JP5385588B2 - Air conditioner outdoor unit - Google Patents

Air conditioner outdoor unit Download PDF

Info

Publication number
JP5385588B2
JP5385588B2 JP2008279096A JP2008279096A JP5385588B2 JP 5385588 B2 JP5385588 B2 JP 5385588B2 JP 2008279096 A JP2008279096 A JP 2008279096A JP 2008279096 A JP2008279096 A JP 2008279096A JP 5385588 B2 JP5385588 B2 JP 5385588B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
header pipe
side heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008279096A
Other languages
Japanese (ja)
Other versions
JP2010107102A (en
Inventor
一寿 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008279096A priority Critical patent/JP5385588B2/en
Publication of JP2010107102A publication Critical patent/JP2010107102A/en
Application granted granted Critical
Publication of JP5385588B2 publication Critical patent/JP5385588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は空気調和機の室外機に関する。   The present invention relates to an outdoor unit of an air conditioner.

空気調和機にはセパレート型と呼ばれるものがある。それは室外機と室内機により構成され、室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含み、室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。   There is an air conditioner called a separate type. The outdoor unit includes an outdoor unit and an indoor unit. The outdoor unit includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, and the indoor unit includes an indoor heat exchanger, an indoor fan, and the like. . The outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation. The indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.

冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成を図3に示す。ヒートポンプサイクル1は、圧縮機2、四方弁3、室外側の熱交換器4、減圧膨張装置5、及び室内側の熱交換器6をループ状に接続したものである。圧縮機2、四方弁3、熱交換器4、及び減圧膨張装置5は室外機の筐体に収容され、熱交換器6は室内機の筐体に収容される。熱交換器4には室外側の送風機7が組み合わせられ、熱交換器6には室内側の送風機8が組み合わせられる。送風機7は多くの場合プロペラファンで構成され、送風機8は多くの場合クロスフローファンで構成される。   FIG. 3 shows a basic configuration of a separate type air conditioner that uses a heat pump cycle as a refrigeration cycle. The heat pump cycle 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, a decompression expansion device 5, and an indoor heat exchanger 6 connected in a loop. The compressor 2, the four-way valve 3, the heat exchanger 4, and the decompression / expansion device 5 are accommodated in the casing of the outdoor unit, and the heat exchanger 6 is accommodated in the casing of the indoor unit. An outdoor blower 7 is combined with the heat exchanger 4, and an indoor blower 8 is combined with the heat exchanger 6. The blower 7 is often composed of a propeller fan, and the blower 8 is often composed of a cross flow fan.

図3は暖房運転時の状態を示す。この時は、圧縮機2から吐出された高温高圧の冷媒は室内側の熱交換器6に入ってそこで放熱し、凝縮する。熱交換器6を出た冷媒は減圧膨張装置5から室外側の熱交換器4に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機2に戻る。室内側の送風機8によって生成された気流が熱交換器6からの放熱を促進し、室外側の送風機7によって生成された気流が熱交換器4の吸熱を促進する。   FIG. 3 shows a state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 2 enters the heat exchanger 6 on the indoor side, dissipates heat, and condenses. The refrigerant that has exited the heat exchanger 6 enters the outdoor heat exchanger 4 from the decompression / expansion device 5, expands there, takes heat from the outdoor air, and returns to the compressor 2. The air flow generated by the indoor air blower 8 promotes heat dissipation from the heat exchanger 6, and the air flow generated by the outdoor air blower 7 promotes heat absorption of the heat exchanger 4.

図4は冷房運転時あるいは除霜運転時の状態を示す。この時は暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機2から吐出された高温高圧の冷媒は室外側の熱交換器4に入ってそこで放熱し、凝縮する。熱交換器4を出た冷媒は減圧膨張装置5から室内側の熱交換器6に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機2に戻る。室外側の送風機7によって生成された気流が熱交換器4からの放熱を促進し、室内側の送風機8によって生成された気流が熱交換器6の吸熱を促進する。   FIG. 4 shows a state during cooling operation or defrosting operation. At this time, the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 2 enters the outdoor heat exchanger 4 where it dissipates heat and condenses. The refrigerant that has exited the heat exchanger 4 enters the indoor heat exchanger 6 from the decompression / expansion device 5, expands there, takes heat from indoor air, and returns to the compressor 2. The air flow generated by the outdoor blower 7 promotes heat dissipation from the heat exchanger 4, and the air flow generated by the indoor blower 8 promotes heat absorption of the heat exchanger 6.

上記のようなセパレート型空気調和機の室外機は、全体形状としては直方体であり、平面形状略矩形で、長辺側が正面及び背面、短辺側が左右両側面となった筐体内に、各種機能部品を収容しているのが通例である。従来の室外機の構成例を図5に示す。   The outdoor unit of the separate type air conditioner as described above has a rectangular parallelepiped shape as a whole, has a substantially rectangular plane shape, and has various functions in a housing in which the long side is the front and back, and the short side is the left and right sides. It is customary to house the parts. A configuration example of a conventional outdoor unit is shown in FIG.

図5の室外機10は平面形状略矩形の板金製筐体10aを備え、筐体10aの長辺側を正面10F及び背面10Bとし、短辺側を左側面10L及び右側面10Rとしている。正面10Fには排気口11が形成され、背面10Bには背面吸気口12が形成される。排気口11は複数の水平なスリット状開口の集合からなり、背面吸気口12は格子状の開口からなる。正面10F、背面10B、左側面10L、右側面10Rの4面の板金部材に図示しない天板と底板が加わって六面体形状の筐体10aが形成される。   The outdoor unit 10 shown in FIG. 5 includes a sheet metal casing 10a having a substantially rectangular planar shape. The long side of the casing 10a is a front surface 10F and a back surface 10B, and the short side is a left side surface 10L and a right side surface 10R. An exhaust port 11 is formed on the front surface 10F, and a rear intake port 12 is formed on the back surface 10B. The exhaust port 11 is composed of a set of a plurality of horizontal slit-shaped openings, and the rear intake port 12 is composed of a lattice-shaped opening. A top plate and a bottom plate (not shown) are added to the four sheet metal members of the front surface 10F, the back surface 10B, the left side surface 10L, and the right side surface 10R to form a hexahedral-shaped housing 10a.

筐体10aの内部には、背面吸気口12のすぐ内側に室外側の熱交換器4が配置される。熱交換器4と室外空気との間で強制的に熱交換を行わせるため、熱交換器4と排気口11の間に室外側の送風機7が配置される。送風機7は電動機7aにプロペラファン7bを組み合わせたものである。送風効率向上のため、筐体10aの正面10Fの内面にはプロペラファン7bを囲むベルマウス13が取り付けられる。筐体10aの右側面10Rの内側の空間は背面吸気口12から排気口11へと流れる空気流から隔壁14で隔離されており、ここに圧縮機2が収容されている。   Inside the housing 10a, the outdoor heat exchanger 4 is arranged just inside the rear intake port 12. In order to forcibly perform heat exchange between the heat exchanger 4 and the outdoor air, an outdoor blower 7 is disposed between the heat exchanger 4 and the exhaust port 11. The blower 7 is a combination of an electric motor 7a and a propeller fan 7b. In order to improve the blowing efficiency, a bell mouth 13 surrounding the propeller fan 7b is attached to the inner surface of the front surface 10F of the housing 10a. The space inside the right side surface 10R of the housing 10a is separated from the air flow flowing from the rear intake port 12 to the exhaust port 11 by the partition wall 14, and the compressor 2 is accommodated therein.

熱交換器4としては、フィンアンドチューブタイプ、パラレルフロータイプ、サーペンタインタイプといった種類のものが用いられる。フィンアンドチューブタイプは、多数の平行するフィンを1本のチューブが蛇行しつつ貫通する形のものである。パラレルフロータイプは、2本のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したものである。サーペンタインタイプは、2本のヘッダパイプの間に偏平チューブを配置するところまではパラレルフロータイプと同じであるが、偏平チューブの数が1本であり、この1本の偏平チューブを蛇行させ、蛇行する偏平チューブの間にコルゲートフィン等のフィンを配置したものである。   As the heat exchanger 4, a fin and tube type, a parallel flow type, a serpentine type, or the like is used. The fin-and-tube type is a type in which a single tube passes through many parallel fins while meandering. In the parallel flow type, a plurality of flat tubes are arranged between two header pipes so that a refrigerant passage inside the flat tubes communicates with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. It is. The serpentine type is the same as the parallel flow type until a flat tube is placed between two header pipes, but the number of flat tubes is one, and the single flat tube is meandered to meander. A fin such as a corrugated fin is disposed between the flat tubes.

図5の構成例では筐体10aの背面側のみに熱交換器4が存在するが、熱交換面積を大きくとるため、筐体10aの側面側にも熱交換器を配置することがある。そのようにした構成例を図6に示す。図6の構成例では左側面10Lに側面吸気口12aを形成し、そのすぐ内側に側面側熱交換器4aを配置している。「側面側熱交換器」との対比のため、熱交換器4を以後「背面側熱交換器」と呼称する。   In the configuration example of FIG. 5, the heat exchanger 4 exists only on the back side of the housing 10a. However, in order to increase the heat exchange area, a heat exchanger may be disposed on the side surface of the housing 10a. An example of such a configuration is shown in FIG. In the configuration example of FIG. 6, the side air inlet 12a is formed on the left side surface 10L, and the side surface side heat exchanger 4a is disposed immediately inside thereof. For comparison with the “side heat exchanger”, the heat exchanger 4 is hereinafter referred to as “back heat exchanger”.

背面側熱交換器4と側面側熱交換器4aを同一面に並べて描いたのが図7である。背面側熱交換器4はパラレルフローのダウンフロータイプである。背面側熱交換器4は、上部ヘッダパイプ21と下部ヘッダパイプ22を互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21と下部ヘッダパイプ22の間に垂直な偏平チューブ23を所定ピッチで複数配置し、隣り合う偏平チューブ23同士の間にコルゲートフィン24を配置したものである。偏平チューブ23はアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路が形成されている。偏平チューブ23は押出成型方向を垂直にする形で配置されるので、冷媒通路の冷媒流通方向も垂直になる。冷媒通路の一構成例では、断面形状及び断面面積の等しいものが図7の奥行き方向に複数個並び、そのため偏平チューブ23はハーモニカのような断面を呈する。各冷媒通路は上部ヘッダパイプ21及び下部ヘッダパイプ22の内部に連通する。   FIG. 7 shows the rear side heat exchanger 4 and the side side heat exchanger 4a arranged side by side on the same plane. The back side heat exchanger 4 is a parallel flow down flow type. The back side heat exchanger 4 is arranged such that the upper header pipe 21 and the lower header pipe 22 are spaced horizontally from each other, that is, parallel to each other, and perpendicular to the upper header pipe 21 and the lower header pipe 22. A plurality of flat tubes 23 are arranged at a predetermined pitch, and corrugated fins 24 are arranged between adjacent flat tubes 23. The flat tube 23 is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and has a refrigerant passage through which a refrigerant flows. Since the flat tube 23 is disposed so that the extrusion molding direction is vertical, the refrigerant flow direction in the refrigerant passage is also vertical. In one configuration example of the refrigerant passage, a plurality of ones having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 7, and therefore the flat tube 23 has a cross section like a harmonica. Each refrigerant passage communicates with the inside of the upper header pipe 21 and the lower header pipe 22.

上部ヘッダパイプ21及び下部ヘッダパイプ22と偏平チューブ23、及び偏平チューブ23とコルゲートフィン24はそれぞれロウ付けまたは溶着により固定される。偏平チューブ23の他、上部ヘッダパイプ21、下部ヘッダパイプ22、及びコルゲートフィン24もアルミニウム等熱伝導の良い金属からなる。   The upper header pipe 21, the lower header pipe 22, and the flat tube 23, and the flat tube 23 and the corrugated fin 24 are fixed by brazing or welding, respectively. In addition to the flat tube 23, the upper header pipe 21, the lower header pipe 22, and the corrugated fin 24 are also made of a metal having good thermal conductivity such as aluminum.

側面側熱交換器4aも背面側熱交換器4と同じくパラレルフローのダウンフロータイプであるが、背面側熱交換器4よりも横幅が狭い。側面側熱交換器4aは、上部ヘッダパイプ21aと下部ヘッダパイプ22aを互いに間隔を置いてそれぞれ水平に、すなわち互いに平行する形で配置し、上部ヘッダパイプ21aと下部ヘッダパイプ22aの間に垂直な偏平チューブ23aを所定ピッチで複数配置し、隣り合う偏平チューブ23a同士の間にコルゲートフィン24aを配置したものである。偏平チューブ23aはアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路が形成されている。偏平チューブ23aは押出成型方向を垂直にする形で配置されるので、冷媒通路の冷媒流通方向も垂直になる。冷媒通路の一構成例では、断面形状及び断面面積の等しいものが図7の奥行き方向に複数個並び、そのため偏平チューブ23aはハーモニカのような断面を呈する。各冷媒通路は上部ヘッダパイプ21a及び下部ヘッダパイプ22aの内部に連通する。   The side heat exchanger 4 a is also a parallel flow downflow type like the back heat exchanger 4, but the lateral width is narrower than that of the back heat exchanger 4. In the side heat exchanger 4a, the upper header pipe 21a and the lower header pipe 22a are arranged horizontally at intervals from each other, that is, in parallel with each other, and perpendicular to the upper header pipe 21a and the lower header pipe 22a. A plurality of flat tubes 23a are arranged at a predetermined pitch, and corrugated fins 24a are arranged between adjacent flat tubes 23a. The flat tube 23a is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and a refrigerant passage through which a refrigerant flows is formed inside. Since the flat tube 23a is arranged so that the extrusion molding direction is vertical, the refrigerant flow direction in the refrigerant passage is also vertical. In one configuration example of the refrigerant passage, a plurality of parts having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 7, and therefore the flat tube 23a has a cross section like a harmonica. Each refrigerant passage communicates with the inside of the upper header pipe 21a and the lower header pipe 22a.

上部ヘッダパイプ21a及び下部ヘッダパイプ22aと偏平チューブ23a、及び偏平チューブ23aとコルゲートフィン24aはそれぞれロウ付けまたは溶着により固定される。偏平チューブ23aの他、上部ヘッダパイプ21a、下部ヘッダパイプ22a、及びコルゲートフィン24aもアルミニウム等熱伝導の良い金属からなる。   The upper header pipe 21a and the lower header pipe 22a and the flat tube 23a, and the flat tube 23a and the corrugated fin 24a are fixed by brazing or welding, respectively. In addition to the flat tube 23a, the upper header pipe 21a, the lower header pipe 22a, and the corrugated fin 24a are also made of a metal having good thermal conductivity such as aluminum.

側面側熱交換器4aの偏平チューブ23aの本数は、背面側熱交換器4の偏平チューブ23の本数より少ない。そのため、偏平チューブ23aの冷媒通路面積の総和である側面側熱交換器4aの冷媒流路断面積は背面側熱交換器4に比べて小さくなる。   The number of the flat tubes 23 a of the side heat exchanger 4 a is less than the number of the flat tubes 23 of the back heat exchanger 4. Therefore, the cross-sectional area of the refrigerant flow path of the side heat exchanger 4a, which is the total refrigerant passage area of the flat tube 23a, is smaller than that of the back heat exchanger 4.

背面側熱交換器4の上部ヘッダパイプ21と下部ヘッダパイプ22には、同じ側の一端に冷媒配管25、26が接続される。上部ヘッダパイプ21の他端は冷媒配管25aを通じて側面側熱交換器4aの上部ヘッダパイプ21aの一端に接続され、下部ヘッダパイプ22の他端は冷媒配管26aを通じて側面側熱交換器4aの下部ヘッダパイプ22aの一端に接続される。上部ヘッダパイプ21aと下部ヘッダパイプ22aの他端は行き止まりになっている。背面側熱交換器4と側面側熱交換器4aは並列接続の関係にある。   Refrigerant pipes 25 and 26 are connected to one end on the same side of the upper header pipe 21 and the lower header pipe 22 of the back side heat exchanger 4. The other end of the upper header pipe 21 is connected to one end of the upper header pipe 21a of the side heat exchanger 4a through the refrigerant pipe 25a, and the other end of the lower header pipe 22 is connected to the lower header of the side heat exchanger 4a through the refrigerant pipe 26a. Connected to one end of the pipe 22a. The other ends of the upper header pipe 21a and the lower header pipe 22a are dead ends. The back surface side heat exchanger 4 and the side surface side heat exchanger 4a are in a parallel connection relationship.

冷媒配管25、26は、背面側熱交換器4と側面側熱交換器4aの両方に冷媒を送り込み、また背面側熱交換器4と側面側熱交換器4aの両方から冷媒を受け取るものである。冷房運転時には冷媒配管25から少なくとも一部がガス状となった高温高圧の冷媒が流入する。その冷媒は背面側熱交換器4と側面側熱交換器4aの冷媒通路を下降する間に室外空気に熱を放散し、凝縮して液状になる。暖房運転時には冷媒配管26から冷媒が流入し、背面側熱交換器4と側面側熱交換器4aの冷媒通路を上昇するうちに室外空気から熱を取り込んで蒸発する。   The refrigerant pipes 25 and 26 are configured to send refrigerant to both the back surface side heat exchanger 4 and the side surface side heat exchanger 4a and receive refrigerant from both the back surface side heat exchanger 4 and the side surface side heat exchanger 4a. . During the cooling operation, a high-temperature and high-pressure refrigerant at least partially in the form of gas flows from the refrigerant pipe 25. The refrigerant dissipates heat to the outdoor air while descending the refrigerant passages of the back-side heat exchanger 4 and the side-side heat exchanger 4a and condenses into a liquid state. During the heating operation, the refrigerant flows in from the refrigerant pipe 26, and evaporates by taking in heat from the outdoor air as it rises through the refrigerant passages of the back-side heat exchanger 4 and the side-side heat exchanger 4a.

送風機7を運転すると背面吸気口12と側面吸気口12aから室外空気が流入する。背面吸気口12から流入した室外空気は背面側熱交換器4との間で熱交換を行い、側面吸気口12aから流入した室外空気は側面側熱交換器4aとの間で熱交換を行った後、送風機7に吸い込まれ、排気口11から排出される。   When the blower 7 is operated, outdoor air flows from the rear intake port 12 and the side intake port 12a. The outdoor air that flowed in from the rear air inlet 12 exchanged heat with the rear heat exchanger 4, and the outdoor air that flowed in from the side air inlet 12a exchanged heat with the side heat exchanger 4a. Thereafter, the air is sucked into the blower 7 and discharged from the exhaust port 11.

上記の背面側熱交換器と側面側熱交換器の組み合わせのように、2面の熱交換器を直角に配置した熱交換器の例を特許文献1から特許文献3に見ることができる。   Examples of heat exchangers in which two heat exchangers are arranged at right angles can be seen in Patent Document 1 to Patent Document 3, such as a combination of the above-described back-side heat exchanger and side-side heat exchanger.

特許文献1に記載された熱交換器は、パラレルフローのサイドフロータイプの熱交換器を、偏平チューブを折り曲げて直角にし、コンパクト化を図っている。   In the heat exchanger described in Patent Document 1, a parallel flow side flow type heat exchanger is formed into a right angle by bending a flat tube to make a right angle.

特許文献2に記載された熱交換器は、パラレルフローのダウンフロータイプの熱交換器を、ヘッダパイプを折り曲げて直角にしている。   The heat exchanger described in Patent Document 2 is a parallel flow downflow type heat exchanger that is bent at a right angle by bending a header pipe.

特許文献3に記載された熱交換器は、パラレルフローのダウンフロータイプの熱交換器を2個、一方は幅の広い主コア、他方は幅の狭い従コアとして、互いに直角に配置している。主コアと従コアにおける冷媒の流れ方は、図7における背面側熱交換器4と側面側熱交換器4aへの冷媒の流れ方と同じである。
特開2008−45862号公報 特開2005−90806号公報 特開平10−160382号公報
The heat exchanger described in Patent Document 3 includes two parallel-flow downflow type heat exchangers, one having a wide main core and the other having a narrow sub-core, arranged at right angles to each other. . The refrigerant flows in the main core and the slave core in the same way as the refrigerant flows to the back-side heat exchanger 4 and the side-side heat exchanger 4a in FIG.
JP 2008-45862 A Japanese Patent Laid-Open No. 2005-90806 JP-A-10-160382

室外機の筐体内スペースを有効活用するため、筐体の側面側にも熱交換器を配置する場合、特許文献1や特許文献2に記載のもののように熱交換器を曲げ加工して側面側熱交換器を形成するのは、一歩間違えると偏平チューブやヘッダパイプが破れる危険性があり、加工が難しい。また、サイドフロータイプの熱交換器は排水性が悪く、蒸発器としては使用困難である。特許文献3に記載のもののように独立した2個の熱交換器を直角に配置する構成では、特許文献1や特許文献2に記載のものが抱えているような問題は少ない。但し特許文献3記載の構成の場合、背面側熱交換器の偏平チューブと側面側熱交換器の偏平チューブは並列関係にあり、背面側熱交換器だけの場合に比べ熱交換面積が拡大されたとは言うものの、冷媒流路断面積は大きいままで一定しており、冷媒が気体から徐々に液化して比容積が小さくなって行くにつれ冷媒の流速が低下し、これが熱伝達率の低下をもたらし、その結果、熱交換器全体の性能が低下することがある。このように、単に熱交換面積を拡大したというだけでは、冷媒を効率的に過冷却することに結びつくものではなく、熱交換面積の拡大に見合う性能向上を実現するには至らなかった。   In order to effectively utilize the space in the housing of the outdoor unit, when the heat exchanger is also arranged on the side surface of the housing, the heat exchanger is bent as in the case of Patent Document 1 or Patent Document 2, and the side surface side Forming the heat exchanger is difficult to process because there is a risk that the flat tube and header pipe will be broken if one step is wrong. Moreover, the side flow type heat exchanger has poor drainage and is difficult to use as an evaporator. In the configuration in which two independent heat exchangers are arranged at right angles like the one described in Patent Document 3, there are few problems that the ones described in Patent Document 1 and Patent Document 2 have. However, in the case of the configuration described in Patent Document 3, the flat tube of the back side heat exchanger and the flat tube of the side side heat exchanger are in a parallel relationship, and the heat exchange area is expanded compared to the case of only the back side heat exchanger. That said, the cross-sectional area of the refrigerant flow path remains large and constant, and as the refrigerant gradually liquefies from the gas and the specific volume decreases, the flow velocity of the refrigerant decreases, leading to a decrease in heat transfer coefficient. As a result, the performance of the entire heat exchanger may deteriorate. Thus, simply expanding the heat exchange area does not lead to efficient supercooling of the refrigerant, and has not led to an improvement in performance commensurate with the expansion of the heat exchange area.

本発明は上記の点に鑑みなされたものであり、大きな熱交換面積を比較的容易に得ることができるとともに、液化された冷媒の流速を低下させず、効率的に過冷却を促進できる高性能な空気調和機の室外機を提供することを目的とする。   The present invention has been made in view of the above points, and can obtain a large heat exchange area relatively easily, and can effectively promote supercooling without reducing the flow rate of the liquefied refrigerant. An object of the present invention is to provide an outdoor unit for an air conditioner.

上記目的を達成するために本発明は、平面形状略矩形で、長辺側が正面及び背面、短辺側が左右両側面となった筐体の中に、圧縮機、熱交換器、及び送風機を収容する空気調和機の室外機において、前記筐体には、背面と一方の側面に背面吸気口と側面吸気口を、正面に排気口を、それぞれ形成し、前記排気口の内側には当該排気口を通じて筐体内の空気を排出する送風機を配置し、前記背面吸気口と側面吸気口の内側にはいずれもパラレルフローのダウンフロータイプである背面側熱交換器と側面側熱交換器を配置するとともに、前記背面側熱交換器と側面側熱交換器は、凝縮時には背面側熱交換器の偏平チューブを通った冷媒が側面側熱交換器に送られるように接続されていることを特徴としている。   In order to achieve the above object, the present invention accommodates a compressor, a heat exchanger, and a blower in a casing having a substantially rectangular planar shape, with the long side on the front and back and the short side on the left and right sides. In the outdoor unit of an air conditioner, the housing includes a rear intake port and a side intake port formed on the rear surface and one side surface, and an exhaust port formed on the front surface, and the exhaust port is formed inside the exhaust port. A blower that discharges air in the housing is arranged, and a back-side heat exchanger and a side-side heat exchanger that are parallel flow down-flow types are arranged inside the back-side intake and the side-side intake. The back-side heat exchanger and the side-side heat exchanger are connected so that the refrigerant that has passed through the flat tube of the back-side heat exchanger is sent to the side-side heat exchanger during condensation.

側面側熱交換器の冷媒流路断面積は背面側熱交換器の冷媒流路断面積に比べ必然的に小さくなる。これらの熱交換器を凝縮器として用いる場合、ガス状態の冷媒は相対的に冷媒流路断面積の大きい背面側熱交換器を通る間に速やかに凝縮せしめられ、凝縮した液状冷媒は、背面側熱交換器よりも冷媒流路断面積の小さい側面側熱交換器を通る間に冷媒流速を低下させず過冷却状態とされるから、過冷却化を効率的に進めることができる。また側面側熱交換器は側面吸気口から吸い込まれた外部空気で冷却されるので、側面側熱交換器の冷却空気を十分に確保でき、過冷却を十分に促進させることができる。   The refrigerant channel cross-sectional area of the side heat exchanger is inevitably smaller than the refrigerant channel cross-sectional area of the rear heat exchanger. When these heat exchangers are used as condensers, the refrigerant in the gas state is quickly condensed while passing through the rear side heat exchanger having a relatively large refrigerant channel cross-sectional area, and the condensed liquid refrigerant is Since the refrigerant flow rate is not lowered while passing through the side heat exchanger having a smaller refrigerant flow path cross-sectional area than the heat exchanger, the supercooling state can be achieved efficiently. Further, since the side heat exchanger is cooled by the external air sucked from the side air inlet, the cooling air of the side heat exchanger can be sufficiently secured, and the supercooling can be sufficiently promoted.

上記構成の空気調和機の室外機において、凝縮時、冷媒が前記背面側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出し、続いて前記側面側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出する冷媒回路が構成されていることが好ましい。   In the outdoor unit of the air conditioner configured as described above, during condensation, the refrigerant flows into the upper header pipe of the rear side heat exchanger and flows out of the lower header pipe of the heat exchanger, and then the side surface side heat exchanger. Preferably, a refrigerant circuit that flows into the upper header pipe and flows out from the lower header pipe of the heat exchanger is configured.

このような構成にすれば、凝縮した冷媒が重力に逆らうことなく下の方へ流れるという形を無理なく作り出すことができ、熱交換効率を向上させることができる。   With such a configuration, it is possible to reasonably create a form in which the condensed refrigerant flows downward without resisting gravity, and the heat exchange efficiency can be improved.

上記構成の空気調和機の室外機において、前記背面側熱交換器は前記筐体の底板との間に所定の間隙を置いて配置されるものであり、凝縮時に前記側面側熱交換器から流出した冷媒が流れる冷媒配管は、前記間隙を通り抜ける気流を横切る形で配置されていることが好ましい。   In the outdoor unit for an air conditioner configured as described above, the back-side heat exchanger is disposed with a predetermined gap between the bottom plate of the casing and flows out of the side-side heat exchanger during condensation. Preferably, the refrigerant pipe through which the refrigerant flows crosses the airflow passing through the gap.

このような構成にすれば、背面側熱交換器と筐体底板との間隙を通り抜ける気流と、凝縮時に側面側熱交換器から流出した冷媒との間で熱交換を行うことができるので、さらに過冷却を促進することができる。   With such a configuration, heat exchange can be performed between the airflow passing through the gap between the back-side heat exchanger and the housing bottom plate and the refrigerant that has flowed out of the side-side heat exchanger during condensation. Supercooling can be promoted.

本発明によると、背面側熱交換器に加え側面側熱交換器を設けることにより、室外機の筐体内スペースを有効活用し熱交換面積を拡大した上で、凝縮時にはガス状態の冷媒が相対的に冷媒流路断面積の大きい背面側熱交換器で速やかに凝縮せしめられてから相対的に冷媒流路断面積の小さい側面側熱交換器に入るようにしたから、側面側熱交換器で冷媒流速を低下させず過冷却化を効率的に進めることができる。また側面側熱交換器は側面吸気口から吸い込まれた外部空気で冷却されるので、側面側熱交換器の冷却空気を十分に確保でき、過冷却を十分に促進させることができる。   According to the present invention, by providing the side heat exchanger in addition to the rear heat exchanger, the space in the housing of the outdoor unit is effectively utilized to expand the heat exchange area, and the refrigerant in the gas state is relatively Since the refrigerant is quickly condensed in the rear side heat exchanger with a large refrigerant flow cross-sectional area, the refrigerant enters the side heat exchanger with a relatively small refrigerant flow cross-sectional area. Supercooling can be efficiently advanced without lowering the flow rate. Further, since the side heat exchanger is cooled by the external air sucked from the side air inlet, the cooling air of the side heat exchanger can be sufficiently secured, and the supercooling can be sufficiently promoted.

以下本発明の実施形態を図1及び図2に基づき説明する。図1は空気調和機の室外機の概略構成を示す模型的水平断面図、図2は熱交換器の展開図である。なお実施形態の構造は多くの部分が図6及び図7に示す従来構造と共通する。そこで、説明の重複を避けるため、図6及び図7の従来構造と共通する構成要素には図6及び図7で用いたのと同じ符号を付し、説明は省略するものとする。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic horizontal sectional view showing a schematic configuration of an outdoor unit of an air conditioner, and FIG. 2 is a development view of a heat exchanger. The structure of the embodiment is common to the conventional structure shown in FIGS. Therefore, in order to avoid duplication of explanation, the same reference numerals as those used in FIG. 6 and FIG. 7 are attached to the same components as those in the conventional structure of FIG. 6 and FIG.

実施形態の背面側熱交換器4と側面側熱交換器4aは、従来構造と同じくパラレルフローのダウンフロータイプである。但し背面側熱交換器4と側面側熱交換器4aは従来構造のように並列にではなく直列に接続される。   The back-side heat exchanger 4 and the side-side heat exchanger 4a of the embodiment are a parallel flow downflow type as in the conventional structure. However, the back surface side heat exchanger 4 and the side surface side heat exchanger 4a are connected not in parallel but in series as in the conventional structure.

背面側熱交換器4の上部ヘッダパイプ21には、一端(図2における右端)に冷媒配管25が接続されている。上部ヘッダパイプ21の他端(図2における左端)は行き止まりとなっている。下部ヘッダパイプ22は、上部ヘッダパイプ21の行き止まり端と対角をなす位置の端(図2における右端)が行き止まりとなっている。   A refrigerant pipe 25 is connected to one end (the right end in FIG. 2) of the upper header pipe 21 of the back side heat exchanger 4. The other end (the left end in FIG. 2) of the upper header pipe 21 is a dead end. The lower header pipe 22 has a dead end at a position opposite to the dead end of the upper header pipe 21 (the right end in FIG. 2).

下部ヘッダパイプ22の他端(図2における左端)は冷媒配管27を通じて側面側熱交換器4aの上部ヘッダパイプ21aの一端(図2における右端)に接続されている。上部ヘッダパイプ21aの他端(図2における左端)は行き止まりとなっている。下部ヘッダパイプ22aも図2における左端が行き止まりであり、右端に冷媒配管28が接続されている。   The other end (left end in FIG. 2) of the lower header pipe 22 is connected to one end (right end in FIG. 2) of the upper header pipe 21a of the side heat exchanger 4a through the refrigerant pipe 27. The other end (the left end in FIG. 2) of the upper header pipe 21a is a dead end. The lower header pipe 22a also has a dead end at the left end in FIG. 2, and a refrigerant pipe 28 is connected to the right end.

上記のように冷媒回路が構成されているので、冷房運転時あるいは除霜運転時には冷媒配管25から背面側熱交換器4の上部ヘッダパイプ21に少なくとも一部がガス状となった高温高圧の冷媒が流入する。冷媒は偏平チューブ23の冷媒通路を下降する間に室外空気に熱を放散し、凝縮して液状になる。凝縮した冷媒は冷媒配管27を通じて側面側熱交換器4aの上部ヘッダパイプ21aに流入し、偏平チューブ23aの冷媒通路を下降する間に再度室外空気に熱を放散する。これにより、冷媒を容易に過冷却に至らせることができる。下部ヘッダパイプ22aまで下降した冷媒は冷媒配管28を通じて流出し、室内機に送られる。   Since the refrigerant circuit is configured as described above, at the time of the cooling operation or the defrosting operation, the high-temperature and high-pressure refrigerant in which at least a part is in the form of gas from the refrigerant pipe 25 to the upper header pipe 21 of the rear side heat exchanger 4. Flows in. The refrigerant dissipates heat to the outdoor air while descending the refrigerant passage of the flat tube 23 and condenses into a liquid state. The condensed refrigerant flows into the upper header pipe 21a of the side heat exchanger 4a through the refrigerant pipe 27, and again dissipates heat to the outdoor air while descending the refrigerant passage of the flat tube 23a. Thereby, the refrigerant can be easily supercooled. The refrigerant descending to the lower header pipe 22a flows out through the refrigerant pipe 28 and is sent to the indoor unit.

このように、ガス状冷媒は側面側熱交換器4aに比べ冷媒流路断面積の大きい背面側熱交換器4を通る間に速やかに凝縮せしめられ、凝縮した液状冷媒は、背面側熱交換器4よりも冷媒流路断面積の小さい側面側熱交換器4aを通る間に冷媒流速を低下させず過冷却状態とされるから、過冷却化を効率的に進めることができる。また側面側熱交換器4aは側面吸気口12aから吸い込まれた外部空気で冷却されるので、側面側熱交換器4aの冷却空気を十分に確保でき、過冷却を十分に促進させることができる。   As described above, the gaseous refrigerant is quickly condensed while passing through the back side heat exchanger 4 having a larger refrigerant flow path cross-sectional area than the side side heat exchanger 4a, and the condensed liquid refrigerant is converted into the back side heat exchanger. Since the refrigerant flow rate is not lowered while passing through the side surface side heat exchanger 4a having a refrigerant passage cross-sectional area smaller than 4, the refrigerant is brought into a supercooled state, so that the supercooling can be efficiently advanced. Further, since the side heat exchanger 4a is cooled by the external air sucked from the side air inlet 12a, the cooling air for the side heat exchanger 4a can be sufficiently secured, and the supercooling can be promoted sufficiently.

背面側熱交換器4と側面側熱交換器4aはいずれもパラレルフローのダウンフロータイプであり、凝縮時には冷媒が背面側熱交換器4の上部ヘッダパイプ21に流入して偏平チューブ23の冷媒通路を下り、下部ヘッダパイプ22から流出し、続いて側面側熱交換器4aの上部ヘッダパイプ21aに流入して偏平チューブ23aの冷媒通路を下り、下部ヘッダパイプ22aから流出するものとしたから、凝縮した冷媒が重力に逆らうことなく下の方へ流れるという形が無理なく作り出され、熱交換効率が向上する。   Both the back-side heat exchanger 4 and the side-side heat exchanger 4a are parallel-flow downflow types, and during condensation, the refrigerant flows into the upper header pipe 21 of the back-side heat exchanger 4 and the refrigerant passage of the flat tube 23 , And flows out from the lower header pipe 22, and then flows into the upper header pipe 21a of the side heat exchanger 4a to descend the refrigerant passage of the flat tube 23a and out of the lower header pipe 22a. The shape of the flowed refrigerant flows downward without resisting gravity, and the heat exchange efficiency is improved.

暖房運転時には冷媒配管28から側面側熱交換器4aの下部ヘッダパイプ22aに冷媒が流入し、偏平チューブ23aの冷媒通路を上昇する間に室外空気から熱を取り込んで蒸発する。上部ヘッダパイプ21aに達した冷媒は冷媒配管27を通じて背面側熱交換器4の下部ヘッダパイプ22に流入し、偏平チューブ23の冷媒通路を上昇する間に室外空気から熱を取り込んでさらに蒸発する。上部ヘッダパイプ21まで上昇した冷媒は冷媒配管25を通じて流出し、圧縮機2に送られる。   During the heating operation, the refrigerant flows from the refrigerant pipe 28 into the lower header pipe 22a of the side heat exchanger 4a, and evaporates by taking in heat from the outdoor air while ascending the refrigerant passage of the flat tube 23a. The refrigerant that has reached the upper header pipe 21a flows into the lower header pipe 22 of the back-side heat exchanger 4 through the refrigerant pipe 27, takes in heat from the outdoor air while elevating the refrigerant passage of the flat tube 23, and further evaporates. The refrigerant rising to the upper header pipe 21 flows out through the refrigerant pipe 25 and is sent to the compressor 2.

図2には筐体10aが点線で示されている。15Tは筐体10aの天板であり、15Bは筐体10aの底板である。背面側熱交換器4は、複数のスペーサー29により、底板15Bとの間に所定の間隙を置く形で底板15Bの上に支持されている。側面側熱交換器4aも、複数のスペーサー29aにより、底板15Bとの間に所定の間隙を置く形で底板15Bの上に支持されている。熱交換器の素材金属がアルミニウムの場合、スペーサー29、29aは、例えば合成樹脂、ゴム等の非金属材料、またはステンレス鋼により形成する。   In FIG. 2, the housing 10a is indicated by a dotted line. 15T is a top plate of the housing 10a, and 15B is a bottom plate of the housing 10a. The back surface side heat exchanger 4 is supported on the bottom plate 15B by a plurality of spacers 29 in a predetermined gap with the bottom plate 15B. The side-side heat exchanger 4a is also supported on the bottom plate 15B by a plurality of spacers 29a so as to place a predetermined gap with the bottom plate 15B. When the material metal of the heat exchanger is aluminum, the spacers 29 and 29a are made of a non-metallic material such as synthetic resin or rubber, or stainless steel, for example.

背面側熱交換器4と側面側熱交換器4aをスペーサー29、29aで支持するのは次の理由による。すなわち背面側熱交換器4と側面側熱交換器4aは熱伝導の良いアルミニウム等の金属で製作される一方、底板15Bはコストと強度の面から一般的に鋼板で製作される。背面側熱交換器4及び側面側熱交換器4aと底板15Bとが直接接触すると、異種金属の接触ということになり、電食が起きる。これを防ぐため、背面側熱交換器4及び側面側熱交換器4aと底板15Bとの間に電食を起こさない材料、例えば合成樹脂、ゴム等の非金属材料、またはステンレス鋼、を材料とするスペーサー29、29aを介在させているのである。   The back surface side heat exchanger 4 and the side surface side heat exchanger 4a are supported by the spacers 29 and 29a for the following reason. That is, the back-side heat exchanger 4 and the side-side heat exchanger 4a are made of a metal such as aluminum having good heat conductivity, while the bottom plate 15B is generally made of a steel plate from the viewpoint of cost and strength. When the back surface side heat exchanger 4 and the side surface side heat exchanger 4a are in direct contact with the bottom plate 15B, this is a contact of dissimilar metals, and electrolytic corrosion occurs. In order to prevent this, a material that does not cause electrolytic corrosion between the back-side heat exchanger 4 and the side-side heat exchanger 4a and the bottom plate 15B, for example, a non-metallic material such as synthetic resin or rubber, or stainless steel is used as the material. The spacers 29 and 29a are interposed.

背面側熱交換器4はスペーサー29により底板15Bとの間に間隙30を置いて配置され、側面側熱交換器4aはスペーサー29aにより底板15Bとの間に間隙30aを置いて配置されていると、背面吸気口12から流入した気流の一部が間隙30を通り抜け、側面吸気口12aから流入した気流の一部が間隙30aを通り抜けるという現象が生じる。間隙30に着目した場合、そこを通り抜ける気流は下部ヘッダパイプ22を通る冷媒との間で熱交換を行うだけであり、背面側熱交換器4の熱交換にあまり寄与しない。   The back-side heat exchanger 4 is arranged with a gap 30 between the bottom plate 15B and the spacer 29, and the side-side heat exchanger 4a is arranged with a gap 30a between the bottom plate 15B and the spacer 29a. A phenomenon occurs in which part of the airflow flowing in from the rear air inlet 12 passes through the gap 30 and part of the airflow flowing in from the side air inlet 12a passes through the gap 30a. When attention is paid to the gap 30, the airflow passing through the gap only exchanges heat with the refrigerant passing through the lower header pipe 22, and does not contribute much to the heat exchange of the back side heat exchanger 4.

そこで、凝縮時に側面側熱交換器4aから流出した冷媒が流れる冷媒配管、すなわち冷媒配管28を、間隙30を通り抜ける気流を横切る形で配置する。図2では、冷媒配管28の位置が、間隙30の奥行き方向に関しては風下寄りで、正面10Fの側から背面側熱交換器4を望む視点では間隙30を横切ることとなる位置に設定されている。これにより、間隙30を通り抜ける気流と冷媒配管28を通る冷媒との間で熱交換が行われることになり、凝縮時における冷媒の過冷却を促進することができる。   Therefore, a refrigerant pipe through which the refrigerant that has flowed out from the side heat exchanger 4a during the condensation, that is, the refrigerant pipe 28, is arranged so as to cross the airflow passing through the gap 30. In FIG. 2, the position of the refrigerant pipe 28 is set at a position that is close to the leeward in the depth direction of the gap 30 and that crosses the gap 30 from the viewpoint of looking at the back-side heat exchanger 4 from the front surface 10F side. . As a result, heat exchange is performed between the airflow passing through the gap 30 and the refrigerant passing through the refrigerant pipe 28, and the supercooling of the refrigerant during condensation can be promoted.

冷媒配管28は、間隙30を通り抜ける気流を横切るだけでなく、下部ヘッダパイプ22aとの接続箇所を工夫することにより、間隙30aを通り抜ける気流も横切らせることができる。これにより、冷媒の過冷却が一層促進される。   The refrigerant pipe 28 not only crosses the airflow passing through the gap 30 but can also cross the airflow passing through the gap 30a by devising a connection point with the lower header pipe 22a. Thereby, the supercooling of the refrigerant is further promoted.

冷媒配管28と背面側熱交換器4の位置関係は、背面側熱交換器4が風上側で冷媒配管28が風下側でも、冷媒配管28が風上側で背面側熱交換器4が風下側でも、どちらでもよい。間隙30の内部、すなわち背面側熱交換器4の真下を冷媒配管28が通っていてもよい。いずれの位置関係においても間隙30を横切る形で冷媒配管28が配置されており、間隙30を通り抜ける気流と冷媒配管28を通る冷媒との間で熱交換が行われ、凝縮時における冷媒の過冷却を促進することができる。冷媒配管28と側面側熱交換器4aの位置関係もこれと同様である。   The positional relationship between the refrigerant pipe 28 and the rear side heat exchanger 4 is that the rear side heat exchanger 4 is on the windward side and the refrigerant pipe 28 is on the leeward side, the refrigerant pipe 28 is on the windward side and the rear side heat exchanger 4 is on the leeward side. ,either will do. The refrigerant pipe 28 may pass through the inside of the gap 30, that is, directly below the back side heat exchanger 4. In any positional relationship, the refrigerant pipe 28 is disposed so as to cross the gap 30, heat exchange is performed between the airflow passing through the gap 30 and the refrigerant passing through the refrigerant pipe 28, and the refrigerant is supercooled during condensation. Can be promoted. The positional relationship between the refrigerant pipe 28 and the side heat exchanger 4a is the same as this.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は筐体内の背面側と側面側に熱交換器を配置する空気調和機の室外機に広く利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be widely used for an outdoor unit of an air conditioner in which heat exchangers are disposed on the back side and the side surface in the casing.

本発明に係る空気調和機の室外機の概略構成を示す模型的水平断面図Model horizontal sectional view showing a schematic configuration of an outdoor unit of an air conditioner according to the present invention 本発明に係る空気調和機の室外機の熱交換器の展開図Exploded view of the heat exchanger of the outdoor unit of the air conditioner according to the present invention セパレート型空気調和機の基本構成図Basic configuration diagram of separate air conditioner セパレート型空気調和機の基本構成図であって、図3と異なる状態を示すものIt is a basic configuration diagram of a separate type air conditioner, and shows a state different from FIG. 従来の空気調和機室外機の構成例を示す模型的水平断面図Model horizontal cross section showing a configuration example of a conventional air conditioner outdoor unit 従来の空気調和機室外機の他の構成例を示す模型的水平断面図Model horizontal cross-sectional view showing another configuration example of a conventional air conditioner outdoor unit 図6の空気調和機室外機の熱交換器の展開図Fig. 6 is an exploded view of the heat exchanger of the outdoor unit of the air conditioner in Fig. 6.

符号の説明Explanation of symbols

1 ヒートポンプサイクル
2 圧縮機
4 背面側熱交換器
4a 側面側熱交換器
7 送風機
10 室外機
10a 筐体
11 排気口
12 背面吸気口
12a 側面吸気口
15T 天板
15B 底板
21、21a 上部ヘッダパイプ
22、22a 下部ヘッダパイプ
23、23a 偏平チューブ
24、24a コルゲートフィン
25、27、28 冷媒配管
29、29a スペーサー
30、30a 間隙
DESCRIPTION OF SYMBOLS 1 Heat pump cycle 2 Compressor 4 Back surface side heat exchanger 4a Side surface side heat exchanger 7 Blower 10 Outdoor unit 10a Case 11 Exhaust port 12 Back surface intake port 12a Side surface intake port 15T Top plate 15B Bottom plate 21, 21a Upper header pipe 22, 22a Lower header pipe 23, 23a Flat tube 24, 24a Corrugated fin 25, 27, 28 Refrigerant piping 29, 29a Spacer 30, 30a Gap

Claims (1)

平面形状略矩形で、長辺側が正面及び背面、短辺側が左右両側面となった筐体の中に、圧縮機、熱交換器、及び送風機を収容する空気調和機の室外機において、
前記筐体には、背面と一方の側面に背面吸気口と側面吸気口を、正面に排気口を、それぞれ形成し、
前記排気口の内側には当該排気口を通じて筐体内の空気を排出する送風機を配置し、
前記背面吸気口と側面吸気口の内側にはいずれもパラレルフローのダウンフロータイプである背面側熱交換器と側面側熱交換器を配置するとともに、前記背面側熱交換器と側面側熱交換器とはそれぞれ上部ヘッダパイプと下部ヘッダパイプを有し、
前記背面側熱交換器の下部ヘッダパイプと前記側面側熱交換器の上部ヘッダパイプとが第1の冷媒配管により連結され、
凝縮時には背面側熱交換器の上部ヘッダパイプに流入して偏平チューブを通った冷媒が当該熱交換器の下部ヘッダパイプから流出し、前記第1の冷媒配管を通って側面側熱交換器の上部ヘッダパイプに流入して当該熱交換器の下部ヘッダパイプから流出する冷媒回路が構成され、
前記背面側熱交換器は前記筐体の底板との間に所定の間隙を置いて配置されるものであり、凝縮時に前記側面側熱交換器から流出した冷媒が流れる第2の冷媒配管は、前記間隙を通り抜ける気流を横切る形で配置されていることを特徴とする空気調和機の室外機。
In an outdoor unit of an air conditioner that accommodates a compressor, a heat exchanger, and a blower in a casing having a rectangular shape in a planar shape with a long side on the front and back, and a short side on the left and right sides.
The housing is formed with a rear inlet and a side inlet on the back and one side, and an exhaust on the front, respectively.
Arranged inside the exhaust port is a blower that exhausts the air in the housing through the exhaust port,
A rear-side heat exchanger and a side-side heat exchanger, both of which are parallel flow down-flow types, are arranged inside the rear-side inlet and the side-side inlet, and the rear-side heat exchanger and the side-side heat exchanger are arranged. Each have an upper header pipe and a lower header pipe,
The rear-side lower header pipe of a heat exchanger, an upper Buhe Ddapaipu of the lateral-side heat exchanger is connected by a first refrigerant pipe,
At the time of condensation, the refrigerant flowing into the upper header pipe of the rear side heat exchanger and passing through the flat tube flows out of the lower header pipe of the heat exchanger, passes through the first refrigerant pipe, and passes through the upper part of the side heat exchanger. A refrigerant circuit that flows into the header pipe and flows out from the lower header pipe of the heat exchanger is configured,
The back side heat exchanger is disposed with a predetermined gap between the bottom plate of the housing, and the second refrigerant pipe through which the refrigerant flowing out of the side side heat exchanger during the condensation flows, An outdoor unit for an air conditioner, wherein the outdoor unit is arranged so as to cross an airflow passing through the gap .
JP2008279096A 2008-10-30 2008-10-30 Air conditioner outdoor unit Expired - Fee Related JP5385588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279096A JP5385588B2 (en) 2008-10-30 2008-10-30 Air conditioner outdoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279096A JP5385588B2 (en) 2008-10-30 2008-10-30 Air conditioner outdoor unit

Publications (2)

Publication Number Publication Date
JP2010107102A JP2010107102A (en) 2010-05-13
JP5385588B2 true JP5385588B2 (en) 2014-01-08

Family

ID=42296726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279096A Expired - Fee Related JP5385588B2 (en) 2008-10-30 2008-10-30 Air conditioner outdoor unit

Country Status (1)

Country Link
JP (1) JP5385588B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213603A (en) * 2012-04-02 2013-10-17 Nippon Light Metal Co Ltd Drain structure of corrugated fin type heat exchanger
WO2014068687A1 (en) * 2012-10-31 2014-05-08 株式会社 日立製作所 Parallel flow heat exchanger and air conditioner using same
JP6133586B2 (en) * 2012-12-07 2017-05-24 株式会社小松製作所 Air conditioning system
JP6154123B2 (en) * 2012-12-13 2017-06-28 株式会社小松製作所 Air conditioning system
WO2017199393A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Outdoor unit and refrigeration cycle device comprising same
EP3604996A4 (en) 2017-03-27 2020-03-25 Daikin Industries, Ltd. Heat exchanger and refrigeration device
JP6766722B2 (en) * 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
JP6766723B2 (en) 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
JP2024016643A (en) * 2022-07-26 2024-02-07 ハイリマレリジャパン株式会社 Heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157973A (en) * 1981-03-26 1982-09-29 Matsushita Seiko Kk Heat exchanger
JPH0550842A (en) * 1991-08-14 1993-03-02 Nissan Motor Co Ltd Car body mounting structure for air conditioning condenser
JPH102637A (en) * 1996-06-14 1998-01-06 Calsonic Corp Condenser with liquid tank
JPH10160382A (en) * 1996-11-29 1998-06-19 Toyo Radiator Co Ltd Heat exchanger for air conditioning and manufacture of the same
JP3540530B2 (en) * 1996-12-13 2004-07-07 東芝キヤリア株式会社 Air conditioner
JP3669337B2 (en) * 2002-02-25 2005-07-06 ダイキン工業株式会社 Air conditioner outdoor air conditioning unit
JP4889011B2 (en) * 2006-07-20 2012-02-29 株式会社B.T.P. Air conditioning system
JP2010513843A (en) * 2006-12-19 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Double row heat exchanger and automotive bumper incorporating it

Also Published As

Publication number Publication date
JP2010107102A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5385589B2 (en) Air conditioner outdoor unit
JP5385588B2 (en) Air conditioner outdoor unit
JP5618368B2 (en) Heat exchanger and integrated air conditioner equipped with the same
US20110232884A1 (en) Heat exchanger
WO2011048891A1 (en) Heat exchanger and air conditioner equipped therewith
JP2004219052A (en) Heat exchanger
JP5079857B2 (en) Air conditioner indoor unit
CN106918166B (en) Heat exchanger and air conditioning system
JP5536420B2 (en) Separate type air conditioner
WO2019009158A1 (en) Heat exchanger
JP2015218907A (en) Heat exchanger
JP6332377B2 (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2018162953A (en) Heat exchanger
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP4995308B2 (en) Air conditioner indoor unit
JP2012132641A (en) Outdoor unit of refrigerating device
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
JP2005133966A (en) Heat exchanger
JP2008070106A (en) Condenser and radiator in air conditioning cooling system
JP2010196945A (en) Outdoor unit
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP2011047600A (en) Heat exchanger and air conditioner mounted with the same
JP6486718B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees