JPWO2013161038A1 - Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method - Google Patents

Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method Download PDF

Info

Publication number
JPWO2013161038A1
JPWO2013161038A1 JP2014512239A JP2014512239A JPWO2013161038A1 JP WO2013161038 A1 JPWO2013161038 A1 JP WO2013161038A1 JP 2014512239 A JP2014512239 A JP 2014512239A JP 2014512239 A JP2014512239 A JP 2014512239A JP WO2013161038 A1 JPWO2013161038 A1 JP WO2013161038A1
Authority
JP
Japan
Prior art keywords
heat exchange
pipe
lower header
pipes
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014512239A
Other languages
Japanese (ja)
Other versions
JP6104893B2 (en
Inventor
岡崎 多佳志
多佳志 岡崎
石橋 晃
晃 石橋
相武 李
相武 李
拓也 松田
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2013161038A1 publication Critical patent/JPWO2013161038A1/en
Application granted granted Critical
Publication of JP6104893B2 publication Critical patent/JP6104893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

熱交換器1は、複数の熱交換機能面を有しておりながら、冷媒への重力の影響を抑制できると共に各面での熱交換性能の低下を抑制するものであり、複数の熱交換機能面3を有し、熱交換機能面それぞれにおいて、上部ヘッダーパイプ5及び下部ヘッダーパイプ7と、それら上下一対のヘッダーパイプの間に設けられた複数の熱交換パイプ9とを有し、複数の熱交換機能面は並列接続関係にあり、複数の下部ヘッダーパイプは、分流調整部17を介して、下部集合管19とつながっている。While the heat exchanger 1 has a plurality of heat exchange function surfaces, the heat exchanger 1 can suppress the influence of gravity on the refrigerant and suppress a decrease in heat exchange performance on each surface. The upper header pipe 5 and the lower header pipe 7 and a plurality of heat exchange pipes 9 provided between the pair of upper and lower header pipes in each of the heat exchange function surfaces. The exchange function surface is in a parallel connection relationship, and the plurality of lower header pipes are connected to the lower collecting pipe 19 via the flow dividing adjustment portion 17.

Description

本発明は、熱交換器及び熱交換方法に関するものである。   The present invention relates to a heat exchanger and a heat exchange method.

熱交換器の一形態として、パラレルフロー型熱交換器がある。この熱交換器は、一対のヘッダーパイプと、それらヘッダーパイプの間に設けられた複数の扁平管とを備えており、一方のヘッダーに流入した流体が、複数の扁平管を通って流れた後、他方のヘッダーパイプへと流出するように構成されていた。   One form of heat exchanger is a parallel flow heat exchanger. This heat exchanger includes a pair of header pipes and a plurality of flat tubes provided between the header pipes. After the fluid flowing into one header flows through the plurality of flat tubes, , Was configured to flow out to the other header pipe.

かかるパラレルフロー型熱交換器は、一対のヘッダーパイプを鉛直上下方向に向けて配置した場合、重力の影響から、気液二相冷媒中の液冷媒が、相対的に下方に位置する扁平管に流れ易くなり、複数の扁平管に均等に冷媒を流通させるのが困難であった。   In such a parallel flow type heat exchanger, when a pair of header pipes are arranged vertically and vertically, the liquid refrigerant in the gas-liquid two-phase refrigerant flows into the flat tube located relatively below due to the influence of gravity. It became easy to flow, and it was difficult to distribute the refrigerant evenly through a plurality of flat tubes.

そこで、パラレルフロー型熱交換器の構成においては、一対のヘッダーパイプを水平に配置し、複数の扁平管の相互間で重力の影響を受けにくくする態様もある。   Therefore, in the configuration of the parallel flow type heat exchanger, there is also an aspect in which a pair of header pipes are arranged horizontally to make it less susceptible to gravity between a plurality of flat tubes.

その一方で、空気調和機の既存の室外機においては、熱交換面を室外機の筐体の複数面に配置する構成がある。ここで、上述した一対のヘッダーパイプを水平に配置したパラレルフロー型熱交換器を、室外機の筐体の複数面で機能させようとした場合、各ヘッダーパイプを複数面に沿うように湾曲させなければならい。しかしながら、ヘッダーパイプを例えばL字状やU字状に湾曲させることは過大な荷重が掛かり、装置が大型化するとともに、コストが増加するという問題がある。   On the other hand, an existing outdoor unit of an air conditioner has a configuration in which heat exchange surfaces are arranged on a plurality of surfaces of a casing of the outdoor unit. Here, when the parallel flow type heat exchanger in which the pair of header pipes described above are arranged horizontally is intended to function on a plurality of surfaces of the casing of the outdoor unit, each header pipe is bent along the plurality of surfaces. Must be. However, bending the header pipe into, for example, an L-shape or a U-shape has a problem that an excessive load is applied, the device is increased in size, and the cost is increased.

かかる問題に関連しては、例えば、特許文献1に開示されたものがある。特許文献1に開示された熱交換器では、一対のヘッダーパイプを、複数面毎に分けて用意していた。   In relation to such a problem, for example, there is one disclosed in Patent Document 1. In the heat exchanger disclosed in Patent Document 1, a pair of header pipes are prepared separately for each of a plurality of surfaces.

特開2010−107103号公報JP 2010-107103 A

しかし、上述した特許文献1に開示された熱交換器では、ある一面(第1面)において複数の扁平管を流れた冷媒を、その面(第1面)の流出側のヘッダーパイプに集合させた後、そこから、次の面(第2面)の流入側のヘッダーパイプに導き、その面(第2面)の複数の扁平管を流通させ、面の数に応じて、以降、順次同様に、次の面へと導く態様が採用されていた。   However, in the heat exchanger disclosed in Patent Document 1 described above, the refrigerant that has flowed through a plurality of flat tubes on one surface (first surface) is collected in a header pipe on the outflow side of the surface (first surface). After that, it is led to the header pipe on the inflow side of the next surface (second surface), and a plurality of flat tubes on the surface (second surface) are circulated. In addition, a mode leading to the next surface was adopted.

このため、複数の熱交換機能面の間で、上流・下流の関係が生じ、下流側の面ほど熱交換効率が低下する。また、複数の扁平管への分岐とその後の集合とを繰り返すこととなるので、第2面以降では、熱交換後の冷媒を再度、複数の扁平管へ好適に分岐できない恐れがある。   For this reason, an upstream / downstream relationship occurs between the plurality of heat exchange function surfaces, and the heat exchange efficiency decreases as the surface on the downstream side. Moreover, since branching to a plurality of flat tubes and subsequent assembly are repeated, there is a possibility that the refrigerant after heat exchange cannot be suitably branched again to the plurality of flat tubes after the second surface.

本発明は、上記に鑑みてなされたものであり、複数の熱交換機能面を有しておりながら、冷媒への重力の影響を抑制できると共に各面での熱交換性能の低下を抑制することができる、熱交換器等を提供することを目的とする。   The present invention has been made in view of the above, and while having a plurality of heat exchange function surfaces, it is possible to suppress the influence of gravity on the refrigerant and to suppress a decrease in heat exchange performance on each surface. It aims at providing the heat exchanger etc. which can do.

上述した目的を達成する本発明の熱交換器は、複数の熱交換機能面を有し、該熱交換機能面それぞれにおいて、上部ヘッダーパイプ及び下部ヘッダーパイプと、それら上下一対のヘッダーパイプの間に設けられた複数の熱交換パイプとを有し、前記複数の熱交換機能面は並列接続関係にあり、複数の前記下部ヘッダーパイプは、分流調整部を介して、下部集合管とつながっている。
さらに、同目的を達成する本発明の熱交換方法は、複数の面で熱交換を行う熱交換方法であって、複数の熱交換機能面それぞれにおいて、上部ヘッダーパイプ及び下部ヘッダーパイプと、それら上下一対のヘッダーパイプの間に設けられた複数の熱交換パイプとを用意し、前記複数の熱交換機能面を並列に接続し、複数の前記下部ヘッダーパイプは、分流調整部を介して、下部集合管とつなげておき、前記下部集合管内の冷媒を、前記分流調整部において前記複数の熱交換機能面に並列に分流させ、前記複数の熱交換機能面のそれぞれで熱交換を行わせ、複数の前記上部ヘッダーパイプから流出させて、上部側集合管に合流させる。
The heat exchanger of the present invention that achieves the above-described object has a plurality of heat exchange function surfaces, and each of the heat exchange function surfaces includes an upper header pipe, a lower header pipe, and a pair of upper and lower header pipes. The plurality of heat exchange function surfaces are in a parallel connection relationship, and the plurality of lower header pipes are connected to the lower collecting pipe via a flow dividing adjustment section.
Furthermore, the heat exchanging method of the present invention that achieves the same object is a heat exchanging method for exchanging heat on a plurality of surfaces, and in each of a plurality of heat exchanging function surfaces, an upper header pipe and a lower header pipe, Preparing a plurality of heat exchange pipes provided between a pair of header pipes, connecting the plurality of heat exchange function surfaces in parallel, and the plurality of lower header pipes are connected to a lower assembly via a flow dividing adjustment unit The refrigerant in the lower collecting pipe is diverted in parallel with the plurality of heat exchange function surfaces in the diversion adjusting unit, and heat exchange is performed on each of the plurality of heat exchange function surfaces, Outflow from the upper header pipe and join the upper collecting pipe.

本発明によれば、複数の熱交換機能面を有しておりながら、冷媒への重力の影響を抑制できると共に各面での熱交換性能の低下を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having the several heat exchange function surface, the influence of the gravity to a refrigerant | coolant can be suppressed and the fall of the heat exchange performance in each surface can be suppressed.

本発明の実施の形態1に係る熱交換器の構成を示す図である。It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 1 of this invention. 多孔管を説明するための下部ヘッダーパイプの斜視図である。It is a perspective view of the lower header pipe for demonstrating a porous pipe. 比較例としての下部ヘッダーパイプの液分配特性を示す図である。It is a figure which shows the liquid distribution characteristic of the lower header pipe as a comparative example. 本実施の形態1に関する多孔管内蔵型の下部ヘッダーパイプの液分配特性を示す図である。It is a figure which shows the liquid distribution characteristic of the lower pipe | tube with a built-in perforated pipe regarding this Embodiment 1. FIG. 実施の形態1に関し、ビル用マルチエアコン室外機の外観及び平面を示す図である。It is a figure which shows the external appearance and plane of a multi air-conditioner outdoor unit for buildings regarding Embodiment 1. FIG. 実施の形態2に関し、パッケージエアコン室外機の外観及び平面を示す図である。It is a figure which shows the external appearance and plane of a package air conditioner outdoor unit regarding Embodiment 2. FIG.

以下、本発明に係る熱交換器及びその熱交換方法の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。   Embodiments of a heat exchanger and a heat exchange method thereof according to the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.

実施の形態1.
図1は、本実施の形態1に係る熱交換器の構成を示す図である。本実施の形態の熱交換器は、対象空間に対して据付けられ冷暖房を行う空気調和機の室外機として機能するものである。よって、冷房時、凝縮器として動作する場合は、冷媒は、図1において点線矢印で示されるように、上から下へと流れ、暖房時、蒸発器として動作する場合は、冷媒は、図1において実線矢印で示されるように、下から上へと流れるパラレルフロー型熱交換器である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a heat exchanger according to the first embodiment. The heat exchanger according to the present embodiment functions as an outdoor unit of an air conditioner that is installed in a target space and performs air conditioning. Therefore, when operating as a condenser during cooling, the refrigerant flows from top to bottom as shown by the dotted arrows in FIG. 1, and when operating as an evaporator during heating, the refrigerant is as shown in FIG. The parallel flow type heat exchanger flows from bottom to top as indicated by solid arrows in FIG.

熱交換器1は、複数の熱交換機能面3を有する。なお、図1は、熱交換機能面3が3つである場合の例を示している。また、図1の例では、隣り合う熱交換機能面3が直交する方向を指向するように構成されている。   The heat exchanger 1 has a plurality of heat exchange function surfaces 3. FIG. 1 shows an example in which there are three heat exchange function surfaces 3. Moreover, in the example of FIG. 1, it is comprised so that the adjacent heat exchange functional surface 3 may face the direction orthogonal.

熱交換機能面3のそれぞれには、上部ヘッダーパイプ5と、下部ヘッダーパイプ7と、それら上下一対のヘッダーパイプ5,7の間に設けられた複数の熱交換パイプ9とが設けられている。熱交換パイプ9は、具体的には扁平管が用いられている。熱交換パイプ9の間には、フィン11(具体的にはコルゲートフィン)が設けられている。   Each of the heat exchange function surfaces 3 is provided with an upper header pipe 5, a lower header pipe 7, and a plurality of heat exchange pipes 9 provided between the pair of upper and lower header pipes 5, 7. Specifically, the heat exchange pipe 9 is a flat tube. Fins 11 (specifically corrugated fins) are provided between the heat exchange pipes 9.

上部ヘッダーパイプ5のそれぞれには、上部連絡管13の一端が接続されている。上部連絡管13の他端側は、上部集合管15につながっている。下部ヘッダーパイプ7のそれぞれは、後述する分流調整部17を介して、下部集合管19とつながっている。このように、複数の熱交換機能面3は、上部集合管15と下部集合管19との間で並列接続関係で配置されている。なお、図示は省略するが、隣り合う一対の熱交換機能面3の間は、熱交換される流体がバイパスしないように、金属プレート等の塞ぎ部材で覆われているものとする。   One end of an upper communication pipe 13 is connected to each of the upper header pipes 5. The other end side of the upper connecting pipe 13 is connected to the upper collecting pipe 15. Each of the lower header pipes 7 is connected to a lower collecting pipe 19 via a flow dividing adjusting unit 17 described later. In this way, the plurality of heat exchange function surfaces 3 are arranged in parallel connection between the upper collecting pipe 15 and the lower collecting pipe 19. In addition, although illustration is abbreviate | omitted, between a pair of adjacent heat exchange function surfaces 3, it shall be covered with closing members, such as a metal plate, so that the fluid to be heat-exchanged may not bypass.

分流調整部17は、複数の下部ヘッダーパイプ7に供給する冷媒の乾き度及び流量を調整するものである。なお、一例であるが、本実施の形態は、暖房時、冷媒が下から上へと流れる際に、気液二相冷媒を、複数の熱交換機能面3に均等な乾き度及び流量で供給する構成として説明する。   The diversion controller 17 adjusts the dryness and flow rate of the refrigerant supplied to the plurality of lower header pipes 7. As an example, the present embodiment supplies the gas-liquid two-phase refrigerant to the plurality of heat exchange function surfaces 3 at a uniform dryness and flow rate when the refrigerant flows from bottom to top during heating. The configuration will be described.

かかる乾き度及び流量の均等化を実現する構成の一例として、分流調整部17は、ディストリビュータ21と、少なくとも一つ(図示では2つ)の流量調整部23とを含んでいる。ディストリビュータ21は、その一端側が下部集合管19に接続されており、他端側の複数の接続口はそれぞれ、対応する下部連絡管25の一端に接続されている。また、下部連絡管25の他端はそれぞれ、対応する下部ヘッダーパイプ7の集合側出入口7aに接続されている。このように接続されたディストリビュータ21は、複数の下部連絡管25に均等な乾き度で冷媒を供給する。   As an example of a configuration that realizes the equalization of the dryness and the flow rate, the diversion adjusting unit 17 includes a distributor 21 and at least one (two in the drawing) flow rate adjusting unit 23. One end side of the distributor 21 is connected to the lower collecting pipe 19, and a plurality of connection ports on the other end side are respectively connected to one end of the corresponding lower connecting pipe 25. Further, the other ends of the lower communication pipes 25 are respectively connected to the collecting side entrances 7 a of the corresponding lower header pipes 7. The distributor 21 connected in this way supplies the refrigerant with a uniform dryness to the plurality of lower communication pipes 25.

流量調整部23は、図示の一例では、毛細管が用いられている。流量調整部23は、ディストリビュータ21と、対応する下部ヘッダーパイプ7との間に、すなわち、下部連絡管25に設けられるが、必ずしも全ての下部連絡管25に配置しておく必要は無い。   In the illustrated example, a capillary tube is used for the flow rate adjusting unit 23. The flow rate adjusting unit 23 is provided between the distributor 21 and the corresponding lower header pipe 7, that is, in the lower communication pipe 25, but is not necessarily arranged in all the lower communication pipes 25.

熱交換機能面3のそれぞれにおいて、下部ヘッダーパイプ7の集合側出入口7aと上部ヘッダーパイプ5の集合側出入口5aとは、ヘッダーパイプの延びる方向において相互に逆方向に位置している。換言すると、下部ヘッダーパイプ7の集合側出入口7aは、該下部ヘッダーパイプ7の一端側に設けられており、上部ヘッダーパイプ5の集合側出入口5aは、上部ヘッダーパイプ5の他端側に設けられている。すなわち、集合側出入口5aと集合側出入口7aとの間の冷媒流通経路は、何れの熱交換パイプ9を経由しても概ね流路長が等しくなるように企図されている。   In each of the heat exchange function surfaces 3, the collecting side inlet / outlet 7 a of the lower header pipe 7 and the collecting side inlet / outlet 5 a of the upper header pipe 5 are located in mutually opposite directions in the extending direction of the header pipe. In other words, the gathering side entrance 7a of the lower header pipe 7 is provided on one end side of the lower header pipe 7, and the gathering side entrance 5a of the upper header pipe 5 is provided on the other end side of the upper header pipe 5. ing. That is, the refrigerant flow path between the collecting side inlet / outlet 5a and the collecting side inlet / outlet 7a is designed so that the flow path lengths are substantially equal regardless of which heat exchange pipe 9 is passed through.

下部ヘッダーパイプ7のそれぞれの内部には、図2に示されるように、多孔管27が設けられている。図2は、多孔管を説明するための下部ヘッダーパイプの斜視図であり、下部ヘッダーパイプ7の上方にあるべき複数の熱交換パイプ9及びその熱交換パイプ9との連通穴は図示省略している。   As shown in FIG. 2, a porous tube 27 is provided inside each of the lower header pipes 7. FIG. 2 is a perspective view of the lower header pipe for explaining the perforated pipe. A plurality of heat exchange pipes 9 to be above the lower header pipe 7 and communication holes with the heat exchange pipes 9 are not shown. Yes.

多孔管27は、ブロック状またはパイプ状の部材であり、下部ヘッダーパイプ7内の空間の概ね中央あたりに、下部ヘッダーパイプ7の内面から浮いた状態で設けられている。また、多孔管27には、多数の分配孔29が設けられている。一例であるが、分配孔29は、多孔管27の概ね下部に配置されている。   The porous tube 27 is a block-like or pipe-like member, and is provided in a state of floating from the inner surface of the lower header pipe 7 around the center of the space in the lower header pipe 7. The porous tube 27 is provided with a number of distribution holes 29. As an example, the distribution hole 29 is disposed substantially below the perforated tube 27.

かかる多孔管27と下部ヘッダーパイプ7との組み合わせにより、二重管構造が得られている。よって、例えば、暖房時であれば、下部連絡管25を流れる冷媒は、いったん、多孔管27内に流入した後、多数の分配孔29から奥行方向(図2紙面の左右方向)に均等に、多孔管27の外に流出し、さらに、下部ヘッダーパイプ7内に均等に分散し、下部ヘッダーパイプ7の上面の図示省略した連通穴から複数の熱交換パイプ9に均等に供給される。   A double pipe structure is obtained by combining the perforated pipe 27 and the lower header pipe 7. Thus, for example, during heating, the refrigerant flowing through the lower connecting pipe 25 once flows into the porous pipe 27, and then equally from the multiple distribution holes 29 in the depth direction (left and right direction in FIG. 2), It flows out of the perforated pipe 27, is further uniformly distributed in the lower header pipe 7, and is evenly supplied to the plurality of heat exchange pipes 9 from communication holes (not shown) on the upper surface of the lower header pipe 7.

次に、上述した多孔管の効果について説明する。図3は、水平配置され内部に多孔管を持たない比較例としての下部ヘッダーパイプの液分配特性を示す図であり、図4は、水平配置された本実施の形態に関する多孔管内蔵型の下部ヘッダーパイプの液分配特性を示す図である。   Next, the effect of the porous tube described above will be described. FIG. 3 is a diagram showing the liquid distribution characteristics of a lower header pipe as a comparative example which is horizontally arranged and does not have a porous tube inside, and FIG. 4 is a lower portion of a porous tube built-in type according to the present embodiment which is horizontally arranged. It is a figure which shows the liquid distribution characteristic of a header pipe.

また、図3及び図4のグラフ部分は、横軸に、パスNo.すなわち下部ヘッダーパイプの奥行方向に並んだ熱交換パイプの流路番号(下部ヘッダーパイプ上面に垂直に差し込まれた28本の扁平管の流路)を示し、縦軸に、それらパスNo.毎の液分配比を示す。また、比較例及び本実施の形態の下部ヘッダーパイプそれぞれに関し、冷媒流量Gr[kg/hour]及び入口乾き度Xを変更した3つのcase1,2,3の実験結果を示す。   In addition, the graph portions of FIGS. That is, the flow number of the heat exchange pipes arranged in the depth direction of the lower header pipe (the flow paths of the 28 flat tubes inserted perpendicularly to the upper surface of the lower header pipe) is shown. The liquid distribution ratio for each is shown. In addition, experimental results of three cases 1, 2, and 3 in which the refrigerant flow rate Gr [kg / hour] and the inlet dryness X are changed are shown for each of the comparative example and the lower header pipe of the present embodiment.

まず、図3に示す比較例において、冷媒流量Grが共に90[kg/hour]で入口乾き度Xが異なるcase1,3では、冷媒が下部ヘッダーパイプ7’の奥に当ったまま、はね返る影響がみられず、そのまま熱交換パイプ9に流出し、そのため、下流域(パスNo.23〜28)ほど液分配比率が多くなっていることが分かる。また、case1,3よりも多い流量180[kg/hour]のcase2では、豊富に供給される液冷媒の存在により、下部ヘッダーパイプ7’の奥ではね返る効果や流れが乱れる効果により、偏液特性はある程度、緩和される傾向がみられる。しかしながら、何れのcaseでも、横軸と平行に示す均等分配線の例からは、外れていることが分かる。   First, in the comparative example shown in FIG. 3, in cases 1 and 3 where the refrigerant flow rate Gr is 90 [kg / hour] and the inlet dryness X is different, the refrigerant rebounds while remaining in the lower header pipe 7 ′. It is not seen, but flows out to the heat exchange pipe 9 as it is, so that it can be seen that the liquid distribution ratio increases in the downstream area (path Nos. 23 to 28). Further, in case 2 with a flow rate of 180 [kg / hour] larger than cases 1 and 3, due to the presence of abundantly supplied liquid refrigerant, the effect of rebounding at the back of the lower header pipe 7 'and the effect of disturbing the flow, the liquid deviation characteristics Tend to be relaxed to some extent. However, it can be seen that any case is deviated from the example of the equal wiring shown in parallel with the horizontal axis.

これに対し、図4に示す本実施の形態の多孔管内蔵型の下部ヘッダーパイプにおいては、冷媒流量・入口乾き度にかかわらず3つのcase1,2,3で、均等分配線にほぼ沿った良好な液分配特性が得られていることが分かる。これは、下部ヘッダーパイプ7内に多孔管27を挿入しおき、その分配孔29を多孔管27の下向きに配置したことで、下部ヘッダーパイプ7の内面と多孔管27の外面とで囲まれた環状領域にある冷媒の液膜が、多孔管27の底から噴出される気泡により攪拌される作用が、入口乾き度や流量にかかわらず所望に得られているものであり、それにより、冷媒の均等分配が実現されている。   On the other hand, in the lower header pipe with a built-in perforated pipe according to the present embodiment shown in FIG. 4, the three cases 1, 2, and 3 are good substantially along the wiring evenly regardless of the refrigerant flow rate and the inlet dryness. It can be seen that excellent liquid distribution characteristics are obtained. This is because the porous tube 27 is inserted into the lower header pipe 7 and the distribution hole 29 is disposed downwardly of the porous tube 27 so that the inner surface of the lower header pipe 7 and the outer surface of the porous tube 27 are surrounded. The action of stirring the liquid film of the refrigerant in the annular region by the bubbles ejected from the bottom of the perforated tube 27 is obtained as desired regardless of the dryness of the inlet and the flow rate. Even distribution is realized.

続いて、図1に示した上記熱交換器の具体的な適用例について説明する。本実施の形態は、複数の熱交換機能面3に対し、冷媒乾き度及び冷媒流量を均等に調整する態様を例示していたが、具体的な適用例としては、ビル用マルチエアコン室外機への適用を挙げる。図5は、ビル用マルチエアコン室外機の外観及び平面を示す図である。ビル用マルチエアコン室外機は、一般家庭用よりも大型であり高処理な装置として採用されている。   Then, the specific application example of the said heat exchanger shown in FIG. 1 is demonstrated. Although this Embodiment illustrated the aspect which adjusts a refrigerant | coolant dryness and a refrigerant | coolant flow rate equally with respect to the several heat exchange functional surface 3, as a concrete application example, it is to the multi air conditioner outdoor unit for buildings. The application of FIG. 5 is a diagram illustrating an appearance and a plan view of a multi-air conditioner outdoor unit for buildings. Multi-air conditioner outdoor units for buildings are larger than those for general households and are used as high-processing devices.

図5に示されるように、ビル用マルチエアコン室外機101は、筐体103の3面それぞれに熱交換機能面3が割り当てられており、平面視、それらの中央にプロペラファン105が配置されている。そして、筐体103の3つの側面それぞれから、矢印107に示されるように空気が筐体103内に吸込まれ、各熱交換機能面3で熱交換され、筐体103の上面に設けられたファンガード109に形成された吹出口から、矢印111に示されるように吐出される(トップフロータイプ)。   As shown in FIG. 5, the building multi-air conditioner outdoor unit 101 has the heat exchange function surface 3 assigned to each of the three surfaces of the housing 103, and the propeller fan 105 is arranged in the center in plan view. Yes. Then, air is sucked into the housing 103 as indicated by an arrow 107 from each of the three side surfaces of the housing 103, and heat is exchanged by each heat exchange function surface 3, and a fan provided on the upper surface of the housing 103. From the air outlet formed in the guard 109, it discharges as shown by the arrow 111 (top flow type).

次に、このように構成された本実施の形態に係る熱交換器及び熱交換方法の作用について説明する。暖房運転時、室外機である熱交換器1は、蒸発器として動作し、ディストリビュータ21に入った気液二相冷媒は、図示しないオリフィスを通過する際に均質な噴霧流となり、各下部連絡管25に供給され、各流量調整部23で流量を調整されて、対応する熱交換機能面3の下部ヘッダーパイプ7に流入する。下部ヘッダーパイプ7の集合側出入口7aから流入した冷媒は、多孔管27の分配孔29から噴出し、各熱交換パイプ9に均等に分配される。多孔管27では乾き度が大きい場合、微小な液滴が小穴から噴出し、乾き度が小さい場合、環状部に溜った液部へ気泡が噴出するため、乾き度や流量に依存せず、均等分配が実現される。冷媒は、各熱交換パイプ9を通過する際に図示しない空気と熱交換した後、上部ヘッダーパイプ5へ流入し、下部ヘッダーパイプ7の集合側出入口7aとは逆側となる集合側出入口5aから流出する。各集合側出入口5aから流出した冷媒は、対応する上部連絡管13を通り、上部集合管15において合流する。なお、冷房運転時には、熱交換器1は、凝縮器として動作し、冷媒の流れが逆になる。   Next, the effect | action of the heat exchanger and heat exchange method which concern on this Embodiment comprised in this way is demonstrated. During the heating operation, the heat exchanger 1 that is an outdoor unit operates as an evaporator, and the gas-liquid two-phase refrigerant that has entered the distributor 21 becomes a homogeneous spray flow when passing through an orifice (not shown). The flow rate is adjusted by each flow rate adjusting unit 23 and flows into the lower header pipe 7 of the corresponding heat exchange function surface 3. The refrigerant flowing in from the collecting side inlet / outlet 7 a of the lower header pipe 7 is ejected from the distribution hole 29 of the perforated pipe 27 and is evenly distributed to the heat exchange pipes 9. In the perforated tube 27, when the dryness is large, minute droplets are ejected from the small holes, and when the dryness is small, the bubbles are ejected to the liquid portion accumulated in the annular portion. Distribution is realized. The refrigerant exchanges heat with air (not shown) when passing through each heat exchange pipe 9, and then flows into the upper header pipe 5 from the collection side entrance / exit 5 a that is opposite to the collection side entrance / exit 7 a of the lower header pipe 7. leak. The refrigerant flowing out from each collecting side entrance / exit 5a passes through the corresponding upper connecting pipe 13 and joins in the upper collecting pipe 15. During the cooling operation, the heat exchanger 1 operates as a condenser and the refrigerant flow is reversed.

以上説明したように、本発明の熱交換器及びそれによる熱交換方法によれば、次のような利点が得られている。まず、熱交換機能面のそれぞれにおいて、ヘッダーパイプが水平方向を指向しているため、冷媒流通に対し重力の影響を抑制することができ、複数の熱交換パイプへ冷媒を均等に分配することができる。さらに、そのようにヘッダーパイプを水平配置しておりながらも、ヘッダーパイプの湾曲形成が困難であるという実情に阻害されることなく複数の面に熱交換機能を発揮させることが可能となっている。さらに、複数の面それぞれで熱交換を行っておりながら、冷媒の流通は、複数の熱交換機能面に対して並列に分流させているので、複数の熱交換機能面の相互間で、上流・下流の関係が生じることがなく、熱交換機能面それぞれにおいて、良好な熱交換効率を維持することができる。特に、本実施の形態では、ディストリビュータと流量調整部とを介して冷媒の乾き度及び流量を各熱交換機能面の条件に応じて所望に調整した後に、その熱交換機能面に分配供給するので、すべての熱交換機能面で極めて良好な熱交換性能を得ることができる。また、熱交換器全体においてみて、一度、複数の熱交換パイプにて熱交換を行った冷媒が集合され、さらに再度、複数の熱交換パイプに分流される流路を有しないため、複数の熱交換パイプに均等に冷媒を供給できなくなるといった問題も生じない。このように、本実施の形態に係る熱交換器及び熱交換方法によれば、複数の熱交換機能面を有しておりながらも、冷媒への重力の影響を抑制できると共に各面での熱交換性能の低下を抑制することが可能となっている。   As described above, according to the heat exchanger of the present invention and the heat exchange method using the heat exchanger, the following advantages are obtained. First, in each of the heat exchange function surfaces, the header pipes are oriented horizontally, so that the influence of gravity on the refrigerant flow can be suppressed, and the refrigerant can be evenly distributed to a plurality of heat exchange pipes. it can. Furthermore, while the header pipes are horizontally arranged in such a manner, it is possible to exert a heat exchange function on a plurality of surfaces without being hindered by the fact that it is difficult to form a curved header pipe. . Furthermore, while heat exchange is performed on each of the plurality of surfaces, the refrigerant flow is divided in parallel with respect to the plurality of heat exchange function surfaces. There is no downstream relationship, and good heat exchange efficiency can be maintained in each of the heat exchange function surfaces. In particular, in the present embodiment, the refrigerant dryness and flow rate are adjusted as desired according to the conditions of each heat exchange function surface via the distributor and the flow rate adjustment unit, and then distributed and supplied to the heat exchange function surface. In all heat exchange functions, extremely good heat exchange performance can be obtained. In addition, since the refrigerant that has exchanged heat once with a plurality of heat exchange pipes is collected in the heat exchanger as a whole and does not have a flow path that is again divided into the plurality of heat exchange pipes, There is no problem that the refrigerant cannot be evenly supplied to the exchange pipe. Thus, according to the heat exchanger and the heat exchange method according to the present embodiment, the influence of gravity on the refrigerant can be suppressed and the heat on each surface can be suppressed while having a plurality of heat exchange function surfaces. It is possible to suppress a decrease in exchange performance.

また、各熱交換機能面では、下部ヘッダーパイプの出入口と上部ヘッダーパイプの出入口とが反対側に配置されているので、冷媒は、何れの熱交換パイプを通っても圧力損失がほぼ等しくなり、すなわち、気液二相流の均一分配が実現できる。また、多孔管を下部ヘッダーパイプ内に設けることにより、分配孔から微小液滴や気泡が二重構造の環状部に噴射されることなり、それによっても、気液二相冷媒の均一分配が促進される。さらに、本実施の形態では、熱交換パイプへの分配数を多くし分配回数は低く(上記例では分配数は一回限り)抑えているので、複数の熱交換機能面を用意すべく極めて多数の熱交換パイプを用いておりながらも、その熱交換パイプの本数の割には、冷媒圧力損失を低く抑えることが可能となっている。よって、特に、低圧冷媒(冷媒圧損の大きい冷媒など)、例えばHFO1234yf,HFO1234ze又はR134aも有効に活用することができる。   Moreover, in each heat exchange function surface, since the entrance and exit of the lower header pipe and the entrance and exit of the upper header pipe are arranged on the opposite side, the refrigerant has almost the same pressure loss regardless of the heat exchange pipe, That is, uniform distribution of the gas-liquid two-phase flow can be realized. In addition, by providing a perforated tube in the lower header pipe, fine droplets and bubbles are ejected from the distribution holes to the annular structure of the double structure, which also promotes uniform distribution of the gas-liquid two-phase refrigerant Is done. Further, in the present embodiment, the number of distribution to the heat exchange pipe is increased and the number of distribution is kept low (in the above example, the number of distribution is limited to one time), so that a very large number of heat exchange functional surfaces are prepared. Although the heat exchange pipe is used, the refrigerant pressure loss can be kept low for the number of heat exchange pipes. Therefore, in particular, a low-pressure refrigerant (such as a refrigerant having a large refrigerant pressure loss) such as HFO1234yf, HFO1234ze, or R134a can be effectively used.

実施の形態2.
図6に基づいて本発明の実施の形態2について説明する。上記実施の形態1では、複数の熱交換機能面に対し、冷媒乾き度を均等に調整し、各熱交換機能面で異なる熱負荷(主に熱交換部の通過風速に依存する)に応じて冷媒流量を変更する態様を例示していたが、本発明は、これに限定されるものではない。すなわち、本発明は、複数の熱交換機能面において冷媒乾き度及び/又は冷媒流量が異なるように調整する態様も含むものである。具体的な適用例としては、パッケージエアコン室外機への適用を挙げる。図6は、パッケージエアコン室外機の外観及び平面を示す図である。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIG. In the said Embodiment 1, according to the heat load (it mainly depends on the passing wind speed of a heat exchange part) which adjusts a refrigerant | coolant dryness equally with respect to several heat exchange function surface, and is different in each heat exchange function surface. Although the aspect which changes a refrigerant | coolant flow volume was illustrated, this invention is not limited to this. That is, the present invention includes a mode in which the refrigerant dryness and / or the refrigerant flow rate are adjusted to be different in a plurality of heat exchange function surfaces. A specific application example is application to a packaged air conditioner outdoor unit. FIG. 6 is a diagram illustrating an appearance and a plane of the packaged air conditioner outdoor unit.

図6に示されるように、パッケージエアコン室外機201は、筐体203の側面及び背面それぞれに熱交換機能面3が割り当てられている。プロペラファン205の回転により、筐体203の側面及び背面それぞれから、矢印207に示されるように空気が筐体203内に吸込まれ、各熱交換機能面3で熱交換され、筐体203の正面に設けられた吹出口から、矢印211に示されるように吐出される。   As shown in FIG. 6, in the packaged air conditioner outdoor unit 201, the heat exchange function surface 3 is assigned to each of the side surface and the back surface of the housing 203. By rotation of the propeller fan 205, air is sucked into the housing 203 as indicated by an arrow 207 from each of the side surface and the back surface of the housing 203, and heat is exchanged at each heat exchange function surface 3, and the front surface of the housing 203 As shown by the arrow 211, it discharges from the blower outlet provided in.

このような本実施の形態2によっても、実施の形態1同様、複数の熱交換機能面を有しておりながらも、冷媒への重力の影響を抑制できると共に各面での熱交換性能の低下を抑制することができる。   Even in this second embodiment, as in the first embodiment, while having a plurality of heat exchange function surfaces, the influence of gravity on the refrigerant can be suppressed and the heat exchange performance on each surface is degraded. Can be suppressed.

以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。   Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.

例えば、上述した多孔管においては、多数の分配孔が下向きにあるものとして説明したが、分配孔の形成態様は、これに限定されず、分配孔の配向、数、穴形状は、適宜、改変することが可能である。また、上述した分流調整部の構成も、あくまでも一例であり、適宜改変することができる。例えば、Y字分岐管や低圧損ディストリビュータ等、複数の出口側分岐路の高さ位置を相互に異ならせ、重力の影響で液相の分流の割合を変化させ、乾き度及び流量を同時に調整する態様の分流調整部を用いることも可能である。   For example, in the above-described perforated pipe, it has been described that there are a large number of distribution holes facing downward. However, the distribution hole formation mode is not limited to this, and the orientation, number, and shape of the distribution holes are appropriately changed. Is possible. The above-described configuration of the flow dividing adjustment unit is merely an example, and can be modified as appropriate. For example, the height position of multiple outlet side branch paths such as Y-shaped branch pipes and low-pressure loss distributors are made different from each other, the ratio of the liquid phase diversion is changed by the influence of gravity, and the dryness and flow rate are adjusted simultaneously. It is also possible to use the diversion adjusting unit of the aspect.

1 熱交換器、3 熱交換機能面、5 上部ヘッダーパイプ、7 下部ヘッダーパイプ、5a,7a 集合側出入口、9 熱交換パイプ、17 分流調整部、19 下部集合管、21 ディストリビュータ、23 流量調整部、25 下部連絡管、27 多孔管、29 分配孔。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 3 Heat exchange function surface, 5 Upper header pipe, 7 Lower header pipe, 5a, 7a Collecting side entrance / exit, 9 Heat exchange pipe, 17 Split flow adjusting part, 19 Lower collecting pipe, 21 Distributor, 23 Flow rate adjusting part , 25 Lower connecting pipe, 27 Porous pipe, 29 Distribution hole.

Claims (7)

複数の熱交換機能面を有し、
該熱交換機能面それぞれにおいて、上部ヘッダーパイプ及び下部ヘッダーパイプと、それら上下一対のヘッダーパイプの間に設けられた複数の熱交換パイプとを有し、
前記複数の熱交換機能面は並列接続関係にあり、
複数の前記下部ヘッダーパイプは、分流調整部を介して、下部集合管とつながっている、
熱交換器。
It has multiple heat exchange functions
In each of the heat exchange functional surfaces, it has an upper header pipe and a lower header pipe, and a plurality of heat exchange pipes provided between the pair of upper and lower header pipes,
The plurality of heat exchange function surfaces are in a parallel connection relationship,
The plurality of lower header pipes are connected to the lower collecting pipe through a flow dividing adjustment section,
Heat exchanger.
前記分流調整部は、ディストリビュータと、少なくとも一つの流量調整部とを含んでおり、
前記ディストリビュータは、前記下部集合管と前記複数の下部ヘッダーパイプとの間に設けられて、前記複数の下部ヘッダーパイプに供給する冷媒の乾き度を均等にし、
前記少なくとも一つの流量調整部は、前記ディストリビュータと、対応する前記下部ヘッダーパイプとの間に配置されている、
請求項1の熱交換器。
The shunt adjusting unit includes a distributor and at least one flow rate adjusting unit,
The distributor is provided between the lower collecting pipe and the plurality of lower header pipes, and equalizes the dryness of the refrigerant supplied to the plurality of lower header pipes,
The at least one flow rate adjusting portion is disposed between the distributor and the corresponding lower header pipe;
The heat exchanger according to claim 1.
前記複数の下部ヘッダーパイプはそれぞれ、その内部に、多孔管を有している、請求項1又は2の熱交換器。   The heat exchanger according to claim 1 or 2, wherein each of the plurality of lower header pipes has a porous tube therein. 前記熱交換機能面それぞれにおいて、前記下部ヘッダーパイプの集合側出入口は、該下部ヘッダーパイプの一端側に設けられており、前記上部ヘッダーパイプの集合側出入口は、該上部ヘッダーパイプの他端側に設けられている、請求項1乃至3の何れか一項の熱交換器。   In each of the heat exchange functional surfaces, the lower header pipe collecting side entrance is provided on one end side of the lower header pipe, and the upper header pipe collecting side entrance is on the other end side of the upper header pipe. The heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is provided. 低圧冷媒であるHFO1234yf、HFO1234ze又はR134aを用いる、請求項1乃至4の何れか一項の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein HFO1234yf, HFO1234ze, or R134a, which is a low-pressure refrigerant, is used. 複数の面で熱交換を行う熱交換方法であって、
複数の熱交換機能面それぞれにおいて、上部ヘッダーパイプ及び下部ヘッダーパイプと、それら上下一対のヘッダーパイプの間に設けられた複数の熱交換パイプとを用意し、
前記複数の熱交換機能面を並列に接続し、複数の前記下部ヘッダーパイプは、分流調整部を介して、下部集合管とつなげておき、
前記下部集合管内の冷媒を、前記分流調整部において前記複数の熱交換機能面に並列に分流させ、前記複数の熱交換機能面のそれぞれで熱交換を行わせ、複数の前記上部ヘッダーパイプから流出させて、上部側集合管に合流させる、
熱交換方法。
A heat exchange method for exchanging heat on a plurality of surfaces,
In each of a plurality of heat exchange function surfaces, an upper header pipe and a lower header pipe, and a plurality of heat exchange pipes provided between the pair of upper and lower header pipes are prepared,
The plurality of heat exchange function surfaces are connected in parallel, and the plurality of lower header pipes are connected to the lower collecting pipe via a flow dividing adjustment unit,
The refrigerant in the lower collecting pipe is diverted in parallel to the plurality of heat exchange function surfaces in the diversion adjusting unit, heat exchange is performed in each of the plurality of heat exchange function surfaces, and the refrigerant flows out of the plurality of upper header pipes Let it join the upper collecting pipe,
Heat exchange method.
低圧冷媒であるHFO1234yf、HFO1234ze又はR134aを用いる、請求項7の熱交換方法。   The heat exchange method according to claim 7, wherein the low-pressure refrigerant is HFO1234yf, HFO1234ze, or R134a.
JP2014512239A 2012-04-26 2012-04-26 Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method Active JP6104893B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061232 WO2013161038A1 (en) 2012-04-26 2012-04-26 Heat exchanger and heat exchange method

Publications (2)

Publication Number Publication Date
JPWO2013161038A1 true JPWO2013161038A1 (en) 2015-12-21
JP6104893B2 JP6104893B2 (en) 2017-03-29

Family

ID=49482407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512239A Active JP6104893B2 (en) 2012-04-26 2012-04-26 Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method

Country Status (6)

Country Link
US (1) US20150083383A1 (en)
EP (1) EP2863161B1 (en)
JP (1) JP6104893B2 (en)
CN (2) CN104335000B (en)
ES (1) ES2702291T3 (en)
WO (1) WO2013161038A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951114B1 (en) * 2009-10-13 2011-11-04 Peugeot Citroen Automobiles Sa COOLING DEVICE FOR A HYBRID VEHICLE
AU2014391505B2 (en) * 2014-04-22 2018-11-22 Mitsubishi Electric Corporation Air conditioner
WO2016181509A1 (en) * 2015-05-12 2016-11-17 三菱電機株式会社 Corrugated fin-type heat exchanger, refrigeration cycle device, device for producing corrugated fins, and method for producing corrugated fin-type heat exchanger
JP6403896B2 (en) * 2015-09-09 2018-10-10 三菱電機株式会社 Air conditioner
JP6650752B2 (en) * 2015-12-24 2020-02-19 株式会社前川製作所 Air-cooled heat exchange unit and cooler unit
KR200486092Y1 (en) 2016-08-11 2018-04-03 삼성중공업 주식회사 Cathodic Protection Apparatus
JP2018109455A (en) * 2016-12-28 2018-07-12 株式会社前川製作所 Air-cooled type heat exchange unit and cooler unit
WO2019008664A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Refrigeration cycle device
JP2019152367A (en) * 2018-03-02 2019-09-12 パナソニックIpマネジメント株式会社 Heat exchange unit and air conditioner using the same
JP6576577B1 (en) * 2018-06-11 2019-09-18 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air conditioner
JPWO2020100897A1 (en) * 2018-11-12 2021-06-10 三菱電機株式会社 How to manufacture heat exchangers and heat exchangers
CN112066602A (en) * 2020-09-14 2020-12-11 珠海格力电器股份有限公司 Heat exchanger, air conditioner and air conditioner control method and device
US20230076784A1 (en) * 2021-09-06 2023-03-09 Inventec (Pudong) Technology Corporation Heat dissipation assembly and electronic assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626783A (en) * 1992-07-10 1994-02-04 Kobe Steel Ltd Gasification device for liquefied natural gas
JPH06159840A (en) * 1992-11-18 1994-06-07 Nippondenso Co Ltd Heat pump type air conditioner
JPH0942743A (en) * 1995-07-27 1997-02-14 Hitachi Ltd Air conditioner refrigerant branch unit used therefor
JPH10160382A (en) * 1996-11-29 1998-06-19 Toyo Radiator Co Ltd Heat exchanger for air conditioning and manufacture of the same
JPH10185358A (en) * 1996-10-24 1998-07-14 Showa Alum Corp Evaporator
JP2005180910A (en) * 2003-12-22 2005-07-07 Hussmann Corp Flat-tube evaporator with micro distributor
JP2010038439A (en) * 2008-08-05 2010-02-18 Sharp Corp Heat exchanger
CN101762201A (en) * 2010-01-05 2010-06-30 华北电力大学 Flute-shaped current equalizer applied for uniformly distributing two-phase flow of header branch pipe
JP2012052676A (en) * 2010-08-31 2012-03-15 Hitachi Appliances Inc Heat exchanger and air conditioner using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373353A (en) * 1977-08-17 1983-02-15 Fedders Corporation Refrigerant control
CA2166395C (en) * 1993-07-03 2006-05-09 Josef Osthues Plate heat exchanger with a refrigerant distributor
FR2713320B1 (en) * 1993-12-02 1996-02-02 Mc International Process for continuous control and defrosting of a refrigeration exchanger and installation equipped with such an exchanger.
KR100497847B1 (en) * 1996-10-24 2005-09-30 쇼와 덴코 가부시키가이샤 Evaporator
US5842351A (en) * 1997-10-24 1998-12-01 American Standard Inc. Mixing device for improved distribution of refrigerant to evaporator
US6729386B1 (en) * 2001-01-22 2004-05-04 Stanley H. Sather Pulp drier coil with improved header
US7331195B2 (en) * 2004-10-01 2008-02-19 Advanced Heat Transfer Llc Refrigerant distribution device and method
KR100908769B1 (en) * 2005-02-02 2009-07-22 캐리어 코포레이션 Co-current heat exchangers and methods to promote uniform refrigerant flow
US7597137B2 (en) * 2007-02-28 2009-10-06 Colmac Coil Manufacturing, Inc. Heat exchanger system
US20110094257A1 (en) * 2008-03-20 2011-04-28 Carrier Corporation Micro-channel heat exchanger suitable for bending
US20110127023A1 (en) * 2008-07-10 2011-06-02 Taras Michael F Design characteristics for heat exchangers distribution insert
JP5385589B2 (en) 2008-10-30 2014-01-08 シャープ株式会社 Air conditioner outdoor unit
CN101907376B (en) * 2009-06-02 2012-07-25 江森自控楼宇设备科技(无锡)有限公司 Device for distributing refrigerant in refrigeration system
KR20110104667A (en) * 2010-03-17 2011-09-23 엘지전자 주식회사 Distributor, evaporator and refrigerating machine with the same
CN101949663B (en) * 2010-09-13 2011-09-28 三花丹佛斯(杭州)微通道换热器有限公司 Refrigerant guide pipe and heat exchanger with same
US8408284B2 (en) * 2011-05-05 2013-04-02 Delphi Technologies, Inc. Heat exchanger assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626783A (en) * 1992-07-10 1994-02-04 Kobe Steel Ltd Gasification device for liquefied natural gas
JPH06159840A (en) * 1992-11-18 1994-06-07 Nippondenso Co Ltd Heat pump type air conditioner
JPH0942743A (en) * 1995-07-27 1997-02-14 Hitachi Ltd Air conditioner refrigerant branch unit used therefor
JPH10185358A (en) * 1996-10-24 1998-07-14 Showa Alum Corp Evaporator
JPH10160382A (en) * 1996-11-29 1998-06-19 Toyo Radiator Co Ltd Heat exchanger for air conditioning and manufacture of the same
JP2005180910A (en) * 2003-12-22 2005-07-07 Hussmann Corp Flat-tube evaporator with micro distributor
JP2010038439A (en) * 2008-08-05 2010-02-18 Sharp Corp Heat exchanger
CN101762201A (en) * 2010-01-05 2010-06-30 华北电力大学 Flute-shaped current equalizer applied for uniformly distributing two-phase flow of header branch pipe
JP2012052676A (en) * 2010-08-31 2012-03-15 Hitachi Appliances Inc Heat exchanger and air conditioner using the same

Also Published As

Publication number Publication date
CN104335000A (en) 2015-02-04
JP6104893B2 (en) 2017-03-29
EP2863161B1 (en) 2018-11-14
EP2863161A4 (en) 2016-03-23
WO2013161038A1 (en) 2013-10-31
ES2702291T3 (en) 2019-02-28
US20150083383A1 (en) 2015-03-26
CN104335000B (en) 2016-09-14
CN203323459U (en) 2013-12-04
EP2863161A1 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP6104893B2 (en) Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
JP6352401B2 (en) Air conditioner
CN108139089B (en) Outdoor unit and indoor unit of air conditioner
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP5071597B2 (en) Heat exchanger and air conditioner
JP6364539B2 (en) Heat exchange device and air conditioner using the same
EP3217135B1 (en) Layered header, heat exchanger, and air-conditioning device
US11629897B2 (en) Distributor, heat exchanger, and refrigeration cycle apparatus
JP6138263B2 (en) Laminated header, heat exchanger, and air conditioner
JP2017519961A (en) Heat exchanger
JPWO2013160957A1 (en) Heat exchanger, indoor unit and refrigeration cycle apparatus
JP7102686B2 (en) Heat exchanger
JP6553981B2 (en) Heat exchange equipment for heat pump equipment
CN113167512B (en) Heat exchanger and refrigeration cycle device
WO2014068687A1 (en) Parallel flow heat exchanger and air conditioner using same
JP2016038115A (en) Heat exchanger
JP5525278B2 (en) Heat source unit
CN111902683B (en) Heat exchanger and refrigeration cycle device
JP2015224798A (en) Indoor unit of air conditioner
JP2019095073A (en) Heat exchanger and heat pump device using the same
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JP2012167861A (en) Plate type heat exchanger
JP2017141999A (en) Header distributor, outdoor machine mounted with header distributor, and air conditioner
JP3526454B2 (en) Heat exchanger and air conditioner provided with the heat exchanger
JP7376654B2 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R150 Certificate of patent or registration of utility model

Ref document number: 6104893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250