JP5618368B2 - Heat exchanger and integrated air conditioner equipped with the same - Google Patents

Heat exchanger and integrated air conditioner equipped with the same Download PDF

Info

Publication number
JP5618368B2
JP5618368B2 JP2010268228A JP2010268228A JP5618368B2 JP 5618368 B2 JP5618368 B2 JP 5618368B2 JP 2010268228 A JP2010268228 A JP 2010268228A JP 2010268228 A JP2010268228 A JP 2010268228A JP 5618368 B2 JP5618368 B2 JP 5618368B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat exchange
heat
header pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010268228A
Other languages
Japanese (ja)
Other versions
JP2012117751A (en
Inventor
一寿 三代
一寿 三代
吉田 健司
健司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Sharp Corp
Original Assignee
Nippon Light Metal Co Ltd
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Sharp Corp filed Critical Nippon Light Metal Co Ltd
Priority to JP2010268228A priority Critical patent/JP5618368B2/en
Priority to CN2011800579038A priority patent/CN103238037A/en
Priority to PCT/JP2011/076572 priority patent/WO2012073719A1/en
Priority to US13/883,648 priority patent/US20130220584A1/en
Publication of JP2012117751A publication Critical patent/JP2012117751A/en
Application granted granted Critical
Publication of JP5618368B2 publication Critical patent/JP5618368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/028Cores with empty spaces or with additional elements integrated into the cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Description

本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載した一体型空気調和機に関する。   The present invention relates to a side flow parallel flow heat exchanger and an integrated air conditioner equipped with the heat exchanger.

複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器は、カーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。   A parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.

従来のサイドフロー方式パラレルフロー型熱交換器の一例を図6に示す。熱交換器1は、2本のヘッダパイプ2、3と、その間に配置される複数の偏平チューブ4を備える。図6では、ヘッダパイプ2、3は垂直方向に延び、水平方向に間隔を置いて平行に配置されており、偏平チューブ4は水平方向に延び、垂直方向に所定ピッチで配置されている。実際に機器に搭載する段階では、パラレルフロー型熱交換器1は設計の要請に従って様々な角度に据え付けられるものであり、厳密な「垂直」「水平」が当てはまらなくなるケースが多いことは言うまでもない。   An example of a conventional side flow type parallel flow type heat exchanger is shown in FIG. The heat exchanger 1 includes two header pipes 2 and 3 and a plurality of flat tubes 4 arranged therebetween. In FIG. 6, the header pipes 2 and 3 extend in the vertical direction and are arranged in parallel in the horizontal direction at intervals, and the flat tubes 4 extend in the horizontal direction and are arranged at a predetermined pitch in the vertical direction. Needless to say, the parallel flow type heat exchanger 1 is installed at various angles in accordance with design requirements at the stage of actually mounting on equipment, and there are many cases where exact “vertical” and “horizontal” do not apply.

偏平チューブ4は金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路5の冷媒流通方向も水平になる。冷媒通路5は断面形状及び断面面積の等しいものが図4の奥行き方向に複数個並び、そのため偏平チューブ4の垂直断面はハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。隣り合う偏平チューブ4同士の間にはフィン6が配置される。フィン6としてはコルゲートフィンが用いられているが、プレートフィンでも構わない。   The flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 5 having the same cross-sectional shape and the same cross-sectional area are arranged in the depth direction of FIG. 4, and therefore the vertical cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Fins 6 are arranged between adjacent flat tubes 4. Corrugated fins are used as the fins 6, but plate fins may be used.

ヘッダパイプ2と3、偏平チューブ4、及びフィン6はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、フィン6は偏平チューブ4に対し、それぞれロウ付けまたは溶着で固定される。   The header pipes 2 and 3, the flat tubes 4, and the fins 6 are all made of a metal having good heat conductivity such as aluminum, the flat tubes 4 are brazed to the header pipes 2 and 3, and the fins 6 are brazed to the flat tubes 4. Or it is fixed by welding.

図6の熱交換器1では、冷媒出入口7、8はヘッダパイプ3の側にのみ設けられている。ヘッダパイプ3の内部には上下方向に間隔を置いて2枚の仕切板9a、9cが設けられており、ヘッダパイプ2の内部には仕切板9a、9cの中間の高さのところに仕切板9bが設けられている。   In the heat exchanger 1 of FIG. 6, the refrigerant outlets 7 and 8 are provided only on the header pipe 3 side. Two partition plates 9a and 9c are provided in the header pipe 3 at intervals in the vertical direction. Inside the header pipe 2, the partition plates are located at a height intermediate between the partition plates 9a and 9c. 9b is provided.

熱交換器1を蒸発器として使用する場合、冷媒は図6に実線矢印で示すように下側の冷媒出入口7から流入する。冷媒出入口7から入った冷媒は、仕切板9aでせき止められて偏平チューブ4経由でヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は仕切板9cでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は冷媒出入口8から流出する。このように、冷媒はジグザグの経路を辿って下から上に流れる。ここでは仕切板の数が3の場合を示したが、これは一例であり、仕切板の数と、その結果としてもたらされる冷媒流れの折り返し回数は、必要に応じ任意の数を設定することができる。   When the heat exchanger 1 is used as an evaporator, the refrigerant flows in from the lower refrigerant inlet / outlet port 7 as indicated by solid line arrows in FIG. The refrigerant entering from the refrigerant inlet / outlet 7 is blocked by the partition plate 9 a and travels toward the header pipe 2 via the flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is blocked by the partition plate 9 b and travels to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 is dammed up by the partition plate 9 c, and further travels toward the header pipe 2 via another flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is folded back and travels again to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant entering the header pipe 3 flows out from the refrigerant inlet / outlet 8. In this way, the refrigerant follows the zigzag path and flows from the bottom to the top. Although the case where the number of partition plates is 3 is shown here, this is only an example, and the number of partition plates and the number of times the resulting refrigerant flow may be folded may be set as desired. it can.

熱交換器1を凝縮器として使用する場合は、冷媒の流れが逆になる。すなわち冷媒は図6に点線矢印で示すように冷媒出入口8からヘッダパイプ3に入り、仕切板9cでせき止められて偏平チューブ4経由でヘッダパイプ2に向かい、ヘッダパイプ2では仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かい、ヘッダパイプ3では仕切板9aでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かい、ヘッダパイプ2で折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かい、冷媒出入口7から点線矢印のように流出するという、ジグザグの経路を辿って上から下に流れる。   When the heat exchanger 1 is used as a condenser, the refrigerant flow is reversed. That is, the refrigerant enters the header pipe 3 from the refrigerant inlet / outlet 8 as shown by a dotted arrow in FIG. 6, is dammed by the partition plate 9c and goes to the header pipe 2 via the flat tube 4, and is dammed by the partition plate 9b in the header pipe 2. It heads to the header pipe 3 via another flat tube 4, and the header pipe 3 is dammed by a partition plate 9 a, then goes to the header pipe 2 again via another flat tube 4, and is folded back by the header pipe 2 to make another flat It flows from the top to the bottom following the zigzag path in which it goes to the header pipe 3 again via the tube 4 and flows out from the refrigerant inlet / outlet 7 as indicated by the dotted line arrow.

上記説明では、熱交換器1を蒸発器として使用する場合は冷媒を下から上に流し、熱交換器1を凝縮器として使用する場合は冷媒を上から下に流すものとしたが、これとは逆の方向に冷媒を流す設定も可能である。   In the above description, when the heat exchanger 1 is used as an evaporator, the refrigerant flows from the bottom to the top. When the heat exchanger 1 is used as a condenser, the refrigerant flows from the top to the bottom. It is possible to set the refrigerant to flow in the opposite direction.

熱交換器を搭載する機器の代表的なものは空気調和機であるが、その中に一体型空気調和機と呼ばれるものがある。これは、室外機と室内機からなるセパレート型空気調和機を設置できない場合に用いられるものであり、単一の筐体内に凝縮器と蒸発器を配置したものを室内に置き、排気ダクトを通じて室外に熱を排出すると同時に室内空気を循環させて室内空気の温度調整を行うものである。一体型空気調和機の例を特許文献1、2に見ることができる。   A typical device equipped with a heat exchanger is an air conditioner, and there is one called an integrated air conditioner. This is used when a separate air conditioner consisting of an outdoor unit and an indoor unit cannot be installed. A condenser and an evaporator placed in a single housing are placed indoors, and the outdoor duct is connected through an exhaust duct. At the same time as the heat is discharged, the room air is circulated to adjust the temperature of the room air. Examples of the integrated air conditioner can be found in Patent Documents 1 and 2.

特許文献1記載の一体型空気調和機では、蒸発器にも凝縮器にも、多数のアルミニウムフィンに銅管が貫通したフィンアンドチューブ型の熱交換器が用いられている。蒸発器と凝縮器は互いに独立した部品で、離れた場所に設置されている。背面に備えた下吹出口に一端を接続し、他端を窓等に接続した排気ダクトにより、冷房運転時の凝縮器からの排熱を屋外等に行う。   In the integrated air conditioner described in Patent Document 1, a fin-and-tube heat exchanger in which a copper tube penetrates a large number of aluminum fins is used for both an evaporator and a condenser. The evaporator and the condenser are independent parts and are installed at remote locations. Exhaust heat from the condenser during cooling operation is performed outdoors by an exhaust duct having one end connected to a lower outlet provided on the back and the other end connected to a window or the like.

特許文献2記載の一体型空気調和機では、筐体の内部が仕切り板によって上側の冷房室と下側の排熱室に仕切られており、冷房室には蒸発器が配置され、排熱室には凝縮器が配置されている。排熱室には吸気口及び排気口が形成され、排気口には排気ダクトの一端が取り付けられ、吸気口には吸気ダクトの一端が着脱自在とされている。排気ダクトの他端は窓等の開口部に取り付けられる。吸気ダクトの他端は排気ダクトと同様に窓等の開口部に取り付け可能であり、排気ダクトと吸気ダクトの両方を用いて、ダブルダクト方式で給排気を行うことが可能である。   In the integrated air conditioner described in Patent Document 2, the inside of the housing is partitioned by a partition plate into an upper cooling chamber and a lower exhaust heat chamber, an evaporator is disposed in the cooling chamber, and the exhaust heat chamber Is equipped with a condenser. An exhaust port and an exhaust port are formed in the exhaust heat chamber. One end of the exhaust duct is attached to the exhaust port, and one end of the intake duct is detachable from the intake port. The other end of the exhaust duct is attached to an opening such as a window. Like the exhaust duct, the other end of the intake duct can be attached to an opening such as a window, and both the exhaust duct and the intake duct can be used to supply and exhaust air using a double duct system.

図7に示すのは特許文献2に記載された形式の一体型空気調和機である。空気調和機10の筐体11の内部は水平な仕切板12によって上下に仕切られ、上側は冷房室13、下側は排熱室14となっている。冷房室13には蒸発器15が配置され、排熱室14には凝縮器16と圧縮機17が配置される。蒸発器15、凝縮器16、圧縮機17に図示しない減圧膨張装置と四方弁が加わって冷凍サイクルとしてのヒートポンプサイクルが構成される。この他冷房室13には図示しない送風機が配置され、破線矢印で示す室内循環風路18が形成される。排熱室14にも図示しない送風機が配置され、破線矢印で示す放熱風路19が形成される。放熱風路19は凝縮器16を通過した空気を図示しない排気ダクトに送り込むためのものである。蒸発器15と凝縮器16はいずれもフィンアンドチューブ型の熱交換器からなる。   FIG. 7 shows an integrated air conditioner of the type described in Patent Document 2. The interior of the housing 11 of the air conditioner 10 is partitioned up and down by a horizontal partition plate 12, the cooling chamber 13 on the upper side, and the exhaust heat chamber 14 on the lower side. An evaporator 15 is disposed in the cooling chamber 13, and a condenser 16 and a compressor 17 are disposed in the exhaust heat chamber 14. The evaporator 15, the condenser 16, and the compressor 17 are added with a decompression and expansion device (not shown) and a four-way valve to constitute a heat pump cycle as a refrigeration cycle. In addition, an air blower (not shown) is disposed in the cooling chamber 13, and an indoor circulation air passage 18 indicated by a broken line arrow is formed. The exhaust heat chamber 14 is also provided with a blower (not shown), and a heat radiating air passage 19 indicated by a broken line arrow is formed. The heat radiating air passage 19 is for sending the air that has passed through the condenser 16 into an exhaust duct (not shown). Both the evaporator 15 and the condenser 16 are fin-and-tube heat exchangers.

特開2005−274077号公報JP 2005-274077 A 特開2010−54111号公報JP 2010-54111 A

特許文献1に記載された一体型空気調和機でも特許文献2に記載された一体型空気調和機でも、蒸発器と凝縮器には別々の熱交換器が用いられており、これが構成の複雑化を招き、小型軽量化を妨げる要因となっていた。   In both the integrated air conditioner described in Patent Document 1 and the integrated air conditioner described in Patent Document 2, separate heat exchangers are used for the evaporator and the condenser, which complicates the configuration. This was a factor that hindered the reduction in size and weight.

本発明は上記の点に鑑みなされたものであり、一体型空気調和機に好適するサイドフロー方式のパラレルフロー型熱交換器と、それを搭載した一体型空気調和機を提供することを目的とする。   The present invention has been made in view of the above points, and aims to provide a side flow parallel flow heat exchanger suitable for an integrated air conditioner, and an integrated air conditioner equipped with the same. To do.

本発明の好ましい実施形態によれば、間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたフィンとを備えたサイドフロー方式のパラレルフロー型熱交換器において、前記複数の偏平チューブは上部に位置する上部群と下部に位置する下部群に二分され、前記上部群の偏平チューブとそれに対応する前記ヘッダパイプの一部が上部熱交換部を構成し、前記下部群の偏平チューブとそれに対応する前記ヘッダパイプの一部が下部熱交換部を構成し、前記上部熱交換部と下部熱交換部の間に熱的分離部が形成され、前記熱的分離部は前記フィンが設けられていない空間からなるAccording to a preferred embodiment of the present invention, a plurality of header pipes arranged in parallel at intervals, and a plurality of refrigerant pipes arranged between the plurality of header pipes are provided inside the header pipes. In the parallel flow type heat exchanger of the side flow system provided with the communicated flat tubes and the fins disposed between the flat tubes, the plurality of flat tubes are positioned at the upper group and the lower portion. The upper group flat tube and a part of the header pipe corresponding thereto constitute an upper heat exchanging portion, and the lower group flat tube and a part of the header pipe corresponding thereto are the lower part. constitutes a heat exchanging portion, thermal isolation portion is formed between the upper heat exchanger and the lower heat exchange section, the thermal separation unit consists of the space which the fin is not provided

本発明の好ましい実施形態によれば、上記構成の熱交換器において、前記上部熱交換部と下部熱交換部の一方が蒸発器として機能し、他方が凝縮器として機能する。   According to a preferred embodiment of the present invention, in the heat exchanger configured as described above, one of the upper heat exchange part and the lower heat exchange part functions as an evaporator, and the other functions as a condenser.

本発明の好ましい実施形態によれば、上記構成の熱交換器において、前記上部熱交換部と下部熱交換部のうち、凝縮器として機能する側では、冷媒が上位の偏平チューブから下位の偏平チューブに流れる。   According to a preferred embodiment of the present invention, in the heat exchanger configured as described above, on the side functioning as a condenser of the upper heat exchange part and the lower heat exchange part, the refrigerant is changed from an upper flat tube to a lower flat tube. Flowing into.

本発明の好ましい実施形態によれば、上記構成の熱交換器において、前記ヘッダパイプ内に形成された断熱仕切板が、前記熱的分離部形成の一翼を担う。   According to a preferred embodiment of the present invention, in the heat exchanger configured as described above, a heat insulating partition plate formed in the header pipe serves as one blade for forming the thermal separation portion.

本発明の好ましい実施形態によれば、一体型空気調和機に上記構成の熱交換器を搭載し、前記上部熱交換部を当該一体型空気調和機の筐体内の室内循環風路に配置し、前記下部熱交換器を前記筐体内の放熱風路に配置した。   According to a preferred embodiment of the present invention, the heat exchanger configured as described above is mounted on an integrated air conditioner, and the upper heat exchanging portion is disposed in an indoor circulation air passage in a housing of the integrated air conditioner. The lower heat exchanger was disposed in a heat radiating air passage in the casing.

本発明の好ましい実施形態によれば、上記構成の一体型空気調和機において、前記上部熱交換器は蒸発器として機能し、前記下部熱交換部は凝縮器として機能する。   According to a preferred embodiment of the present invention, in the integrated air conditioner configured as described above, the upper heat exchanger functions as an evaporator and the lower heat exchange unit functions as a condenser.

本発明によると、同じヘッダパイプ間に配置した偏平チューブを上部群と下部群に二分し、上部群の偏平チューブとそれに対応するヘッダパイプの一部で上部熱交換部を構成し、下部群の偏平チューブとそれに対応する前記ヘッダパイプの一部で下部熱交換部を構成したから、蒸発器と凝縮器を合わせた形の熱交換器を小型で、軽量なものとすることができる。この熱交換器を搭載する一体型空気調和機も小型・軽量化が可能となる。さらに、上部熱交換部と下部熱交換部の間にはフィンが設けられていない空間からなる熱的分離部が設けられているので、上部熱交換部と下部熱交換部のそれぞれの熱が他方に影響を及ぼすことが少なく、上部熱交換部は蒸発器としての機能を十分に果たし、下部熱交換部は凝縮器としての機能を十分に果たすことができる。 According to the present invention, the flat tubes arranged between the same header pipes are divided into an upper group and a lower group, and the upper group of flat tubes and a part of the header pipe corresponding thereto constitute an upper heat exchange part, Since the lower heat exchanging portion is constituted by the flat tube and a part of the header pipe corresponding to the flat tube, the heat exchanger in the form of a combination of the evaporator and the condenser can be made small and light. An integrated air conditioner equipped with this heat exchanger can also be reduced in size and weight. Furthermore, since the thermal separation part which consists of the space where the fin is not provided is provided between the upper heat exchange part and the lower heat exchange part, each heat of the upper heat exchange part and the lower heat exchange part is the other The upper heat exchanging part can sufficiently function as an evaporator, and the lower heat exchanging part can sufficiently function as a condenser.

本発明の第1実施形態に係るサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a side flow type parallel flow heat exchanger according to the first embodiment of the present invention. 本発明に係る熱交換器を搭載した一体型空気調和機の概略構成を示す側面図である。It is a side view which shows schematic structure of the integrated air conditioner carrying the heat exchanger which concerns on this invention. 本発明の第2実施形態に係るサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a side flow type parallel flow type heat exchanger according to a second embodiment of the present invention. 本発明の第3実施形態に係るサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a side flow type parallel flow heat exchanger according to a third embodiment of the present invention. 本発明の第4実施形態に係るサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a side flow type parallel flow type heat exchanger according to a fourth embodiment of the present invention. 従来のサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a conventional side flow type parallel flow type heat exchanger. 従来の一体型空気調和機の概略構成を示す側面図である。It is a side view which shows schematic structure of the conventional integrated air conditioner.

以下、本発明の第1実施形態に係るサイドフロー方式パラレルフロー型熱交換器の構造を、図1を参照しつつ説明する。   Hereinafter, the structure of the side flow type parallel flow heat exchanger according to the first embodiment of the present invention will be described with reference to FIG.

パラレルフロー型熱交換器20は、図6に示す従来構造と基本的に同じ構造を有する。すなわち、垂直方向に延びる2本のヘッダパイプ21、22の間に、水平方向に延びる偏平チューブ23が複数配置されている。「垂直」「水平」は、従来構造の説明で用いたのと同じ意味で用いている。   The parallel flow heat exchanger 20 has basically the same structure as the conventional structure shown in FIG. That is, a plurality of flat tubes 23 extending in the horizontal direction are arranged between the two header pipes 21 and 22 extending in the vertical direction. “Vertical” and “horizontal” are used in the same meaning as used in the description of the conventional structure.

偏平チューブ23、その内部の冷媒通路24、及びフィン25は従来構造の偏平チューブ4、冷媒通路5、及びフィン6と同様に構成され、固定される。複数のものが縦1列に並んだ偏平チューブ23の中で、最も外側に位置する偏平チューブ23の、外側に向いた偏平面には、フィン25とサイドプレート26の組み合わせが配置される。   The flat tube 23, the refrigerant passage 24 therein, and the fin 25 are configured and fixed in the same manner as the flat tube 4, the refrigerant passage 5, and the fin 6 of the conventional structure. A combination of the fins 25 and the side plates 26 is arranged on the flat surface facing the outside of the flat tube 23 located on the outermost side among the flat tubes 23 in which a plurality of tubes are arranged in a vertical row.

複数の偏平チューブ23は、上部に位置する上部群27と下部に位置する下部群28に二分される。上部群27と下部群28の間には空間29が設けられている。空間29は、上部群27と下部群28のそれぞれの熱が他方に影響しないようにする熱的分離部HIとして機能する。ヘッダパイプ21、22の内部には、上部群27と下部群28の間の位置に仕切板30、31が設けられており、これにより、上部群27と下部群28は完全に分離される。   The plurality of flat tubes 23 are divided into an upper group 27 located at the upper part and a lower group 28 located at the lower part. A space 29 is provided between the upper group 27 and the lower group 28. The space 29 functions as a thermal separation unit HI that prevents the heat of the upper group 27 and the lower group 28 from affecting the other. Inside the header pipes 21 and 22, partition plates 30 and 31 are provided at positions between the upper group 27 and the lower group 28, whereby the upper group 27 and the lower group 28 are completely separated.

仕切板30、31より上にあるヘッダパイプ21、22の一部と、上部群27に属する偏平チューブ23とは、上部熱交換部40を構成する。仕切板30、31より下にあるヘッダパイプ21、22の一部と、下部群28に属する偏平チューブ23とは、下部熱交換部41を構成する。   Part of the header pipes 21 and 22 above the partition plates 30 and 31 and the flat tubes 23 belonging to the upper group 27 constitute an upper heat exchange unit 40. Part of the header pipes 21 and 22 below the partition plates 30 and 31 and the flat tubes 23 belonging to the lower group 28 constitute a lower heat exchange unit 41.

上部熱交換部40では、ヘッダパイプ22に上部冷媒出入口32と下部冷媒出入口33が形成されている。ヘッダパイプ22の内部には、上部冷媒出入口32と下部冷媒出入口33の中間の高さのところに仕切板34が設けられている。   In the upper heat exchanging unit 40, an upper refrigerant inlet / outlet 32 and a lower refrigerant inlet / outlet 33 are formed in the header pipe 22. Inside the header pipe 22, a partition plate 34 is provided at an intermediate height between the upper refrigerant inlet / outlet 32 and the lower refrigerant inlet / outlet 33.

上部熱交換部40において、仕切板34より上に位置する偏平チューブ23の数と、仕切板34より下に位置する偏平チューブ23の数は、同数に設定されている。但し、蒸発時の圧力損失を考慮し、冷房時の流路の後の方ほど偏平チューブ23の数が多くなる設計とされる場合もある。   In the upper heat exchanging unit 40, the number of the flat tubes 23 positioned above the partition plate 34 and the number of the flat tubes 23 positioned below the partition plate 34 are set to the same number. However, in consideration of pressure loss during evaporation, the number of flat tubes 23 may be increased toward the rear of the flow path during cooling.

下部熱交換部41では、ヘッダパイプ22に上部冷媒出入口35と下部冷媒出入口36が形成されている。ヘッダパイプ22の内部には、上部冷媒出入口35と下部冷媒出入口36の間の位置に仕切板37、38が設けられている。ヘッダパイプ21の内部には、仕切板37、38の間の高さのところに仕切板39が設けられている。   In the lower heat exchange unit 41, an upper refrigerant inlet / outlet 35 and a lower refrigerant inlet / outlet 36 are formed in the header pipe 22. Inside the header pipe 22, partition plates 37 and 38 are provided at positions between the upper refrigerant inlet / outlet 35 and the lower refrigerant inlet / outlet 36. A partition plate 39 is provided in the header pipe 21 at a height between the partition plates 37 and 38.

下部熱交換部41において、仕切板38より下に位置する偏平チューブ23の数と、仕切板38と仕切板39の間の高さに位置する偏平チューブ23の数は等しく、仕切板39と仕切板37の間の高さに位置する偏平チューブ23の数はそれより少なく、偏平チューブ37より上に位置する偏平チューブ23の数はさらに少ない。   In the lower heat exchanging section 41, the number of the flat tubes 23 positioned below the partition plate 38 is equal to the number of the flat tubes 23 positioned at the height between the partition plate 38 and the partition plate 39. The number of the flat tubes 23 positioned at the height between the plates 37 is smaller, and the number of the flat tubes 23 positioned above the flat tubes 37 is further smaller.

上部熱交換部40の下部冷媒出入口33と、下部熱交換部41の上部冷媒出入口35は、冷媒配管42で接続される。冷媒配管42には減圧膨張装置43が設けられている。   The lower refrigerant inlet / outlet port 33 of the upper heat exchange unit 40 and the upper refrigerant inlet / outlet port 35 of the lower heat exchange unit 41 are connected by a refrigerant pipe 42. The refrigerant pipe 42 is provided with a decompression / expansion device 43.

冷房運転時には、上部熱交換部40を蒸発器として機能させ、下部熱交換部41を凝縮器として機能させる。すなわち、図示しない圧縮機から吐出された高温高圧の冷媒が下部冷媒出入口36から下部熱交換部41に入る。下部熱交換部41に入った冷媒は、仕切板38より下に位置する偏平チューブ23を通ってヘッダパイプ21に向かう。ヘッダパイプ21に入った冷媒は折り返し、仕切板38と仕切板39の間の偏平チューブ23を通ってヘッダパイプ22に向かう。ヘッダパイプ22に入った冷媒は再び折り返し、仕切板39と仕切板37の間の偏平チューブ23を通ってヘッダパイプ21に向かう。ヘッダパイプ21に入った冷媒は再び折り返し、仕切板37より上の偏平チューブ23を通ってヘッダパイプ22に向かい、上部冷媒出入口35から流出する。   During the cooling operation, the upper heat exchange unit 40 functions as an evaporator, and the lower heat exchange unit 41 functions as a condenser. That is, the high-temperature and high-pressure refrigerant discharged from the compressor (not shown) enters the lower heat exchange unit 41 through the lower refrigerant inlet / outlet 36. The refrigerant that has entered the lower heat exchanging portion 41 travels toward the header pipe 21 through the flat tube 23 positioned below the partition plate 38. The refrigerant that has entered the header pipe 21 is turned back, passes through the flat tube 23 between the partition plate 38 and the partition plate 39, and travels toward the header pipe 22. The refrigerant that has entered the header pipe 22 is turned back to the header pipe 21 through the flat tube 23 between the partition plate 39 and the partition plate 37. The refrigerant that has entered the header pipe 21 turns back again, passes through the flat tube 23 above the partition plate 37, travels to the header pipe 22, and flows out from the upper refrigerant inlet / outlet 35.

下部冷媒出入口36から下部熱交換部41に流入した高温高圧の冷媒は、下部熱交換部41の内部を下から上へとジグザグに流れる過程で、下部熱交換部41を通過する空気に放熱し、凝縮する。下部熱交換部41の上部冷媒出入口35を出た冷媒は減圧膨張装置43を経た後、下部冷媒出入口33から上部熱交換部40に入る。   The high-temperature and high-pressure refrigerant that has flowed into the lower heat exchanging portion 41 from the lower refrigerant inlet / outlet 36 radiates heat to the air passing through the lower heat exchanging portion 41 in the process of flowing in a zigzag manner from the bottom to the upper portion of the lower heat exchanging portion 41. Condenses. The refrigerant that has exited the upper refrigerant inlet / outlet 35 of the lower heat exchange unit 41 passes through the decompression / expansion device 43 and then enters the upper heat exchange unit 40 through the lower refrigerant inlet / outlet 33.

下部冷媒出入口33から上部熱交換部40に入った冷媒は、仕切板34より下に位置する偏平チューブ23を通ってヘッダパイプ21に向かう。ヘッダパイプ21に入った冷媒は折り返し、仕切板34より上に位置する偏平チューブ23を通ってヘッダパイプ22に向かう。ヘッダパイプ22に入った冷媒は上部冷媒出入口32から流出する。このように、上部熱交換部40の内部を折り返して流れる冷媒はその過程で膨張し、上部熱交換部40を通過する空気から熱を奪う。その後冷媒は上部冷媒出入口32を出て前記図示しない圧縮機に戻る。このように、蒸発器として機能する上部熱交換部40において、冷媒は下位の偏平チューブ23から上位の偏平チューブ23へと流れる。これとは逆に、蒸発器として機能する上部熱交換器40において、冷媒が上位の偏平チューブ23から下位の偏平チューブ23に流れる構成としても構わない。   The refrigerant that has entered the upper heat exchanging portion 40 from the lower refrigerant inlet / outlet port 33 goes to the header pipe 21 through the flat tube 23 positioned below the partition plate 34. The refrigerant that has entered the header pipe 21 is turned back and travels toward the header pipe 22 through the flat tube 23 positioned above the partition plate 34. The refrigerant that has entered the header pipe 22 flows out from the upper refrigerant inlet / outlet 32. In this way, the refrigerant that flows back inside the upper heat exchange unit 40 expands in the process, and takes heat from the air passing through the upper heat exchange unit 40. Thereafter, the refrigerant exits from the upper refrigerant inlet / outlet 32 and returns to the compressor (not shown). Thus, in the upper heat exchanging unit 40 that functions as an evaporator, the refrigerant flows from the lower flat tube 23 to the upper flat tube 23. On the contrary, in the upper heat exchanger 40 functioning as an evaporator, the refrigerant may flow from the upper flat tube 23 to the lower flat tube 23.

上部熱交換部40と下部熱交換部41の間には熱的分離部HIが設けられているので、上部熱交換部40と下部熱交換部41のそれぞれの熱が他方に影響を及ぼすことが少なく、上部熱交換部40は蒸発器としての機能を十分に果たし、下部熱交換部41は凝縮器としての機能を十分に果たすことができる。   Since the thermal separation unit HI is provided between the upper heat exchange unit 40 and the lower heat exchange unit 41, the heat of the upper heat exchange unit 40 and the lower heat exchange unit 41 may affect the other. Therefore, the upper heat exchanging unit 40 can sufficiently function as an evaporator, and the lower heat exchanging unit 41 can sufficiently function as a condenser.

暖房運転時には、図示しない四方弁が切り換えられて冷房運転時と冷媒の流れが逆になる。すなわち、図示しない圧縮機から吐出された高温高圧の冷媒は上部冷媒出入口32から上部熱交換部40に入り、上部熱交換部40を通過する空気に放熱し、凝縮する。下部冷媒出入口33から上部熱交換部40を出た冷媒は減圧膨張装置43を経た後、上部冷媒出入口35から下部熱交換部41に入る。下部熱交換部41に入った冷媒は膨張し、下部熱交換部41を通過する空気から熱を吸収した後、下部冷媒出入口36を出て図示しない圧縮機に戻る。   During heating operation, a four-way valve (not shown) is switched, and the refrigerant flow is reversed from that during cooling operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor (not shown) enters the upper heat exchange unit 40 from the upper refrigerant inlet / outlet 32, dissipates heat to the air passing through the upper heat exchange unit 40, and condenses. The refrigerant that has exited the upper heat exchange section 40 from the lower refrigerant inlet / outlet 33 passes through the decompression / expansion device 43 and then enters the lower heat exchange section 41 through the upper refrigerant inlet / outlet 35. The refrigerant that has entered the lower heat exchanging section 41 expands, absorbs heat from the air passing through the lower heat exchanging section 41, and then exits the lower refrigerant inlet / outlet 36 and returns to the compressor (not shown).

サイドフロー方式のパラレルフロー型熱交換器20は、ヘッダパイプ21、22を共用する形で上部熱交換部40と下部熱交換部41を形成し、その一方を蒸発器、他方を凝縮器として用いるものであるから、蒸発器用と凝縮器用で別個のサイドフロー方式パラレルフロー型熱交換器を設ける場合に比べ、コンパクトな構成とすることができる。   The side flow type parallel flow heat exchanger 20 forms an upper heat exchanging portion 40 and a lower heat exchanging portion 41 so as to share the header pipes 21 and 22, and one of them is used as an evaporator and the other as a condenser. Therefore, compared with the case where separate side flow type parallel flow heat exchangers are provided for the evaporator and the condenser, a compact configuration can be achieved.

パラレルフロー型熱交換器20を一体型空気調和機に搭載した状況を図2に示す。図2の一体型空気調和機10は図5の一体型空気調和機10の構造を基本的に踏襲している。図5と共通する構成要素には図5で用いた符号をそのまま付し、説明は省略する。   FIG. 2 shows a state in which the parallel flow heat exchanger 20 is mounted on an integrated air conditioner. The integrated air conditioner 10 shown in FIG. 2 basically follows the structure of the integrated air conditioner 10 shown in FIG. Components that are the same as those in FIG. 5 are given the same reference numerals used in FIG.

筐体11内に取り付けられたパラレルフロー型熱交換器20は、上部熱交換部40が室内循環風路18に配置され、下部熱交換部41が放熱風路19に配置されている。   In the parallel flow type heat exchanger 20 attached in the housing 11, the upper heat exchanging part 40 is arranged in the indoor circulation air passage 18 and the lower heat exchanging part 41 is arranged in the radiating air passage 19.

コンパクトな構成のパラレルフロー型熱交換器20を搭載することから、一体型空気調和機10そのものも小型・軽量化することができる。また、蒸発器と凝縮器を別々に設置するのにくらべ、設置作業が容易になり、作業時間も短縮される。   Since the parallel flow heat exchanger 20 having a compact configuration is mounted, the integrated air conditioner 10 itself can be reduced in size and weight. In addition, the installation work becomes easier and the working time is shortened as compared with the case where the evaporator and the condenser are separately installed.

冷房運転時には、蒸発器として機能している上部熱交換部40の外面に空気中の水分が結露して、凝縮水が生じる。凝縮水は重力で滴下または流下し、凝縮器として機能している下部熱交換部41を濡らす。これにより、下部熱交換部41の凝縮効果が一層高められる。   During the cooling operation, moisture in the air is condensed on the outer surface of the upper heat exchange unit 40 functioning as an evaporator, and condensed water is generated. Condensed water drops or flows down by gravity, and wets the lower heat exchange unit 41 functioning as a condenser. Thereby, the condensation effect of the lower heat exchange part 41 is further enhanced.

パラレルフロー型熱交換器20の第2実施形態を図3に示す。第2実施形態が第1実施形態と異なる点は、ヘッダパイプ21、22の中の内部の仕切板30、31が断熱仕切板30HI、31HIに置き換えられていることである。断熱仕切板30HI、31HIは
熱的分離部HI形成の一翼を担い、熱的分離を一層確実なものとする。
A second embodiment of the parallel flow heat exchanger 20 is shown in FIG. The second embodiment is different from the first embodiment in that the partition plates 30 and 31 inside the header pipes 21 and 22 are replaced with heat insulation partition plates 30HI and 31HI. The heat insulating partition plates 30HI and 31HI play a part in the formation of the thermal separation portion HI, thereby further ensuring the thermal separation.

図3では、2枚の仕切板を両者間に空間が生じるように配置して断熱仕切板30HI、31HIを形成している。断熱仕切板30HI、31HIはアルミニウム製なので、一枚板だと熱移動が生じ易いが、2枚の板を両者間に空間が生じるように配置することにより十分な断熱性を持たせることができる。2枚の板の間の空間は、何らかの気体を封入してもよく、真空状態としてもよい。   In FIG. 3, the heat insulating partition plates 30 </ b> HI and 31 </ b> HI are formed by arranging two partition plates so that a space is generated between them. Since the heat insulating partition plates 30HI and 31HI are made of aluminum, heat transfer is likely to occur with a single plate, but sufficient heat insulation can be provided by arranging the two plates so that a space is generated between them. . The space between the two plates may enclose some gas or may be in a vacuum state.

断熱仕切板30HI、31HIは上記以外の手法でも形成できる。例えば、板の厚みを増したり、板の材料を断熱性のものに変更したりするなどして断熱仕切板30HI、31HIを形成することとしてもよい。   The heat insulating partition plates 30HI and 31HI can be formed by methods other than those described above. For example, the heat insulating partition plates 30HI and 31HI may be formed by increasing the thickness of the plate or changing the material of the plate to a heat insulating material.

パラレルフロー型熱交換器20の第3実施形態を図4に示す。第3実施形態では、下部熱交換部41の下部冷媒出入口36が冷媒配管42で上部熱交換部40の下部冷媒出入口33に接続されている。   A third embodiment of the parallel flow heat exchanger 20 is shown in FIG. In the third embodiment, the lower refrigerant inlet / outlet 36 of the lower heat exchange unit 41 is connected to the lower refrigerant inlet / outlet 33 of the upper heat exchange unit 40 through the refrigerant pipe 42.

下部熱交換部41において、仕切板37より上に位置する偏平チューブ23の数と、仕切板37と仕切板39の間の高さに位置する偏平チューブ23の数は等しく、仕切板39と仕切板38の間の高さに位置する偏平チューブ23の数はそれより少なく、偏平チューブ38より下に位置する偏平チューブ23の数はさらに少ない。   In the lower heat exchanging section 41, the number of the flat tubes 23 positioned above the partition plate 37 is equal to the number of the flat tubes 23 positioned at the height between the partition plate 37 and the partition plate 39. The number of the flat tubes 23 located at the height between the plates 38 is smaller than that, and the number of the flat tubes 23 located below the flat tubes 38 is smaller.

冷房運転時には、図示しない圧縮機から吐出された高温高圧の冷媒が上部冷媒出入口35から下部熱交換部41に入る。下部熱交換部41に入った冷媒は、仕切板37より上に位置する偏平チューブ23を通ってヘッダパイプ21に向かう。ヘッダパイプ21に入った冷媒は折り返し、仕切板37と仕切板39の間の偏平チューブ23を通ってヘッダパイプ22に向かう。ヘッダパイプ22に入った冷媒は再び折り返し、仕切板39と仕切板38の間の偏平チューブ23を通ってヘッダパイプ21に向かう。ヘッダパイプ21に入った冷媒は再び折り返し、仕切板38より下の偏平チューブ23を通ってヘッダパイプ22に向かい、下部冷媒出入口36から流出する。   During the cooling operation, high-temperature and high-pressure refrigerant discharged from a compressor (not shown) enters the lower heat exchange unit 41 through the upper refrigerant inlet / outlet 35. The refrigerant that has entered the lower heat exchanging portion 41 travels toward the header pipe 21 through the flat tube 23 positioned above the partition plate 37. The refrigerant that has entered the header pipe 21 is turned back, passes through the flat tube 23 between the partition plate 37 and the partition plate 39, and travels toward the header pipe 22. The refrigerant that has entered the header pipe 22 is turned back again and travels toward the header pipe 21 through the flat tube 23 between the partition plate 39 and the partition plate 38. The refrigerant that has entered the header pipe 21 turns back again, passes through the flat tube 23 below the partition plate 38, travels to the header pipe 22, and flows out from the lower refrigerant inlet / outlet 36.

上部冷媒出入口35から下部熱交換部41に流入した高温高圧の冷媒は、下部熱交換部41の内部を上から下へとジグザグに流れる過程で、下部熱交換部41を通過する空気に放熱し、凝縮する。下部熱交換部41の下部冷媒出入口36を出た冷媒は減圧膨張装置43を経た後、下部冷媒出入口33から上部熱交換部40に入る。上部熱交換部40に入った冷媒は膨張し、上部熱交換部40を通過する空気から熱を奪う。その後冷媒は上部冷媒出入口32から出て前記図示しない圧縮機に戻る。   The high-temperature and high-pressure refrigerant that has flowed into the lower heat exchanging portion 41 from the upper refrigerant inlet / outlet 35 radiates heat to the air passing through the lower heat exchanging portion 41 in the process of flowing in a zigzag manner from the top to the bottom inside the lower heat exchanging portion 41. Condenses. The refrigerant that has exited the lower refrigerant inlet / outlet 36 of the lower heat exchange unit 41 passes through the decompression / expansion device 43 and then enters the upper heat exchange unit 40 through the lower refrigerant inlet / outlet 33. The refrigerant that has entered the upper heat exchange unit 40 expands and takes heat from the air passing through the upper heat exchange unit 40. Thereafter, the refrigerant exits from the upper refrigerant inlet / outlet 32 and returns to the compressor (not shown).

凝縮器として機能する下部熱交換部41において、冷媒は上位の偏平チューブ23から下位の偏平チューブ23へと流れる。上から下への動きは液体の冷媒にとって自然な動きであり、効率良く熱交換を行うことができる。   In the lower heat exchange section 41 that functions as a condenser, the refrigerant flows from the upper flat tube 23 to the lower flat tube 23. The movement from top to bottom is a natural movement for the liquid refrigerant, and heat can be exchanged efficiently.

パラレルフロー型熱交換器20の第4実施形態を図5に示す。第4実施形態では、下部熱交換部41の下部冷媒出入口36が冷媒配管42で上部熱交換部40の上部冷媒出入口32に接続されている。   A fourth embodiment of the parallel flow type heat exchanger 20 is shown in FIG. In the fourth embodiment, the lower refrigerant inlet / outlet 36 of the lower heat exchanging part 41 is connected to the upper refrigerant inlet / outlet 32 of the upper heat exchanging part 40 through the refrigerant pipe 42.

冷房運転時には、上部冷媒出入口32から上部熱交換部40に入った冷媒は、上位の偏平チューブ23から下位の偏平チューブ23へと流れつつ膨張し、上部熱交換部40を通過する空気から熱を奪う。その後冷媒は下部冷媒出入口33から出て前記図示しない圧縮機に戻る。   During the cooling operation, the refrigerant that has entered the upper heat exchange unit 40 from the upper refrigerant inlet / outlet 32 expands while flowing from the upper flat tube 23 to the lower flat tube 23, and generates heat from the air passing through the upper heat exchange unit 40. Take away. Thereafter, the refrigerant exits from the lower refrigerant inlet / outlet 33 and returns to the compressor (not shown).

第3実施形態と第4実施形態においても、仕切板30、31を断熱仕切板30HI、31HIに置き換えることにより、熱的分離を一層確実なものとすることができる。   Also in the third embodiment and the fourth embodiment, the thermal separation can be further ensured by replacing the partition plates 30 and 31 with the heat insulating partition plates 30HI and 31HI.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載する一体型空気調和機に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a side flow type parallel flow heat exchanger and an integrated air conditioner equipped with the heat exchanger.

10 一体型空気調和機
11 筐体
12 仕切板
13 冷房室
14 排熱室
17 圧縮機
18 室内循環風路
19 放熱風路
20 パラレルフロー型熱交換器
21、22 ヘッダパイプ
23 偏平チューブ
24 冷媒通路
25 フィン
27 上部群
28 下部群
30、31 仕切板
30HI、31HI 断熱仕切板
32、35 上部冷媒出入口
33、36 下部冷媒出入口
40 上部熱交換部
41 下部熱交換部
HI 熱的分離部
DESCRIPTION OF SYMBOLS 10 Integrated air conditioner 11 Case 12 Partition plate 13 Cooling room 14 Heat exhaust room 17 Compressor 18 Indoor circulation air path 19 Radiation air path 20 Parallel flow type heat exchanger 21, 22 Header pipe 23 Flat tube 24 Refrigerant path 25 Fin 27 Upper group 28 Lower group 30, 31 Partition plate 30HI, 31HI Thermal insulation partition plate 32, 35 Upper refrigerant inlet / outlet 33, 36 Lower refrigerant inlet / outlet 40 Upper heat exchange part 41 Lower heat exchange part HI Thermal separation part

Claims (6)

間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたフィンとを備えたサイドフロー方式のパラレルフロー型熱交換器において、
前記複数の偏平チューブは上部に位置する上部群と下部に位置する下部群に二分され、前記上部群の偏平チューブとそれに対応する前記ヘッダパイプの一部が上部熱交換部を構成し、前記下部群の偏平チューブとそれに対応する前記ヘッダパイプの一部が下部熱交換部を構成し
前記上部熱交換部と下部熱交換部の間に熱的分離部が形成され、
前記熱的分離部は前記フィンが設けられていない空間からなることを特徴とする熱交換器。
A plurality of header pipes arranged in parallel at intervals, a plurality of flat tubes arranged between the plurality of header pipes and having refrigerant passages provided therein communicated with the inside of the header pipes, and the flat tubes In the parallel flow type heat exchanger of the side flow method provided with fins arranged between each other,
The plurality of flat tubes are divided into an upper group located at an upper portion and a lower group located at a lower portion, and the flat tubes of the upper group and a part of the header pipe corresponding thereto constitute an upper heat exchanging portion, A group of flat tubes and a part of the header pipe corresponding thereto constitute a lower heat exchange part ,
A thermal separation part is formed between the upper heat exchange part and the lower heat exchange part,
The heat exchanger is a heat exchanger characterized in that the thermal separation unit is a space where the fins are not provided .
前記上部熱交換部と下部熱交換部の一方が蒸発器として機能し、他方が凝縮器として機能することを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein one of the upper heat exchange part and the lower heat exchange part functions as an evaporator, and the other functions as a condenser. 前記上部熱交換部と下部熱交換部のうち、凝縮器として機能する側では、冷媒が上位の偏平チューブから下位の偏平チューブに流れることを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the refrigerant flows from the upper flat tube to the lower flat tube on the side of the upper heat exchange unit and the lower heat exchange unit that functions as a condenser. 前記ヘッダパイプ内に形成された断熱仕切板が、前記熱的分離部形成の一翼を担うことを特徴とする請求項1から3のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3 , wherein a heat insulating partition plate formed in the header pipe serves as one blade of the thermal separation section . 請求項1から4のいずれか1項に記載の熱交換器を搭載し、前記上部熱交換部を当該一体型空気調和機の筐体内の室内循環風路に配置し、前記下部熱交換器を前記筐体内の放熱風路に配置したことを特徴とする一体型空気調和機 The heat exchanger according to any one of claims 1 to 4 is mounted, the upper heat exchanging portion is disposed in an indoor circulation air passage in a housing of the integrated air conditioner, and the lower heat exchanger is An integrated air conditioner arranged in a heat radiating air passage in the housing . 前記上部熱交換器は蒸発器として機能し、前記下部熱交換部は凝縮器として機能することを特徴とする請求項5に記載の一体型空気調和機 6. The integrated air conditioner according to claim 5, wherein the upper heat exchanger functions as an evaporator and the lower heat exchanger functions as a condenser .
JP2010268228A 2010-12-01 2010-12-01 Heat exchanger and integrated air conditioner equipped with the same Expired - Fee Related JP5618368B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010268228A JP5618368B2 (en) 2010-12-01 2010-12-01 Heat exchanger and integrated air conditioner equipped with the same
CN2011800579038A CN103238037A (en) 2010-12-01 2011-11-17 Heat exchanger, and all-in-one air conditioner equipped therewith
PCT/JP2011/076572 WO2012073719A1 (en) 2010-12-01 2011-11-17 Heat exchanger, and all-in-one air conditioner equipped therewith
US13/883,648 US20130220584A1 (en) 2010-12-01 2011-11-17 Heat exchanger, and all-in-one air conditioner equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268228A JP5618368B2 (en) 2010-12-01 2010-12-01 Heat exchanger and integrated air conditioner equipped with the same

Publications (2)

Publication Number Publication Date
JP2012117751A JP2012117751A (en) 2012-06-21
JP5618368B2 true JP5618368B2 (en) 2014-11-05

Family

ID=46171663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268228A Expired - Fee Related JP5618368B2 (en) 2010-12-01 2010-12-01 Heat exchanger and integrated air conditioner equipped with the same

Country Status (4)

Country Link
US (1) US20130220584A1 (en)
JP (1) JP5618368B2 (en)
CN (1) CN103238037A (en)
WO (1) WO2012073719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613156B2 (en) 2018-07-09 2023-03-28 Hanon Systems Compact heat exchanger unit and air conditioning module particularly for electric vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993965B1 (en) * 2012-07-24 2018-07-27 Valeo Systemes Thermiques MULTI-FLUID THERMAL EXCHANGER FOR MOTOR VEHICLES
JP6139093B2 (en) * 2012-10-23 2017-05-31 シャープ株式会社 Parallel flow heat exchanger
EP2881693A1 (en) * 2013-12-05 2015-06-10 Miele & Cie. KG Heat exchanger for household appliances such as laundry dryers, dishwashers or washer dryers
CN103900399A (en) * 2014-03-21 2014-07-02 广东芬尼克兹节能设备有限公司 Multifunctional integrated heat exchanger
KR101566747B1 (en) * 2014-04-14 2015-11-13 현대자동차 주식회사 Heat pump system for vehicle
KR101540071B1 (en) * 2015-01-27 2015-07-29 (주)삼원산업사 Manufacturing method of condenser for air conditioning
KR20160117937A (en) * 2015-04-01 2016-10-11 삼성전자주식회사 Refrigerator and heat exchanger applying the same
JP6589235B2 (en) * 2015-06-26 2019-10-16 本田技研工業株式会社 Air conditioner
JP6537928B2 (en) * 2015-08-19 2019-07-03 三菱重工サーマルシステムズ株式会社 Heat exchanger and heat pump system
DE102016214116A1 (en) * 2016-08-01 2018-02-01 Volkswagen Aktiengesellschaft Air conditioning device for a motor vehicle
US10222130B2 (en) * 2016-08-08 2019-03-05 Caterpillar Inc. Work machine heat exchanger
US10712095B2 (en) 2018-02-14 2020-07-14 Lennox Industries Inc. Heat exchanger construction
JP7081417B2 (en) * 2018-09-18 2022-06-07 株式会社デンソー Heat exchanger
JP7296264B2 (en) * 2019-07-01 2023-06-22 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle equipment
CN110422309B (en) * 2019-07-02 2021-10-08 哈尔滨工程大学 Open cooling system applied to pod propeller propulsion motor and control method
CN112414164A (en) * 2020-12-07 2021-02-26 惠州汉旭五金塑胶科技有限公司 Multi-runner type efficient radiating water-cooling radiator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651816A (en) * 1986-03-19 1987-03-24 Modine Manufacturing Company Heat exchanger module for a vehicle or the like
US5765393A (en) * 1997-05-28 1998-06-16 White Consolidated Industries, Inc. Capillary tube incorporated into last pass of condenser
JPH1194483A (en) * 1997-09-25 1999-04-09 Zexel:Kk Heat exchanger
FR2786259B1 (en) * 1998-11-20 2001-02-02 Valeo Thermique Moteur Sa COMBINED HEAT EXCHANGER, PARTICULARLY FOR A MOTOR VEHICLE
JP2003042597A (en) * 2001-07-27 2003-02-13 Denso Corp Integrated heat exchanger
JP3969099B2 (en) * 2002-01-18 2007-08-29 株式会社デンソー Air conditioner for vehicles
JP2005106431A (en) * 2003-10-01 2005-04-21 Denso Corp Heat exchanger module
US7096932B2 (en) * 2003-12-22 2006-08-29 Modine Manufacturing Company Multi-fluid heat exchanger and method of making same
JP4779641B2 (en) * 2005-12-26 2011-09-28 株式会社デンソー Combined heat exchanger
KR101202258B1 (en) * 2006-02-13 2012-11-16 한라공조주식회사 Integrated style heat exchanger
KR101222509B1 (en) * 2006-04-13 2013-01-15 한라공조주식회사 A heat exchanger for vehicle
JP2008267730A (en) * 2007-04-23 2008-11-06 Denso Corp Double row heat exchanger
CN100526759C (en) * 2007-08-16 2009-08-12 青岛大学 Combined adsorb refrigerating device
JP4676520B2 (en) * 2008-08-28 2011-04-27 シャープ株式会社 Integrated air conditioner
JP5540816B2 (en) * 2010-03-26 2014-07-02 株式会社デンソー Evaporator unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613156B2 (en) 2018-07-09 2023-03-28 Hanon Systems Compact heat exchanger unit and air conditioning module particularly for electric vehicle

Also Published As

Publication number Publication date
CN103238037A (en) 2013-08-07
US20130220584A1 (en) 2013-08-29
JP2012117751A (en) 2012-06-21
WO2012073719A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5618368B2 (en) Heat exchanger and integrated air conditioner equipped with the same
JP6641721B2 (en) Heat exchangers and air conditioners
JP5385589B2 (en) Air conditioner outdoor unit
JP5079857B2 (en) Air conditioner indoor unit
CN110612425B (en) Heat exchanger
JP5385588B2 (en) Air conditioner outdoor unit
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
JP2006284133A (en) Heat exchanger
WO2018056209A1 (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP5516387B2 (en) Refrigeration unit outdoor unit
JP4995308B2 (en) Air conditioner indoor unit
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
WO2017130975A1 (en) Heat exchanger
WO2018040037A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP5763436B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP2012067971A (en) Heat exchanger and apparatus
JP2008070106A (en) Condenser and radiator in air conditioning cooling system
JP2011047600A (en) Heat exchanger and air conditioner mounted with the same
JP2013234815A (en) Air conditioner
JP6139093B2 (en) Parallel flow heat exchanger
JP2012037099A (en) Indoor unit of air conditioner
JP2012042128A (en) Heat exchanger and air conditioner equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5618368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees