JP2012052676A - Heat exchanger and air conditioner using the same - Google Patents

Heat exchanger and air conditioner using the same Download PDF

Info

Publication number
JP2012052676A
JP2012052676A JP2010193076A JP2010193076A JP2012052676A JP 2012052676 A JP2012052676 A JP 2012052676A JP 2010193076 A JP2010193076 A JP 2010193076A JP 2010193076 A JP2010193076 A JP 2010193076A JP 2012052676 A JP2012052676 A JP 2012052676A
Authority
JP
Japan
Prior art keywords
heat exchanger
plate
refrigerant
heat
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010193076A
Other languages
Japanese (ja)
Other versions
JP5608478B2 (en
Inventor
Ryoichi Takato
亮一 高藤
Shoji Takaku
昭二 高久
Yoshiaki Notoya
義明 能登谷
Yoshinori Iizuka
義典 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010193076A priority Critical patent/JP5608478B2/en
Publication of JP2012052676A publication Critical patent/JP2012052676A/en
Application granted granted Critical
Publication of JP5608478B2 publication Critical patent/JP5608478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger with high efficiency, in which condensation performance and evaporation performance of the heat exchanger are improved while suppressing an increase in draft resistance.SOLUTION: The heat exchanger includes a first heat exchanger and a second heat exchanger, each having a plurality of plate-like fins arranged in the direction of the plate thickness and heat conduction pipes in a plurality of stages penetrating the plate-like fins and disposed in a longitudinal direction of the plate-like fins. The heat exchanger exchanges heat between air and a refrigerant by circulating the refrigerant in the heat conduction pipes and supplying air in a perpendicular direction with respect to the plate thickness direction of the plate-like fins. The first heat exchanger is located in a windward side of the second heat exchanger. Each of the plate-like fins of the first heat exchanger and the second exchanger has a chevron shape in the longitudinal direction, formed such that the chevron shape formed in the plate-like fins of the first heat exchanger is lower than the chevron shape formed in the plate-like fins of the second heat exchanger. The pipe diameter of the heat conduction pipes in the first heat exchanger is smaller than the pipe diameter of the heat conduction pipes in the second heat exchanger.

Description

本発明は熱交換器及びそれを用いた空気調和装置に関する。   The present invention relates to a heat exchanger and an air conditioner using the heat exchanger.

従来の空気調和装置においては、熱交換器における熱交換効率を向上させるため、熱交換器を構成する伝熱管の風上の管径を風下の管径に対して細径化する(管径を小さくする)ことで、凝縮器として利用する場合の管内側熱伝達率を向上させている(例えば、特許文献1参照)。   In the conventional air conditioner, in order to improve the heat exchange efficiency in the heat exchanger, the windward diameter of the heat transfer tube constituting the heat exchanger is made smaller than the leeward pipe diameter (the pipe diameter is reduced). By reducing the size, the heat transfer coefficient inside the tube when used as a condenser is improved (for example, see Patent Document 1).

また、空気側熱伝達率の向上や伝熱面積の増大のため、熱交換器を構成する板状フィンに山形形状や切り起し等を形成するものがある。しかしながら、熱交換器を蒸発器として利用する場合、着霜により板状フィンにおける空気流路が閉塞し、熱交換器の性能が著しく低下する。このように、板状フィンに形成された山形形状や切り起し等により、山形形状や切り起し等を形成しない場合よりも通風抵抗が増加して、蒸発温度が低下し、熱交換器への着霜を促進してしまう。   Moreover, in order to improve the air-side heat transfer coefficient and increase the heat transfer area, some plate-like fins constituting the heat exchanger have a chevron shape or a cut-and-raised shape. However, when using a heat exchanger as an evaporator, the air flow path in a plate-shaped fin is obstruct | occluded by frost formation, and the performance of a heat exchanger falls remarkably. In this way, the chevron shape formed on the plate-like fins, the cut-and-raised portion, etc., increases the ventilation resistance compared to the case where the chevron-shaped shape and the raised portions are not formed, and the evaporation temperature decreases, leading to the heat exchanger. Will promote frosting.

このため、熱交換器を構成する板状フィンの各列に山部を形成するとともに、両端部の山部を中央の山部の高さよりも低く構成することで、山部による伝熱性能の向上効果を得つつ、且つ、着霜の要因である通風抵抗の増大を抑制している(例えば、特許文献2参照)。   For this reason, while forming a peak part in each row | line | column of the plate-shaped fin which comprises a heat exchanger, and making the peak part of both ends lower than the height of a center peak part, the heat-transfer performance by a peak part is improved. While obtaining the improvement effect, an increase in ventilation resistance that is a factor of frost formation is suppressed (for example, see Patent Document 2).

しかしながら、特許文献1,2に記載の熱交換器では、熱交換器を構成するフィン及び伝熱管双方を考慮した構成でないため、必ずしも熱交換器の性能が最大限に引き出されていない。   However, since the heat exchangers described in Patent Documents 1 and 2 are not configured in consideration of both the fins and the heat transfer tubes constituting the heat exchanger, the performance of the heat exchanger is not necessarily maximized.

特開平11−257800号公報JP-A-11-257800 特開2008−128569号公報Japanese Patent Laid-Open No. 2008-128569

本発明は、通風抵抗の増大を抑制しつつ、熱交換器の凝縮性能及び蒸発性能を向上させた高効率の熱交換器、及びこの熱交換器を用いた空気調和機を提供することを課題とする。   It is an object of the present invention to provide a highly efficient heat exchanger that improves the condensation performance and evaporation performance of a heat exchanger while suppressing an increase in ventilation resistance, and an air conditioner using this heat exchanger. And

本発明の熱交換器は、板厚方向に複数並べられた板状フィンと、板状フィンを貫通して板状フィンの長手方向に複数段設けられた伝熱管と、をそれぞれ有する第1熱交換器及び第2熱交換器を備え、伝熱管内部に冷媒を流動させ、板状フィンの板厚方向に対して垂直方向に送風することにより空気と冷媒とを熱交換させる熱交換器であって、第1熱交換器は第2熱交換器よりも風上側に位置し、第1熱交換器及び第2熱交換器の板状フィンはそれぞれ長手方向に山形形状を備え、第2熱交換器の板状フィンに形成された山形形状の高さよりも、第1熱交換器の板状フィンに形成された山形形状の高さが低く形成され、第2熱交換器の伝熱管の管径よりも、第1熱交換器の伝熱管の管径が小さく形成される。   The heat exchanger of the present invention includes a first fin having a plurality of plate-like fins arranged in the plate thickness direction and a plurality of heat transfer tubes that penetrate the plate-like fin and are provided in a plurality of stages in the longitudinal direction of the plate-like fin. The heat exchanger includes a exchanger and a second heat exchanger, and causes the refrigerant to flow inside the heat transfer tubes and blows air in a direction perpendicular to the plate thickness direction of the plate fins to exchange heat between the air and the refrigerant. The first heat exchanger is located on the windward side of the second heat exchanger, and the plate-like fins of the first heat exchanger and the second heat exchanger each have a chevron shape in the longitudinal direction, and the second heat exchange The height of the chevron formed on the plate-shaped fin of the first heat exchanger is lower than the height of the chevron formed on the plate-shaped fin of the heat exchanger, and the tube diameter of the heat transfer tube of the second heat exchanger Rather, the tube diameter of the heat transfer tube of the first heat exchanger is formed smaller.

本発明によれば、通風抵抗の増大を抑制しつつ、熱交換器の凝縮性能及び蒸発性能を向上させた高効率の熱交換器、及びこの熱交換器を用いた空気調和機を提供することができる。   According to the present invention, it is possible to provide a highly efficient heat exchanger that improves the condensation performance and evaporation performance of a heat exchanger while suppressing an increase in ventilation resistance, and an air conditioner using this heat exchanger. Can do.

空気調和装置を構成する各構成要素とそれらの接続関係を表す構成図。The block diagram showing each component which comprises an air conditioning apparatus, and those connection relations. 熱交換器の基本構成を示す斜視図。The perspective view which shows the basic composition of a heat exchanger. 熱交換器の板状フィンの形状を示す側面図。The side view which shows the shape of the plate-shaped fin of a heat exchanger. 熱交換器の板状フィンの形状を示す断面図。Sectional drawing which shows the shape of the plate-shaped fin of a heat exchanger. 熱交換器の冷媒経路を示す図。The figure which shows the refrigerant | coolant path | route of a heat exchanger. 冷凍サイクル全体の経路図、暖房運転時の室外熱交換器の冷媒経路部分における冷媒乾き度、局所交換熱量、及び冷媒側圧力の関係を示す図。The figure which shows the relationship of the refrigerant | coolant dryness in the refrigerant | coolant path | route part of the outdoor heat exchanger at the time of heating operation, the local exchange heat amount, and the refrigerant | coolant side pressure in the route figure of the whole refrigerating cycle. 冷凍サイクル全体の経路図、冷房運転時の室外熱交換器の冷媒経路部分における冷媒乾き度、及び局所交換熱量の関係を示す図。The figure which shows the relationship of the refrigerant | coolant dryness in the refrigerant | coolant path | route part of the whole refrigerating cycle, the refrigerant | coolant path | route part of the outdoor heat exchanger at the time of air_conditionaing | cooling operation, and local exchange amount of heat. 熱交換器の板状フィンの形状を示す側面図。The side view which shows the shape of the plate-shaped fin of a heat exchanger. 熱交換器の板状フィンの形状を示す断面図。Sectional drawing which shows the shape of the plate-shaped fin of a heat exchanger. 熱交換器の板状フィンの形状を示す側面図。The side view which shows the shape of the plate-shaped fin of a heat exchanger. 熱交換器の板状フィンの形状を示す断面図。Sectional drawing which shows the shape of the plate-shaped fin of a heat exchanger.

以下、本発明に係る第1の実施例について図面を用いて説明する。まず、本実施例の熱交換器の構成,機能及び動作について図1−7を用いて説明する。図1は本実施例における空気調和装置を構成する各構成要素とそれらの接続関係を表す構成図である。図2は図1に記載の熱交換器の基本構成を示す斜視図である。図3は図2に記載の熱交換器の板状フィンの形状を示す側面図である。図4は図2に記載の熱交換器の板状フィンの形状を示す断面図である。図5は図2に記載の熱交換器の冷媒経路の一例を示す図である。   A first embodiment according to the present invention will be described below with reference to the drawings. First, the configuration, function, and operation of the heat exchanger of the present embodiment will be described with reference to FIGS. 1-7. FIG. 1 is a configuration diagram showing each component constituting the air-conditioning apparatus according to the present embodiment and their connection relationship. FIG. 2 is a perspective view showing a basic configuration of the heat exchanger shown in FIG. FIG. 3 is a side view showing the shape of the plate-like fins of the heat exchanger shown in FIG. FIG. 4 is a cross-sectional view showing the shape of the plate-like fins of the heat exchanger shown in FIG. FIG. 5 is a diagram illustrating an example of a refrigerant path of the heat exchanger illustrated in FIG. 2.

空気調和装置は、図1に示すように、圧縮機1,流路切換手段(四方弁)2,室外熱交換器3,冷暖房用の絞り装置(流量制御弁)4、及び室内熱交換器5を冷媒配管を介して環状に接続して、冷房及び暖房が可能な冷凍サイクルを構成する。室外熱交換器3にはプロペラファン等の室外送風手段6が設けられ、室外熱交換器3に空気を流通させることで冷媒と熱交換する。また、室内熱交換器5には貫流ファン等の室内送風手段7が設けられ、室内熱交換器5に空気を流通させることで冷媒と熱交換する。   As shown in FIG. 1, the air conditioner includes a compressor 1, a flow path switching means (four-way valve) 2, an outdoor heat exchanger 3, a cooling / heating expansion device (flow control valve) 4, and an indoor heat exchanger 5. Are connected in an annular shape through a refrigerant pipe to constitute a refrigeration cycle capable of cooling and heating. The outdoor heat exchanger 3 is provided with an outdoor air blowing means 6 such as a propeller fan, and heat is exchanged with the refrigerant by circulating air through the outdoor heat exchanger 3. The indoor heat exchanger 5 is provided with indoor air blowing means 7 such as a cross-flow fan, and heat is exchanged with the refrigerant by circulating air through the indoor heat exchanger 5.

図2に示すように、室外熱交換器3及び室内熱交換器5は、板厚方向に一定間隔で平行に複数並べられた板状フィン8と、板状フィン8を貫通して板状フィン8の長手方向に複数段設けられた伝熱管9とを備え、これらを空気流れ方向100に複数列備える(図2においては、空気流れ方向100に対して2段とする。これらは一体として室外熱交換器3又は室内熱交換器5を構成するが、本実施例においては、便宜上、風上側を第1熱交換器A、風下側を第2熱交換器Bとする。)。このように構成された室外熱交換器3及び室内熱交換器5において、それぞれ、伝熱管9内部に冷媒を流動させ、板状フィン8の板厚方向に対して垂直方向に送風することにより空気と冷媒とを熱交換させる。ここで、本実施例においては、図2の上下方向(図3の上下方向)を板状フィン8の長手方向、図2の奥行き方向(図3の左右方向)を板状フィン8の幅方向、図2の左右方向(図3の紙面垂直方向)を板状フィン8の板厚方向とする。板状フィン8はアルミニウム合金製の薄板(例えば、厚さ0.1mm)であり、伝熱管9は銅管である。   As shown in FIG. 2, the outdoor heat exchanger 3 and the indoor heat exchanger 5 include a plurality of plate-like fins 8 arranged in parallel at regular intervals in the plate thickness direction, and plate-like fins that penetrate the plate-like fins 8. 8 and heat transfer tubes 9 provided in a plurality of stages in the longitudinal direction, and these are provided in a plurality of rows in the air flow direction 100 (in FIG. 2, two stages are provided for the air flow direction 100. Although the heat exchanger 3 or the indoor heat exchanger 5 is comprised, in a present Example, let the windward side be the 1st heat exchanger A and the leeward side be the 2nd heat exchanger B for convenience. In the outdoor heat exchanger 3 and the indoor heat exchanger 5 configured as described above, air flows by flowing a refrigerant in the heat transfer tube 9 and blowing air in a direction perpendicular to the plate thickness direction of the plate fins 8. Heat exchange with the refrigerant. Here, in this embodiment, the vertical direction in FIG. 2 (vertical direction in FIG. 3) is the longitudinal direction of the plate-like fin 8, and the depth direction in FIG. 2 (horizontal direction in FIG. 3) is the width direction of the plate-like fin 8. 2 is defined as the plate thickness direction of the plate-like fin 8. The plate-like fins 8 are aluminum alloy thin plates (for example, a thickness of 0.1 mm), and the heat transfer tubes 9 are copper tubes.

図3に示すように、室外熱交換器3の板状フィン8は、幅方向に所定の列ピッチS2(例えばS2=17mm)で伝熱管9の貫通孔が2列設けられている。貫通孔の中心は板状フィン8の左右端面から等距離に位置する。また、板状フィン8の長手方向には、所定の段ピッチS1又はS1′(例えばS1=S1′=20mm)で伝熱管9の貫通孔が複数段設けられる。隣り合う列の貫通孔は互いに千鳥配列となるように配置される。空気流れ方向100下流側である第2熱交換器Bの伝熱管9の貫通孔の直径D1よりも、空気流れ方向100上流側である第1熱交換器の伝熱管9の貫通孔の直径D2を小径に設定する(例えばD1=8mm、D2=7mm)。第2熱交換器Bの径D1よりも第1熱交換器の径D2を小径に設定する理由については後述する。   As shown in FIG. 3, the plate-like fins 8 of the outdoor heat exchanger 3 are provided with two rows of through holes of the heat transfer tubes 9 at a predetermined row pitch S2 (for example, S2 = 17 mm) in the width direction. The center of the through hole is located at an equal distance from the left and right end surfaces of the plate-like fin 8. In the longitudinal direction of the plate-like fin 8, a plurality of through holes of the heat transfer tube 9 are provided at a predetermined step pitch S1 or S1 ′ (for example, S1 = S1 ′ = 20 mm). The through holes in adjacent rows are arranged in a staggered arrangement with each other. The diameter D2 of the through hole of the heat transfer tube 9 of the first heat exchanger that is upstream of the air flow direction 100 is larger than the diameter D1 of the through hole of the heat transfer tube 9 of the second heat exchanger B that is downstream of the air flow direction 100. Is set to a small diameter (for example, D1 = 8 mm, D2 = 7 mm). The reason why the diameter D2 of the first heat exchanger is set smaller than the diameter D1 of the second heat exchanger B will be described later.

図4は、図3のX−X断面を示している。板状フィン8には、各列に対し、列方向(長手方向)に山形形状(本実施形態では10A〜10D及び11A〜11Dの各列4つの山形形状)が形成される。   FIG. 4 shows an XX cross section of FIG. The plate-like fin 8 is formed with a chevron shape (in this embodiment, four chevron shapes in each row of 10A to 10D and 11A to 11D) in the row direction (longitudinal direction) for each row.

空気流れ方向上流側列である第1熱交換器Aの山形形状10A〜10Dの高さh10は、下流側列である第2熱交換器Bの山形形状11A〜11Dの高さh11より低く形成する(たとえば、h10=0.5mm、h11=0.8mm)。第1熱交換器Aの山形形状の高さh10を第2熱交換器Bの山形形状の高さh11より低く形成する理由については後述する。 The height h 10 of the chevron shape 10A~10D of the first heat exchanger A is the upstream side in the air flow direction column, than the height h 11 of the chevron shape 11A~11D of the second heat exchanger B is a downstream column It is formed low (for example, h10 = 0.5 mm, h11 = 0.8 mm). The reason why the chevron-shaped height h 10 of the first heat exchanger A is formed lower than the chevron-shaped height h 11 of the second heat exchanger B will be described later.

図5は熱交換器の冷媒経路の構成を示す図である。冷媒経路は、上部より12A〜12Dまでの4経路と、13A,13Bの2経路で構成される。上部の4経路は風上列で1つの経路から4つに分岐する。最上部の2経路12A,12Bは風下列で合流して下部経路13Aに接続する。中部の2経路12C,12Dは風下列で合流して下部経路13Bに接続する。下部経路13Aと13Bは風下列で1経路に合流する。図5に示すように、熱交換器が蒸発器として機能するときは、伝熱管のパス数が冷媒の流れ方向下流側ほど増大し、熱交換器が凝縮器として機能するときは、伝熱管のパス数が冷媒の流れ方向下流側ほど減少する。また、熱交換器が凝縮器として機能するときの熱交換器における冷媒の全ての入口部(熱交換器が蒸発器として機能するときの熱交換器における冷媒の出口部)が、風下側列の熱交換器(第2熱交換器B)に位置する。   FIG. 5 is a diagram showing the configuration of the refrigerant path of the heat exchanger. The refrigerant path is composed of four paths from the top to 12A to 12D and two paths of 13A and 13B. The upper four paths branch from one path to four in the windward line. The uppermost two paths 12A and 12B join in a leeward row and connect to the lower path 13A. The middle two paths 12C and 12D join in a leeward row and connect to the lower path 13B. Lower paths 13A and 13B merge into one path in a leeward row. As shown in FIG. 5, when the heat exchanger functions as an evaporator, the number of passes of the heat transfer tube increases toward the downstream side in the flow direction of the refrigerant, and when the heat exchanger functions as a condenser, The number of passes decreases toward the downstream in the refrigerant flow direction. Moreover, all the inlet parts of the refrigerant in the heat exchanger when the heat exchanger functions as a condenser (the outlet part of the refrigerant in the heat exchanger when the heat exchanger functions as an evaporator) Located in the heat exchanger (second heat exchanger B).

次に、本実施例における空気調和装置の冷凍サイクルの動作について説明する。図1において、暖房運転時は流路切換手段(四方弁)2を冷媒が実線方向に流れるように切換える。このとき、冷媒は、図1の実線矢印方向(図1の時計廻り方向)に進み、圧縮機1,流路切換手段(四方弁)2,室内熱交換器5,流量制御弁4,室外熱交換器3の順に流れる。流量制御弁4は空調負荷に応じた適度な開度に調整され、凝縮器として機能する室内熱交換器5で凝縮して液化した冷媒は流量制御弁4で気液二相流となって、室外熱交換器3へ流入する。その後、冷媒は、蒸発器として機能する室外熱交換器3で蒸発した後、圧縮機1へ戻る。   Next, operation | movement of the refrigerating cycle of the air conditioning apparatus in a present Example is demonstrated. In FIG. 1, during heating operation, the flow path switching means (four-way valve) 2 is switched so that the refrigerant flows in the direction of the solid line. At this time, the refrigerant proceeds in the direction of the solid arrow in FIG. 1 (clockwise direction in FIG. 1), and compressor 1, flow path switching means (four-way valve) 2, indoor heat exchanger 5, flow control valve 4, outdoor heat. It flows in the order of the exchanger 3. The flow control valve 4 is adjusted to an appropriate opening according to the air conditioning load, and the refrigerant condensed and liquefied by the indoor heat exchanger 5 functioning as a condenser becomes a gas-liquid two-phase flow at the flow control valve 4, It flows into the outdoor heat exchanger 3. Thereafter, the refrigerant evaporates in the outdoor heat exchanger 3 that functions as an evaporator, and then returns to the compressor 1.

このような空気調和機の冷凍サイクルにおいて、室外熱交換器3での現象について説明する。室外熱交換器3には図1に示す室外送風手段6により、空気が送風される。具体的には、図3に示すように、空気流れ方向100の向きに、熱交換器へ空気が流入し、第1熱交換器Aから第2熱交換器を通過するように空気が送風され、伝熱管内部を流れる冷媒と空気が熱交換する。   In such a refrigeration cycle of an air conditioner, a phenomenon in the outdoor heat exchanger 3 will be described. Air is blown to the outdoor heat exchanger 3 by the outdoor blowing means 6 shown in FIG. Specifically, as shown in FIG. 3, air flows into the heat exchanger in the direction of the air flow direction 100, and the air is blown from the first heat exchanger A so as to pass through the second heat exchanger. The refrigerant and air flowing through the heat transfer tube exchange heat.

ここで、第1熱交換器A及び第2熱交換器Bのそれぞれの板状フィン8には複数の山形形状が形成され、これら山形形状により空気の流れが乱され伝熱が促進される。しかしながら、山形形状が高いほど局所熱伝達率は高くなり伝熱性能は向上するが、通風抵抗が増大して室外送風手段6の動力が増大する。また、同じ段ピッチにおいて、伝熱管の径が小径であるほど通風抵抗が低減して空気側の伝熱面積が増加するが、伝熱管内の伝熱面積は減少する。このように、板状フィン8に形成される山形形状の高さ及び板状フィンを貫通する伝熱管の径の大きさには、一般的に伝熱性能と通風抵抗の間で二律背反の関係が存在する。   Here, a plurality of chevron shapes are formed on each plate-like fin 8 of the first heat exchanger A and the second heat exchanger B, and the air flow is disturbed by these chevron shapes to promote heat transfer. However, the higher the chevron shape, the higher the local heat transfer coefficient and the better the heat transfer performance, but the ventilation resistance increases and the power of the outdoor air blowing means 6 increases. Further, at the same step pitch, the smaller the diameter of the heat transfer tube, the lower the ventilation resistance and the air side heat transfer area, but the heat transfer area in the heat transfer tube decreases. Thus, the height of the chevron formed in the plate-like fin 8 and the size of the diameter of the heat transfer tube passing through the plate-like fin generally have a trade-off relationship between heat transfer performance and ventilation resistance. Exists.

ここで、室外熱交換器3においては、風上列(第1熱交換器A)は空気と冷媒の温度差を確保しやすいので、比較的熱伝達率が高く、空気側の熱伝達率の向上より通風抵抗の低減を優先させる方が有利である。一方、風下列(第2熱交換器B)は、風上列に比べ、風上列で熱交換した空気が流入するため、空気と冷媒の温度差を確保しにくいので、空気側の熱伝達率を優先させる方が有利である。そこで、本実施例においては、風下列(第1熱交換器A)では、空気側熱伝達率向上を優先して山形形状高さを高く、且つ、伝熱管径を大きくし、風上列(第2熱交換器B)では、通風抵抗低減を優先して風下列に対して山形形状高さを低くし、且つ、伝熱管径を小さくする。   Here, in the outdoor heat exchanger 3, the windward row (first heat exchanger A) is easy to ensure the temperature difference between the air and the refrigerant, so that the heat transfer rate is relatively high and the heat transfer rate on the air side is high. It is advantageous to give priority to the reduction of draft resistance over improvement. On the other hand, in the leeward row (second heat exchanger B), air exchanged in the windward row flows in compared to the windward row, so it is difficult to secure a temperature difference between the air and the refrigerant. It is advantageous to prioritize rates. Therefore, in this embodiment, in the leeward row (first heat exchanger A), priority is given to improving the air-side heat transfer coefficient, the height of the mountain shape is increased, the diameter of the heat transfer tube is increased, and the windward row is increased. In the (second heat exchanger B), the reduction in ventilation resistance is prioritized, and the height of the chevron is reduced with respect to the leeward row, and the heat transfer tube diameter is reduced.

ここまでは、熱交換器における空気側での現象について説明したが、冷媒側の現象について以下に説明する。図6は、図1の室外熱交換器3について、冷凍サイクル全体の経路図、室外熱交換器3の冷媒経路部分における冷媒乾き度χ分布,局所交換熱量q分布、及び冷媒側圧力分布Peの関係を示す。冷媒の経路は一例として図5に記載の冷媒経路構成とした。乾き度χは、冷媒ガス質量流量を冷媒全質量流量で除した値であり、乾き度χ≡冷媒ガス質量流量/冷媒全質量流量である(χ=1:完全冷媒ガス、χ=0:完全冷媒液)。また、局所交換熱量qは、熱交換器の一定部分(例えば冷媒配管1段分)で空気と冷媒が熱交換したときの交換熱量である。   So far, the phenomenon on the air side in the heat exchanger has been described, but the phenomenon on the refrigerant side will be described below. FIG. 6 is a route diagram of the entire refrigeration cycle, refrigerant dryness χ distribution, local exchange heat quantity q distribution, and refrigerant side pressure distribution Pe in the refrigerant path portion of the outdoor heat exchanger 3 for the outdoor heat exchanger 3 of FIG. Show the relationship. The refrigerant path has the refrigerant path configuration shown in FIG. 5 as an example. The dryness χ is a value obtained by dividing the refrigerant gas mass flow rate by the refrigerant total mass flow rate, and is dryness χ≡refrigerant gas mass flow rate / refrigerant total mass flow rate (χ = 1: complete refrigerant gas, χ = 0: complete Refrigerant liquid). The local exchange heat quantity q is the exchange heat quantity when air and the refrigerant exchange heat in a certain part of the heat exchanger (for example, one stage of refrigerant piping).

図6において、実線は、風下列(第2熱交換器B)の山形形状の高さを高く、且つ、伝熱管径を大きくし、風下列に対して風上列(第1熱交換器A)の山形形状の高さを低く、且つ、伝熱管径を小さくした場合である。破線は、フィンの高さが一様(一様に低い)であり、且つ、伝熱管径が一様の場合である。冷媒は実線矢印の方向へ流れる。冷媒経路部分における乾き度χは、グラフ右から左へと変化している。   In FIG. 6, the solid line indicates that the height of the mountain shape of the leeward row (second heat exchanger B) is high and the heat transfer tube diameter is increased, and the leeward row (first heat exchanger) This is a case where the height of the mountain shape of A) is low and the diameter of the heat transfer tube is small. A broken line is a case where the fin height is uniform (uniformly low) and the heat transfer tube diameter is uniform. The refrigerant flows in the direction of the solid arrow. The dryness χ in the refrigerant path portion changes from the right side to the left side of the graph.

本実施例のような冷媒経路では、室外熱交換器3が蒸発器として機能するときは、各冷媒経路で冷媒の流れは空気と平行流となり、風上から風下へ向かって冷媒側の温度が低下するため、空気と冷媒の温度差を最大限確保することができる。   In the refrigerant path as in this embodiment, when the outdoor heat exchanger 3 functions as an evaporator, the refrigerant flow in each refrigerant path is parallel to the air, and the temperature on the refrigerant side increases from the windward to the leeward. Therefore, the temperature difference between the air and the refrigerant can be ensured to the maximum.

流量制御弁4を通過した冷媒は、気液二相状態で室外熱交換器3へ流入する。このとき、熱交換器入口では低い乾き度であり、空気と熱交換するにしたがって乾き度が高くなる。4分岐した冷媒経路12A〜12Dの出口では、冷媒は乾き度χ=1で完全にガスとなる。   The refrigerant that has passed through the flow control valve 4 flows into the outdoor heat exchanger 3 in a gas-liquid two-phase state. At this time, the dryness is low at the heat exchanger inlet, and the dryness increases as heat is exchanged with air. At the outlets of the four-branched refrigerant paths 12A to 12D, the refrigerant is completely gas with a dryness χ = 1.

一方、実線,破線とも、入口の冷媒経路13A,13Bの風上側で局所交換熱量qが最も大きい。これは、空気側で冷媒と空気の温度差が大きいことと、冷媒側では下流側の4経路に対して入口の冷媒経路13A,13Bの風上側では2経路となり、さらに風下列に対して伝熱管径が細径で断面積が少ないため、下流側に対して冷媒流速が2倍以上となり、冷媒の熱伝達率が高くなるためである。   On the other hand, the local exchange heat quantity q is the largest on the windward side of the inlet refrigerant paths 13A and 13B, both in the solid line and the broken line. This is because the temperature difference between the refrigerant and air is large on the air side, and on the refrigerant side, there are two paths on the upstream side of the refrigerant paths 13A and 13B on the inlet side with respect to the four paths on the downstream side. This is because the heat pipe diameter is small and the cross-sectional area is small, so that the refrigerant flow rate is twice or more that of the downstream side, and the heat transfer coefficient of the refrigerant is increased.

冷媒経路13A,13Bの出口では、実線,破線ともに、風下列で空気と冷媒の温度差が取れなくなるため、交換熱量が低下する。しかし、破線に対して、実線の交換熱量低下は少ない。これは、実線では、風下列の空気側熱伝達率が高いため、少ない空気と冷媒の温度差でも効率よく熱交換するためである。同様に、12A〜12Dの4経路においても、冷媒がガス化するにしたがって交換熱量は低下する。しかし、実線では風下列の空気側熱伝達率が高く熱交換の効率が高いため、交換熱量の低下が少ない。   At the outlets of the refrigerant paths 13A and 13B, since the temperature difference between the air and the refrigerant cannot be obtained in the leeward line in both the solid line and the broken line, the exchange heat amount is reduced. However, the decrease in the exchange heat amount of the solid line is small compared to the broken line. This is because, in the solid line, the air side heat transfer coefficient of the leeward row is high, so that heat is efficiently exchanged even with a small temperature difference between the air and the refrigerant. Similarly, in the four paths 12A to 12D, the amount of exchange heat decreases as the refrigerant gasifies. However, in the solid line, since the air side heat transfer coefficient of the leeward row is high and the efficiency of heat exchange is high, there is little decrease in the amount of exchange heat.

また、冷媒圧力分布は、実線,破線ともに、13A,13Bの2経路に比べ4経路の12A〜12Dで圧力の低下が緩やかになり、単相域よりも二相域で圧力損失が増大しているものの、経路増加により1経路あたりの流量が減少して圧力損失が低下する。さらに、実線では2経路の風下列側及び4経路の風下列側で伝熱管径が大きくなり、圧力損失が大きい二相域において、経路断面積が増加することで圧力損失を低減でき、圧力の低下が緩やかになる。この際、経路断面積増加による冷媒流速低下での冷媒側熱伝達率の低下は、板状フィン側8の空気側熱伝達率が高いため、相殺される。このように、蒸発中の冷媒の圧力損失による圧力低下が緩和されることで、同じ交換熱量で蒸発圧力が上昇し、凝縮側との圧力比を減らすことができるため圧縮動力が減少する。   In addition, the refrigerant pressure distribution is such that both the solid line and the broken line, the pressure drops more slowly in 12A to 12D of the four paths than in the two paths of 13A and 13B, and the pressure loss increases in the two-phase area than in the single-phase area. However, the flow loss per path decreases due to the increase of the path, and the pressure loss decreases. Further, in the solid line, the heat transfer tube diameter increases on the leeward side of the two paths and the leeward side of the four paths, and the pressure loss can be reduced by increasing the path cross-sectional area in the two-phase region where the pressure loss is large. The decline of the At this time, the decrease in the refrigerant-side heat transfer coefficient due to the decrease in the refrigerant flow velocity due to the increase in the path cross-sectional area is offset because the air-side heat transfer coefficient on the plate-like fin side 8 is high. In this way, by reducing the pressure drop due to the pressure loss of the refrigerant being evaporated, the evaporation pressure rises with the same amount of exchange heat, and the pressure ratio with the condensation side can be reduced, so the compression power decreases.

さらに、空気側で着霜が生じる条件においても、風下列に対して風上列の通風抵抗が少なく、着霜は風下列から開始する。このため、風上列から着霜が開始する場合に比べ、板状フィン8間の流路閉塞までの時間が長くなり、着霜条件においても運転時間を長くでき、高効率で快適な空調を実現できる。   Further, even under conditions where frost formation occurs on the air side, the ventilation resistance of the upwind row is less than that of the downwind row, and frosting starts from the downwind row. For this reason, compared with the case where frosting starts from the windward row, the time until the flow path blockage between the plate fins 8 becomes longer, the operation time can be extended even under frosting conditions, and highly efficient and comfortable air conditioning. realizable.

次に、図1の空気調和装置において、冷房運転時、流路切換手段(四方弁)2を冷媒が図1の破線矢印方向に流れるように切換える。このとき、冷媒は、図1の破線矢印方向(図1の反時計廻り方向)に、圧縮機1,流路切換手段(四方弁)2,凝縮器として機能する室外熱交換器3,流量制御弁4,蒸発器として機能する室内熱交換器5の順に流れる。流量制御弁4は空調負荷に応じた適度な開度に調整され、室外熱交換器3で凝縮して液化した冷媒は、流量制御弁4で減圧膨張して蒸発器の室内熱交換器5で蒸発して、圧縮機1へ戻る。   Next, in the air conditioning apparatus of FIG. 1, during the cooling operation, the flow path switching means (four-way valve) 2 is switched so that the refrigerant flows in the direction of the broken line arrow in FIG. 1. At this time, the refrigerant is in the direction of the broken line arrow in FIG. 1 (counterclockwise direction in FIG. 1), compressor 1, flow path switching means (four-way valve) 2, outdoor heat exchanger 3 functioning as a condenser, and flow control. It flows in the order of the valve 4 and the indoor heat exchanger 5 that functions as an evaporator. The flow rate control valve 4 is adjusted to an appropriate opening degree corresponding to the air conditioning load, and the refrigerant condensed and liquefied by the outdoor heat exchanger 3 is decompressed and expanded by the flow rate control valve 4 and is then transferred to the indoor heat exchanger 5 of the evaporator. It evaporates and returns to the compressor 1.

このような空気調和機の冷凍サイクルにおいて、室外熱交換器3での現象について説明する。室外熱交換器3には図1に示す室外送風手段6により、空気が送風される。図3においては、空気流れ方向100の向きに熱交換器へ流入する。具体的には、図3に示すように、空気流れ方向100の向きに、熱交換器へ空気が流入し、第1熱交換器Aから第2熱交換器を通過するように空気が送風されることにより、伝熱管内部を流れる冷媒と空気が熱交換する。ここで、板状フィン8における空気側のみの現象については暖房運転時と同様のため説明を省略し、冷媒側を含めた現象について以下に説明する。   In such a refrigeration cycle of an air conditioner, a phenomenon in the outdoor heat exchanger 3 will be described. Air is blown to the outdoor heat exchanger 3 by the outdoor blowing means 6 shown in FIG. In FIG. 3, the air flows into the heat exchanger in the direction of the air flow direction 100. Specifically, as shown in FIG. 3, air flows into the heat exchanger in the direction of the air flow direction 100, and the air is blown from the first heat exchanger A so as to pass through the second heat exchanger. As a result, the refrigerant and air flowing inside the heat transfer tubes exchange heat. Here, since the phenomenon only on the air side in the plate-like fins 8 is the same as that in the heating operation, the description thereof will be omitted, and the phenomenon including the refrigerant side will be described below.

図7に、図1の室外熱交換器3について、冷凍サイクル全体の経路図、室外熱交換器3の冷媒経路部分における冷媒乾き度χ分布、及び局所交換熱量q分布の関係を示す。冷媒の経路は一例として図5に記載の冷媒経路構成とした。   FIG. 7 shows the relationship between the route diagram of the entire refrigeration cycle, the refrigerant dryness χ distribution in the refrigerant path portion of the outdoor heat exchanger 3, and the local exchange heat quantity q distribution for the outdoor heat exchanger 3 in FIG. The refrigerant path has the refrigerant path configuration shown in FIG. 5 as an example.

図7において、実線は、風下列(第2熱交換器B)の山形形状高さを高く、且つ、伝熱管径を大きくし、風下列に対して風上列(第1熱交換器A)の山形形状高さを低く、且つ、伝熱管径を小さくした場合である。破線は、フィンの高さが一様(一様に低い)であり、伝熱管径が一様の場合である。冷媒は破線矢印の方向へ流れる。冷媒経路部分における乾き度χは、グラフ左から右へと変化している。   In FIG. 7, the solid line indicates that the height of the mountain shape of the leeward row (second heat exchanger B) is high and the heat transfer tube diameter is increased, and the leeward row (first heat exchanger A) ) In the case where the height of the chevron shape is low and the diameter of the heat transfer tube is small. A broken line is a case where the fin height is uniform (uniformly low) and the heat transfer tube diameter is uniform. The refrigerant flows in the direction of the dashed arrow. The dryness χ in the refrigerant path portion changes from the left to the right of the graph.

本実施例のような冷媒経路では、室外熱交換器3が凝縮として機能するときは、各冷媒経路で冷媒の流れは空気と対向流であり、風上から風下へ向かって冷媒側の温度が低下するため、空気と冷媒の温度差を最大限確保することができる。   In the refrigerant path as in this embodiment, when the outdoor heat exchanger 3 functions as condensing, the refrigerant flow in each refrigerant path is opposite to air, and the temperature on the refrigerant side increases from the windward to the leeward. Therefore, the temperature difference between the air and the refrigerant can be ensured to the maximum.

流路切換手段(四方弁)2を通過した冷媒は、高温高圧のガス冷媒として室外熱交換器3へ流入する。このとき、熱交換器入口では乾き度χ=1の完全ガスであり、空気と熱交換するにしたがって乾き度が低くなる。2分岐した冷媒経路13A,13B入口付近から出口まで冷媒は乾き度χ=0で完全に液となる。このように、ガス域〜二相域を4分岐に対し、液域を2分岐に減少させている。これは、二相域に比べ液域では冷媒側熱伝達率が低く、流路断面積を減少させて流速を上げることで冷媒側熱伝達率を向上させるためである。   The refrigerant that has passed through the flow path switching means (four-way valve) 2 flows into the outdoor heat exchanger 3 as a high-temperature and high-pressure gas refrigerant. At this time, the gas at the inlet of the heat exchanger is a complete gas with a dryness χ = 1, and the dryness decreases as heat is exchanged with air. From the vicinity of the inlets of the two branched refrigerant paths 13A and 13B to the outlet, the refrigerant is completely liquid at a dryness χ = 0. Thus, the gas region to the two-phase region are reduced to four branches, and the liquid region is reduced to two branches. This is because the refrigerant-side heat transfer coefficient is lower in the liquid region than in the two-phase region, and the refrigerant-side heat transfer coefficient is improved by increasing the flow velocity by reducing the flow path cross-sectional area.

一方、局所交換熱量q分布について、熱交換器入口では、冷媒経路が4経路で冷媒流速が遅く、乾き度が高いため交換熱量が低くなる。しかし、破線に対して、実線の交換熱量の低下は少ない。これは、実線では、風下列の空気側熱伝達率が高く、少ない空気と冷媒の温度差でも効率よく熱交換するためである。このとき、冷媒経路入口でのガス分(乾き度χ=1)が破線に比べ早く二相(乾き度χ<1)に変化し、冷媒側熱伝達率の高い二相の領域が拡大する。続く13A,13Bの2経路においては、冷媒は液化し、交換熱量は低下する。しかし、実線では風下列の空気側熱伝達率が高く、熱交換の効率が高く、さらに、風上列の伝熱管径が細径のため液で流れる冷媒の流速が増加し、交換熱量の低下が少ない。   On the other hand, regarding the local exchange heat quantity q distribution, at the inlet of the heat exchanger, there are four refrigerant paths, the refrigerant flow rate is slow, and the dryness is high, so the exchange heat quantity is low. However, the decrease in the exchange heat amount of the solid line is small compared to the broken line. This is because, in the solid line, the air-side heat transfer coefficient of the leeward row is high, and heat is efficiently exchanged even with a small temperature difference between the air and the refrigerant. At this time, the gas content (dryness χ = 1) at the refrigerant path inlet changes to two phases (dryness χ <1) earlier than the broken line, and the two-phase region having a high refrigerant side heat transfer coefficient is expanded. In the subsequent two paths 13A and 13B, the refrigerant liquefies and the amount of exchange heat decreases. However, in the solid line, the air side heat transfer coefficient of the leeward row is high, the heat exchange efficiency is high, and the flow rate of the refrigerant flowing in the liquid increases because the heat transfer tube diameter of the windward row is small, and the exchange heat quantity There is little decrease.

本実施例ではフィンの高さが一様に低く、伝熱管径が一様の場合と比較したが、フィンの高さを一様に高くし、空気側の熱伝達率を最優先させた場合、交換熱量は増加するが、同じ風量を出すために、ファン動力が増大してしまい全体の効率が低下する。   In this example, the height of the fins was uniformly low and compared with the case where the heat transfer tube diameter was uniform, but the height of the fins was uniformly increased and the heat transfer coefficient on the air side was given the highest priority. In this case, the exchange heat amount increases, but since the same air amount is produced, the fan power increases and the overall efficiency decreases.

上述したように、本実施例の熱交換器は、板厚方向に複数並べられた板状フィンと、板状フィンを貫通して板状フィンの長手方向に複数段設けられた伝熱管と、をそれぞれ有する第1熱交換器及び第2熱交換器を備え、伝熱管内部に冷媒を流動させ、板状フィンの板厚方向に対して垂直方向に送風することにより空気と冷媒とを熱交換させる熱交換器であって、第1熱交換器は第2熱交換器よりも風上側に位置し、第1熱交換器及び第2熱交換器の板状フィンはそれぞれ長手方向に山形形状を備え、第2熱交換器の板状フィンに形成された山形形状の高さよりも、第1熱交換器の板状フィンに形成された山形形状の高さが低く形成され、第2熱交換器の伝熱管の管径よりも、第1熱交換器の伝熱管の管径が小さく形成される。従って、通風抵抗の増大を抑制しつつ、熱交換器の凝縮性能及び蒸発性能を向上させた高効率の熱交換器を提供することができる。   As described above, the heat exchanger of the present embodiment includes a plurality of plate-like fins arranged in the plate thickness direction, a heat transfer tube provided in a plurality of stages in the longitudinal direction of the plate-like fins through the plate-like fins, and The first heat exchanger and the second heat exchanger each having a flow rate are provided, the refrigerant flows inside the heat transfer tube, and the air and the refrigerant are heat-exchanged by blowing in a direction perpendicular to the plate thickness direction of the plate-like fins. The first heat exchanger is located on the windward side of the second heat exchanger, and the plate-like fins of the first heat exchanger and the second heat exchanger each have a chevron shape in the longitudinal direction. And the height of the chevron formed in the plate fin of the first heat exchanger is lower than the height of the chevron formed in the plate fin of the second heat exchanger, and the second heat exchanger The tube diameter of the heat transfer tube of the first heat exchanger is formed smaller than the tube diameter of the heat transfer tube. Therefore, it is possible to provide a highly efficient heat exchanger that improves the condensation performance and evaporation performance of the heat exchanger while suppressing an increase in ventilation resistance.

また、特に、熱交換器が蒸発器として機能するときは、伝熱管のパス数が冷媒の流れ方向下流側ほど増大し、且つ、冷媒の流れ方向と空気の流れ方向が平行流となり、熱交換器が凝縮器として機能するときは、伝熱管のパス数が冷媒の流れ方向下流側ほど減少し、且つ、冷媒の流れ方向と空気の流れ方向が対向流とする。このような熱交換器においては、上述したように、熱交換器が凝縮器及び蒸発器の何れで機能するにおいても、通風抵抗の増大を抑制しつつ、熱交換性能を向上させることができる。   In particular, when the heat exchanger functions as an evaporator, the number of heat transfer tube paths increases toward the downstream side of the refrigerant flow direction, and the refrigerant flow direction and the air flow direction become parallel flows, thereby exchanging heat. When the condenser functions as a condenser, the number of paths of the heat transfer tubes decreases toward the downstream side in the refrigerant flow direction, and the refrigerant flow direction and the air flow direction are counterflows. In such a heat exchanger, as described above, regardless of whether the heat exchanger functions as a condenser or an evaporator, the heat exchange performance can be improved while suppressing an increase in ventilation resistance.

尚、本実施例の熱交換器は、凝縮,蒸発ともに熱交換の効率が高く、蒸発時の圧力損失も低減できることから、蒸発圧力が高い、高密度の冷媒(例えばHFC410a等)だけでなく、蒸発圧力が低い、低密度の冷媒(例えば、HFC134a,HFO1234yf等)を用いても効率のよい運転が可能である。本実施例では、4経路と2経路の組合せの場合について説明したが、特に、蒸発圧力が低い、低密度の冷媒(例えば、HFC134a,HFO1234yf等)を用いる場合は、より圧力損失を低減させつつ凝縮性能を維持するため、例えば、8経路と4経路の組合せとすることもできる。   In addition, since the heat exchanger of the present embodiment has high efficiency of heat exchange for both condensation and evaporation and can reduce pressure loss during evaporation, not only a high-density refrigerant (for example, HFC410a) having a high evaporation pressure, Efficient operation is possible even when a low-density refrigerant (for example, HFC134a, HFO1234yf, etc.) with a low evaporation pressure is used. In the present embodiment, the case of the combination of the four paths and the two paths has been described. In particular, when a low-density refrigerant having a low evaporation pressure (for example, HFC134a, HFO1234yf, etc.) is used, the pressure loss is further reduced. In order to maintain the condensation performance, for example, a combination of 8 paths and 4 paths may be used.

また、本実施例では、主に、室外熱交換器を本発明の対象としたが、本発明を室内熱交換器に適用しても同様の効果を得ることができる。   In this embodiment, the outdoor heat exchanger is mainly the subject of the present invention, but the same effect can be obtained even if the present invention is applied to the indoor heat exchanger.

尚、本実施においては、第1熱交換器及び第2熱交換器の山形形状の高さとは、第1熱交換器及び第2熱交換器それぞれにおける山形形状の平均値の高さである。従って、例えば、山形形状による通風抵抗の影響については、第1熱交換器全体の通風抵抗が第2熱交換器全体の通風抵抗よりも小さくなる。   In the present embodiment, the heights of the chevron shapes of the first heat exchanger and the second heat exchanger are the average heights of the chevron shapes of the first heat exchanger and the second heat exchanger, respectively. Therefore, for example, regarding the influence of the ventilation resistance due to the mountain shape, the ventilation resistance of the entire first heat exchanger is smaller than the ventilation resistance of the entire second heat exchanger.

次に、本発明に係る第2の実施例について図8及び図9を用いて説明する。本実施例において、(1)空気調和装置を構成する各構成要素とそれらの接続関係を示す基本構成、(2)熱交換器の基本構成、(3)熱交換器の冷媒経路等については、第1の実施例と同様であるので、その説明を省略する。   Next, a second embodiment according to the present invention will be described with reference to FIGS. In this example, (1) the basic components showing the components constituting the air conditioner and their connection relationship, (2) the basic configuration of the heat exchanger, (3) the refrigerant path of the heat exchanger, etc. Since it is the same as that of the first embodiment, its description is omitted.

図8は本実施例の熱交換器の板状フィンの形状を示す側面図、図9は本実施例の熱交換器の板状フィンの形状を示す断面図である。本実施例において、室外熱交換器3の板状フィン8′は、図8に示すようにフィン幅方向に所定の列ピッチS2(例えばS2=17mm)で伝熱管9の貫通孔が2列設けられる。貫通孔の中心は板状フィン8′のフィン幅方向の中心に位置する。また、上下方向には所定の段ピッチS1又はS1′(例えばS1=S1′=20mm)で、伝熱管9の貫通孔が板状フィン8′の長手方向に複数段設けられる。隣り合う列の貫通孔は互いに千鳥配列となるように配置される。空気流れ方向100下流側(第2熱交換器B)の伝熱管9の貫通孔の径D1よりも上流側(第1熱交換器A)の伝熱管9の貫通孔の径D2が小径に設定される(例えばD1=8mm,D2=7mm)。   FIG. 8 is a side view showing the shape of the plate-like fins of the heat exchanger of this embodiment, and FIG. 9 is a cross-sectional view showing the shape of the plate-like fins of the heat exchanger of this embodiment. In this embodiment, the plate-like fins 8 'of the outdoor heat exchanger 3 are provided with two rows of through-holes of the heat transfer tubes 9 at a predetermined row pitch S2 (for example, S2 = 17 mm) in the fin width direction as shown in FIG. It is done. The center of the through hole is located at the center in the fin width direction of the plate-like fin 8 '. Further, a plurality of through holes of the heat transfer tube 9 are provided in the longitudinal direction of the plate-like fins 8 ′ at a predetermined step pitch S1 or S1 ′ (for example, S1 = S1 ′ = 20 mm) in the vertical direction. The through holes in adjacent rows are arranged in a staggered arrangement with each other. The diameter D2 of the through hole of the heat transfer tube 9 on the upstream side (first heat exchanger A) is set smaller than the diameter D1 of the through hole of the heat transfer tube 9 on the downstream side (second heat exchanger B) in the air flow direction 100. (For example, D1 = 8 mm, D2 = 7 mm).

図9は、図8のY−Y断面を示している。板状フィン8′には、各列に対し、列方向に複数の山形形状(本実施形態では20A〜20Dおよび21A〜21Dの各列4つ)が形成される。同じ列(第1熱交換器A又は第2熱交換器B)内での山形形状の高さは、各列で両端部に設けられる山形形状20A,20D及び21A,21Dよりも、伝熱管9の貫通孔に近い山形形状20B,20C及び21B,21Cが高く形成される。さらに、空気流れ方向100上流側(第1熱交換器A)列の何れの山形形状高さも、下流側(第2熱交換器B)列の最も低い山形形状21A,21Dの高さより低く形成することができる(たとえば、h20A=h20D=0.3mm、h20B=h20C=0.5mm、h21A=h21D=0.6mm、h21B=h21C=0.8mm)。このような構成により、伝熱管に近く熱交換効率の高い山形形状の高さを高くして熱交換効率を向上させるとともに、伝熱管から遠く熱交換効率の低い山形形状の高さを低くして通風抵抗を低減させることにより、第1熱交換器及び第2熱交換器のそれぞれにおいて、より通風抵抗を低減しつつ高効率の熱交換器を構成することができる。   FIG. 9 shows a YY cross section of FIG. A plurality of chevron shapes (four rows 20A to 20D and four rows 21A to 21D in the present embodiment) are formed in the row direction on the plate-like fins 8 'in the row direction. The height of the chevron shape in the same row (the first heat exchanger A or the second heat exchanger B) is greater than the chevron shapes 20A, 20D and 21A, 21D provided at both ends in each row. The chevron shapes 20B, 20C and 21B, 21C close to the through-holes are formed high. Further, the height of any chevron in the upstream (first heat exchanger A) row in the air flow direction 100 is formed lower than the height of the lowest chevron shapes 21A and 21D in the downstream (second heat exchanger B) row. (For example, h20A = h20D = 0.3 mm, h20B = h20C = 0.5 mm, h21A = h21D = 0.6 mm, h21B = h21C = 0.8 mm). With such a configuration, the height of the chevron shape that is close to the heat transfer tube and high heat exchange efficiency is increased to improve the heat exchange efficiency, and the height of the chevron shape that is far from the heat transfer tube and has low heat exchange efficiency is lowered. By reducing the ventilation resistance, a highly efficient heat exchanger can be configured while reducing the ventilation resistance in each of the first heat exchanger and the second heat exchanger.

以上説明したように、本実施例における熱交換器では、第1熱交換器及び第2熱交換器の板状フィンはそれぞれ長手方向に複数の山形形状を備え、複数の山形形状のうちフィンの幅方向の両端部に位置する両端部山形形状の高さが、両端部山形形状よりも伝熱管側に位置する中心部山形形状の高さよりも低く形成されるので、第1熱交換器及び第2熱交換器のそれぞれにおいて、より通風抵抗を低減しつつ高効率の熱交換器を構成することができる。   As described above, in the heat exchanger in the present embodiment, the plate-like fins of the first heat exchanger and the second heat exchanger each have a plurality of chevron shapes in the longitudinal direction, and the fins of the plurality of chevron shapes The height of both end chevron shapes located at both ends in the width direction is formed lower than the height of the central chevron shape located on the heat transfer tube side than both end chevron shapes. In each of the two heat exchangers, a highly efficient heat exchanger can be configured while further reducing the ventilation resistance.

次に、本発明に係る第3の実施例について図10及び図11を用いて説明する。本実施例において、(1)空気調和装置を構成する各構成要素とそれらの接続関係を示す基本構成、(2)熱交換器の基本構成、(3)熱交換器の冷媒経路等については、第1の実施例と同様であるので、その説明を省略する。   Next, a third embodiment according to the present invention will be described with reference to FIGS. In this example, (1) the basic components showing the components constituting the air conditioner and their connection relationship, (2) the basic configuration of the heat exchanger, (3) the refrigerant path of the heat exchanger, etc. Since it is the same as that of the first embodiment, its description is omitted.

図10は本実施例の熱交換器の板状フィンの形状を示す側面図、図11は本実施例の熱交換器の板状フィンの形状を示す断面図である。本実施例において、室外熱交換器3の板状フィン8″は、図10に示すようにフィン幅方向に所定の列ピッチS2(例えばS2=17mm)で伝熱管9の貫通孔が2列設けられる。   FIG. 10 is a side view showing the shape of the plate fins of the heat exchanger of the present embodiment, and FIG. 11 is a cross-sectional view showing the shape of the plate fins of the heat exchanger of the present embodiment. In this embodiment, the plate-like fins 8 ″ of the outdoor heat exchanger 3 are provided with two rows of through holes of the heat transfer tubes 9 at a predetermined row pitch S2 (for example, S2 = 17 mm) in the fin width direction as shown in FIG. It is done.

貫通孔は、板状フィン8″のフィン幅方向中心よりも風下側に位置する(つまり、貫通孔から風下側端部までの長さが、貫通孔から風上側端部までの長さよりも長くなるように貫通孔が位置する。例えばW1=10mm>W2=7mm)。また、上下方向には所定の段ピッチS1又はS1′(例えばS1=S1′=20mm)で伝熱管9の貫通孔が板状フィン8″の長手方向に複数段設けられる。風下列に対して風上列の通風抵抗が少ないことに加え、同一列内において、伝熱管から板状フィン8″の風上側の端部までの距離が風下側の端部までの距離よりも離れているので、着霜による板状フィン8″での流路閉塞までの時間を長くすることができる。   The through hole is located on the leeward side of the fin-width-direction center of the plate-like fin 8 ″ (that is, the length from the through hole to the leeward end is longer than the length from the through hole to the leeward end). The through-holes are positioned so that, for example, W1 = 10 mm> W2 = 7 mm) In the vertical direction, the through-holes of the heat transfer tube 9 are arranged at a predetermined step pitch S1 or S1 ′ (for example, S1 = S1 ′ = 20 mm). A plurality of stages are provided in the longitudinal direction of the plate-like fins 8 ″. In addition to the low wind resistance of the windward row relative to the leeward row, the distance from the heat transfer tube to the windward end of the plate-like fin 8 ″ in the same row is longer than the distance to the windward end. Since they are separated from each other, it is possible to lengthen the time until the flow path is blocked by the plate-like fins 8 ″ due to frost formation.

第1の実施例と同様に、隣り合う列の貫通孔は互いに千鳥配列となるように配置される。空気流れ方向100下流側(第2熱交換器B)の伝熱管9の貫通孔の径D1よりも上流側(第1熱交換器A)の伝熱管9の貫通孔の径D2が小さい(例えばD1=8mm、D2=7mm)。   Similar to the first embodiment, the through holes in adjacent rows are arranged in a staggered manner. The diameter D2 of the through hole of the heat transfer tube 9 on the upstream side (first heat exchanger A) is smaller than the diameter D1 of the through hole of the heat transfer tube 9 on the downstream side (second heat exchanger B) in the air flow direction 100 (for example, D1 = 8 mm, D2 = 7 mm).

図11は、図10のZ−Z断面を示している。板状フィン8″には、各列に対し、列方向に複数の山形形状(本実施形態では20A〜20C及び21A〜21Cの各列3つ)が形成される。同じ列(第1熱交換器A又は第2熱交換器B)内での山形形状の高さは、各列で空気流れ方向100上流側の端部に設けられる山形形状20A及び21Aよりも、伝熱管9の貫通孔に近い山形形状20B,20C及び21B,21Cが高く形成される。さらに、空気流れ方向上流側列の山形形状高さを、下流側のよりも最も高い山形形状21Aの高さより低く形成することができる(たとえば、h20A=0.3mm、h20B=h20C=0.5mm、h21A=0.6mm、h21B=h21C=0.8mm)。このような構成により、第2の実施例と同様に、伝熱管に近く熱交換効率の高い山形形状(20B,20C及び21B,21C)の高さを高くして熱交換効率を向上させるとともに、伝熱管から遠く熱交換効率の低い山形形状(20A及び21A)の高さを低くして通風抵抗を低減させることにより、第1熱交換器及び第2熱交換器のそれぞれにおいて、より通風抵抗を低減しつつ高効率の熱交換器を提供することができる。   FIG. 11 shows a ZZ cross section of FIG. A plurality of chevron shapes (three rows 20A to 20C and three rows 21A to 21C in the present embodiment) are formed in the row direction for each row in the plate-like fin 8 ″. The same row (first heat exchange) The height of the chevron shape in the heat exchanger A or the second heat exchanger B) is greater in the through hole of the heat transfer tube 9 than the chevron shapes 20A and 21A provided at the upstream end of the air flow direction 100 in each row. The closest chevron shapes 20B, 20C and 21B, 21C are formed higher, and the chevron shape height of the upstream row in the air flow direction can be made lower than the height of the highest chevron shape 21A than on the downstream side. (For example, h20A = 0.3 mm, h20B = h20C = 0.5 mm, h21A = 0.6 mm, h21B = h21C = 0.8 mm) With this configuration, as in the second embodiment, the heat transfer tube Mountain shape with high heat exchange efficiency (20B, Increase the height of 0C and 21B, 21C) to improve the heat exchange efficiency, and reduce the height of the chevron shape (20A and 21A) that is far from the heat transfer tube and has a low heat exchange efficiency to reduce the ventilation resistance. Thereby, in each of a 1st heat exchanger and a 2nd heat exchanger, a highly efficient heat exchanger can be provided, reducing ventilation resistance more.

以上説明したように、本実施例における熱交換器では、第1熱交換器及び第2熱交換器の板状フィンを貫通する伝熱管は、板状フィンのフィン幅方向中心よりも風下側に位置するので、着霜による板状フィン8″での流路閉塞までの時間を長くすることができる。また、第1熱交換器及び第2熱交換器の板状フィンはそれぞれ長手方向に複数の山形形状を備え、複数の山形形状のうちフィンの風上側端部に位置する風上側山形形状の高さが、この風上側山形形状以外の他の山形形状の高さよりも低く形成されるので、第1熱交換器及び第2熱交換器のそれぞれにおいて、より通風抵抗を低減しつつ高効率の熱交換器を提供することができる。   As described above, in the heat exchanger according to the present embodiment, the heat transfer tubes that penetrate the plate-like fins of the first heat exchanger and the second heat exchanger are located on the leeward side of the fin-width direction center of the plate-like fins. Therefore, it is possible to lengthen the time until the flow path is blocked by the plate-like fins 8 ″ due to frost formation. Also, there are a plurality of plate-like fins in the longitudinal direction of the first heat exchanger and the second heat exchanger. The height of the upwind chevron shape located at the windward end of the fin among the plurality of chevron shapes is formed lower than the height of other chevron shapes other than this upwind chevron shape In each of the first heat exchanger and the second heat exchanger, it is possible to provide a highly efficient heat exchanger while further reducing the ventilation resistance.

尚、本実施例においては、風下列(第2熱交換器B)及び風上列(第1熱交換器A)それぞれの板状フィン8″の貫通孔の位置を風下側に移動させたが、風上列の板状フィン8″の貫通孔のみ中心位置を風下側に移動させてもよい。   In the present embodiment, the positions of the through holes of the plate-like fins 8 ″ of the leeward row (second heat exchanger B) and the leeward row (first heat exchanger A) are moved to the leeward side. Only the through holes of the plate-like fins 8 ″ in the windward row may be moved to the leeward side.

1 圧縮機
2 流路切換手段(四方弁)
3 室外熱交換器
4 冷暖房用の絞り装置(流量制御弁)
5 室内熱交換器
6 室外送風手段
7 室内送風手段
8,8′,8″ 板状フィン
9 伝熱管
10A〜10D,11A〜11D,20A〜20D,21A〜21D,30A〜30C,31A〜31C 山形形状
12A〜12D,13A,13B 冷媒経路
100 空気流れ方向
A 第1熱交換器
B 第2熱交換器
1 Compressor 2 Channel switching means (four-way valve)
3 Outdoor heat exchanger 4 Air conditioner throttle device (flow control valve)
DESCRIPTION OF SYMBOLS 5 Indoor heat exchanger 6 Outdoor ventilation means 7 Indoor ventilation means 8, 8 ', 8 "Plate-shaped fin 9 Heat-transfer tube 10A-10D, 11A-11D, 20A-20D, 21A-21D, 30A-30C, 31A-31C Yamagata Shapes 12A to 12D, 13A, 13B Refrigerant path 100 Air flow direction A First heat exchanger B Second heat exchanger

Claims (6)

板厚方向に複数並べられた板状フィンと、前記板状フィンを貫通して前記板状フィンの長手方向に複数段設けられた伝熱管と、をそれぞれ有する第1熱交換器及び第2熱交換器を一体として構成し、前記伝熱管内部に冷媒を流動させ、前記板状フィンの板厚方向に対して垂直方向に送風することにより空気と前記冷媒とを熱交換させる熱交換器であって、
前記第1熱交換器は前記第2熱交換器よりも風上側に位置し、
前記第1熱交換器及び前記第2熱交換器の前記板状フィンはそれぞれ長手方向に山形形状を備え、前記第2熱交換器の前記板状フィンに形成された前記山形形状の高さよりも、前記第1熱交換器の前記板状フィンに形成された前記山形形状の高さが低く形成され、
前記第2熱交換器の前記伝熱管の管径よりも、前記第1熱交換器の前記伝熱管の管径が小さく形成された熱交換器。
A first heat exchanger and a second heat each having a plurality of plate-like fins arranged in the plate thickness direction, and heat transfer tubes provided in a plurality of stages in the longitudinal direction of the plate-like fins through the plate-like fins. The heat exchanger is configured as an integrated exchanger, in which a refrigerant flows inside the heat transfer tubes and heat is exchanged between air and the refrigerant by blowing air in a direction perpendicular to the plate thickness direction of the plate fins. And
The first heat exchanger is located on the windward side of the second heat exchanger;
The plate-like fins of the first heat exchanger and the second heat exchanger each have a chevron shape in the longitudinal direction, and are higher than the height of the chevron shape formed on the plate-like fin of the second heat exchanger. The chevron-shaped height formed on the plate-like fin of the first heat exchanger is formed low,
A heat exchanger in which a tube diameter of the heat transfer tube of the first heat exchanger is smaller than a tube diameter of the heat transfer tube of the second heat exchanger.
請求項1において、前記板状フィンを貫通する伝熱管は、前記板状フィンのフィン幅方向中心よりも風下側に位置する熱交換器。   2. The heat exchanger according to claim 1, wherein the heat transfer tube penetrating the plate-like fin is located on the leeward side with respect to the fin width direction center of the plate-like fin. 請求項1又は2において、前記第1熱交換器及び前記第2熱交換器の前記板状フィンはそれぞれ長手方向に複数の山形形状を備え、
前記複数の山形形状のうち、前記フィンの風上側端部に位置する風上側山形形状の高さが、前記風上側山形形状以外の他の前記山形形状の高さよりも低く形成された熱交換器。
In Claim 1 or 2, the plate-like fins of the first heat exchanger and the second heat exchanger each have a plurality of chevron shapes in the longitudinal direction,
Among the plurality of chevron shapes, a heat exchanger in which the height of the windward chevron shape located at the windward end of the fin is lower than the heights of the chevron shapes other than the windward chevron shape .
請求項1乃至3の何れかにおいて、前記熱交換器が蒸発器として機能するときは、前記伝熱管のパス数が前記冷媒の流れ方向下流側ほど増大し、且つ、前記冷媒の流れ方向と空気の流れ方向が平行流となり、
前記熱交換器が凝縮器として機能するときは、前記伝熱管のパス数が前記冷媒の流れ方向下流側ほど減少し、且つ、前記冷媒の流れ方向と空気の流れ方向が対交流となる熱交換器。
4. The heat exchanger tube according to claim 1, wherein when the heat exchanger functions as an evaporator, the number of passes of the heat transfer tube increases toward the downstream side in the flow direction of the refrigerant, and the flow direction of the refrigerant and air The flow direction is parallel flow,
When the heat exchanger functions as a condenser, the number of passes of the heat transfer tubes decreases toward the downstream side in the flow direction of the refrigerant, and the heat exchange in which the flow direction of the refrigerant and the flow direction of the air are opposite to each other vessel.
請求項4において、前記熱交換器が凝縮器として機能するときの前記熱交換器における前記冷媒の全ての入口部が、前記第2熱交換器に位置する熱交換器。   The heat exchanger according to claim 4, wherein all the inlet portions of the refrigerant in the heat exchanger when the heat exchanger functions as a condenser are positioned in the second heat exchanger. 圧縮機,流路切替手段,室外熱交換器,冷暖房運転用の絞り装置、及び室内熱交換器が冷媒配管により接続された冷凍サイクル装置を備え、
前記室外熱交換器は請求項1乃至5の何れかに記載の熱交換器である空気調和機。
A compressor, a flow path switching means, an outdoor heat exchanger, an expansion device for air conditioning operation, and a refrigeration cycle device in which an indoor heat exchanger is connected by a refrigerant pipe,
The said outdoor heat exchanger is an air conditioner which is a heat exchanger in any one of Claims 1 thru | or 5.
JP2010193076A 2010-08-31 2010-08-31 Heat exchanger and air conditioner using the same Active JP5608478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193076A JP5608478B2 (en) 2010-08-31 2010-08-31 Heat exchanger and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193076A JP5608478B2 (en) 2010-08-31 2010-08-31 Heat exchanger and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2012052676A true JP2012052676A (en) 2012-03-15
JP5608478B2 JP5608478B2 (en) 2014-10-15

Family

ID=45906206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193076A Active JP5608478B2 (en) 2010-08-31 2010-08-31 Heat exchanger and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP5608478B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692101A (en) * 2012-06-06 2012-09-26 Tcl空调器(中山)有限公司 Heat exchanger and air conditioner equipment
WO2013161038A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and heat exchange method
JP2014140808A (en) * 2013-01-23 2014-08-07 Mitsubishi Electric Corp Dehumidifier
KR20170042733A (en) * 2014-10-07 2017-04-19 미쓰비시덴키 가부시키가이샤 Heat exchanger and air conditioning device
JPWO2016056064A1 (en) * 2014-10-07 2017-04-27 三菱電機株式会社 Heat exchanger and air conditioner
WO2020021700A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068560A (en) * 1996-08-28 1998-03-10 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JPH10318618A (en) * 1997-05-20 1998-12-04 Fujitsu General Ltd Air conditioner
JPH11337104A (en) * 1998-03-23 1999-12-10 Hitachi Ltd Air conditioner
JP2006138504A (en) * 2004-11-10 2006-06-01 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioner
JP2008111622A (en) * 2006-10-31 2008-05-15 Toshiba Kyaria Kk Heat exchanger and outdoor unit of air conditioner using the same
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same
JP2009092288A (en) * 2007-10-05 2009-04-30 Panasonic Corp Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068560A (en) * 1996-08-28 1998-03-10 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JPH10318618A (en) * 1997-05-20 1998-12-04 Fujitsu General Ltd Air conditioner
JPH11337104A (en) * 1998-03-23 1999-12-10 Hitachi Ltd Air conditioner
JP2006138504A (en) * 2004-11-10 2006-06-01 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioner
JP2008111622A (en) * 2006-10-31 2008-05-15 Toshiba Kyaria Kk Heat exchanger and outdoor unit of air conditioner using the same
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same
JP2009092288A (en) * 2007-10-05 2009-04-30 Panasonic Corp Heat exchanger

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161038A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and heat exchange method
JPWO2013161038A1 (en) * 2012-04-26 2015-12-21 三菱電機株式会社 Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
CN102692101A (en) * 2012-06-06 2012-09-26 Tcl空调器(中山)有限公司 Heat exchanger and air conditioner equipment
JP2014140808A (en) * 2013-01-23 2014-08-07 Mitsubishi Electric Corp Dehumidifier
JPWO2016056064A1 (en) * 2014-10-07 2017-04-27 三菱電機株式会社 Heat exchanger and air conditioner
JPWO2016056063A1 (en) * 2014-10-07 2017-04-27 三菱電機株式会社 Heat exchanger and air conditioner
KR20170042733A (en) * 2014-10-07 2017-04-19 미쓰비시덴키 가부시키가이샤 Heat exchanger and air conditioning device
US20170241683A1 (en) * 2014-10-07 2017-08-24 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
AU2014408468B2 (en) * 2014-10-07 2018-08-30 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
US10082322B2 (en) 2014-10-07 2018-09-25 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
KR101949059B1 (en) 2014-10-07 2019-02-15 미쓰비시덴키 가부시키가이샤 Heat exchanger and air conditioning device
US10605502B2 (en) 2014-10-07 2020-03-31 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
WO2020021700A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Refrigeration cycle device
JPWO2020021700A1 (en) * 2018-07-27 2021-06-03 三菱電機株式会社 Refrigeration cycle equipment
US11371760B2 (en) 2018-07-27 2022-06-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP5608478B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
EP3276289B1 (en) Heat exchanger and air conditioner
JP6091641B2 (en) Heat exchanger and air conditioner
WO2019239446A1 (en) Air conditioner outdoor unit and air conditioner
EP3156752B1 (en) Heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP6388670B2 (en) Refrigeration cycle equipment
WO2014181400A1 (en) Heat exchanger and refrigeration cycle device
WO2015004720A1 (en) Heat exchanger, and air conditioner
JP2006284134A (en) Heat exchanger
WO2013084397A1 (en) Air conditioner
US20240085122A1 (en) Heat exchanger and refrigeration cycle apparatus
JPWO2017183180A1 (en) Heat exchanger
JP2006284133A (en) Heat exchanger
WO2014155560A1 (en) Heat exchanger and refrigeration cycle air conditioner using same
JP2016148480A (en) Heat exchanger
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP5404571B2 (en) Heat exchanger and equipment
JP3177302U (en) Air conditioning unit
JP6678413B2 (en) Air conditioner
JP4297250B2 (en) Air conditioner heat exchanger

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5608478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250