JP5385589B2 - Air conditioner outdoor unit - Google Patents

Air conditioner outdoor unit Download PDF

Info

Publication number
JP5385589B2
JP5385589B2 JP2008279099A JP2008279099A JP5385589B2 JP 5385589 B2 JP5385589 B2 JP 5385589B2 JP 2008279099 A JP2008279099 A JP 2008279099A JP 2008279099 A JP2008279099 A JP 2008279099A JP 5385589 B2 JP5385589 B2 JP 5385589B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
side heat
header pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008279099A
Other languages
Japanese (ja)
Other versions
JP2010107103A (en
Inventor
一寿 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008279099A priority Critical patent/JP5385589B2/en
Publication of JP2010107103A publication Critical patent/JP2010107103A/en
Application granted granted Critical
Publication of JP5385589B2 publication Critical patent/JP5385589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は空気調和機の室外機に関する。   The present invention relates to an outdoor unit of an air conditioner.

空気調和機にはセパレート型と呼ばれるものがある。それは室外機と室内機により構成され、室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含み、室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。   There is an air conditioner called a separate type. The outdoor unit includes an outdoor unit and an indoor unit. The outdoor unit includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, and the indoor unit includes an indoor heat exchanger, an indoor fan, and the like. . The outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation. The indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.

冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成を図10に示す。ヒートポンプサイクル1は、圧縮機2、四方弁3、室外側の熱交換器4、減圧膨張装置5、及び室内側の熱交換器6をループ状に接続したものである。圧縮機2、四方弁3、熱交換器4、及び減圧膨張装置5は室外機の筐体に収容され、熱交換器6は室内機の筐体に収容される。熱交換器4には室外側の送風機7が組み合わせられ、熱交換器6には室内側の送風機8が組み合わせられる。送風機7は多くの場合プロペラファンで構成され、送風機8は多くの場合クロスフローファンで構成される。   FIG. 10 shows a basic configuration of a separate type air conditioner that uses a heat pump cycle as a refrigeration cycle. The heat pump cycle 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, a decompression expansion device 5, and an indoor heat exchanger 6 connected in a loop. The compressor 2, the four-way valve 3, the heat exchanger 4, and the decompression / expansion device 5 are accommodated in the casing of the outdoor unit, and the heat exchanger 6 is accommodated in the casing of the indoor unit. An outdoor blower 7 is combined with the heat exchanger 4, and an indoor blower 8 is combined with the heat exchanger 6. The blower 7 is often composed of a propeller fan, and the blower 8 is often composed of a cross flow fan.

図10は暖房運転時の状態を示す。この時は、圧縮機2から吐出された高温高圧の冷媒は室内側の熱交換器6に入ってそこで放熱し、凝縮する。熱交換器6を出た冷媒は減圧膨張装置5から室外側の熱交換器4に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機2に戻る。室内側の送風機8によって生成された気流が熱交換器6からの放熱を促進し、室外側の送風機7によって生成された気流が熱交換器4の吸熱を促進する。   FIG. 10 shows a state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 2 enters the heat exchanger 6 on the indoor side, dissipates heat, and condenses. The refrigerant that has exited the heat exchanger 6 enters the outdoor heat exchanger 4 from the decompression / expansion device 5, expands there, takes heat from the outdoor air, and returns to the compressor 2. The air flow generated by the indoor air blower 8 promotes heat dissipation from the heat exchanger 6, and the air flow generated by the outdoor air blower 7 promotes heat absorption of the heat exchanger 4.

図11は冷房運転時あるいは除霜運転時の状態を示す。この時は暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機2から吐出された高温高圧の冷媒は室外側の熱交換器4に入ってそこで放熱し、凝縮する。熱交換器4を出た冷媒は減圧膨張装置5から室内側の熱交換器6に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機2に戻る。室外側の送風機7によって生成された気流が熱交換器4からの放熱を促進し、室内側の送風機8によって生成された気流が熱交換器6の吸熱を促進する。   FIG. 11 shows a state during cooling operation or defrosting operation. At this time, the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 2 enters the outdoor heat exchanger 4 where it dissipates heat and condenses. The refrigerant that has exited the heat exchanger 4 enters the indoor heat exchanger 6 from the decompression / expansion device 5, expands there, takes heat from indoor air, and returns to the compressor 2. The air flow generated by the outdoor blower 7 promotes heat dissipation from the heat exchanger 4, and the air flow generated by the indoor blower 8 promotes heat absorption of the heat exchanger 6.

上記のようなセパレート型空気調和機の室外機は、全体形状としては直方体であり、平面形状略矩形で、長辺側が正面及び背面、短辺側が左右両側面となった筐体内に、各種機能部品を収容しているのが通例である。従来の室外機の構成例を図12に示す。   The outdoor unit of the separate type air conditioner as described above has a rectangular parallelepiped shape as a whole, has a substantially rectangular plane shape, and has various functions in a housing in which the long side is the front and back, and the short side is the left and right sides. It is customary to house the parts. A configuration example of a conventional outdoor unit is shown in FIG.

図12の室外機10は平面形状略矩形の板金製筐体10aを備え、筐体10aの長辺側を正面10F及び背面10Bとし、短辺側を左側面10L及び右側面10Rとしている。正面10Fには排気口11が形成され、背面10Bには背面吸気口12が形成される。排気口11は複数の水平なスリット状開口の集合からなり、背面吸気口12は格子状の開口からなる。正面10F、背面10B、左側面10L、右側面10Rの4面の板金部材に図示しない天板と底板が加わって六面体形状の筐体10aが形成される。   The outdoor unit 10 in FIG. 12 includes a sheet metal casing 10a having a substantially rectangular planar shape. The long side of the casing 10a is a front surface 10F and a back surface 10B, and the short side is a left side surface 10L and a right side surface 10R. An exhaust port 11 is formed on the front surface 10F, and a rear intake port 12 is formed on the back surface 10B. The exhaust port 11 is composed of a set of a plurality of horizontal slit-shaped openings, and the rear intake port 12 is composed of a lattice-shaped opening. A top plate and a bottom plate (not shown) are added to the four sheet metal members of the front surface 10F, the back surface 10B, the left side surface 10L, and the right side surface 10R to form a hexahedral-shaped housing 10a.

筐体10aの内部には、背面吸気口12のすぐ内側に室外側の熱交換器4が配置される。熱交換器4と室外空気との間で強制的に熱交換を行わせるため、熱交換器4と排気口11の間に室外側の送風機7が配置される。送風機7は電動機7aにプロペラファン7bを組み合わせたものである。送風効率向上のため、筐体10aの正面10Fの内面にはプロペラファン7bを囲むベルマウス13が取り付けられる。筐体10aの右側面10Rの内側の空間は背面吸気口12から排気口11へと流れる空気流から隔壁14で隔離されており、ここに圧縮機2が収容されている。   Inside the housing 10a, the outdoor heat exchanger 4 is arranged just inside the rear intake port 12. In order to forcibly perform heat exchange between the heat exchanger 4 and the outdoor air, an outdoor blower 7 is disposed between the heat exchanger 4 and the exhaust port 11. The blower 7 is a combination of an electric motor 7a and a propeller fan 7b. In order to improve the blowing efficiency, a bell mouth 13 surrounding the propeller fan 7b is attached to the inner surface of the front surface 10F of the housing 10a. The space inside the right side surface 10R of the housing 10a is separated from the air flow flowing from the rear intake port 12 to the exhaust port 11 by the partition wall 14, and the compressor 2 is accommodated therein.

熱交換器4としては、フィンアンドチューブタイプ、パラレルフロータイプ、サーペンタインタイプといった種類のものが用いられる。フィンアンドチューブタイプは、多数の平行するフィンを1本のチューブが蛇行しつつ貫通する形のものである。パラレルフロータイプは、2本のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したものである。サーペンタインタイプは、2本のヘッダパイプの間に偏平チューブを配置するところまではパラレルフロータイプと同じであるが、偏平チューブの数が1本であり、この1本の偏平チューブを蛇行させ、蛇行する偏平チューブの間にコルゲートフィン等のフィンを配置したものである。   As the heat exchanger 4, a fin and tube type, a parallel flow type, a serpentine type, or the like is used. The fin-and-tube type is a type in which a single tube passes through many parallel fins while meandering. In the parallel flow type, a plurality of flat tubes are arranged between two header pipes so that a refrigerant passage inside the flat tubes communicates with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. It is. The serpentine type is the same as the parallel flow type until a flat tube is placed between two header pipes, but the number of flat tubes is one, and the single flat tube is meandered to meander. A fin such as a corrugated fin is disposed between the flat tubes.

図12の構成例では筐体10aの背面側のみに熱交換器4が存在するが、熱交換面積を大きくとるため、筐体10aの側面側にも熱交換器を配置することがある。そのようにした構成例を図13に示す。図13の構成例では左側面10Lに側面吸気口12aを形成し、そのすぐ内側に側面側熱交換器4aを配置している。「側面側熱交換器」との対比のため、熱交換器4を以後「背面側熱交換器」と呼称する。   In the configuration example of FIG. 12, the heat exchanger 4 exists only on the back side of the housing 10a. However, in order to increase the heat exchange area, a heat exchanger may be arranged on the side surface of the housing 10a. An example of such a configuration is shown in FIG. In the configuration example of FIG. 13, a side air inlet 12 a is formed on the left side surface 10 </ b> L, and a side surface side heat exchanger 4 a is disposed immediately inside thereof. For comparison with the “side heat exchanger”, the heat exchanger 4 is hereinafter referred to as “back heat exchanger”.

背面側熱交換器4と側面側熱交換器4aを同一面に並べて描いたのが図14である。背面側熱交換器4はパラレルフローのダウンフロータイプである。背面側熱交換器4は、上部ヘッダパイプ21と下部ヘッダパイプ22を互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21と下部ヘッダパイプ22の間に垂直な偏平チューブ23を所定ピッチで複数配置し、隣り合う偏平チューブ23同士の間にコルゲートフィン24を配置したものである。偏平チューブ23はアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路が形成されている。偏平チューブ23は押出成型方向を垂直にする形で配置されるので、冷媒通路の冷媒流通方向も垂直になる。冷媒通路の一構成例では、断面形状及び断面面積の等しいものが図14の奥行き方向に複数個並び、そのため偏平チューブ23はハーモニカのような断面を呈する。各冷媒通路は上部ヘッダパイプ21及び下部ヘッダパイプ22の内部に連通する。   FIG. 14 shows the rear side heat exchanger 4 and the side side heat exchanger 4a arranged side by side on the same plane. The back side heat exchanger 4 is a parallel flow down flow type. The back side heat exchanger 4 is arranged such that the upper header pipe 21 and the lower header pipe 22 are spaced horizontally from each other, that is, parallel to each other, and perpendicular to the upper header pipe 21 and the lower header pipe 22. A plurality of flat tubes 23 are arranged at a predetermined pitch, and corrugated fins 24 are arranged between adjacent flat tubes 23. The flat tube 23 is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and has a refrigerant passage through which a refrigerant flows. Since the flat tube 23 is disposed so that the extrusion molding direction is vertical, the refrigerant flow direction in the refrigerant passage is also vertical. In one configuration example of the refrigerant passage, a plurality of ones having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 14, and thus the flat tube 23 has a harmonica-like cross section. Each refrigerant passage communicates with the inside of the upper header pipe 21 and the lower header pipe 22.

上部ヘッダパイプ21及び下部ヘッダパイプ22と偏平チューブ23、及び偏平チューブ23とコルゲートフィン24はそれぞれロウ付けまたは溶着により固定される。偏平チューブ23の他、上部ヘッダパイプ21、下部ヘッダパイプ22、及びコルゲートフィン24もアルミニウム等熱伝導の良い金属からなる。   The upper header pipe 21, the lower header pipe 22, and the flat tube 23, and the flat tube 23 and the corrugated fin 24 are fixed by brazing or welding, respectively. In addition to the flat tube 23, the upper header pipe 21, the lower header pipe 22, and the corrugated fin 24 are also made of a metal having good thermal conductivity such as aluminum.

側面側熱交換器4aも背面側熱交換器4と同じくパラレルフローのダウンフロータイプであるが、背面側熱交換器4よりも横幅が狭い。側面側熱交換器4aは、上部ヘッダパイプ21aと下部ヘッダパイプ22aを互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21aと下部ヘッダパイプ22aの間に垂直な偏平チューブ23aを所定ピッチで複数配置し、隣り合う偏平チューブ23a同士の間にコルゲートフィン24aを配置したものである。偏平チューブ23aはアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路が形成されている。偏平チューブ23aは押出成型方向を垂直にする形で配置されるので、冷媒通路の冷媒流通方向も垂直になる。冷媒通路の一構成例では、断面形状及び断面面積の等しいものが図14の奥行き方向に複数個並び、そのため偏平チューブ23aはハーモニカのような断面を呈する。各冷媒通路は上部ヘッダパイプ21a及び下部ヘッダパイプ22aの内部に連通する。   The side heat exchanger 4 a is also a parallel flow downflow type like the back heat exchanger 4, but the lateral width is narrower than that of the back heat exchanger 4. In the side heat exchanger 4a, the upper header pipe 21a and the lower header pipe 22a are arranged horizontally at intervals from each other, that is, in parallel with each other, and perpendicular to the upper header pipe 21a and the lower header pipe 22a. A plurality of flat tubes 23a are arranged at a predetermined pitch, and corrugated fins 24a are arranged between adjacent flat tubes 23a. The flat tube 23a is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and a refrigerant passage through which a refrigerant flows is formed inside. Since the flat tube 23a is arranged so that the extrusion molding direction is vertical, the refrigerant flow direction in the refrigerant passage is also vertical. In one configuration example of the refrigerant passage, a plurality of tubes having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 14, and therefore the flat tube 23a has a cross section like a harmonica. Each refrigerant passage communicates with the inside of the upper header pipe 21a and the lower header pipe 22a.

上部ヘッダパイプ21a及び下部ヘッダパイプ22aと偏平チューブ23a、及び偏平チューブ23aとコルゲートフィン24aはそれぞれロウ付けまたは溶着により固定される。偏平チューブ23aの他、上部ヘッダパイプ21a、下部ヘッダパイプ22a、及びコルゲートフィン24aもアルミニウム等熱伝導の良い金属からなる。   The upper header pipe 21a and the lower header pipe 22a and the flat tube 23a, and the flat tube 23a and the corrugated fin 24a are fixed by brazing or welding, respectively. In addition to the flat tube 23a, the upper header pipe 21a, the lower header pipe 22a, and the corrugated fin 24a are also made of a metal having good thermal conductivity such as aluminum.

側面側熱交換器4aの偏平チューブ23aの本数は、背面側熱交換器4の偏平チューブ23の本数より少ない。そのため、偏平チューブ23aの冷媒通路面積の総和である側面側熱交換器4aの冷媒流路断面積は背面側熱交換器4に比べて小さくなる。   The number of the flat tubes 23 a of the side heat exchanger 4 a is less than the number of the flat tubes 23 of the back heat exchanger 4. Therefore, the cross-sectional area of the refrigerant flow path of the side heat exchanger 4a, which is the total refrigerant passage area of the flat tube 23a, is smaller than that of the back heat exchanger 4.

背面側熱交換器4の上部ヘッダパイプ21と下部ヘッダパイプ22には、同じ側の一端に冷媒配管25、26が接続される。上部ヘッダパイプ21の他端は冷媒配管25aを通じて側面側熱交換器4aの上部ヘッダパイプ21aの一端に接続され、下部ヘッダパイプ22の他端は冷媒配管26aを通じて側面側熱交換器4aの下部ヘッダパイプ22aの一端に接続される。上部ヘッダパイプ21aと下部ヘッダパイプ22aの他端は行き止まりになっている。背面側熱交換器4と側面側熱交換器4aは並列接続の関係にある。   Refrigerant pipes 25 and 26 are connected to one end on the same side of the upper header pipe 21 and the lower header pipe 22 of the back side heat exchanger 4. The other end of the upper header pipe 21 is connected to one end of the upper header pipe 21a of the side heat exchanger 4a through the refrigerant pipe 25a, and the other end of the lower header pipe 22 is connected to the lower header of the side heat exchanger 4a through the refrigerant pipe 26a. Connected to one end of the pipe 22a. The other ends of the upper header pipe 21a and the lower header pipe 22a are dead ends. The back surface side heat exchanger 4 and the side surface side heat exchanger 4a are in a parallel connection relationship.

冷媒配管25、26は、背面側熱交換器4と側面側熱交換器4aの両方に冷媒を送り込み、また背面側熱交換器4と側面側熱交換器4aの両方から冷媒を受け取るものである。冷房運転時には冷媒配管25から少なくとも一部がガス状となった高温高圧の冷媒が流入する。その冷媒は背面側熱交換器4と側面側熱交換器4aの冷媒通路を下降する間に室外空気に熱を放散し、凝縮して液状になる。暖房運転時には冷媒配管26から冷媒が流入し、背面側熱交換器4と側面側熱交換器4aの冷媒通路を上昇するうちに室外空気から熱を取り込んで蒸発する。   The refrigerant pipes 25 and 26 are configured to send refrigerant to both the back surface side heat exchanger 4 and the side surface side heat exchanger 4a and receive refrigerant from both the back surface side heat exchanger 4 and the side surface side heat exchanger 4a. . During the cooling operation, a high-temperature and high-pressure refrigerant at least partially in the form of gas flows from the refrigerant pipe 25. The refrigerant dissipates heat to the outdoor air while descending the refrigerant passages of the back-side heat exchanger 4 and the side-side heat exchanger 4a and condenses into a liquid state. During the heating operation, the refrigerant flows in from the refrigerant pipe 26, and evaporates by taking in heat from the outdoor air as it rises through the refrigerant passages of the back-side heat exchanger 4 and the side-side heat exchanger 4a.

送風機7を運転すると背面吸気口12と側面吸気口12aから室外空気が流入する。背面吸気口12から流入した室外空気は背面側熱交換器4との間で熱交換を行い、側面吸気口12aから流入した室外空気は側面側熱交換器4aとの間で熱交換を行った後、送風機7に吸い込まれ、排気口11から排出される。   When the blower 7 is operated, outdoor air flows from the rear intake port 12 and the side intake port 12a. The outdoor air that flowed in from the rear air inlet 12 exchanged heat with the rear heat exchanger 4, and the outdoor air that flowed in from the side air inlet 12a exchanged heat with the side heat exchanger 4a. Thereafter, the air is sucked into the blower 7 and discharged from the exhaust port 11.

上記の背面側熱交換器と側面側熱交換器の組み合わせのように、2面の熱交換器を直角に配置した熱交換器の例を特許文献1から特許文献3に見ることができる。   Examples of heat exchangers in which two heat exchangers are arranged at right angles can be seen in Patent Document 1 to Patent Document 3, such as a combination of the above-described back-side heat exchanger and side-side heat exchanger.

特許文献1に記載された熱交換器は、パラレルフローのサイドフロータイプの熱交換器を、偏平チューブを折り曲げて直角にし、コンパクト化を図っている。   In the heat exchanger described in Patent Document 1, a parallel flow side flow type heat exchanger is formed into a right angle by bending a flat tube to make a right angle.

特許文献2に記載された熱交換器は、パラレルフローのダウンフロータイプの熱交換器を、ヘッダパイプを折り曲げて直角にしている。   The heat exchanger described in Patent Document 2 is a parallel flow downflow type heat exchanger that is bent at a right angle by bending a header pipe.

特許文献3に記載された熱交換器は、パラレルフローのダウンフロータイプの熱交換器を2個、一方は幅の広い主コア、他方は幅の狭い従コアとして、互いに直角に配置している。主コアと従コアにおける冷媒の流れ方は、図13における背面側熱交換器4と側面側熱交換器4aへの冷媒の流れ方と同じである。   The heat exchanger described in Patent Document 3 includes two parallel-flow downflow type heat exchangers, one having a wide main core and the other having a narrow sub-core, arranged at right angles to each other. . The refrigerant flows in the main core and the slave core in the same manner as the refrigerant flows to the back-side heat exchanger 4 and the side-side heat exchanger 4a in FIG.

熱交換器の熱交換面積を増大するため、複数の熱交換器を気流方向に整列させ、複数列にして配置することもある。特許文献4にはパラレルフロータイプの熱交換器を複数列で配置した構成が記載されている。特許文献5には複数の帯板状チューブエレメントを厚さ方向に積層した構成が記載されている。
特開2008−45862号公報 特開2005−90806号公報 特開平10−160382号公報 特開2002−13840号公報 特開2001−108392号公報
In order to increase the heat exchange area of the heat exchanger, a plurality of heat exchangers may be arranged in a plurality of rows aligned in the airflow direction. Patent Document 4 describes a configuration in which parallel flow type heat exchangers are arranged in a plurality of rows. Patent Document 5 describes a configuration in which a plurality of strip plate-like tube elements are stacked in the thickness direction.
JP 2008-45862 A Japanese Patent Laid-Open No. 2005-90806 JP-A-10-160382 JP 2002-13840 A JP 2001-108392 A

室外機の筐体内スペースを有効活用するため、筐体の側面側にも熱交換器を配置する場合、特許文献1や特許文献2に記載のもののように熱交換器を曲げ加工して側面側熱交換器を形成するのは、一歩間違えると偏平チューブやヘッダパイプが破れる危険性があり、加工が難しい。また、サイドフロータイプの熱交換器は排水性が悪く、蒸発器としては使用困難である。特許文献3に記載のもののように独立した2個の熱交換器を直角に配置する構成では、特許文献1や特許文献2に記載のものが抱えているような問題は少ない。但し特許文献3記載の構成の場合、背面側熱交換器の偏平チューブと側面側熱交換器の偏平チューブは並列関係にあり、背面側熱交換器だけの場合に比べ熱交換面積が拡大されたとは言うものの、冷媒流路断面積は大きいままで一定しており、冷媒が気体から徐々に液化して比容積が小さくなって行くにつれ冷媒の流速が低下し、これが熱伝達率の低下をもたらし、その結果、熱交換器全体の性能が低下することがある。このように、単に熱交換面積を拡大したというだけでは、冷媒を効率的に過冷却することに結びつくものではなく、熱交換面積の拡大に見合う性能向上を実現するには至らなかった。   In order to effectively utilize the space in the housing of the outdoor unit, when the heat exchanger is also arranged on the side surface of the housing, the heat exchanger is bent as in the case of Patent Document 1 or Patent Document 2, and the side surface side Forming the heat exchanger is difficult to process because there is a risk that the flat tube and header pipe will be broken if one step is wrong. Moreover, the side flow type heat exchanger has poor drainage and is difficult to use as an evaporator. In the configuration in which two independent heat exchangers are arranged at right angles like the one described in Patent Document 3, there are few problems that the ones described in Patent Document 1 and Patent Document 2 have. However, in the case of the configuration described in Patent Document 3, the flat tube of the back side heat exchanger and the flat tube of the side side heat exchanger are in a parallel relationship, and the heat exchange area is expanded compared to the case of only the back side heat exchanger. That said, the cross-sectional area of the refrigerant flow path remains large and constant, and as the refrigerant gradually liquefies from the gas and the specific volume decreases, the flow velocity of the refrigerant decreases, leading to a decrease in heat transfer coefficient. As a result, the performance of the entire heat exchanger may deteriorate. Thus, simply expanding the heat exchange area does not lead to efficient supercooling of the refrigerant, and has not led to an improvement in performance commensurate with the expansion of the heat exchange area.

本発明は上記の点に鑑みなされたものであり、大きな熱交換面積を比較的容易に得ることができるとともに、液化された冷媒の流速を低下させず、効率的に過冷却を促進できる高性能な空気調和機の室外機を提供することを目的とする。   The present invention has been made in view of the above points, and can obtain a large heat exchange area relatively easily, and can effectively promote supercooling without reducing the flow rate of the liquefied refrigerant. An object of the present invention is to provide an outdoor unit for an air conditioner.

上記目的を達成するために本発明は、平面形状略矩形で、長辺側が正面及び背面、短辺側が左右両側面となった筐体の中に、圧縮機、熱交換器、及び送風機を収容する空気調和機の室外機において、前記筐体には、背面と一方の側面に背面吸気口と側面吸気口を、正面に排気口を、それぞれ形成し、前記排気口の内側には当該排気口を通じて筐体内の空気を排出する送風機を配置し、前記背面吸気口と側面吸気口の内側にはいずれもパラレルフローのダウンフロータイプである背面側熱交換器と側面側熱交換器を配置し、前記背面側熱交換器と側面側熱交換器は、凝縮時には背面側熱交換器の偏平チューブを通った冷媒が側面側熱交換器に送られるように接続されているとともに、前記背面側熱交換器と側面側熱交換器の少なくとも一方は気流方向に整列する複数の熱交換器により構成され、前記複数の熱交換器の間には、凝縮時に風下側の熱交換器から風上側の熱交換器へと流れる冷媒回路が形成されることを特徴としている。   In order to achieve the above object, the present invention accommodates a compressor, a heat exchanger, and a blower in a casing having a substantially rectangular planar shape, with the long side on the front and back and the short side on the left and right sides. In the outdoor unit of an air conditioner, the housing includes a rear intake port and a side intake port formed on the rear surface and one side surface, and an exhaust port formed on the front surface, and the exhaust port is formed inside the exhaust port. Through which a blower that discharges air in the housing is arranged, and a rear-side heat exchanger and a side-side heat exchanger, both of which are parallel flow downflow types, are arranged inside the rear inlet and the side inlet, The back-side heat exchanger and the side-side heat exchanger are connected so that the refrigerant that has passed through the flat tube of the back-side heat exchanger is sent to the side-side heat exchanger during condensation, and the back-side heat exchange At least one of the heat exchanger and the side heat exchanger A plurality of heat exchangers aligned in a direction, and a refrigerant circuit that flows from the leeward heat exchanger to the windward heat exchanger during condensation is formed between the plurality of heat exchangers. It is a feature.

側面側熱交換器の流路面積は背面側熱交換器の流路面積に比べ必然的に小さくなる。これらの熱交換器を凝縮器として用いる場合、ガス状態の冷媒は相対的に流路面積の大きい背面側熱交換器を通る間に速やかに凝縮せしめられ、凝縮した液状冷媒は、背面側熱交換器よりも流路面積の小さい側面側熱交換器を通る間に冷媒流速を低下させず過冷却状態とされるから、過冷却化を効率的に進めることができる。また側面側熱交換器は側面吸気口から吸い込まれた外部空気で冷却されるので、側面側熱交換器の冷却空気を十分に確保でき、過冷却を十分に促進させることができる。   The flow path area of the side heat exchanger is inevitably smaller than the flow path area of the back heat exchanger. When these heat exchangers are used as condensers, the refrigerant in the gas state is quickly condensed while passing through the back side heat exchanger having a relatively large channel area, and the condensed liquid refrigerant is exchanged with the back side heat exchange. Since the refrigerant flow rate is not lowered and the supercooling state is achieved while passing through the side surface side heat exchanger having a smaller flow path area than the condenser, the supercooling can be efficiently advanced. Further, since the side heat exchanger is cooled by the external air sucked from the side air inlet, the cooling air of the side heat exchanger can be sufficiently secured, and the supercooling can be sufficiently promoted.

さらに、背面側熱交換器と側面側熱交換器の少なくとも一方は気流方向に整列する複数の熱交換器により構成され、前記複数の熱交換器の間には、凝縮時に風下側の熱交換器から風上側の熱交換器へと流れる冷媒回路が形成されるものとしたから、背面側熱交換器または側面側熱交換器の熱交換面積を増大し、室外機としての熱交換能力を高めることができる。   Furthermore, at least one of the rear side heat exchanger and the side side heat exchanger is configured by a plurality of heat exchangers aligned in the airflow direction, and the heat exchanger on the leeward side during the condensation is between the plurality of heat exchangers. Since the refrigerant circuit that flows from the heat exchanger to the windward heat exchanger is formed, the heat exchange area of the rear heat exchanger or the side heat exchanger is increased, and the heat exchange capacity as an outdoor unit is increased. Can do.

上記構成の空気調和機の室外機にあって、気流方向に整列する複数の熱交換器により構成される前記背面側熱交換器または前記側面側熱交換器において、凝縮時、冷媒が風下側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出し、次いで隣接の風上側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出する冷媒回路が構成されていることが好ましい。   In the outdoor unit of the air conditioner having the above-described configuration, in the back side heat exchanger or the side side heat exchanger configured by a plurality of heat exchangers aligned in the airflow direction, the refrigerant is in the lee side heat during condensation. A refrigerant that flows into the upper header pipe of the exchanger and flows out of the lower header pipe of the heat exchanger, and then flows into the upper header pipe of the adjacent upwind heat exchanger and flows out of the lower header pipe of the heat exchanger A circuit is preferably constructed.

このような構成にすれば、凝縮した冷媒が重力に逆らうことなく下の方へ流れるという形を無理なく作り出すことができ、熱交換効率を向上させることができる。   With such a configuration, it is possible to reasonably create a form in which the condensed refrigerant flows downward without resisting gravity, and the heat exchange efficiency can be improved.

上記構成の空気調和機の室外機にあって、気流方向に整列する複数の熱交換器により構成される前記背面側熱交換器または前記側面側熱交換器において、隣接する風下側熱交換器と風上側熱交換器の上部ヘッダパイプ同士または下部ヘッダパイプ同士が一体化されていることが好ましい。   In the outdoor unit of the air conditioner having the above-described configuration, in the back side heat exchanger or the side heat exchanger configured by a plurality of heat exchangers aligned in the airflow direction, an adjacent leeward heat exchanger and It is preferable that the upper header pipes or the lower header pipes of the upwind heat exchanger are integrated.

このような構成にすれば、熱交換器の構造を堅牢化することができる。   With such a configuration, the structure of the heat exchanger can be strengthened.

上記構成の空気調和機の室外機にあって、前記背面側熱交換器から前記側面側熱交換器を経る冷媒回路において、凝縮時の冷媒流れの下流側に位置する熱交換器ほど冷媒流路断面積が小であることが好ましい。   In the outdoor unit of the air conditioner configured as described above, in the refrigerant circuit passing through the side heat exchanger from the back side heat exchanger, the refrigerant flow path is located closer to the downstream side of the refrigerant flow at the time of condensation. The cross-sectional area is preferably small.

このような構成にすれば、凝縮した液状冷媒は、順次冷媒流路断面積が小さくなって行く複数の熱交換器を通る間に過冷却状態とされるから、冷媒流速の低下を抑制でき、過冷却化を効率的に進めることができる。   With such a configuration, the condensed liquid refrigerant is in a supercooled state while passing through a plurality of heat exchangers in which the refrigerant channel cross-sectional area sequentially decreases, so that a decrease in the refrigerant flow rate can be suppressed. Supercooling can be efficiently advanced.

上記構成の空気調和機の室外機において、前記背面側熱交換器と前記側面側熱交換器を経由する冷媒回路の途中に気液分離器を配置することが好ましい。   In the outdoor unit of the air conditioner having the above-described configuration, it is preferable that a gas-liquid separator is disposed in the middle of the refrigerant circuit that passes through the back-side heat exchanger and the side-side heat exchanger.

このような構成にすれば、蒸発器として使用する際に、側面側熱交換器を通過し気化が進んだ気液二相の冷媒を、気体と液体に分離し、液体が背面側熱交換器を通過するものとすることにより、冷媒の分流が改善され、熱交換効率を高めることができる。   With such a configuration, when used as an evaporator, the gas-liquid two-phase refrigerant that has passed through the side heat exchanger and has been vaporized is separated into a gas and a liquid, and the liquid is the back heat exchanger. By passing through the refrigerant, the flow of refrigerant can be improved and the heat exchange efficiency can be increased.

上記構成の空気調和機の室外機において、前記背面側熱交換器は前記筐体の底板との間に所定の間隙を置いて配置されるものであり、凝縮時に前記側面側熱交換器から流出した冷媒が流れる冷媒配管は、前記間隙を通り抜ける気流を横切る形で配置されていることが好ましい。   In the outdoor unit for an air conditioner configured as described above, the back-side heat exchanger is disposed with a predetermined gap between the bottom plate of the casing and flows out of the side-side heat exchanger during condensation. Preferably, the refrigerant pipe through which the refrigerant flows crosses the airflow passing through the gap.

このような構成にすれば、背面側熱交換器と筐体底板との間隙を通り抜ける気流と、凝縮時に側面側熱交換器から流出した冷媒との間で熱交換を行うことができるので、さらに過冷却を促進することができる。   With such a configuration, heat exchange can be performed between the airflow passing through the gap between the back-side heat exchanger and the housing bottom plate and the refrigerant that has flowed out of the side-side heat exchanger during condensation. Supercooling can be promoted.

本発明によると、背面側熱交換器に加え側面側熱交換器を設けることにより、室外機の筐体内スペースを有効活用し熱交換面積を拡大した上で、凝縮時にはガス状態の冷媒が相対的に流路面積の大きい背面側熱交換器で速やかに凝縮せしめられてから相対的に流路面積の小さい側面側熱交換器に入るようにしたから、側面側熱交換器で冷媒流速を低下させず過冷却化を効率的に進めることができる。また側面側熱交換器は側面吸気口から吸い込まれた外部空気で冷却されるので、側面側熱交換器の冷却空気を十分に確保でき、過冷却を十分に促進させることができる。そして背面側熱交換器と側面側熱交換器の少なくとも一方は気流方向に整列する複数の熱交換器により構成され、前記複数の熱交換器の間には、凝縮時に風下側の熱交換器から風上側の熱交換器へと流れる冷媒回路が形成されるものとしたから、背面側熱交換器または側面側熱交換器の熱交換面積を増大し、室外機としての熱交換能力を高めることができる。   According to the present invention, by providing the side heat exchanger in addition to the rear heat exchanger, the space in the housing of the outdoor unit is effectively utilized to expand the heat exchange area, and the refrigerant in the gas state is relatively Since the refrigerant is quickly condensed in the rear side heat exchanger with a large channel area, the refrigerant enters the side heat exchanger with a relatively small channel area. Therefore, supercooling can be promoted efficiently. Further, since the side heat exchanger is cooled by the external air sucked from the side air inlet, the cooling air of the side heat exchanger can be sufficiently secured, and the supercooling can be sufficiently promoted. And at least one of the back side heat exchanger and the side side heat exchanger is composed of a plurality of heat exchangers aligned in the airflow direction, and between the plurality of heat exchangers, from the leeward side heat exchanger during condensation Since the refrigerant circuit that flows to the heat exchanger on the windward side is formed, the heat exchange area of the rear heat exchanger or the side heat exchanger can be increased, and the heat exchange capacity as an outdoor unit can be increased. it can.

以下本発明の第1実施形態を図1から図3に基づき説明する。図1は空気調和機の室外機の概略構成を示す模型的水平断面図、図2は熱交換器の展開図、図3は図2と異なる運転モードを示す熱交換器の展開図である。なお実施形態の構造は多くの部分が図13及び図14に示す従来構造と共通する。そこで、説明の重複を避けるため、図13及び図14の従来構造と共通する構成要素には図13及び図14で用いたのと同じ符号を付し、説明は省略するものとする。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic horizontal sectional view showing a schematic configuration of an outdoor unit of an air conditioner, FIG. 2 is a development view of a heat exchanger, and FIG. 3 is a development view of a heat exchanger showing an operation mode different from FIG. The structure of the embodiment is common to the conventional structure shown in FIGS. Therefore, in order to avoid duplication of explanation, the same reference numerals as those used in FIG. 13 and FIG. 14 are attached to the components common to the conventional structure of FIG. 13 and FIG.

実施形態の背面側熱交換器と側面側熱交換器は、従来構造と同じくパラレルフローのダウンフロータイプである。但し背面側熱交換器と側面側熱交換器は従来構造のように並列にではなく直列に接続される。そして背面側熱交換器と側面側熱交換器は、それぞれ、気流方向に整列する2個ずつの熱交換器により構成される。すなわち背面側熱交換器は風下側に位置する第1背面側熱交換器4−1と風上側に位置する第2背面側熱交換器4−2により構成され、側面側熱交換器は風下側に位置する第1側面側熱交換器4a−1と風上側に位置する第2側面側熱交換器4a−2により構成される。そしてこれら計4個の熱交換器は図2に示す構造を備え、図2に示すように相互間の冷媒回路が構成される。大まかに言えば、第1背面側熱交換器4−1と第2背面側熱交換器4−2は直列接続の関係にあり、第2側面側熱交換器4a−1と第2側面側熱交換器4a−2も直列接続の関係にある。   The back-side heat exchanger and the side-side heat exchanger of the embodiment are a parallel-flow downflow type as in the conventional structure. However, the back-side heat exchanger and the side-side heat exchanger are connected in series instead of in parallel as in the conventional structure. Each of the back surface side heat exchanger and the side surface side heat exchanger is composed of two heat exchangers aligned in the airflow direction. That is, the back side heat exchanger is configured by a first back side heat exchanger 4-1 located on the leeward side and a second back side heat exchanger 4-2 located on the leeward side, and the side heat exchanger is on the leeward side. The first side surface side heat exchanger 4a-1 located on the upper side and the second side surface side heat exchanger 4a-2 located on the windward side. And these four heat exchangers are provided with the structure shown in FIG. 2, and a mutual refrigerant circuit is comprised as shown in FIG. Roughly speaking, the first back side heat exchanger 4-1 and the second back side heat exchanger 4-2 are connected in series, and the second side heat exchanger 4a-1 and the second side heat The exchanger 4a-2 is also connected in series.

第1背面側熱交換器4−1は図13の背面側熱交換器4と基本的に同じ構造であり、上部ヘッダパイプ21−1と下部ヘッダパイプ22−1を互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21−1と下部ヘッダパイプ22−1の間に垂直な偏平チューブ23−1を所定ピッチで複数配置し、隣り合う偏平チューブ23−1同士の間にコルゲートフィン24−1を配置したものである。上部ヘッダパイプ21−1には冷媒配管25が接続される。冷媒配管25は1本のパイプが途中で2本に分かれ、上部ヘッダパイプ21−1の両端に1本ずつ接続される。下部ヘッダパイプ22−1に対してはその両端に冷媒配管27が1本ずつ接続されている。   The first back side heat exchanger 4-1 has basically the same structure as the back side heat exchanger 4 of FIG. 13, and the upper header pipe 21-1 and the lower header pipe 22-1 are horizontally spaced from each other. In other words, a plurality of vertical flat tubes 23-1 are arranged at a predetermined pitch between the upper header pipe 21-1 and the lower header pipe 22-1 and arranged adjacent to each other. A corrugated fin 24-1 is disposed between the two. A refrigerant pipe 25 is connected to the upper header pipe 21-1. The refrigerant pipe 25 is divided into two pipes in the middle, and one pipe is connected to each end of the upper header pipe 21-1. One refrigerant pipe 27 is connected to each end of the lower header pipe 22-1.

第1背面側熱交換器4−1を蒸発器として使用する際には、下部ヘッダパイプ22−1から冷媒が流入し上部ヘッダパイプ21−1から冷媒が流出する冷媒回路の構成となる。この場合、下部ヘッダパイプ22−1の一端からのみ冷媒が流入し、その冷媒が上部ヘッダパイプ21−1の一端からのみ流出する構成であると、偏平チューブ23−1の本数が多い場合や、運転条件によっては、各偏平チューブ23−1を流れる冷媒量にかなりの差が生じる。いわゆる「分流」が悪い状態となる。本実施形態の構成のように下部ヘッダパイプ22−1の両端から冷媒が流入し、上部ヘッダパイプ21−1の両端から冷媒が流出する構成とすれば、分流が改善される。   When using the 1st back side heat exchanger 4-1 as an evaporator, it becomes the composition of the refrigerant circuit which a refrigerant flows in from lower header pipe 22-1 and a refrigerant flows out from upper header pipe 21-1. In this case, when the refrigerant flows only from one end of the lower header pipe 22-1 and the refrigerant flows out only from one end of the upper header pipe 21-1, the number of the flat tubes 23-1 is large. Depending on the operating conditions, there is a considerable difference in the amount of refrigerant flowing through each flat tube 23-1. The so-called “diversion” is in a bad state. If the refrigerant flows in from both ends of the lower header pipe 22-1 and the refrigerant flows out from both ends of the upper header pipe 21-1, as in the configuration of the present embodiment, the diversion is improved.

第2背面側熱交換器4−2も図13の背面側熱交換器4と基本的に同じ構造であり、上部ヘッダパイプ21−2と下部ヘッダパイプ22−2を互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21−2と下部ヘッダパイプ22−2の間に垂直な偏平チューブ23−2を所定ピッチで複数配置し、隣り合う偏平チューブ23−2同士の間にコルゲートフィン24−2を配置したものである。上部ヘッダパイプ21−2の両端に冷媒配管27が1本ずつ接続される。下部ヘッダパイプ22−2に対してはその両端に冷媒配管28が1本ずつ接続される。第2背面側熱交換器4−2を蒸発器として使用する場合、第1背面側熱交換器4−1と同様、下部ヘッダパイプ22−2の両端から冷媒が流入し、上部ヘッダパイプ21−2の両端から冷媒が流出する構成なので、分流が改善される。   The second back side heat exchanger 4-2 has basically the same structure as the back side heat exchanger 4 of FIG. 13, and the upper header pipe 21-2 and the lower header pipe 22-2 are spaced horizontally from each other. In other words, a plurality of vertical flat tubes 23-2 are arranged at a predetermined pitch between the upper header pipe 21-2 and the lower header pipe 22-2, and arranged adjacent to each other. A corrugated fin 24-2 is disposed between the two. One refrigerant pipe 27 is connected to each end of the upper header pipe 21-2. One refrigerant pipe 28 is connected to each end of the lower header pipe 22-2. When using the 2nd back side heat exchanger 4-2 as an evaporator, like the 1st back side heat exchanger 4-1, a refrigerant flows in from both ends of lower header pipe 22-2, and upper header pipe 21- Since the refrigerant flows out from both ends of 2, the shunt flow is improved.

第1側面側熱交換器4a−1は図14の側面側熱交換器4aと基本的に同じ構造であり、上部ヘッダパイプ21a−1と下部ヘッダパイプ22a−1を互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21a−1と下部ヘッダパイプ22a−1の間に垂直な偏平チューブ23a−1を所定ピッチで複数配置し、隣り合う偏平チューブ23a−1同士の間にコルゲートフィン24a−1を配置したものである。上部ヘッダパイプ21a−1の両端には冷媒配管28が1本ずつ接続される。下部ヘッダパイプ22a−1に対してはその両端に冷媒配管29が1本ずつ接続される。第1側面側熱交換器4a−1を蒸発器として使用する場合、第1背面側熱交換器4−1と同様、下部ヘッダパイプ22a−1の両端から冷媒が流入し、上部ヘッダパイプ21a−1の両端から冷媒が流出する構成なので、分流が改善される。   The first side heat exchanger 4a-1 has basically the same structure as the side heat exchanger 4a of FIG. 14, and the upper header pipe 21a-1 and the lower header pipe 22a-1 are horizontally spaced from each other. In other words, the flat tubes 23a-1 are arranged in parallel with each other, and a plurality of vertical flat tubes 23a-1 are arranged at a predetermined pitch between the upper header pipe 21a-1 and the lower header pipe 22a-1. Corrugated fins 24a-1 are arranged between the two. One refrigerant pipe 28 is connected to each end of the upper header pipe 21a-1. One refrigerant pipe 29 is connected to each end of the lower header pipe 22a-1. When the first side heat exchanger 4a-1 is used as an evaporator, the refrigerant flows from both ends of the lower header pipe 22a-1 as in the first rear heat exchanger 4-1, and the upper header pipe 21a- Since the refrigerant flows out from both ends of 1, the shunt flow is improved.

冷媒配管27や冷媒配管28と異なり、冷媒配管29は2本に分かれたままで第2側面側熱交換器4a−2の方へ向かうということをしない。途中で1本に統合される。   Unlike the refrigerant pipe 27 and the refrigerant pipe 28, the refrigerant pipe 29 remains divided into two and does not go toward the second side heat exchanger 4a-2. It is integrated into one on the way.

第2側面側熱交換器4a−2も図14の側面側熱交換器4aと基本的に同じ構造であり、上部ヘッダパイプ21a−2と下部ヘッダパイプ22a−2を互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21a−2と下部ヘッダパイプ22a−2の間に垂直な偏平チューブ23a−2を所定ピッチで複数配置し、隣り合う偏平チューブ23a−2同士の間にコルゲートフィン24a−2を配置したものである。上部ヘッダパイプ21a−2の左端(図2における左端をいう。以後「左端」「右端」というときは、図2における左端または右端を意味するものとする)に、前述の通り1本に統合された冷媒配管29が接続される。下部ヘッダパイプ22a−2には、右端に冷媒配管30が接続される。   The second side heat exchanger 4a-2 has basically the same structure as the side heat exchanger 4a in FIG. 14, and the upper header pipe 21a-2 and the lower header pipe 22a-2 are horizontally spaced from each other. That is, a plurality of vertical flat tubes 23a-2 are arranged at a predetermined pitch between the upper header pipe 21a-2 and the lower header pipe 22a-2, and arranged adjacent to each other. Corrugated fins 24a-2 are disposed between the two. As described above, the upper header pipe 21a-2 is integrated into one at the left end (referring to the left end in FIG. 2; hereinafter, "left end" or "right end" means the left end or right end in FIG. 2). Refrigerant piping 29 is connected. A refrigerant pipe 30 is connected to the right end of the lower header pipe 22a-2.

上部ヘッダパイプ21a−2の内部には、左端から所定距離隔たった位置に隔壁31aが形成される。下部ヘッダパイプ22a−2の内部にも、左端から所定距離隔たった位置に隔壁31bが形成される。隔壁31bは隔壁31aよりもさらに右に寄った位置にあり、その結果、第2側面側熱交換器4a−2は3個の区間に区分されることになる。すなわち、左端から隔壁31aまでの第1区間4a−2Aと、隔壁31aから隔壁31bまでの第2区間4a−2Bと、隔壁31bから右端までの第3区間4a−2Cである。   A partition wall 31a is formed in the upper header pipe 21a-2 at a position spaced a predetermined distance from the left end. A partition wall 31b is also formed in the lower header pipe 22a-2 at a position spaced a predetermined distance from the left end. The partition wall 31b is located further to the right than the partition wall 31a, and as a result, the second side heat exchanger 4a-2 is divided into three sections. That is, the first section 4a-2A from the left end to the partition 31a, the second section 4a-2B from the partition 31a to the partition 31b, and the third section 4a-2C from the partition 31b to the right end.

このように、冷房運転時あるいは除霜運転時(すなわち、室外側熱交換器を凝縮器として使用する場合)には冷媒配管25から第1背面側熱交換器4−1の上部ヘッダパイプ21−1に少なくとも一部がガス状となった高温高圧の冷媒が流入する。冷媒は偏平チューブ23−1の冷媒通路を下降する間に室外空気に熱を放散し、少なくとも一部は凝縮する。第1背面側熱交換器4−1を通過した冷媒は冷媒配管27を通じて第2背面側熱交換器4−2の上部ヘッダパイプ21−2に流入する。冷媒は偏平チューブ23−2の冷媒通路を下降する間に室外空気に熱を放散して凝縮し、さらに液状化が進む。   As described above, during the cooling operation or the defrosting operation (that is, when the outdoor heat exchanger is used as a condenser), the upper header pipe 21- of the first rear side heat exchanger 4-1 is connected from the refrigerant pipe 25. 1 is supplied with a high-temperature and high-pressure refrigerant at least partially in a gaseous state. The refrigerant dissipates heat to the outdoor air while descending the refrigerant passage of the flat tube 23-1, and at least a part of the refrigerant is condensed. The refrigerant that has passed through the first back-side heat exchanger 4-1 flows into the upper header pipe 21-2 of the second back-side heat exchanger 4-2 through the refrigerant pipe 27. While the refrigerant descends the refrigerant passage of the flat tube 23-2, it dissipates heat to the outdoor air and condenses, and further liquefaction proceeds.

第2背面側熱交換器4−2を通過した冷媒は冷媒配管28を通じて第1側面側熱交換器4a−1の上部ヘッダパイプ21a−1に流入する。冷媒は偏平チューブ23a−1の冷媒通路を下降する間に再度室外空気に熱を放散する。第1側面側熱交換器4a−1を通過した冷媒は冷媒配管29を通じて第2側面側熱交換器4a−2の上部ヘッダパイプ21a−2に流入する。   The refrigerant that has passed through the second back side heat exchanger 4-2 flows into the upper header pipe 21a-1 of the first side face side heat exchanger 4a-1 through the refrigerant pipe 28. The refrigerant again dissipates heat into the outdoor air while descending the refrigerant passage of the flat tube 23a-1. The refrigerant that has passed through the first side heat exchanger 4a-1 flows through the refrigerant pipe 29 into the upper header pipe 21a-2 of the second side heat exchanger 4a-2.

第2側面側熱交換器4a−2の上部ヘッダパイプ21a−2に流入した冷媒は、第1区間4a−2Aに含まれる偏平チューブ23a−2の冷媒通路を下降して下部ヘッダパイプ22a−2に達する。冷媒はその後第2区間4a−2Bに移り、第2区間4a−2Bに含まれる偏平チューブ23a−2の冷媒通路を上昇して上部ヘッダパイプ21a−2に達する。冷媒はその後第3区間4a−2Cに移り、第3区間4a−2Cに含まれる偏平チューブ23a−2の冷媒通路を下降して下部ヘッダパイプ22a−2に達する。このようにして下降と上昇を繰り返す間に冷媒は室外空気に熱を放散するから、冷媒を容易に過冷却に至らせることができる。第3区間4a−2Cを下降して下部ヘッダパイプ22a−2に達した冷媒は冷媒配管30を通じて流出し、室内機に送られる。   The refrigerant that has flowed into the upper header pipe 21a-2 of the second side heat exchanger 4a-2 descends the refrigerant passage of the flat tube 23a-2 included in the first section 4a-2A, and the lower header pipe 22a-2. To reach. The refrigerant then moves to the second section 4a-2B, rises in the refrigerant passage of the flat tube 23a-2 included in the second section 4a-2B, and reaches the upper header pipe 21a-2. The refrigerant then moves to the third section 4a-2C, descends the refrigerant passage of the flat tube 23a-2 included in the third section 4a-2C, and reaches the lower header pipe 22a-2. In this way, the refrigerant dissipates heat to the outdoor air while repeatedly descending and raising, so that the refrigerant can be easily supercooled. The refrigerant descending the third section 4a-2C and reaching the lower header pipe 22a-2 flows out through the refrigerant pipe 30 and is sent to the indoor unit.

このように、ガス状冷媒は側面側熱交換器に比べ流路面積の大きい背面側熱交換器を通る間に速やかに凝縮せしめられ、凝縮した液状冷媒は、背面側熱交換器よりも流路面積の小さい側面側熱交換器を通る間に冷媒流速を低下させず過冷却状態とされるから、過冷却化を効率的に進めることができる。また側面側熱交換器は側面吸気口12aから吸い込まれた外部空気で冷却されるので、側面側熱交換器の冷却空気を十分に確保でき、過冷却を十分に促進させることができる。   In this way, the gaseous refrigerant is quickly condensed while passing through the back-side heat exchanger having a larger flow path area than the side-side heat exchanger, and the condensed liquid refrigerant is flowed more than the back-side heat exchanger. Since the refrigerant flow rate is not lowered while passing through the side surface side heat exchanger having a small area, the supercooling state can be achieved efficiently. Further, since the side heat exchanger is cooled by the external air sucked from the side air inlet 12a, the cooling air for the side heat exchanger can be sufficiently secured, and the supercooling can be promoted sufficiently.

そして、背面側熱交換器は風下側の第1背面側熱交換器4−1と風上側の第2背面側熱交換器4−2を気流方向に整列させて構成した上、凝縮時に第1背面側熱交換器4−1から第2背面側熱交換器4−2へと流れる冷媒回路を形成し、側面側熱交換器は風下側の第1側面側熱交換器4a−1と風上側の第2側面側熱交換器4a−2を気流方向に整列させて構成した上、凝縮時に第1側面側熱交換器4a−1から第2側面側熱交換器4a−2へと流れる冷媒回路を形成したものであるから、背面側熱交換器と側面側熱交換器の熱交換面積を増大し、室外機10の熱交換能力を高めることができる。   The rear-side heat exchanger is configured by arranging the first rear-side heat exchanger 4-1 on the leeward side and the second rear-side heat exchanger 4-2 on the leeward side in the airflow direction, and the first side at the time of condensation. A refrigerant circuit that flows from the back side heat exchanger 4-1 to the second back side heat exchanger 4-2 is formed, and the side surface side heat exchanger is connected to the first side surface side heat exchanger 4a-1 on the leeward side and the windward side. The second side heat exchanger 4a-2 is arranged in the direction of the airflow, and the refrigerant circuit flows from the first side heat exchanger 4a-1 to the second side heat exchanger 4a-2 during condensation. Therefore, the heat exchange area of the back side heat exchanger and the side side heat exchanger can be increased, and the heat exchange capacity of the outdoor unit 10 can be increased.

背面側熱交換器にあっては、凝縮時、風下側の第1背面側熱交換器4−1の上部ヘッダパイプ21−1に冷媒が流入して下部ヘッダパイプ22−1から流出し、次いで風上側の第2背面側熱交換器4−2の上部ヘッダパイプ21−2に流入して下部ヘッダパイプ22−2から流出する。側面側熱交換器にあっては、凝縮時、風下側の第1側面側熱交換器4a−1の上部ヘッダパイプ21a−1に冷媒が流入して下部ヘッダパイプ22a−1から流出し、次いで風上側の第2側面側熱交換器4a−2の上部ヘッダパイプ21a−2に流入して下部ヘッダパイプ22a−2から流出する。これにより、凝縮した冷媒が下の方へ流れるという形を無理なく作り出すことができ、熱交換効率を向上させることができる。   In the back side heat exchanger, at the time of condensation, the refrigerant flows into the upper header pipe 21-1 of the first back side heat exchanger 4-1 on the leeward side, flows out from the lower header pipe 22-1, and then It flows into the upper header pipe 21-2 of the second rear side heat exchanger 4-2 on the windward side and flows out from the lower header pipe 22-2. In the side heat exchanger, during condensation, the refrigerant flows into the upper header pipe 21a-1 of the first side heat exchanger 4a-1 on the leeward side, flows out from the lower header pipe 22a-1, and then It flows into the upper header pipe 21a-2 of the second side heat exchanger 4a-2 on the windward side and flows out from the lower header pipe 22a-2. As a result, a form in which the condensed refrigerant flows downward can be created without difficulty, and the heat exchange efficiency can be improved.

暖房運転時には図3に示すように冷媒配管30から第2側面側熱交換器4a−2の下部ヘッダパイプ22a−2に冷媒が流入する。冷媒は第3区間4a−2Cから第2区間4a−2B、第1区間4a−2Aと流れる間に室外空気から熱を取り込んで蒸発する。冷媒は上部ヘッダパイプ21a−2から冷媒配管29を通じて第1側面側熱交換器4a−1の下部ヘッダパイプ22a−1に流入する。冷媒は下部ヘッダパイプ22a−1から上部ヘッダパイプ21a−1へと上昇する間にさらに室外空気から熱を取り込んで蒸発する。冷媒は上部ヘッダパイプ21a−1から冷媒配管28を通じて第2背面側熱交換器4−2の下部ヘッダパイプ22−2に流入する。冷媒は下部ヘッダパイプ22−2から上部ヘッダパイプ21−2へと上昇する間にさらに室外空気から熱を取り込んで蒸発する。冷媒は上部ヘッダパイプ21−2から冷媒配管27を通じて第1背面側熱交換器4−1の下部ヘッダパイプ22−1に流入する。冷媒は下部ヘッダパイプ22−1から上部ヘッダパイプ21−1へと上昇する間にさらに室外空気から熱を取り込んで蒸発する。   As shown in FIG. 3, during the heating operation, the refrigerant flows into the lower header pipe 22a-2 of the second side heat exchanger 4a-2 from the refrigerant pipe 30. The refrigerant takes in heat from the outdoor air and evaporates while flowing from the third section 4a-2C to the second section 4a-2B and the first section 4a-2A. The refrigerant flows from the upper header pipe 21a-2 into the lower header pipe 22a-1 of the first side heat exchanger 4a-1 through the refrigerant pipe 29. While the refrigerant rises from the lower header pipe 22a-1 to the upper header pipe 21a-1, it further takes in heat from the outdoor air and evaporates. The refrigerant flows from the upper header pipe 21a-1 into the lower header pipe 22-2 of the second back side heat exchanger 4-2 through the refrigerant pipe 28. While the refrigerant rises from the lower header pipe 22-2 to the upper header pipe 21-2, it further takes in heat from the outdoor air and evaporates. The refrigerant flows from the upper header pipe 21-2 through the refrigerant pipe 27 into the lower header pipe 22-1 of the first back side heat exchanger 4-1. While the refrigerant rises from the lower header pipe 22-1 to the upper header pipe 21-1, it further takes in heat from the outdoor air and evaporates.

第1実施形態の構成では、第1背面側熱交換器4−1と第2背面側熱交換器4−2は同一形状であって冷媒流路断面積が等しく、第1側面側熱交換器4a−1は第1背面側熱交換器4−1及び第2背面側熱交換器4−2よりも冷媒流路断面積が小さく、第2側面側熱交換器4a−2は第1側面側熱交換器4a−2と外形寸法は同じであるが3区間に区切られているため第1側面側熱交換器4a−1よりも冷媒流路断面積が小さくなっている。第2背面側熱交換器4−2、第1側面側熱交換器4a−1、及び第2側面側熱交換器4a−2を比較すると、凝縮時の冷媒流れの下流側に位置する熱交換器ほど冷媒流路断面積が小さくなっている。このため、凝縮した液状冷媒は、順次冷媒流路断面積が小さくなって行く複数の熱交換器を通る間に冷媒流速を低下させず過冷却状態とされることとなり、過冷却化を効率的に進めることができる。第2背面側熱交換器4−2の冷媒流路断面積を第1背面側熱交換器4−1の冷媒流路断面積よりも小さくし、第1背面側熱交換器4−1と第2背面側熱交換器4−2の段階から冷媒流路断面積に差をつけておいてもよい。   In the configuration of the first embodiment, the first back-side heat exchanger 4-1 and the second back-side heat exchanger 4-2 have the same shape and the same refrigerant flow path cross-sectional area, and the first side-side heat exchanger. 4a-1 has a smaller refrigerant flow path cross-sectional area than the first backside heat exchanger 4-1 and the second backside heat exchanger 4-2, and the second side heat exchanger 4a-2 is the first side. Although the external dimensions are the same as those of the heat exchanger 4a-2, the refrigerant channel cross-sectional area is smaller than that of the first side heat exchanger 4a-1 because it is divided into three sections. When comparing the second back-side heat exchanger 4-2, the first side-side heat exchanger 4a-1, and the second side-side heat exchanger 4a-2, heat exchange located on the downstream side of the refrigerant flow during condensation The cross-sectional area of the refrigerant flow path is smaller as the container is used. For this reason, the condensed liquid refrigerant is in a supercooled state without decreasing the refrigerant flow velocity while passing through a plurality of heat exchangers in which the refrigerant flow passage cross-sectional area is gradually reduced, so that the supercooling is efficiently performed. Can proceed. The refrigerant channel cross-sectional area of the second back-side heat exchanger 4-2 is made smaller than the refrigerant channel cross-sectional area of the first back-side heat exchanger 4-1, and the first back-side heat exchanger 4-1 and the first You may make a difference in the refrigerant | coolant flow path cross-sectional area from the stage of 2 back surface side heat exchanger 4-2.

第1実施形態では背面側熱交換器も側面側熱交換器も気流方向に整列する複数ずつの熱交換器により構成したが、これに限定されるものではない。背面側熱交換器と側面側熱交換器の一方のみ複数の熱交換器で構成し、他方は単一の熱交換器としてもよい。また「複数」も「2」に限定されるものではない。3個以上の熱交換器を整列させる構成であってもよい。   In the first embodiment, both the back-side heat exchanger and the side-side heat exchanger are configured by a plurality of heat exchangers aligned in the airflow direction, but the present invention is not limited to this. Only one of the back-side heat exchanger and the side-side heat exchanger may be composed of a plurality of heat exchangers, and the other may be a single heat exchanger. Further, “plurality” is not limited to “2”. The configuration may be such that three or more heat exchangers are aligned.

続いて本発明の第2実施形態を図4及び図5に基づき説明する。図4は熱交換器の展開図、図5は図4と異なる運転モードを示す熱交換器の展開図である。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a development view of the heat exchanger, and FIG. 5 is a development view of the heat exchanger showing an operation mode different from FIG.

第2実施形態が第1実施形態と異なるのは熱交換器間の冷媒回路の構成である。すなわち、第2背面側熱交換器4−2の下部ヘッダパイプ22−2に対し、その両端に冷媒配管28が1本ずつ接続されるのでなく、中央に1本の冷媒配管28が接続されている。冷媒配管28は途中で2本に分かれ、第1側面側熱交換器4a−1の上部ヘッダパイプ21a−1の両端に1本ずつ接続される。第1側面側熱交換器4a−1の下部ヘッダパイプ22a−1に対しても、その両端に冷媒配管29が1本ずつ接続されるのでなく、中央に1本の冷媒配管29が接続されている。   The second embodiment differs from the first embodiment in the configuration of the refrigerant circuit between the heat exchangers. That is, the refrigerant pipes 28 are not connected to both ends of the lower header pipe 22-2 of the second back side heat exchanger 4-2, but one refrigerant pipe 28 is connected to the center. Yes. The refrigerant pipe 28 is divided into two on the way, and one refrigerant pipe 28 is connected to each end of the upper header pipe 21a-1 of the first side heat exchanger 4a-1. Also with respect to the lower header pipe 22a-1 of the first side heat exchanger 4a-1, not only one refrigerant pipe 29 is connected to both ends but also one refrigerant pipe 29 is connected to the center. Yes.

冷房運転時あるいは除霜運転時には、第2背面側熱交換器4−2の下部ヘッダパイプ22−2に下降した冷媒は、図4に示すように下部ヘッダパイプ22−2の中央から1本の冷媒配管28を通じて流出し、第1側面側熱交換器4a−1の上部ヘッダパイプ21a−1にその両端から入る。上部ヘッダパイプ21a−1から下部ヘッダパイプ22a−1に下降した冷媒は、下部ヘッダパイプ22a−1の中央から1本の冷媒配管29を通じて流出し、第2側面側熱交換器4a−2の上部ヘッダパイプ21a−2にその左端から入る。   During the cooling operation or the defrosting operation, the refrigerant descending to the lower header pipe 22-2 of the second back side heat exchanger 4-2 is one piece from the center of the lower header pipe 22-2 as shown in FIG. The refrigerant flows out through the refrigerant pipe 28 and enters the upper header pipe 21a-1 of the first side heat exchanger 4a-1 from both ends thereof. The refrigerant that descends from the upper header pipe 21a-1 to the lower header pipe 22a-1 flows out from the center of the lower header pipe 22a-1 through one refrigerant pipe 29, and the upper part of the second side heat exchanger 4a-2. The header pipe 21a-2 is entered from the left end.

暖房運転時には、第2側面側熱交換器4a−2の上部ヘッダパイプ21a−2から流出する冷媒は、図5に示すように1本の冷媒配管29を通じて第1側面側熱交換器4a−1の下部ヘッダパイプ22a−1にその中央から入る。下部ヘッダパイプ22a−1から上部ヘッダパイプ21a−1まで上昇した冷媒は、上部ヘッダパイプ21a−1の両端から1本ずつの冷媒配管28を通じて流出し、途中からは1本の冷媒配管28に統合されて、第2背面側熱交換器4−2の下部ヘッダパイプ22−2にその中央から入る。   During the heating operation, the refrigerant flowing out from the upper header pipe 21a-2 of the second side heat exchanger 4a-2 flows through the first refrigerant pipe 29 as shown in FIG. The lower header pipe 22a-1 is entered from the center. The refrigerant rising from the lower header pipe 22a-1 to the upper header pipe 21a-1 flows out from the both ends of the upper header pipe 21a-1 through one refrigerant pipe 28, and is integrated into one refrigerant pipe 28 from the middle. Then, it enters the lower header pipe 22-2 of the second back side heat exchanger 4-2 from its center.

第2実施形態のように冷媒回路を形成することにより、冷媒回路の構成をより簡素化することができる。また、風上側の熱交換器(第2背面側熱交換器4−2、第2側面側熱交換器4a−2)と風下側の熱交換器(第1背面側熱交換器4−1、第1側面側熱交換器4a−1)との間で、暖房運転時(蒸発器として使用する場合)の冷媒の流入箇所を異ならせることにより、風上側の熱交換器と風下側の熱交換器の冷媒の分流状態を異ならせることができる。冷媒の流入箇所が同じであれば、分流状態も同じ状態または似た状態になり、冷媒が乾きやすい(気体の割合が多くなる)領域同士の重なりが生じてしまうが、流入箇所を異ならせることにより、冷媒が乾きやすい領域同士の重なりが生じにくくなり(言い換えれば、重なりの度合いが減るため、あるいは、重ならないため)、熱交換効率を向上させることができる。   By forming the refrigerant circuit as in the second embodiment, the configuration of the refrigerant circuit can be further simplified. Further, the windward side heat exchanger (second back side heat exchanger 4-2, second side side heat exchanger 4a-2) and the leeward side heat exchanger (first back side heat exchanger 4-1, By changing the inflow location of the refrigerant during heating operation (when used as an evaporator) with the first side heat exchanger 4a-1), heat exchange between the windward heat exchanger and the leeward side is performed. The refrigerant diversion state of the vessel can be made different. If the inflow location of the refrigerant is the same, the diversion state will be the same or similar, and the refrigerant will easily dry (the ratio of gas increases), but the inflow locations will be different. Thus, the overlapping of the regions where the refrigerant is liable to dry is less likely to occur (in other words, the degree of overlap is reduced or does not overlap), and the heat exchange efficiency can be improved.

続いて本発明の第3実施形態を図6及び図7に基づき説明する。図6は熱交換器の展開図、図7は図6と異なる運転モードを示す熱交換器の展開図である。   Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a development view of the heat exchanger, and FIG. 7 is a development view of the heat exchanger showing an operation mode different from FIG.

第3実施形態は、背面側熱交換器と側面側熱交換器を経由する冷媒回路の途中に気液分離器を配置することを特徴とする。図6及び図7に示す構成例では、第1背面側熱交換器4−1と第2背面側熱交換器4−2の間に気液分離器32が配置されている。すなわち第1背面側熱交換器4−1の下部ヘッダパイプ22−1の両端から1本ずつ出る冷媒配管27Aが1本に統合されて気液分離器32の一方の接続口に接続される。また第2背面側熱交換器4−2の上部ヘッダパイプ21−2の両端から1本ずつ出る冷媒配管27Bが1本に統合されて気液分離器32の他方の接続口に接続される。   The third embodiment is characterized in that a gas-liquid separator is arranged in the middle of the refrigerant circuit that passes through the back surface side heat exchanger and the side surface side heat exchanger. In the configuration example shown in FIGS. 6 and 7, the gas-liquid separator 32 is disposed between the first back side heat exchanger 4-1 and the second back side heat exchanger 4-2. That is, the refrigerant pipes 27 </ b> A that come out one by one from both ends of the lower header pipe 2-1 of the first back side heat exchanger 4-1 are integrated into one and connected to one connection port of the gas-liquid separator 32. In addition, the refrigerant pipes 27B that come out one by one from both ends of the upper header pipe 21-2 of the second back side heat exchanger 4-2 are integrated into one and connected to the other connection port of the gas-liquid separator 32.

暖房運転時、図7に示すように第2背面側熱交換器4−2の上部ヘッダパイプ21−2を出て第1背面側熱交換器4−1の下部ヘッダパイプ22−1に向かう冷媒は、その途中で気液分離器32により気体を分離される。このように蒸発器として使用する際に、側面側熱交換器を通過し気化が進んだ気液二相の冷媒を、気体と液体に分離し、液体が背面側熱交換器を通過するものとすることにより、冷媒の分流が改善され、熱交換効率を高めることができる。   During the heating operation, as shown in FIG. 7, the refrigerant leaves the upper header pipe 21-2 of the second back side heat exchanger 4-2 and goes to the lower header pipe 22-1 of the first back side heat exchanger 4-1. The gas is separated by the gas-liquid separator 32 on the way. When used as an evaporator in this way, the gas-liquid two-phase refrigerant that has passed through the side heat exchanger and has been vaporized is separated into gas and liquid, and the liquid passes through the back heat exchanger. By doing so, the flow of refrigerant can be improved and the heat exchange efficiency can be increased.

第1背面側熱交換器4−1と第2背面側熱交換器4−2の間に気液分離器32を配置したのは一つの構成例であり、これに限定されるものではない。他の場所に配置することも可能である。例えば、図4や図5における冷媒配管28に気液分離器32を配置してもよい。   The arrangement of the gas-liquid separator 32 between the first back side heat exchanger 4-1 and the second back side heat exchanger 4-2 is one configuration example, and is not limited thereto. It is also possible to arrange in other places. For example, the gas-liquid separator 32 may be disposed in the refrigerant pipe 28 in FIGS.

続いて本発明の第4実施形態を図8に基づき説明する。図8は熱交換器の展開図である。   Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a development view of the heat exchanger.

第4実施形態は、熱交換器から導出される冷媒配管の配置に工夫を加えたものである。図8の冷媒配管の接続構成は第1実施形態にならっているが、第2実施形態または第3実施形態の接続構成であってもよい。さて、図8には筐体10aが点線で示されている。15Tは筐体10aの天板であり、15Bは筐体10aの底板である。第1背面側熱交換器4−1と第2背面側熱交換器4−2は、複数のスペーサー40により、底板15Bとの間に所定の間隙を置く形で底板15Bの上に支持されている(図8では第1背面側熱交換器4−1の側にのみスペーサー40が描かれている)。第1側面側熱交換器4a−1と第2側面側熱交換器4a−2も、複数のスペーサー40aにより、底板15Bとの間に所定の間隙を置く形で底板15Bの上に支持されている(図8では第1側面側熱交換器4a−1の側にのみスペーサー40aが描かれている)。熱交換器の素材金属がアルミニウムの場合、スペーサー40、40aは、例えば合成樹脂、ゴム等の非金属材料、またはステンレス鋼により形成する。   In the fourth embodiment, a device is added to the arrangement of the refrigerant piping led out from the heat exchanger. Although the connection configuration of the refrigerant pipe in FIG. 8 is the same as that of the first embodiment, the connection configuration of the second embodiment or the third embodiment may be used. In FIG. 8, the housing 10a is indicated by a dotted line. 15T is a top plate of the housing 10a, and 15B is a bottom plate of the housing 10a. The first back side heat exchanger 4-1 and the second back side heat exchanger 4-2 are supported on the bottom plate 15B by a plurality of spacers 40 with a predetermined gap between the first back side heat exchanger 4-1 and the second back side heat exchanger 4-2. (In FIG. 8, the spacer 40 is drawn only on the first back side heat exchanger 4-1 side). The first side heat exchanger 4a-1 and the second side heat exchanger 4a-2 are also supported on the bottom plate 15B by a plurality of spacers 40a with a predetermined gap between the first side heat exchanger 4a-1 and the second side heat exchanger 4a-2. (In FIG. 8, the spacer 40a is drawn only on the first side heat exchanger 4a-1 side). When the material metal of the heat exchanger is aluminum, the spacers 40 and 40a are made of, for example, a non-metallic material such as synthetic resin or rubber, or stainless steel.

第1背面側熱交換器4−1と第2背面側熱交換器4−2をスペーサー40で支持し、第1側面側熱交換器4a−1と第2側面側熱交換器4a−2をスペーサー40aで支持するのは次の理由による。すなわち第1背面側熱交換器4−1、第2背面側熱交換器4−2、第1側面側熱交換器4a−1、及び第2側面側熱交換器4a−2は熱伝導の良いアルミニウム等の金属で製作される一方、底板15Bはコストと強度の面から一般的に鋼板で製作される。第1背面側熱交換器4−1、第2背面側熱交換器4−2、第1側面側熱交換器4a−1、及び第2側面側熱交換器4a−2と底板15Bとが直接接触すると、異種金属の接触ということになり、電食が起きる。これを防ぐため、第1背面側熱交換器4−1、第2背面側熱交換器4−2、第1側面側熱交換器4a−1、及び第2側面側熱交換器4a−2と底板15Bとの間に電食を起こさない材料、例えば合成樹脂、ゴム等の非金属材料、またはステンレス鋼、を材料とするスペーサー40、40aを介在させるのである。   The first back side heat exchanger 4-1 and the second back side heat exchanger 4-2 are supported by the spacer 40, and the first side face side heat exchanger 4a-1 and the second side face side heat exchanger 4a-2 are connected. The spacer 40a is supported for the following reason. That is, the 1st back side heat exchanger 4-1, the 2nd back side heat exchanger 4-2, the 1st side face side heat exchanger 4a-1, and the 2nd side face side heat exchanger 4a-2 have good heat conduction. On the other hand, the bottom plate 15B is generally made of a steel plate in terms of cost and strength while being made of a metal such as aluminum. The first back side heat exchanger 4-1, the second back side heat exchanger 4-2, the first side heat exchanger 4a-1, the second side heat exchanger 4a-2, and the bottom plate 15B are directly connected. When they come into contact, they are in contact with dissimilar metals, and galvanic corrosion occurs. In order to prevent this, the first backside heat exchanger 4-1, the second backside heat exchanger 4-2, the first side heat exchanger 4a-1, and the second side heat exchanger 4a-2 Spacers 40 and 40a made of a material that does not cause electrolytic corrosion, such as synthetic resin, non-metallic material such as rubber, or stainless steel, are interposed between the bottom plate 15B.

第1背面側熱交換器4−1と第2背面側熱交換器4−2はスペーサー40により底板15Bとの間に間隙41を置いて配置され、第1側面側熱交換器4a−1と第2側面側熱交換器4a−2はスペーサー40aにより底板15Bとの間に間隙41aを置いて配置されていると、背面吸気口12から流入した気流の一部が間隙41を通り抜け、側面吸気口12aから流入した気流の一部が間隙41aを通り抜けるという現象が生じる。間隙41に着目した場合、そこを通り抜ける気流は下部ヘッダパイプ22−1、22−2を通る冷媒との間で熱交換を行うだけであり、第1背面側熱交換器4−1及び第2背面側熱交換器4−2の熱交換にあまり寄与しない。   The first back side heat exchanger 4-1 and the second back side heat exchanger 4-2 are arranged with a gap 41 between the bottom plate 15B and the first side side heat exchanger 4a-1 by the spacer 40. When the second side heat exchanger 4a-2 is disposed with a gap 41a between the second side heat exchanger 4a-2 and the bottom plate 15B by the spacer 40a, a part of the airflow that flows in from the rear inlet 12 passes through the gap 41, and the side intake A phenomenon occurs in which part of the airflow flowing in from the mouth 12a passes through the gap 41a. When attention is paid to the gap 41, the airflow passing through the gap only exchanges heat with the refrigerant passing through the lower header pipes 22-1 and 22-2, and the first back-side heat exchanger 4-1 and the second It does not contribute much to the heat exchange of the back side heat exchanger 4-2.

そこで、凝縮時に第2側面側熱交換器4a―2から流出した冷媒が流れる冷媒配管、すなわち冷媒配管30を、間隙41を通り抜ける気流を横切る形で配置する。図8では、冷媒配管30の位置が、間隙41の奥行き方向に関しては風下寄りで、正面10Fの側から第1背面側熱交換器4−1を望む視点では間隙41を横切ることとなる位置に設定されている。これにより、間隙41を通り抜ける気流と冷媒配管30を通る冷媒との間で熱交換が行われることになり、凝縮時における冷媒の過冷却を促進することができる。   Therefore, the refrigerant pipe through which the refrigerant that has flowed out of the second side heat exchanger 4a-2 during condensation flows, that is, the refrigerant pipe 30, is arranged so as to cross the airflow passing through the gap 41. In FIG. 8, the position of the refrigerant pipe 30 is close to the leeward in the depth direction of the gap 41, and the position where the refrigerant pipe 30 crosses the gap 41 from the viewpoint of looking at the first back-side heat exchanger 4-1 from the front 10 </ b> F side. Is set. As a result, heat exchange is performed between the airflow passing through the gap 41 and the refrigerant passing through the refrigerant pipe 30, and the supercooling of the refrigerant at the time of condensation can be promoted.

冷媒配管30は、間隙41を通り抜ける気流を横切るだけでなく、下部ヘッダパイプ22a−2との接続箇所を工夫することにより、間隙41aを通り抜ける気流も横切らせることができる。これにより、冷媒の過冷却が一層促進される。   The refrigerant pipe 30 not only crosses the airflow passing through the gap 41, but can also cross the airflow passing through the gap 41a by devising the connection location with the lower header pipe 22a-2. Thereby, the supercooling of the refrigerant is further promoted.

冷媒配管30と第1背面側熱交換器4−1の位置関係は、第1背面側熱交換器4−1が風上側で冷媒配管30が風下側でも、冷媒配管30が風上側で第1背面側熱交換器4−1が風下側でも、どちらでもよい。間隙41の内部、すなわち第1背面側熱交換器4−1の真下を冷媒配管30が通っていてもよい。第1背面側熱交換器4−1と第2背面側熱交換器4−2の間、第2背面側熱交換器4−2の真下、第2背面側熱交換器4−2の風上側といった位置に冷媒配管30を通すこともできる。いずれの位置関係においても間隙41を横切る形で冷媒配管30が配置されており、間隙41を通り抜ける気流と冷媒配管30を通る冷媒との間で熱交換が行われ、凝縮時における冷媒の過冷却を促進することができる。冷媒配管30と第1側面側熱交換器4a−1及び第2側面側熱交換器4a−2との位置関係もこれと同様である。   The positional relationship between the refrigerant pipe 30 and the first back-side heat exchanger 4-1 is first when the first back-side heat exchanger 4-1 is on the windward side and the refrigerant pipe 30 is on the leeward side, and the refrigerant pipe 30 is on the windward side. The rear side heat exchanger 4-1 may be either on the leeward side. The refrigerant pipe 30 may pass through the inside of the gap 41, that is, directly below the first back-side heat exchanger 4-1. Between the first back-side heat exchanger 4-1 and the second back-side heat exchanger 4-2, directly below the second back-side heat exchanger 4-2, and the windward side of the second back-side heat exchanger 4-2 It is also possible to pass the refrigerant pipe 30 in such a position. In any positional relationship, the refrigerant pipe 30 is arranged so as to cross the gap 41, heat exchange is performed between the airflow passing through the gap 41 and the refrigerant passing through the refrigerant pipe 30, and the refrigerant is supercooled during condensation. Can be promoted. The positional relationship between the refrigerant pipe 30, the first side surface side heat exchanger 4a-1, and the second side surface side heat exchanger 4a-2 is the same as this.

上記第1から第4までのいずれの実施形態についても言えることであるが、隣接する風下側熱交換器と風上側熱交換器の上部ヘッダパイプ同士または下部ヘッダパイプ同士を一体化することにより、構造の堅牢化を図ることができる。   As can be said for any of the first to fourth embodiments described above, by integrating the upper header pipes or the lower header pipes of the adjacent leeward heat exchanger and the windward heat exchanger, The structure can be strengthened.

図9に、第1背面側熱交換器4−1の上部ヘッダパイプ21−1と第2背面側熱交換器4−2の上部ヘッダパイプ21−2を一体化した構造例を示す。この例では、断面長円形のパイプ21の中央を垂直な隔壁21Pで仕切り、上部ヘッダパイプ21−1と上部ヘッダパイプ21−2に区画している。第1背面側熱交換器4−1の下部ヘッダパイプ22−1と第2背面側熱交換器4−2の下部ヘッダパイプ22−2の組み合わせ、第1側面側熱交換器4a−1の上部ヘッダパイプ21a−1と第2側面側熱交換器4a−2の上部ヘッダパイプ21a−2の組み合わせ、及び第1側面側熱交換器4a−1の下部ヘッダパイプ22a−1と第2側面側熱交換器4a−2の下部ヘッダパイプ22a−2の組み合わせにも図9の構造を適用できることは言うまでもない。   FIG. 9 shows a structural example in which the upper header pipe 21-1 of the first back side heat exchanger 4-1 and the upper header pipe 21-2 of the second back side heat exchanger 4-2 are integrated. In this example, the center of a pipe 21 having an oval cross section is partitioned by a vertical partition wall 21P and divided into an upper header pipe 21-1 and an upper header pipe 21-2. The combination of the lower header pipe 22-1 of the first back side heat exchanger 4-1 and the lower header pipe 22-2 of the second back side heat exchanger 4-2, the upper part of the first side heat exchanger 4a-1. Combination of header pipe 21a-1 and upper header pipe 21a-2 of second side heat exchanger 4a-2, and lower header pipe 22a-1 and second side heat of first side heat exchanger 4a-1. Needless to say, the structure of FIG. 9 can also be applied to the combination of the lower header pipe 22a-2 of the exchanger 4a-2.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は筐体内の背面側と側面側に熱交換器を配置する空気調和機の室外機に広く利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be widely used for an outdoor unit of an air conditioner in which heat exchangers are disposed on the back side and the side surface in the casing.

本発明の第1実施形態に係る空気調和機室外機の概略構成を示す模型的水平断面図Model horizontal cross section which shows schematic structure of the air conditioner outdoor unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機室外機の熱交換器の展開図The expanded view of the heat exchanger of the air conditioner outdoor unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機室外機の熱交換器の展開図で、図1と異なる運転モードを示すもの。The expanded view of the heat exchanger of the air conditioner outdoor unit which concerns on 1st Embodiment of this invention, and shows the operation mode different from FIG. 本発明の第2実施形態に係る空気調和機室外機の熱交換器の展開図The expanded view of the heat exchanger of the air conditioner outdoor unit which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る空気調和機室外機の熱交換器の展開図で、図1と異なる運転モードを示すもの。FIG. 3 is a development view of a heat exchanger for an air conditioner outdoor unit according to a second embodiment of the present invention, showing an operation mode different from FIG. 1. 本発明の第3実施形態に係る空気調和機室外機の熱交換器の展開図The expanded view of the heat exchanger of the air conditioner outdoor unit which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る空気調和機室外機の熱交換器の展開図で、図1と異なる運転モードを示すもの。FIG. 7 is a development view of a heat exchanger for an air conditioner outdoor unit according to a third embodiment of the present invention, showing an operation mode different from FIG. 1. 本発明の第4実施形態に係る空気調和機室外機の熱交換器の展開図The expanded view of the heat exchanger of the air conditioner outdoor unit which concerns on 4th Embodiment of this invention. ヘッダパイプ同士を一体化した例を示す熱交換器の部分断面図Partial sectional view of a heat exchanger showing an example in which header pipes are integrated セパレート型空気調和機の基本構成図Basic configuration diagram of separate air conditioner セパレート型空気調和機の基本構成図であって、図10と異なる状態を示すものIt is a basic configuration diagram of a separate type air conditioner, and shows a state different from FIG. 従来の空気調和機室外機の構成例を示す模型的水平断面図Model horizontal cross section showing a configuration example of a conventional air conditioner outdoor unit 従来の空気調和機室外機の他の構成例を示す模型的水平断面図Model horizontal cross-sectional view showing another configuration example of a conventional air conditioner outdoor unit 図13の空気調和機室外機の熱交換器の展開図FIG. 13 is an exploded view of a heat exchanger of the outdoor unit of the air conditioner in FIG.

符号の説明Explanation of symbols

1 ヒートポンプサイクル
2 圧縮機
4−1 第1背面側熱交換器
4−2 第2背面側熱交換器
4a−1 第1側面側熱交換器
4a−2 第2側面側熱交換器
7 送風機
10 室外機
10a 筐体
11 排気口
12 背面吸気口
12a 側面吸気口
15T 天板
15B 底板
21−1、21−2、21a−1、21a−2 上部ヘッダパイプ
22−1、22−2、22a−1、22a−2 下部ヘッダパイプ
23−1、23−2、23a−1、23a−2 偏平チューブ
24−1、24−2、24a−1、24a−2 コルゲートフィン
30 冷媒配管
41 間隙
DESCRIPTION OF SYMBOLS 1 Heat pump cycle 2 Compressor 4-1 1st back surface side heat exchanger 4-2 2nd back surface side heat exchanger 4a-1 1st side surface side heat exchanger 4a-2 2nd side surface side heat exchanger 7 Blower 10 Outdoor Machine 10a Housing 11 Exhaust port 12 Rear intake port 12a Side intake port 15T Top plate 15B Bottom plate 21-1, 21-2, 21a-1, 21a-2 Upper header pipes 22-1, 22-2, 22a-1, 22a-2 Lower header pipe 23-1, 23-2, 23a-1, 23a-2 Flat tube 24-1, 24-2, 24a-1, 24a-2 Corrugated fin 30 Refrigerant piping 41 Gap

Claims (4)

平面形状略矩形で、長辺側が正面及び背面、短辺側が左右両側面となった筐体の中に、圧縮機、熱交換器、及び送風機を収容する空気調和機の室外機において、
前記筐体には、背面と一方の側面に背面吸気口と側面吸気口を、正面に排気口を、それぞれ形成し、
前記排気口の内側には当該排気口を通じて筐体内の空気を排出する送風機を配置し、
前記背面吸気口と側面吸気口の内側にはいずれもパラレルフローのダウンフロータイプである背面側熱交換器と側面側熱交換器を配置し、
前記背面側熱交換器と側面側熱交換器はそれぞれ上部ヘッダパイプと下部ヘッダパイプを有し、
凝縮時には背面側熱交換器の偏平チューブを通った冷媒が第1の冷媒配管を通って側面側熱交換器に送られるとともに、前記背面側熱交換器と側面側熱交換器の少なくとも一方は気流方向に整列する複数の熱交換器により構成され、
前記複数の熱交換器の間には、凝縮時に風下側の熱交換器から風上側の熱交換器へと流れる冷媒回路が形成されるとともに、前記背面側熱交換器の下部ヘッダパイプと前記側面側熱交換器の上部または下部のいずれか一方のヘッダパイプとが前記第1の冷媒配管により連結され
前記背面側熱交換器は前記筐体の底板との間に所定の間隙を置いて配置されるものであり、凝縮時に前記側面側熱交換器から流出した冷媒が流れる第2の冷媒配管は、前記間隙を通り抜ける気流を横切る形で配置されていることを特徴とする空気調和機の室外機。
In an outdoor unit of an air conditioner that accommodates a compressor, a heat exchanger, and a blower in a casing having a rectangular shape in a planar shape with a long side on the front and back, and a short side on the left and right sides.
The housing is formed with a rear inlet and a side inlet on the back and one side, and an exhaust on the front, respectively.
Arranged inside the exhaust port is a blower that exhausts the air in the housing through the exhaust port,
The back side heat exchanger and the side side heat exchanger, both of which are parallel flow downflow types, are arranged inside the back side air inlet and the side air inlet,
The back side heat exchanger and the side side heat exchanger each have an upper header pipe and a lower header pipe,
At the time of condensation, the refrigerant passing through the flat tube of the back side heat exchanger is sent to the side heat exchanger through the first refrigerant pipe, and at least one of the back side heat exchanger and the side heat exchanger is airflow. Consists of multiple heat exchangers aligned in the direction,
A refrigerant circuit that flows from the leeward heat exchanger to the windward heat exchanger during condensation is formed between the plurality of heat exchangers, and the lower header pipe and the side surface of the rear heat exchanger The header pipe of either the upper part or the lower part of the side heat exchanger is connected by the first refrigerant pipe ,
The back side heat exchanger is disposed with a predetermined gap between the bottom plate of the housing, and the second refrigerant pipe through which the refrigerant flowing out of the side side heat exchanger during the condensation flows, An outdoor unit for an air conditioner, wherein the outdoor unit is arranged so as to cross an airflow passing through the gap .
気流方向に整列する複数の熱交換器により構成される前記背面側熱交換器または前記側面側熱交換器において、凝縮時、冷媒が風下側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出し、次いで隣接の風上側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出する冷媒回路が構成されていることを特徴とする請求項1に記載の空気調和機の室外機。   In the back-side heat exchanger or the side-side heat exchanger configured by a plurality of heat exchangers aligned in the airflow direction, during condensation, the refrigerant flows into the upper header pipe of the leeward heat exchanger and the heat exchange A refrigerant circuit is configured to flow out from a lower header pipe of a heat exchanger, and then flow into an upper header pipe of an adjacent windward heat exchanger and flow out of the lower header pipe of the heat exchanger. The outdoor unit of the air conditioner described in 1. 前記背面側熱交換器から前記側面側熱交換器を経る冷媒回路において、凝縮時の冷媒流れの下流側に位置する熱交換器ほど冷媒流路断面積が小であることを特徴とする請求項1または2に記載の空気調和機の室外機。   The refrigerant circuit passing through the side heat exchanger from the rear heat exchanger has a smaller refrigerant flow path cross-sectional area as the heat exchanger is located downstream of the refrigerant flow during condensation. The outdoor unit of the air conditioner as described in 1 or 2. 前記背面側熱交換器と前記側面側熱交換器を経由する冷媒回路の途中に気液分離器を配置したことを特徴とする請求項1から3のいずれか1項に記載の空気調和機の室外機。   4. The air conditioner according to claim 1, wherein a gas-liquid separator is disposed in the middle of a refrigerant circuit that passes through the back-side heat exchanger and the side-side heat exchanger. Outdoor unit.
JP2008279099A 2008-10-30 2008-10-30 Air conditioner outdoor unit Expired - Fee Related JP5385589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279099A JP5385589B2 (en) 2008-10-30 2008-10-30 Air conditioner outdoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279099A JP5385589B2 (en) 2008-10-30 2008-10-30 Air conditioner outdoor unit

Publications (2)

Publication Number Publication Date
JP2010107103A JP2010107103A (en) 2010-05-13
JP5385589B2 true JP5385589B2 (en) 2014-01-08

Family

ID=42296727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279099A Expired - Fee Related JP5385589B2 (en) 2008-10-30 2008-10-30 Air conditioner outdoor unit

Country Status (1)

Country Link
JP (1) JP5385589B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083383A1 (en) 2012-04-26 2015-03-26 Mitsubishi Electric Corporation Heat exchanger and heat exchange method
CN105247309A (en) 2013-03-15 2016-01-13 开利公司 Heat exchanger for air-cooled chiller
EP2980516B1 (en) * 2013-03-27 2018-01-31 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle air conditioner using same
DE112013007224T5 (en) * 2013-07-11 2016-04-28 Smc Corporation Circulation device for a fluid with constant temperature
JP2015148395A (en) * 2014-02-07 2015-08-20 株式会社東洋製作所 Cooling device
JP6333401B2 (en) * 2014-10-07 2018-05-30 三菱電機株式会社 Heat exchanger and air conditioner
EP3205968B1 (en) * 2014-10-07 2019-02-20 Mitsubishi Electric Corporation Heat exchanger and air conditioning device
JP6370399B2 (en) * 2014-11-04 2018-08-08 三菱電機株式会社 Air conditioner indoor unit
JP6358381B2 (en) 2016-10-13 2018-07-18 ダイキン工業株式会社 Heat exchanger
JP6944395B2 (en) * 2018-02-22 2021-10-06 東芝キヤリア株式会社 Heat source machine
JP2020133405A (en) * 2019-02-12 2020-08-31 ナブテスコ株式会社 Air compression apparatus
CN210688491U (en) * 2019-09-06 2020-06-05 广东美的制冷设备有限公司 Heat exchanger and air conditioner with same
US20230128871A1 (en) * 2020-05-22 2023-04-27 Mitsubishi Electric Corporation Heat exchanger, outdoor unit, and refrigeration cycle device
JP7224535B1 (en) * 2021-10-15 2023-02-17 三菱電機株式会社 heat exchangers and air conditioners
JP2024016643A (en) * 2022-07-26 2024-02-07 ハイリマレリジャパン株式会社 Heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157973A (en) * 1981-03-26 1982-09-29 Matsushita Seiko Kk Heat exchanger
JPH0550842A (en) * 1991-08-14 1993-03-02 Nissan Motor Co Ltd Car body mounting structure for air conditioning condenser
JPH102637A (en) * 1996-06-14 1998-01-06 Calsonic Corp Condenser with liquid tank
JP3627382B2 (en) * 1996-06-24 2005-03-09 株式会社デンソー Refrigerant condensing device and refrigerant condenser
JPH10160382A (en) * 1996-11-29 1998-06-19 Toyo Radiator Co Ltd Heat exchanger for air conditioning and manufacture of the same
JP3540530B2 (en) * 1996-12-13 2004-07-07 東芝キヤリア株式会社 Air conditioner
JP4300502B2 (en) * 2000-06-30 2009-07-22 株式会社ティラド Parallel flow type heat exchanger for air conditioning
JP3669337B2 (en) * 2002-02-25 2005-07-06 ダイキン工業株式会社 Air conditioner outdoor air conditioning unit
JP4889011B2 (en) * 2006-07-20 2012-02-29 株式会社B.T.P. Air conditioning system
EP2097702A2 (en) * 2006-12-19 2009-09-09 E. I. Du Pont de Nemours and Company Dual row heat exchanger and automobile bumper incorporating the same

Also Published As

Publication number Publication date
JP2010107103A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5385589B2 (en) Air conditioner outdoor unit
JP5385588B2 (en) Air conditioner outdoor unit
US9651317B2 (en) Heat exchanger and air conditioner
JP5618368B2 (en) Heat exchanger and integrated air conditioner equipped with the same
JP5536420B2 (en) Separate type air conditioner
US20110232884A1 (en) Heat exchanger
JP5079857B2 (en) Air conditioner indoor unit
JP2013015289A (en) Heat exchanger, and air conditioner equipped with same
JP2011085368A (en) Heat exchanger and air conditioner equipped with the same
JP2008261615A (en) Heat exchanger, heat exchange device, refrigerator and air conditioner
JP2013002688A (en) Parallel flow type heat exchanger and air conditioner with the same
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP2006284133A (en) Heat exchanger
JP4760542B2 (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2010112580A (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP6455452B2 (en) Heat exchanger
JP2005133966A (en) Heat exchanger
JP2012067971A (en) Heat exchanger and apparatus
JP2012026600A (en) Indoor unit of air conditioner
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP6486718B2 (en) Heat exchanger
JP2012042128A (en) Heat exchanger and air conditioner equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees