イクル装置。
A scroll compressor, a condenser having a plurality of rows, a throttling device, and an evaporator, wherein the condenser performs counter-flow heat exchange, and an outlet for a refrigerant flowing from the compressor. A refrigeration cycle apparatus, wherein a refrigerant-side flow path is configured so that the number of passes is smaller than the number of inlet passes, and a mixed refrigerant is sealed.
【請求項2】スクロール圧縮機と、四方弁と、複数の列
数をもつ室外熱交換器と、絞り装置と、室内熱交換器と
を備え、前記室外熱交換器または/および室内熱交換器
を凝縮器として動作させる場合に対向流熱交換となし、
前記圧縮機から流入する冷媒の出口パス数を入口パス数
より少なくなるように冷媒側の流路を構成し、混合冷媒
を封入したことを特徴とする冷凍サイクル装置。
2. A scroll compressor, a four-way valve, an outdoor heat exchanger having a plurality of rows, a throttle device, and an indoor heat exchanger, wherein the outdoor heat exchanger and / or the indoor heat exchanger is provided. When operating as a condenser, there is no countercurrent heat exchange,
A refrigeration cycle apparatus wherein a refrigerant-side flow path is configured so that the number of outlet passes of the refrigerant flowing from the compressor is smaller than the number of inlet passes, and a mixed refrigerant is sealed.
【請求項3】スクロール圧縮機と、四方弁と、複数の列
数と列毎に独立したフィンをもつ室外熱交換器と、絞り
装置と、室内熱交換器とを備え、前記室外熱交換器を凝
縮器として動作させる場合に対向流熱交換となし、前記
圧縮機から流入する冷媒の出口パス数を入口パス数より
少なくなるように冷媒側の流路を構成し、混合冷媒を封
入したことを特徴とする冷凍サイクル装置。
3. An outdoor heat exchanger comprising a scroll compressor, a four-way valve, an outdoor heat exchanger having a plurality of rows and independent fins for each row, a throttle device, and an indoor heat exchanger. When operating as a condenser, counterflow heat exchange is performed, the refrigerant side flow path is configured so that the number of outlet paths of the refrigerant flowing from the compressor is smaller than the number of inlet paths, and the mixed refrigerant is sealed. A refrigeration cycle device characterized by the above-mentioned.
JP22577096A 1996-08-28 1996-08-28 Refrigeration cycle device Pending JPH1068560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22577096A JPH1068560A (en) 1996-08-28 1996-08-28 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22577096A JPH1068560A (en) 1996-08-28 1996-08-28 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPH1068560A true JPH1068560A (en) 1998-03-10

Family

ID=16834532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22577096A Pending JPH1068560A (en) 1996-08-28 1996-08-28 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPH1068560A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327707A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Air conditioner
JP2012052676A (en) * 2010-08-31 2012-03-15 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
CN106052206A (en) * 2016-05-25 2016-10-26 合肥华凌股份有限公司 Heat exchanger, refrigerating equipment and manufacturing method of heat exchanger
WO2019117213A1 (en) * 2017-12-12 2019-06-20 ダイキン工業株式会社 Refrigerant containing carbon dioxide and fluorinated hydrocarbon, use therefor, refrigerating machine provided with same, and operation method for said refrigerating machine
WO2020021700A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Refrigeration cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327707A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Air conditioner
JP2012052676A (en) * 2010-08-31 2012-03-15 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
CN106052206A (en) * 2016-05-25 2016-10-26 合肥华凌股份有限公司 Heat exchanger, refrigerating equipment and manufacturing method of heat exchanger
WO2019117213A1 (en) * 2017-12-12 2019-06-20 ダイキン工業株式会社 Refrigerant containing carbon dioxide and fluorinated hydrocarbon, use therefor, refrigerating machine provided with same, and operation method for said refrigerating machine
JP2019104814A (en) * 2017-12-12 2019-06-27 ダイキン工業株式会社 Coolant containing hydrocarbon fluoride and carbon dioxide, use thereof, refrigerating machine having the same, and operation method of refrigeration machine
WO2020021700A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Refrigeration cycle device
CN112424541A (en) * 2018-07-27 2021-02-26 三菱电机株式会社 Refrigeration cycle device
JPWO2020021700A1 (en) * 2018-07-27 2021-06-03 三菱電機株式会社 Refrigeration cycle equipment
EP3832227A4 (en) * 2018-07-27 2021-08-04 Mitsubishi Electric Corporation Refrigeration cycle device
US11371760B2 (en) 2018-07-27 2022-06-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
EP1031801A2 (en) Heat exchanger
US5660056A (en) Air conditioner
KR100381634B1 (en) Refrigerator
JP2000304380A (en) Heat exchanger
JP3650358B2 (en) Air conditioner
JPH1068560A (en) Refrigeration cycle device
JP3286038B2 (en) Air conditioner
JPH06194000A (en) Air conditioner
JP2000002494A (en) Plate type heat exchanger and refrigeration cycle system
JPH10232073A (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JPH11264629A (en) Cross fin coil type heat exchanger
JPH08178445A (en) Heat pump type air conditioner
JPH10196984A (en) Air conditioner
JPH0861799A (en) Air conditioner
JPH07103622A (en) Air-conditioner
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
JPH09318178A (en) Air conditioner
JPH07208822A (en) Heat pump type refrigerating cycle
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
WO2021245877A1 (en) Heat exchanger and refrigeration cycle device
JPH05157401A (en) Heat exchanger
JP2010084990A (en) Heat exchanger
JP2002022307A (en) Air conditioner
JPH10318618A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051227