JP2002022307A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002022307A
JP2002022307A JP2000211976A JP2000211976A JP2002022307A JP 2002022307 A JP2002022307 A JP 2002022307A JP 2000211976 A JP2000211976 A JP 2000211976A JP 2000211976 A JP2000211976 A JP 2000211976A JP 2002022307 A JP2002022307 A JP 2002022307A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
air conditioner
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000211976A
Other languages
Japanese (ja)
Inventor
Kazumiki Urata
和幹 浦田
Susumu Nakayama
進 中山
Atsuhiko Yokozeki
敦彦 横関
Hiroshi Takenaka
寛 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000211976A priority Critical patent/JP2002022307A/en
Publication of JP2002022307A publication Critical patent/JP2002022307A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an air conditioner utilizing effectively a condensation heat exchanger upon cooling operation and heating operation. SOLUTION: The air conditioner, in which a compressor 1, an indoor heat exchanger 8, a reducer 4, a liquid receiver 5 and an outdoor heat exchanger 3 are connected through a pipeline, is provided with the condensation heat exchanger 6 arranged so as to be positioned at the outlet port side of the liquid receiver 5 upon cooling operation while the same is positioned at the inlet port side of the liquid receiver 5 upon heating operation to permit heat exchange between the condensation heat exchanger 6 and the lower part of the outdoor heat exchanger 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に係
り、特に受液器を有した空気調和装置の能力向上もしく
は省電力化ならびに冷凍サイクルの簡素化に好適であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, to an air conditioner having a liquid receiver, which is suitable for improving the performance, saving power, and simplifying a refrigeration cycle.

【0002】[0002]

【従来の技術】空気調和装置の能力向上及び省電力化を
図る方法として、低圧側の圧力損失を低減する方法があ
り、その一つとして、余剰冷媒を貯めていた圧縮機吸入
側に付設するアキュムレータを廃止し、冷凍サイクルの
高圧部もしくは中間圧部に受液器を設け、余剰冷媒を前
記受液器に貯めることが知られている。この方法では、
圧縮機低圧側に付設するアキュムレータを廃止すること
で、低圧側の圧力損失が低減され、圧縮機吸入圧力の上
昇により冷凍サイクル内を循環する冷媒量が増加し、能
力の向上が可能となる。
2. Description of the Related Art As a method of improving the performance and power saving of an air conditioner, there is a method of reducing a pressure loss on a low pressure side. One of the methods is to attach the excess refrigerant to a suction side of a compressor in which excess refrigerant is stored. It is known that an accumulator is abolished, a liquid receiver is provided in a high pressure part or an intermediate pressure part of a refrigeration cycle, and excess refrigerant is stored in the liquid receiver. in this way,
By eliminating the accumulator attached to the low pressure side of the compressor, the pressure loss on the low pressure side is reduced, and the amount of refrigerant circulating in the refrigeration cycle is increased due to an increase in the suction pressure of the compressor, so that the capacity can be improved.

【0003】また、圧縮機吸入側に液冷媒を貯留しない
ため、圧縮機吸入の冷媒状態を過熱させることができ、
圧縮機の効率が向上し省電力化が可能となる。ところ
が、凝縮器で凝縮した液冷媒が受液器内で飽和液状態と
なって受液器を流出し、蒸発器内に流入して蒸発させる
ため凝縮器で冷媒を過冷却できず、蒸発器での潜熱量が
大きくとれず能力を更に向上させることができない。
[0003] Further, since no liquid refrigerant is stored on the compressor suction side, the refrigerant state of the compressor suction can be overheated.
The efficiency of the compressor is improved, and power can be saved. However, the liquid refrigerant condensed in the condenser becomes a saturated liquid state in the receiver and flows out of the receiver, flows into the evaporator and evaporates. The amount of latent heat cannot be increased so that the performance cannot be further improved.

【0004】能力向上や省電力化を図れるように、冷凍
サイクルの熱効率を改善するには、凝縮熱交換器を、冷
房運転時における受液器の下流側に設け、受液器から流
出する飽和液状態の冷媒を空気と熱交換して冷媒を過冷
却させ、蒸発器での潜熱量を増大することが例えば特開
2000−121174号公報に記載されている。
In order to improve the thermal efficiency of the refrigeration cycle so as to improve the capacity and save power, a condensing heat exchanger is provided downstream of the receiver during cooling operation, and the saturation heat flowing out of the receiver is used. Japanese Patent Application Laid-Open No. 2000-11174 describes, for example, Japanese Patent Application Laid-Open No. 2000-11174 that heat exchange of a liquid state refrigerant with air to supercool the refrigerant and increase the amount of latent heat in an evaporator.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術に示され
る能力向上策は、冷媒を過冷却するために設けた受液器
の下流側に配設する凝縮熱交換器と室外熱交換器の位置
に関して考慮がなされていない。よって、暖房運転時
は、冷媒を過冷却する凝縮熱交換器に冷媒が流れ、凝縮
熱交換器を通過する空気と熱交換して外気にのみ放熱す
るため、凝縮熱交換器では無駄に熱を捨ててしまう。
The above-mentioned conventional technique for improving the capacity is based on the position of a condensing heat exchanger and an outdoor heat exchanger disposed downstream of a receiver provided for supercooling the refrigerant. Has not been taken into account. Therefore, during the heating operation, the refrigerant flows into the condensing heat exchanger that supercools the refrigerant, exchanges heat with the air passing through the condensing heat exchanger, and radiates heat only to the outside air. Throw it away.

【0006】また、凝縮熱交換器で捨てる熱を無くすた
めに、凝縮熱交換器に冷媒を通さないもしくは凝縮熱交
換器を蒸発器として利用するために、受液器及び凝縮熱
交換器を接続する配管の途中に逆止弁や膨張弁等を配設
し、選択的に凝縮熱交換器に冷媒を流したりする方法で
は冷凍サイクルが複雑化し製造コストが高くなる。ま
た、凝縮熱交換器を室外熱交換器とは別に配設するた
め、凝縮熱交換器及び接続配管分の製造コストが高くな
る。
Further, in order to eliminate heat discarded in the condensing heat exchanger, a liquid receiver and a condensing heat exchanger are connected so that no refrigerant passes through the condensing heat exchanger or the condensing heat exchanger is used as an evaporator. A method of disposing a check valve, an expansion valve, and the like in the middle of the piping to selectively flow the refrigerant through the condensation heat exchanger complicates the refrigeration cycle and increases the production cost. In addition, since the condensing heat exchanger is provided separately from the outdoor heat exchanger, manufacturing costs for the condensing heat exchanger and the connection piping are increased.

【0007】本発明の目的は、係る従来の技術的課題を
解決し、受液器の下流側に冷媒を過冷却する凝縮熱交換
器を配設した場合でも、冷房運転時及び暖房運転時共に
凝縮熱交換器を有効に利用した空気調和装置を提供する
ことにある。また、本発明の目的は、冷凍サイクルを複
雑化せず、製造コストを安価にすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional technical problem and to provide a condensing heat exchanger for supercooling a refrigerant downstream of a liquid receiver, even in a cooling operation and a heating operation. An object of the present invention is to provide an air conditioner that effectively utilizes a condensing heat exchanger. Another object of the present invention is to reduce the manufacturing cost without complicating the refrigeration cycle.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、圧縮機、室内熱交換器、減圧装置、受
液器、室外熱交換器とが配管接続された空気調和装置に
おいて、冷房運転時は受液器の出口側に、暖房運転時は
受液器の入口側となるように配設された凝縮熱交換器を
備え、該凝縮熱交換器を室外熱交換器の下部と熱交換可
能させるものである。
In order to achieve the above object, the present invention relates to an air conditioner in which a compressor, an indoor heat exchanger, a pressure reducing device, a liquid receiver, and an outdoor heat exchanger are connected by piping. In the cooling operation, a condenser heat exchanger is provided at the outlet side of the receiver during the cooling operation, and is provided at the inlet side of the receiver during the heating operation, and the condenser heat exchanger is provided as an outdoor heat exchanger. It allows heat exchange with the lower part.

【0009】また、本発明は、上記のものにおいて、室
外熱交換器の下部を前記凝縮熱交換器となるようにする
ことが望ましい。
Further, in the present invention, it is preferable that the lower part of the outdoor heat exchanger is the condensing heat exchanger.

【0010】さらに、上記のものにおいて、凝縮熱交換
器の冷媒通路数を室外熱交換器の冷媒通路数よりも少な
くし、室外熱交換器の下部と凝縮熱交換器の上部を接触
させることが望ましい。
Further, in the above, the number of refrigerant passages in the condensing heat exchanger is made smaller than the number of refrigerant passages in the outdoor heat exchanger, and the lower part of the outdoor heat exchanger is brought into contact with the upper part of the condensing heat exchanger. desirable.

【0011】さらに、本発明は、凝縮熱交換器を室外熱
交換器の前列に配設し、凝縮熱交換器で熱交換された外
気が室外熱交換器に流入するようにしたものである。
Further, in the present invention, the condensing heat exchanger is arranged in the front row of the outdoor heat exchanger, so that the outside air heat-exchanged by the condensing heat exchanger flows into the outdoor heat exchanger.

【0012】[0012]

【発明の実施の形態】以下、本発明の空気調和装置に係
わる一実施の形態を図1ないし図7を用いて説明する。
図1は、一実施の形態による空気調和装置の冷凍サイク
ル構成図であり、少なくとも1台の室外機と1台の室内
機を液側接続配管及びガス側接続配管により接続され構
成される。室外機は、圧縮機1、四方弁2、室外熱交換
器3、室外減圧装置4、受液器5、凝縮熱交換器6によ
り構成され、図に示す如く配管により接続されている。
凝縮熱交換器6は、冷房運転時に受液器5の出口(下
流)側に、暖房運転時に受液器5の入口(上流)側とな
る位置で、且つ室外熱交換器3の下部に設け、凝縮熱交
換器6の冷媒通路数を室外熱交換器3の冷媒通路数より
も少なくし、室外熱交換器3の下部と凝縮熱交換器6の
上部を接触させて熱交換が可能なようにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an air conditioner according to the present invention will be described below with reference to FIGS.
FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner according to one embodiment, in which at least one outdoor unit and one indoor unit are connected by a liquid side connection pipe and a gas side connection pipe. The outdoor unit includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an outdoor pressure reducing device 4, a liquid receiver 5, and a condensation heat exchanger 6, and is connected by piping as shown in the figure.
The condensing heat exchanger 6 is provided at the outlet (downstream) side of the receiver 5 during the cooling operation, at the inlet (upstream) side of the receiver 5 during the heating operation, and below the outdoor heat exchanger 3. The number of refrigerant passages in the condensing heat exchanger 6 is made smaller than the number of refrigerant passages in the outdoor heat exchanger 3 so that the lower part of the outdoor heat exchanger 3 and the upper part of the condensing heat exchanger 6 are in contact with each other so that heat can be exchanged. To

【0013】また、室外熱交換器3及び凝縮熱交換器6
には、外気と熱交換を行うように室外熱交換器3及び凝
縮熱交換器6に空気を送り込むことが可能な室外ファン
9が取り付けられており、図に示す矢印実線11の如く
各々の熱交換器に空気が流入する。
The outdoor heat exchanger 3 and the condensing heat exchanger 6
Is equipped with an outdoor fan 9 capable of sending air to the outdoor heat exchanger 3 and the condensation heat exchanger 6 so as to exchange heat with the outside air. Air flows into the exchanger.

【0014】一方、室内機は、室内熱交換器8と室内膨
張弁7(例えば、電子式膨張弁)により構成され、配管
により接続されている。室内熱交換器8には、外気と熱
交換できるように室内熱交換器8に空気を送り込むため
の室内ファン10が設けられ、図に示す矢印破線12の
如く室内熱交換器8に空気が流入する。
On the other hand, the indoor unit includes an indoor heat exchanger 8 and an indoor expansion valve 7 (for example, an electronic expansion valve), and is connected by piping. The indoor heat exchanger 8 is provided with an indoor fan 10 for sending air into the indoor heat exchanger 8 so that heat can be exchanged with the outside air, and air flows into the indoor heat exchanger 8 as indicated by a broken line 12 in the drawing. I do.

【0015】凝縮熱交換器6は、冷房運転時の場合、受
液器5から流出する飽和液状態の冷媒を空気と熱交換す
ることで過冷却液状態もしくは蒸発潜熱が増加する方向
に冷却する機能を有する。また、暖房運転時の場合、室
内熱交換器8で凝縮し過冷却状態となり、室内膨張弁7
で減圧することで気液ニ相状態となる冷媒を空気と熱交
換することで飽和液状態にする機能を有する。
In the cooling operation, the condensing heat exchanger 6 exchanges heat of the saturated liquid refrigerant flowing out of the liquid receiver 5 with air to cool the refrigerant in a supercooled liquid state or in a direction in which latent heat of vaporization increases. Has functions. In the heating operation, the air condenses in the indoor heat exchanger 8 and enters a supercooled state.
The refrigerant has a function of turning into a saturated liquid state by exchanging heat with air in a gas-liquid two-phase refrigerant by reducing the pressure.

【0016】次に、上記冷凍サイクルの運転状態を冷房
運転の場合、及び暖房運転の場合に別けて説明する。
Next, the operation states of the refrigeration cycle will be described separately for a cooling operation and a heating operation.

【0017】(1)冷房運転の場合 図2は、一実施の形態による空気調和装置の冷凍サイク
ルを冷房運転した場合のモリエル線図を示す。図中にお
いて、実線で示されているサイクル運転点は受液器5の
出口(下流)側に凝縮熱交換器6を配設した空気調和装
置のサイクル14の場合を示し、破線で示されているサ
イクル運転点は凝縮熱交換器6を有していない従来の空
気調和装置のサイクル13を示す。
(1) Case of Cooling Operation FIG. 2 is a Mollier diagram when the cooling cycle of the refrigeration cycle of the air conditioner according to one embodiment is performed. In the figure, the cycle operating point indicated by the solid line indicates the case of the cycle 14 of the air conditioner in which the condensation heat exchanger 6 is disposed on the outlet (downstream) side of the receiver 5, and is indicated by the broken line. A cycle operating point indicates a cycle 13 of the conventional air conditioner without the condensing heat exchanger 6.

【0018】サイクル14は、点aの状態の冷媒を圧縮
機1が吸込み点bの高温高圧のガス冷媒として圧縮機1
から吐出され室外熱交換器3内に流入する。室外ファン
9を駆動することで流入する外気と熱交換して外気に放
熱し、室外熱交換器3内を流れる冷媒が凝縮して点cの
過冷却液状態となる。そして、室外減圧装置4(例え
ば、キャピラリチューブ)で点dの飽和液状態に減圧さ
れ受液器5内に流入し、冷凍サイクルの運転に必要の無
い余分な冷媒が貯留される。
In the cycle 14, the compressor 1 takes the refrigerant in the state of the point a as the high-temperature and high-pressure gas refrigerant at the suction point b.
And flows into the outdoor heat exchanger 3. Driving the outdoor fan 9 exchanges heat with the inflowing outside air and radiates heat to the outside air, and the refrigerant flowing in the outdoor heat exchanger 3 condenses to a supercooled liquid state at point c. Then, the pressure is reduced to the saturated liquid state at the point d by the outdoor decompression device 4 (for example, a capillary tube), flows into the receiver 5, and the excess refrigerant unnecessary for the operation of the refrigeration cycle is stored.

【0019】受液器5からは飽和液状態の冷媒が流出し
て凝縮熱交換器6に流入し、室外ファン9を駆動するこ
とで流入する外気と熱交換して外気に放熱し、凝縮熱交
換器内を流れる冷媒が凝縮して点eの過冷却状態とな
る。そして、液側接続配管を通り、室内膨張弁7で点f
の状態に減圧され室内熱交換器8内に流入し、室内ファ
ン10を駆動することで流入する外気と熱交換して外気
から吸熱することで室内熱交換器10内を流れる冷媒を
蒸発させて点aの状態に戻り、圧縮機1に戻る。
The refrigerant in the saturated liquid state flows out of the receiver 5 and flows into the condensation heat exchanger 6. When the outdoor fan 9 is driven, the refrigerant exchanges heat with the inflowing outside air and radiates heat to the outside air. The refrigerant flowing in the exchanger is condensed to be in a supercooled state at the point e. Then, through the liquid side connection pipe, the indoor expansion valve 7
Is decompressed to the state described above, flows into the indoor heat exchanger 8, drives the indoor fan 10, exchanges heat with the inflowing outside air, absorbs heat from the outside air, and evaporates the refrigerant flowing in the indoor heat exchanger 10. It returns to the state of the point a and returns to the compressor 1.

【0020】一方、サイクル13の場合は、点a〜点d
までは、サイクル14と同様であり、点dの飽和液状態
の冷媒が受液器5から流出し凝縮熱交換器6が無いた
め、点dの状態で室内膨張弁7で減圧され点f’の状態
で室内熱交換器8内に流入し、室内ファン10を駆動す
ることで流入する外気と熱交換して外気から吸熱し、室
内熱交換器10内を流れる冷媒を蒸発させて点aの状態
に戻り、圧縮機1に戻る。
On the other hand, in the case of cycle 13, points a to d
Up to this point, the same operation as in the cycle 14 is performed, and since the refrigerant in the saturated liquid state at the point d flows out of the receiver 5 and there is no condensation heat exchanger 6, the pressure is reduced by the indoor expansion valve 7 at the point d and the point f ′ Flows into the indoor heat exchanger 8 in the state described above, drives the indoor fan 10 to exchange heat with the inflowing outside air, absorbs heat from the outside air, evaporates the refrigerant flowing in the indoor heat exchanger 10, and evaporates the refrigerant at the point a. It returns to a state and returns to the compressor 1.

【0021】本空気調和装置と従来の空気調和装置の冷
房性能を比較した場合、本実施の形態は点f’から点f
の潜熱分だけ冷房能力が向上することが分かる。
When comparing the cooling performance of the present air conditioner with that of the conventional air conditioner, the present embodiment shows that the air conditioner according to the present embodiment has a point f ′ to a point f
It can be seen that the cooling capacity is improved by the latent heat.

【0022】(2)暖房運転の場合 図3は、一実施の形態による空気調和装置の冷凍サイク
ルを暖房運転した場合のモリエル線図を示す。図中にお
いて、実線で示されているサイクル運転点は受液器5の
入口(上流)側に凝縮熱交換器6を配設した一実施の形
態による空気調和装置のサイクル15の場合を示し、破
線で示されているサイクル運転点は凝縮熱交換器6を有
していない従来の空気調和装置のサイクル16を示す。
(2) Case of Heating Operation FIG. 3 shows a Mollier diagram when the refrigeration cycle of the air conditioner according to one embodiment is operated for heating. In the figure, a cycle operation point indicated by a solid line indicates a case of a cycle 15 of the air conditioner according to one embodiment in which the condensing heat exchanger 6 is disposed on the inlet (upstream) side of the receiver 5. The cycle operation point indicated by the broken line indicates the cycle 16 of the conventional air conditioner without the condensing heat exchanger 6.

【0023】サイクル15は、点aの状態の冷媒を圧縮
機1が吸込み点bの高温高圧のガス冷媒として圧縮機1
から吐出されガス接続配管を通り室内熱交換器8内に流
入し、室内ファン10を駆動することで流入する外気と
熱交換して外気に放熱することで室内熱交換器10内を
流れる冷媒が凝縮して点cの過冷却液状態となる。そし
て、室内膨張弁7で点dの気液ニ相状態の中間圧力に減
圧され液接続配管を通り凝縮熱交換器6内に流入し、室
外ファン9を駆動することで流入する外気と熱交換して
外気に放熱し、凝縮熱交換器6内を流れる冷媒が凝縮し
て点eの飽和液状態となり受液器5内に流入し、冷凍サ
イクルの運転に必要の無い余分な冷媒が貯留される。受
液器5からは飽和液状態の冷媒が流出して、室外減圧装
置4(例えば、キャピラリチューブ)で点fの状態に減
圧され室外熱交換器3内に流入し、室外ファン9を駆動
することで流入する外気と熱交換して外気から吸熱する
ことで室外熱交換器3内を流れる冷媒を蒸発させて点a
の状態に戻り、圧縮機1に戻る。
In the cycle 15, the compressor 1 takes the refrigerant in the state at the point a as the high-temperature and high-pressure gas refrigerant at the suction point b.
The refrigerant that flows through the gas connection pipe and flows into the indoor heat exchanger 8 and exchanges heat with the inflowing outside air by driving the indoor fan 10 and radiates heat to the outside air. It condenses to a supercooled liquid state at point c. Then, the pressure is reduced to the intermediate pressure in the gas-liquid two-phase state at the point d by the indoor expansion valve 7, flows into the condensing heat exchanger 6 through the liquid connection pipe, and heat is exchanged with the outside air flowing by driving the outdoor fan 9. Then, heat is radiated to the outside air, and the refrigerant flowing in the condensing heat exchanger 6 condenses to a saturated liquid state at a point e, flows into the receiver 5, and stores extra refrigerant not necessary for the operation of the refrigeration cycle. You. The refrigerant in the saturated liquid state flows out of the liquid receiver 5, is decompressed to a point f by the outdoor pressure reducing device 4 (for example, a capillary tube), flows into the outdoor heat exchanger 3, and drives the outdoor fan 9. As a result, the refrigerant flowing in the outdoor heat exchanger 3 evaporates by exchanging heat with the inflowing outside air and absorbing heat from the outside air.
And returns to the compressor 1.

【0024】一方、サイクル16の場合は、点a〜点c
までは、サイクル15と同様であり、点cの過冷却状態
の冷媒が室内膨張弁7で減圧され点d’の飽和液状態と
なり受液器5内に流入し、冷凍サイクルの運転に必要の
無い余分な冷媒が貯留される。受液器5から流出する飽
和液状態の冷媒は、凝縮熱交換器6が無いため点d’と
同じエンタルピのまま点f’の状態まで室外減圧装置4
で減圧され、室外熱交換器3内に流入し、室外ファン9
を駆動することで流入する外気と熱交換して外気から吸
熱し、室外熱交換器3内を流れる冷媒を蒸発させて点a
の状態に戻り、圧縮機1に戻る。
On the other hand, in the case of cycle 16, points a to c
Up to this point, the cycle is the same as in the cycle 15. The supercooled refrigerant at the point c is decompressed by the indoor expansion valve 7 and becomes a saturated liquid state at the point d ', flows into the receiver 5, and is necessary for the operation of the refrigeration cycle. No extra refrigerant is stored. The refrigerant in the saturated liquid state flowing out of the receiver 5 has the same enthalpy as that of the point d 'because the condenser heat exchanger 6 is not provided.
, And flows into the outdoor heat exchanger 3 and the outdoor fan 9
Is driven to exchange heat with the inflowing outside air, absorb heat from the outside air, evaporate the refrigerant flowing in the outdoor heat exchanger 3, and
And returns to the compressor 1.

【0025】本空気調和装置と従来の空気調和装置の暖
房性能を比較した場合、どちらの空気調和装置も点bか
ら点cのエンタルピ差分だけ暖房できることになり、暖
房性能は同等であることが分かる。但し、室内膨張弁7
及び室外減圧装置4の減圧量は、点d及び点d’の圧力
が異なることから、本空気調和装置と従来の空気調和装
置とでは、各々の減圧装置における減圧量は異なる。
When comparing the heating performance of the present air conditioner with that of the conventional air conditioner, both air conditioners can heat only the enthalpy difference from the point b to the point c, and the heating performance is equivalent. . However, the indoor expansion valve 7
Since the pressure reduction amount of the outdoor pressure reducing device 4 differs from the pressure at the points d and d ′, the pressure reducing amount of each of the pressure reducing devices differs between the present air conditioner and the conventional air conditioner.

【0026】以上から、図1に示す如く冷房運転時に受
液器5の出口(下流)側に、暖房運転時に受液器5の入
口(上流)側となる位置に凝縮熱交換器6を配設し、室
内膨張弁7及び室外減圧装置4の減圧量を調整すること
により、凝縮熱交換器6で放熱する熱量分だけ冷房運転
時の能力を向上させることができる。また、圧縮機1を
インバータで駆動する空気調和装置とした場合は、増加
した熱量分を圧縮機1の駆動周波数低減に利用すること
で、従来の空気調和装置と比較して電気入力量を低減で
きるため、省電力効果が期待できる。
As described above, as shown in FIG. 1, the condensing heat exchanger 6 is arranged at the outlet (downstream) side of the receiver 5 during the cooling operation and at the inlet (upstream) side of the receiver 5 during the heating operation. By adjusting the pressure reduction amounts of the indoor expansion valve 7 and the outdoor pressure reducing device 4, the capacity during the cooling operation can be improved by the amount of heat radiated by the condensation heat exchanger 6. When the compressor 1 is an air conditioner driven by an inverter, the increased heat quantity is used to reduce the drive frequency of the compressor 1, thereby reducing the amount of electric input as compared with the conventional air conditioner. Therefore, a power saving effect can be expected.

【0027】次に、本空気調和装置に付設する凝縮熱交
換器6について図4ないし図5で説明する。
Next, the condensing heat exchanger 6 attached to the present air conditioner will be described with reference to FIGS.

【0028】図4は、室外熱交換器3の下部に凝縮熱交
換器6を配設した場合を示す斜視図である。室外熱交換
器3は、第1列目室外熱交換器20と第2列目室外熱交
換器21の2列から構成され、各室外熱交換器は冷媒を
流す冷媒配管を複数設け、この冷媒配管に熱交換性能を
促進させるためのフィンが複数取り付けられている。
FIG. 4 is a perspective view showing a case where the condensation heat exchanger 6 is provided below the outdoor heat exchanger 3. The outdoor heat exchanger 3 includes two rows of a first-row outdoor heat exchanger 20 and a second-row outdoor heat exchanger 21. Each of the outdoor heat exchangers is provided with a plurality of refrigerant pipes through which a refrigerant flows. A plurality of fins for promoting heat exchange performance are attached to the pipe.

【0029】各冷媒配管は、ベンド配管やガスヘッダ2
2及び液ヘッダ23により複数の冷媒通路に構成され、
各々の冷媒通路に冷媒を流すように配管接続されてい
る。一方、凝縮熱交換器6は、第1列目室外熱交換器2
0及び第2列目室外熱交換器21の下部に設けられてお
り、各室外熱交換器と同様に複数の冷媒配管と複数のフ
ィンで構成されている。凝縮熱交換器6の冷媒通路数
は、室外熱交換器の冷媒通路数よりも少ない。また、凝
縮熱交換器6のフィンは、第1列目室外熱交換器20及
び第2列目室外熱交換器21のフィンと接触させて、各
々のフィンで熱交換できる。
Each refrigerant pipe includes a bend pipe and a gas header 2.
2 and the liquid header 23 constitute a plurality of refrigerant passages,
Piping is connected so that the refrigerant flows through each of the refrigerant passages. On the other hand, the condensing heat exchanger 6 is the first row outdoor heat exchanger 2
It is provided below the 0th and 2nd row outdoor heat exchangers 21, and is composed of a plurality of refrigerant pipes and a plurality of fins like each outdoor heat exchanger. The number of refrigerant passages in the condensation heat exchanger 6 is smaller than the number of refrigerant passages in the outdoor heat exchanger. The fins of the condensing heat exchanger 6 are brought into contact with the fins of the first-row outdoor heat exchanger 20 and the second-row outdoor heat exchanger 21 to exchange heat with each fin.

【0030】本空気調和装置では、凝縮熱交換器6に流
入する空気と熱交換させるばかりではなく、室外熱交換
器の下部とも熱交換を行うことができるため、次に示す
効果がある。すなわち、第1列目室外熱交換器20及び
第2列目室外熱交換器21では、重力の影響により下部
の冷媒通路に液冷媒が多く存在しやすく、各冷媒通路で
の冷媒分配が悪化し室外熱交換器を有効に使うことがで
きなくなり性能が低下する。本空気調和装置では、凝縮
熱交換器6のフィンと室外熱交換器の下部のフィンを接
触することで熱移動が発生し、暖房運転の場合は凝縮熱
交換器6からの凝縮熱の一部を各々の室外熱交換器の下
部が吸熱するため、下部冷媒通路の冷媒配管の長さが短
くても冷媒を完全蒸発させることが可能となる。一方、
冷房運転の場合は、各々の室外熱交換器において、下部
冷媒通路の冷媒配管の長さが短くなることで、各々の室
外熱交換器下部で生成される液冷媒の量を減少すること
ができるため、冷媒分配の悪化を防止でき、各々の室外
熱交換器を有効に使うことができる。
The present air conditioner can exchange heat not only with the air flowing into the condensing heat exchanger 6 but also with the lower part of the outdoor heat exchanger, and has the following effects. That is, in the first-row outdoor heat exchanger 20 and the second-row outdoor heat exchanger 21, a large amount of liquid refrigerant is likely to be present in the lower refrigerant passage due to the influence of gravity, and refrigerant distribution in each refrigerant passage deteriorates. The outdoor heat exchanger cannot be used effectively and the performance is reduced. In the present air conditioner, heat transfer occurs due to contact between the fins of the condensation heat exchanger 6 and the lower fins of the outdoor heat exchanger, and in the heating operation, a part of the condensation heat from the condensation heat exchanger 6 is generated. Since the lower part of each outdoor heat exchanger absorbs heat, the refrigerant can be completely evaporated even if the length of the refrigerant pipe in the lower refrigerant passage is short. on the other hand,
In the case of the cooling operation, in each of the outdoor heat exchangers, the amount of the liquid refrigerant generated in each lower part of the outdoor heat exchanger can be reduced by shortening the length of the refrigerant pipe of the lower refrigerant passage. Therefore, deterioration of refrigerant distribution can be prevented, and each outdoor heat exchanger can be used effectively.

【0031】図5は、室外熱交換器3の下部に凝縮熱交
換器6を配設した場合実施の形態を示す斜視図である。
図中において、図4と同符号のものは同一のものを示
す。室外熱交換器3は、図4に示す構成と同様である。
凝縮熱交換器6は、第1列目室外熱交換器20及び第2
列目室外熱交換器21の下部の一部を用いて複数の冷媒
配管と複数のフィンを有し、凝縮熱交換器6の冷媒通路
数を室外熱交換器3の冷媒通路数よりも少なくしてい
る。
FIG. 5 is a perspective view showing an embodiment in which the condensing heat exchanger 6 is provided below the outdoor heat exchanger 3.
In the drawing, the same reference numerals as those in FIG. 4 indicate the same components. The outdoor heat exchanger 3 has the same configuration as that shown in FIG.
The condensation heat exchanger 6 includes a first-row outdoor heat exchanger 20 and a second-row outdoor heat exchanger 20.
It has a plurality of refrigerant pipes and a plurality of fins by using a part of the lower part of the row outdoor heat exchanger 21, and makes the number of refrigerant passages of the condensation heat exchanger 6 smaller than the number of refrigerant passages of the outdoor heat exchanger 3. ing.

【0032】本空気調和装置では、各々の室外熱交換器
と凝縮熱交換器6のフィンを一体成形しているため、以
下に示す効果がある。すなわち、凝縮熱交換器6から発
生する熱がフィンの熱伝導により各々の室外熱交換器の
下部に伝わるため、より一層室外熱交換器に熱を伝える
ことができるため、冷媒分配の悪化を更に防止でき、室
外熱交換器の本来の性能を十分発揮できる。また、凝縮
熱交換器6は、室外熱交換器と一体成形で作るため、製
造コストを安価にすることが可能となる。
In the present air conditioner, since the fins of the outdoor heat exchanger and the fins of the condensation heat exchanger 6 are integrally formed, the following effects are obtained. That is, since the heat generated from the condensation heat exchanger 6 is transmitted to the lower part of each outdoor heat exchanger by heat conduction of the fins, the heat can be further transmitted to the outdoor heat exchanger. This prevents the outdoor heat exchanger from exhibiting its original performance. Further, since the condensing heat exchanger 6 is formed integrally with the outdoor heat exchanger, the manufacturing cost can be reduced.

【0033】次に、さらに他の実施の形態である空気調
和装置について図6ないし図9により説明する。
Next, an air conditioner according to still another embodiment will be described with reference to FIGS.

【0034】図6は、他の実施の形態による凝縮熱交換
器6を具備した空気調和装置の冷凍サイクル構成図を示
す。凝縮熱交換器6は、室外熱交換器3に流入する空気
の入口側に室外熱交換器3の前面を覆うように配置され
る。
FIG. 6 is a configuration diagram of a refrigeration cycle of an air conditioner having a condensing heat exchanger 6 according to another embodiment. The condensation heat exchanger 6 is arranged on the inlet side of the air flowing into the outdoor heat exchanger 3 so as to cover the front surface of the outdoor heat exchanger 3.

【0035】図7は、さらに他の実施の形態を示した斜
視図である。凝縮熱交換器6は、第1列目室外熱交換器
20及び第2列目室外熱交換器21に流入する空気の入
口側に複数の冷媒配管と複数のフィンで構成され、第1
列目室外熱交換器20の前面を覆うように配設されてい
る。さらに、第1列目室外熱交換器20と凝縮熱交換器
6の間には空気層が設けられ、空気により第1列目室外
熱交換器20への伝熱を阻害している。
FIG. 7 is a perspective view showing still another embodiment. The condensing heat exchanger 6 includes a plurality of refrigerant pipes and a plurality of fins on the inlet side of the air flowing into the first-row outdoor heat exchanger 20 and the second-row outdoor heat exchanger 21.
It is arranged so as to cover the front surface of the row outdoor heat exchanger 20. Further, an air layer is provided between the first-row outdoor heat exchanger 20 and the condensation heat exchanger 6, and the air prevents heat transfer to the first-row outdoor heat exchanger 20.

【0036】次に、上記実施の形態における凝縮熱交換
器6及び室外熱交換器に流入する空気の温度変化につい
て冷房運転の場合及び暖房運転の場合について説明す
る。
Next, changes in the temperature of the air flowing into the condensing heat exchanger 6 and the outdoor heat exchanger in the above-described embodiment will be described for a cooling operation and a heating operation.

【0037】(1)冷房運転の場合 図8は、冷房運転時における凝縮熱交換器6と第1列目
室外熱交換器20及び第2列目室外熱交換器21に流入
する空気の温度変化を表した線図である。○印実線は本
発明の凝縮熱交換器6を第1列目室外熱交換器20に流
入する空気に対して前列側に設けた場合の流入空気の温
度変化30を示し、□印破線は従来の凝縮熱交換器6を
具備していない場合の流入空気の温度変化31を示す。
外気温度をT1とすると、従来の凝縮熱交換器6を具備
していない場合の流入空気の温度変化は、第1列目室外
熱交換器20で流入空気と熱交換して冷媒が凝縮するこ
とで空気に放熱し、第2列目室外熱交換器21の入口で
T5まで上昇する。そして第2列目室外熱交換器21で
更に熱交換して冷媒が凝縮することで空気に放熱しT6
まで上昇する。
(1) Cooling Operation FIG. 8 shows the temperature change of the air flowing into the condensing heat exchanger 6, the first-row outdoor heat exchanger 20, and the second-row outdoor heat exchanger 21 during the cooling operation. FIG. The solid line indicates the temperature change 30 of the inflow air when the condensing heat exchanger 6 of the present invention is provided on the front row side with respect to the air flowing into the first-row outdoor heat exchanger 20, Shows a temperature change 31 of the inflow air when the condensing heat exchanger 6 is not provided.
Assuming that the outside air temperature is T1, the temperature change of the inflow air when the conventional condensing heat exchanger 6 is not provided is that the refrigerant exchanges heat with the inflow air in the first-row outdoor heat exchanger 20 to condense the refrigerant. Then, the heat is released to the air and rises to T5 at the entrance of the second-row outdoor heat exchanger 21. The second row outdoor heat exchanger 21 further exchanges heat to condense the refrigerant and radiate heat to the air.
To rise.

【0038】一方、凝縮熱交換器6を具備した場合の流
入空気の温度変化は、凝縮熱交換器6で流入空気と熱交
換して冷媒が過冷却することで空気に放熱し第1列目室
外熱交換器20の入口でT2(>T1)まで上昇する。
次に、第1列目室外熱交換器20で流入空気と熱交換し
て冷媒が凝縮することで空気に放熱し、第2列目室外熱
交換器21の入口でT3(>T5)まで上昇する。そし
て第2列目室外熱交換器21で更に熱交換して冷媒が凝
縮することで空気に放熱しT4(>T6)まで上昇す
る。
On the other hand, when the condensing heat exchanger 6 is provided, the change in temperature of the inflowing air is caused by the heat exchange with the inflowing air in the condensing heat exchanger 6 and supercooling of the refrigerant to radiate heat to the air. At the entrance of the outdoor heat exchanger 20, the temperature rises to T2 (> T1).
Next, the refrigerant exchanges heat with the inflow air in the first-row outdoor heat exchanger 20 to radiate heat to the air, and rises to T3 (> T5) at the entrance of the second-row outdoor heat exchanger 21. I do. Then, the second row outdoor heat exchanger 21 further exchanges heat to condense the refrigerant, thereby radiating heat to air and rising to T4 (> T6).

【0039】以上のように、凝縮熱交換器6を具備した
場合は、従来の場合と比較して室外熱交換器から吹出す
空気の温度が高くなるため、より多くの熱を放熱するこ
とができ、冷房能力が向上する。
As described above, when the condensing heat exchanger 6 is provided, the temperature of the air blown out from the outdoor heat exchanger becomes higher than in the conventional case, so that more heat can be radiated. The cooling capacity is improved.

【0040】(2)暖房運転の場合 図9は、暖房運転時における凝縮熱交換器6と第1列目
室外熱交換器20及び第2列目室外熱交換器21に流入
する空気の温度変化を表した線図である。○印実線は本
発明の凝縮熱交換器6を第1列目室外熱交換器20に流
入する空気に対して前列側に設けた場合の流入空気の温
度変化32を示し、□印破線は従来の凝縮熱交換器を具
備していない場合の流入空気の温度変化33を示す。外
気温度をT1とすると、従来の凝縮熱交換器6を具備し
ていない場合の流入空気の温度変化は、第1列目室外熱
交換器20で流入空気と熱交換して冷媒が蒸発すること
で空気から吸熱し、第2列目室外熱交換器21の入口で
T5まで低下する。そして第2列目室外熱交換器21で
更に熱交換して冷媒が蒸発することで空気から吸熱しT
6まで低下する。
(2) In the case of heating operation FIG. 9 shows the temperature change of the air flowing into the condensing heat exchanger 6, the first-row outdoor heat exchanger 20 and the second-row outdoor heat exchanger 21 during the heating operation. FIG. The solid line indicates the temperature change 32 of the inflow air when the condensing heat exchanger 6 of the present invention is provided on the front row side with respect to the air flowing into the first row outdoor heat exchanger 20. Shows a temperature change 33 of the inflow air when the condensing heat exchanger is not provided. Assuming that the outside air temperature is T1, the temperature change of the inflow air when the conventional condensing heat exchanger 6 is not provided is that the refrigerant is evaporated by exchanging heat with the inflow air in the first row outdoor heat exchanger 20. At the entrance of the second-row outdoor heat exchanger 21 to T5. The second row outdoor heat exchanger 21 further exchanges heat to evaporate the refrigerant, thereby absorbing heat from the air, and
It drops to 6.

【0041】一方、凝縮熱交換器6を具備した場合の流
入空気の温度変化は、凝縮熱交換器6で流入空気と熱交
換して冷媒が過冷却することで空気に放熱し第1列目室
外熱交換器20の入口でT2(>T1)まで上昇する。
次に、第1列目室外熱交換器20で流入空気と熱交換し
て冷媒が蒸発することで空気から吸熱し、第2列目室外
熱交換器21の入口でT3(>T5)まで低下する。そ
して第2列目室外熱交換器21で更に熱交換して冷媒が
蒸発することで空気から吸熱しT4(>T6)まで低下
する。
On the other hand, when the condensing heat exchanger 6 is provided, the change in temperature of the inflowing air is caused by the heat exchange with the inflowing air in the condensing heat exchanger 6 and supercooling of the refrigerant to radiate heat to the air. At the entrance of the outdoor heat exchanger 20, the temperature rises to T2 (> T1).
Next, the refrigerant exchanges heat with the inflow air in the first-row outdoor heat exchanger 20 to evaporate the refrigerant, thereby absorbing heat from the air and decreasing to T3 (> T5) at the entrance of the second-row outdoor heat exchanger 21. I do. The second row outdoor heat exchanger 21 further exchanges heat to evaporate the refrigerant, thereby absorbing heat from the air and lowering the temperature to T4 (> T6).

【0042】以上のように、凝縮熱交換器6を具備した
場合は、従来の場合と比較して、凝縮熱交換器6により
第1列目室外熱交換器20に流入する空気温度がT2>
T1となる。すなわち、従来の場合において外気が低い
場合は、蒸発器として作用している室外熱交換器3の温
度が0℃以下となり、フィン等に霜が付着して室外熱交
換器3の性能を悪化させるばかりでなく着霜が進行し暖
房能力が十分発揮できなくなる。よって、除霜運転を行
わなければ成らなかったが、本例では凝縮熱交換器6に
より室外熱交換器3に吸い込まれる空気温度が高くなる
ため、室外熱交換器3に霜が付着する度合いが減少する
か、もしくは外気温度によっては霜が付着しなくなり、
外気が低い場合における暖房能力を向上させることがで
きる。
As described above, when the condensing heat exchanger 6 is provided, the temperature of the air flowing into the first-row outdoor heat exchanger 20 by the condensing heat exchanger 6 is T2> as compared with the conventional case.
It becomes T1. That is, when the outside air is low in the conventional case, the temperature of the outdoor heat exchanger 3 acting as an evaporator becomes 0 ° C. or less, and frost adheres to the fins and the like, deteriorating the performance of the outdoor heat exchanger 3. Not only that, frost formation progresses, and the heating capacity cannot be sufficiently exhibited. Therefore, the defrosting operation had to be performed, but in this example, the temperature of the air sucked into the outdoor heat exchanger 3 by the condensing heat exchanger 6 increases, and the degree of frost adhering to the outdoor heat exchanger 3 is reduced. Decreases or frost stops depending on the outside temperature,
The heating capacity when the outside air is low can be improved.

【0043】ここで、凝縮熱交換器6の冷媒通路数の設
定方法として、前記凝縮熱交換器6の出口で飽和液状態
もしくは気液二相状態となるように圧力損失が大きくな
るようにした場合は、凝縮熱交換器6内を通る冷媒の速
度が上がるため冷媒側の凝縮熱伝達率が向上し放熱量が
増大すると共に、凝縮熱交換器6内の冷媒量も過冷却液
にする場合と比較して少なくなる。そのため、空気調和
装置内に封入する冷媒量も少なくなり、如いては空気調
和装置の性能向上及び製造コストの低減が可能となる。
Here, as a method of setting the number of refrigerant passages in the condensing heat exchanger 6, the pressure loss is increased so that the outlet of the condensing heat exchanger 6 becomes a saturated liquid state or a gas-liquid two-phase state. In the case where the speed of the refrigerant passing through the condensing heat exchanger 6 is increased, the condensing heat transfer rate on the refrigerant side is improved and the amount of heat radiation is increased, and the amount of the refrigerant in the condensing heat exchanger 6 is also supercooled. Less compared to. For this reason, the amount of the refrigerant to be sealed in the air conditioner is reduced, so that the performance of the air conditioner can be improved and the manufacturing cost can be reduced.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
冷房運転時は受液器の出口側に、暖房運転時は受液器の
入口側となるように凝縮熱交換器を配設したので、冷房
及び暖房運転時共に凝縮熱交換器を有効に利用できる。
As described above, according to the present invention,
The condensing heat exchanger is located at the outlet side of the receiver during cooling operation and at the inlet side of the receiver during heating operation, so the condensing heat exchanger is effectively used for both cooling and heating operations it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施の形態による空気調和装置において凝縮
熱交換器を室外熱交換器の下部に設けた冷凍サイクル構
成図。
FIG. 1 is a configuration diagram of a refrigeration cycle in which a condensation heat exchanger is provided below an outdoor heat exchanger in an air conditioner according to one embodiment.

【図2】一実施の形態による空気調和装置と従来の空気
調和装置における冷凍サイクルの冷房運転状態を示した
モリエル線図。
FIG. 2 is a Mollier chart showing a cooling operation state of a refrigeration cycle in the air conditioner according to one embodiment and a conventional air conditioner.

【図3】一実施の形態による空気調和装置と従来の空気
調和装置における冷凍サイクルの暖房運転状態を示した
モリエル線図。
FIG. 3 is a Mollier chart showing a heating operation state of a refrigeration cycle in the air conditioner according to the embodiment and a conventional air conditioner.

【図4】一実施の形態による室外熱交換器の下部に凝縮
熱交換器を配設した状態を示す斜視図。
FIG. 4 is a perspective view showing a state in which a condensation heat exchanger is provided below the outdoor heat exchanger according to one embodiment.

【図5】他の実施の形態による室外熱交換器の下部に凝
縮熱交換器を配設した状態を示す斜視図。
FIG. 5 is a perspective view showing a state in which a condensation heat exchanger is provided below an outdoor heat exchanger according to another embodiment.

【図6】一実施の形態による冷凍サイクル構成図。FIG. 6 is a configuration diagram of a refrigeration cycle according to one embodiment.

【図7】他の実施の形態による凝縮熱交換器を配設した
状態を示す斜視図。
FIG. 7 is a perspective view showing a state in which a condensing heat exchanger according to another embodiment is provided.

【図8】冷房運転時における凝縮熱交換器と室外熱交換
器に流入する空気の温度変化を表した線図。
FIG. 8 is a diagram showing a temperature change of air flowing into a condensing heat exchanger and an outdoor heat exchanger during a cooling operation.

【図9】暖房運転時における凝縮熱交換器と室外熱交換
器に流入する空気の温度変化を表した線図。
FIG. 9 is a diagram showing a temperature change of air flowing into a condensing heat exchanger and an outdoor heat exchanger during a heating operation.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外熱交換器、4…室外
減圧装置、5…受液器、6…凝縮熱交換器、7…室内膨
張弁、8…室内熱交換器、9…室外ファン、10…室内
ファン、11…室外流入空気、12…室内流入空気、1
3…従来の冷房サイクル、14…凝縮熱交換器を具備し
た冷房サイクル、15…凝縮熱交換器を具備した暖房サ
イクル、20…第1列目室外熱交換器、21…第2列目
室外熱交換器、22ガスヘッダ、23…液ヘッダ、30
…凝縮熱交換器を具備した場合の冷房運転時の室外空気
温度変化、31…従来の冷房運転時の室外空気温度変
化、32…凝縮熱交換器を具備した場合の暖房運転時の
室外空気温度変化、33…従来の暖房運転時の室外空気
温度変化。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... Outdoor decompression device, 5 ... Liquid receiver, 6 ... Condensation heat exchanger, 7 ... Indoor expansion valve, 8 ... Indoor heat exchanger, 9 ... outdoor fan, 10 ... indoor fan, 11 ... outdoor inflow air, 12 ... indoor inflow air, 1
3 ... Conventional cooling cycle, 14 ... Cooling cycle with condensing heat exchanger, 15 ... Heating cycle with condensing heat exchanger, 20 ... First row outdoor heat exchanger, 21 ... Second row outdoor heat Exchanger, 22 gas header, 23 ... liquid header, 30
······················································································································································································ Change, 33: change in outdoor air temperature during conventional heating operation.

フロントページの続き (72)発明者 横関 敦彦 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 竹中 寛 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L092 AA01 BA16 Continued on the front page (72) Inventor Atsuhiko Yokoseki 390 Muramatsu, Shimizu-shi, Shizuoka Pref.Hitachi Air Conditioning System Shimizu Production Headquarters Co., Ltd. F term (reference) 3L092 AA01 BA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、室内熱交換器、減圧装置、受液
器、室外熱交換器とが配管接続された空気調和装置にお
いて、 冷房運転時は前記受液器の出口側に、暖房運転時は前記
受液器の入口側となるように配設された凝縮熱交換器を
備え、該凝縮熱交換器を前記室外熱交換器の下部と熱交
換可能させることを特徴とする空気調和装置。
1. An air conditioner in which a compressor, an indoor heat exchanger, a decompression device, a liquid receiver, and an outdoor heat exchanger are connected to a pipe, and in a cooling operation, a heating operation is performed on an outlet side of the liquid receiver. An air conditioner, comprising: a condensing heat exchanger disposed at an inlet side of the liquid receiver at the time, and allowing the condensing heat exchanger to exchange heat with a lower portion of the outdoor heat exchanger. .
【請求項2】請求項1に記載のものにおいて、前記室外
熱交換器の下部を前記凝縮熱交換器となるようにしたこ
とを特徴とする空気調和装置。
2. The air conditioner according to claim 1, wherein a lower part of the outdoor heat exchanger is used as the condensation heat exchanger.
【請求項3】請求項1に記載のものにおいて、前記凝縮
熱交換器の冷媒通路数を前記室外熱交換器の冷媒通路数
よりも少なくし、前記室外熱交換器の下部と前記凝縮熱
交換器の上部を接触させたことを特徴とする空気調和装
置。
3. The condensing heat exchanger according to claim 1, wherein the number of refrigerant passages in said condensation heat exchanger is smaller than the number of refrigerant passages in said outdoor heat exchanger. An air conditioner characterized by contacting the upper part of the vessel.
【請求項4】圧縮機、室内熱交換器、減圧装置、受液
器、室外熱交換器とを配管接続し、冷房運転時及び暖房
運転時共に凝縮器として作用するように凝縮熱交換器が
配設された空気調和装置において、 前記凝縮熱交換器を前記室外熱交換器の前列に配設し、
前記凝縮熱交換器で熱交換された外気が前記室外熱交換
器に流入するようにしたことを特徴とする空気調和装
置。
4. A condenser, an indoor heat exchanger, a pressure reducing device, a liquid receiver, and an outdoor heat exchanger are connected by piping, and the condensing heat exchanger is operated so as to function as a condenser during both the cooling operation and the heating operation. In the disposed air conditioner, the condensation heat exchanger is disposed in a front row of the outdoor heat exchanger,
An air conditioner, wherein outside air heat-exchanged by the condensation heat exchanger flows into the outdoor heat exchanger.
【請求項5】請求項1又は4に記載のものにおいて、前
記圧縮機をインバータで駆動されるものとしたことを特
徴とする空気調和装置。
5. The air conditioner according to claim 1, wherein the compressor is driven by an inverter.
JP2000211976A 2000-07-07 2000-07-07 Air conditioner Withdrawn JP2002022307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000211976A JP2002022307A (en) 2000-07-07 2000-07-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211976A JP2002022307A (en) 2000-07-07 2000-07-07 Air conditioner

Publications (1)

Publication Number Publication Date
JP2002022307A true JP2002022307A (en) 2002-01-23

Family

ID=18707968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211976A Withdrawn JP2002022307A (en) 2000-07-07 2000-07-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP2002022307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194569A (en) * 2004-12-17 2006-07-27 Sanden Corp Refrigerating system
JP2008121985A (en) * 2006-11-13 2008-05-29 Daikin Ind Ltd Heat exchange system
JP2010236855A (en) * 2010-06-17 2010-10-21 Tel−Conテクノ株式会社 Additional condenser, and refrigerating cycle device with additional condensation system using this
JP2012189258A (en) * 2011-03-10 2012-10-04 Fujitsu General Ltd Refrigeration cycle equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194569A (en) * 2004-12-17 2006-07-27 Sanden Corp Refrigerating system
JP2008121985A (en) * 2006-11-13 2008-05-29 Daikin Ind Ltd Heat exchange system
US10267541B2 (en) 2006-11-13 2019-04-23 Daikin Industries, Ltd. Heat exchange system with fixed and variable expansion devices in series
JP2010236855A (en) * 2010-06-17 2010-10-21 Tel−Conテクノ株式会社 Additional condenser, and refrigerating cycle device with additional condensation system using this
JP4605725B2 (en) * 2010-06-17 2011-01-05 Tel−Conテクノ株式会社 Additional condensing device and refrigeration cycle device with additional condensing system using the same
JP2012189258A (en) * 2011-03-10 2012-10-04 Fujitsu General Ltd Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
TW200921030A (en) Economized vapor compression circuit
JP4428341B2 (en) Refrigeration cycle equipment
JPH09145187A (en) Air conditioner
JP2006284133A (en) Heat exchanger
JP2002156149A (en) Air conditioner
WO2003062710A1 (en) Heat pump type air conditioner
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
JPH11337104A (en) Air conditioner
JPH11182953A (en) Refrigerator
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP6298992B2 (en) Air conditioner
JP2002022307A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JP2002286317A (en) Vapor compression heat pump
JP3007455B2 (en) Refrigeration cycle device
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JPH10196984A (en) Air conditioner
JP2005009808A (en) Heat exchanger for air conditioner
KR100863639B1 (en) Air conditioner
WO2023185664A1 (en) Air conditioning system
JPH11264629A (en) Cross fin coil type heat exchanger
CN212481495U (en) Air conditioner
CN215336763U (en) Frequency conversion air conditioner
JP2004332958A (en) Heat exchanger of air conditioner
JP2001330309A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050510