JP2005009808A - Heat exchanger for air conditioner - Google Patents

Heat exchanger for air conditioner Download PDF

Info

Publication number
JP2005009808A
JP2005009808A JP2003176440A JP2003176440A JP2005009808A JP 2005009808 A JP2005009808 A JP 2005009808A JP 2003176440 A JP2003176440 A JP 2003176440A JP 2003176440 A JP2003176440 A JP 2003176440A JP 2005009808 A JP2005009808 A JP 2005009808A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
parallel
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003176440A
Other languages
Japanese (ja)
Inventor
Yuzo Nakada
雄三 中田
Keisuke Takada
啓介 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2003176440A priority Critical patent/JP2005009808A/en
Publication of JP2005009808A publication Critical patent/JP2005009808A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for an air conditioner comprising vertical heat transfer pipes of high efficiency disposed in parallel and used as a condenser, also used as an evaporator to be incorporated in a heat pump type air conditioning system or the like. <P>SOLUTION: In this heat exchanger for an air conditioner, a first heat exchanger comprising a plurality of vertical heat transfer pipes disposed in parallel, and a second heat exchanger comprising a plurality of horizontal heat transfer pipes disposed in parallel, that are serially connected to each other. When it is used as a condenser, cooling medium is sent from the second heat exchanger to the first heat exchanger. When it is used as an evaporator, cooling medium is sent from the first heat exchanger to the second heat exchanger. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機の熱交換器、特に、複数の垂直の熱伝導管を並列に配置した空気調和機の熱交換器の技術分野に属する。
【0002】
【従来の技術】
従来、複数の垂直の熱伝導管を並列に配置した熱交換器は、凝縮器としては効率が良いことから、例えば、自動車用の凝縮器(ラジエータ)として多用されている(例えば、特許文献1)。すなわち、液体の冷媒は圧力差がなくても熱交換器の上側のヘッダーから下側のヘッダーに自重により移動することができるので、スムースに冷媒の移動が行われることから、効率よくコンパクトな冷房システムが得られるからである。
また、空気調和機において、近年、熱効率が良くスペース的に有利であることから、ヒートポンプシステムが用いられており、この場合の熱交換器は凝縮器又は蒸発器として使用する(例えば、特許文献2)。
【0003】
【特許文献1】
特許第3159268号掲載公報
【特許文献2】
特公平8−33255号公報
【0004】
【発明が解決しようとする課題】
ところで、従来の特許文献1の複数の垂直の熱伝導管を並列に配置した熱交換器は凝縮器としては効率が良いが、蒸発器として使用することは困難である。
すなわち、水平の熱伝導管の場合には、水平の熱伝導管の下側に液体の冷媒が、上側に気体の冷媒が存在することが可能なため、液体と気体の冷媒が混在したまま熱伝導管内を流れて、蒸発器の出口で適度の過熱度が維持され、過熱度の膨張弁の制御も容易であり、ミスト状態で連続して順次圧縮機に送り込めるため、圧縮機の冷却を兼ねて効率良く作動させることができる。
これに対して、垂直の熱伝導管の場合には、管の下側に液体の冷媒が上側に気体の冷媒がハッキリと分離して存在してしまうため、気化した冷媒のみ圧縮機に送り込むことになり、冷媒の移動速度も遅く蒸発器の出口ヘッダー付近では過熱度が大きくなりすぎ、これを押さえるために膨張弁の開度を大きくすると、冷媒の液面が急激に上昇する。このため、膨張弁の開度の変化が極端に大きく、かつ、開度の変化が急激になり冷媒の円滑な移送制御が非常に困難であり、事実上不可能である。
また、膨張弁の開度が大きくなる場合には、熱伝導管内の冷媒の液面が急激に上昇し、蒸発器として作動する場合には満液状態に近くなるが、このとき、ミスト状態ではなく液体冷媒が蒸発器から吐き出され圧縮機に送られる危険性が高く、この液体冷媒が圧縮機に送られた場合には、液体冷媒が圧縮機の内部で気化し急激な体積膨張から、いわゆる液バック現象が生じて圧縮機が破損する原因となる。
また、液バックを感じ膨張弁の開度を小さくすると、蒸発器の出口近傍での過熱度が大きくなりすぎるので、冷媒は完全な気体(ガス状態)になるため、冷媒液に溶け込ませてある潤滑油などの液状体がシステム中を循環できなくなり、圧縮機の耐久性が劣化する原因となる。
したがって、複数の垂直の熱伝導管を並列に配置した熱交換器を蒸発器として使用することは不可能に近く、実用化されていない。
本発明は、上記の課題に鑑みてなされたもので、その課題は、効率の良い垂直の熱伝導管を並列に配置した熱交換器を凝縮器として用いるとともに、蒸発器としても使用して、ヒートポンプ空調システムなどに組み込むことが可能な空気調和機の熱交換器を提供しようとするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明は、複数の垂直の熱伝導管を並列に配置した第一の熱交換器と、複数の水平の熱伝導管を並列に配置した第二の熱交換器とを直列に接続し、凝縮器として使用する際には冷媒を第二の熱交換器から第一の熱交換器の順に流し、蒸発器として使用する際には冷媒を第一の熱交換器から第二の熱交換器の順に流すことを特徴とする空気調和機の熱交換器である。
したがって、蒸発器として使用する際には、第一の複数の垂直の熱伝導管を並列に配置した熱交換器において液体の冷媒が満杯になっても、次に冷媒が送られる第二の複数の水平の熱伝導管を並列に配置した熱交換器においては、液体の冷媒と気体の冷媒とが混合して霧状になり、空気調和機の次工程の圧縮機等に送り込めるため、冷媒の移送制御が容易であり、液バックによる圧縮機の破損を防げ、潤滑油などの循環も円滑に行える。
【0006】
【発明の実施の形態】
本発明の好適な空気調和機の熱交換器の1実施例を図面に沿って説明する。
図1は、本発明の実施例の熱交換器をヒートポンプ空調システムに組み込むこんで実施例の熱交換器を室外熱交換器として用いた全体の概略を示したもので、符号1の複数の垂直の熱伝導管を並列に配置した第一の熱交換器と、符号2の複数の水平の熱伝導管を並列に配置した第二の熱交換器とが直列に接続している。
そして、前記第一の熱交換器1には過熱度制御膨張弁3が接続され、前記第二の熱交換器2は四方切替弁4が接続され、四方切替弁4には圧縮機5とが接続されており冷媒の流れ方向を切り替る。この過熱度制御膨張弁3と四方切替弁4とに室内熱交換器6が接続されている。
【0007】
第一の熱交換器1は、図2および図3に示されるように、複数の垂直の熱伝導管11を並列に配置した、いわゆる縦型のもので、下端部のコイルヘッダー12と上端部のコイルヘッダー13に連通して設けられ、熱伝導管11はアルミニウムの偏平中空のもので、並列する各熱伝導管11の間にはアルミニウムの板状のコルゲートフィン14が面接続状態でロウ付けによるロウ付部17により密着固定されいる。この熱伝導管11とコルゲートフィン14の接合部がロウ付けにより合金化されているため熱交換効率が良く、また、この熱交換器の構造は通常車両のラジエータ等に使用されるもので、通気性がよいのでファンの負荷が少なく、熱交換効率も良好である。
第二の熱交換器2は、第一の熱交換器1と異なり、複数の水平の熱伝導管21を並列に配置した、いわゆる横型のもので、熱伝導管21のコルゲートフィン24との構成は第一の熱交換器と同じであるが、各熱伝導管21は右(左)端部のコイルヘッダー22と左(右)端部のコイルヘッダー23に連通して設けられている。
第一の熱交換器1と第二の熱交換器2の位置関係は、本実施例では空気流の上流に温度の変化が大きい第二の温度センサー32に関係する第二の熱交換器2を配置し、下流に第一の熱交換器1を配置している。
また、第一の熱交換器1と第二の熱交換器2との接続は、第一の熱交換器1の上端部のコイルヘッダー13が第二の熱交換器2の右端部のコイルヘッダー22に直列状態で配管16によって接続され、第一の熱交換器1の下端部のコイルヘッダー12が配管15によって過熱度制御膨張弁3に、第二の熱交換器2の左端部のコイルヘッダー23が配管25によって四方切替弁4にそれぞれ接続している。
さらに、本実施例では室内熱交換器6も、上記の第一、第二の熱交換器の組み合わせとして、上述の熱交換器と同じ構成としたが、公知の室内熱交換器6でもよい。
【0008】
そして、下端部のコイルヘッダー12の近傍には第一の温度センサー31と、左端部のコイルヘッダー23の近傍には第二の温度センサー32が設けられ、このセンサーの値により過熱度制御膨張弁3を制御するようにしている。
[作動]
次に、上記の構成において本実施例の作動を説明すると、室内熱交換器6を冷却する冷房運転時には、図1の点線で示すように、四方切換弁4の切換動作(点線で示す)により、圧縮機5の出口側配管51と第二の熱交換器のコイルヘッダー23が接続されるとともに、室内熱交換器6と圧縮機5の入口側配管52とが接続され、さらに、室内熱交換器6は過熱度制御膨張弁3を介して第一の熱交換器1の下端部のコイルヘッダー12に接続される。
したがって、冷媒の流れは、圧縮機5→第二の熱交換器のコイルヘッダー23→コイルヘッダー22→第一の熱交換器の上端部のコイルヘッダー13→下端部のコイルヘッダー12→過熱度制御膨張弁3→室内熱交換器6→圧縮機5となり、第一、第二の熱交換器を通過する空気流によって冷媒は凝縮し、第一、第二の熱交換器が凝縮器として作動し冷房サイクルが行われる。
なお、過熱度制御膨張弁3は室内熱交換器6の上流側の温度センサー31’と下流側の温度センサー32’の検出値から所定の開度になるように制御されている。
【0009】
また、室内熱交換器6を加熱する暖房運転時には、図1に示すように、四方切換弁4は実線の通路に切換えられ、本発明の実施例の最も特徴する構成であるが、第一、第二の熱交換器は、図2の第一、第二の熱交換器の作動図に沿って説明するように、蒸発器として作動する。
すなわち、圧縮機5の入口側配管52と第二の熱交換器のコイルヘッダー23が接続されるとともに、圧縮機5の出口側配管51に室内熱交換器6が接続され、さらに、室内熱交換器6は過熱度制御膨張弁3を介して第一の熱交換器1の下端部のコイルヘッダー12に接続される。
したがって、冷媒の流れは、圧縮機5→室内熱交換器6→過熱度制御膨張弁3→第一の熱交換器の下端部のコイルヘッダー12→上端部のコイルヘッダー13→第二の熱交換器のコイルヘッダー22→コイルヘッダー23→圧縮機5となり、第一、第二の熱交換器を通過する空気流によって冷媒は蒸発し、第一、第二の熱交換器が蒸発器として作動し通常の暖房サイクルが行われる。
ここで、下端部のコイルヘッダー12の近傍の温度センサー31の検出温度に対して、コイルヘッダー23の近傍に設けた温度センサー32での検出温度が、常に5度℃程度高く維持するように、過熱度(電子)制御膨張弁3の開度を制御する。
【0010】
したがって、蒸発器として作動する際には、第一の複数の垂直の熱伝導管11を並列に配置した縦型の熱交換器1において液体の冷媒が熱交換器1の上端面まで満杯になっても、次に、冷媒が送られる第二の複数の水平の熱伝導管を並列に配置した横型の熱交換器2によって液体の冷媒と気体の冷媒とが混合して霧状になり、空気調和機の次工程の圧縮機5に送り込めるため、冷媒の移送制御が容易であり、液バックによる圧縮機5の破損を防ぐことができ、潤滑油などの循環も円滑に行え圧縮機5の耐久性も向上する。
【0011】
なお、本発明の特徴を損うものでなければ、上記の実施例に限定されるものでないことは勿論であり、例えば、コルゲートフィン型以外の縦型の熱交換器に適用してもよいことは勿論であり、また、第一、第二の熱交換器を必要に応じてそれぞれ適宜の複数個を設けても良いことも勿論であり、第二の熱交換器の左右端部のコイルヘッダーは熱伝導管が水平であるので入れ替えてもよい。
また、横型の第二の熱交換器2は主に冷媒移送の制御を可能にするものであるから、制御可能であれば第一の熱交換器1に対して熱交換実行面積は小さくてもよく、本実施例では、第二の熱交換器2の熱交換実行面積は第一の熱交換器1の半分程度の小型としたが、その比率は適宜変更して効率が高くなるように設計変更すればよい。
【0012】
【発明の効果】
以上説明したように、本発明によれば、効率の良い垂直の熱伝導管を配置した第一の熱交換器を凝縮器として用いるとともに、冷媒の移送制御が可能な水平の熱伝導管を配置した熱交換器を直列に組み合わせることにより、蒸発器としても用いることができ、コンパクトで効率のよいヒートポンプ空調システムなどの空気調和機とすることができ、特に、蒸発器としても用いた場合でも、第二の熱交換器によって液体の冷媒と気体の冷媒とが混合して霧状になり、空気調和機の次工程の圧縮機に送り込めるため、冷媒の移送制御が容易であり、液バックによる圧縮機の破損を防ぐことができ、潤滑油などの循環も円滑に行え圧縮機の耐久性も向上するという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施例の熱交換器を組み込んだ空気調和機の全体の概略を示した説明図である。
【図2】本発明の実施例の熱交換器を蒸発器として作動させた説明図である。
【図3】図3(a)は本発明の熱交換器の熱伝導管の側面図であり、図3(b)は熱伝導管の断面図である。
【符号の説明】
1…第一の熱交換器、11…熱伝導管、12…下端部のコイルヘッダー、
13…上端部のコイルヘッダー、14…コルゲートフィン、15,16…配管、
17…ロウ付部、
2…第二の熱交換器、21…熱伝導管、22…右端部のコイルヘッダー、
23…左端部のコイルヘッダー、24…コルゲートフィン、25…配管、
27…ロウ付部、
3…過熱度(電子)制御膨張弁、31…第一の温度センサー、
32…第二の温度センサー、31’,32’…温度センサー
4…四方切換弁、
5…圧縮機、51…出口側配管、52…入口側配管
6…室内熱交換器、
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a heat exchanger for an air conditioner, and in particular, a heat exchanger for an air conditioner in which a plurality of vertical heat conduction tubes are arranged in parallel.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a heat exchanger in which a plurality of vertical heat conduction tubes are arranged in parallel has high efficiency as a condenser, and is therefore frequently used as, for example, a condenser for an automobile (for example, Patent Document 1). ). In other words, even if there is no pressure difference, the liquid refrigerant can move from the upper header of the heat exchanger to the lower header by its own weight. This is because a system is obtained.
In recent years, heat conditioners have been used for air conditioners because of their high thermal efficiency and space advantage. In this case, the heat exchanger is used as a condenser or an evaporator (for example, Patent Document 2). ).
[0003]
[Patent Document 1]
Patent No. 3159268 [Patent Document 2]
Japanese Patent Publication No.8-33255 [0004]
[Problems to be solved by the invention]
By the way, although the conventional heat exchanger which arrange | positioned the several perpendicular | vertical heat conductive tube of patent document 1 in parallel is efficient as a condenser, it is difficult to use it as an evaporator.
That is, in the case of a horizontal heat transfer tube, a liquid refrigerant can exist on the lower side of the horizontal heat transfer tube and a gas refrigerant on the upper side. A moderate degree of superheat is maintained at the outlet of the evaporator through the inside of the conduction tube, and the control of the superheated expansion valve is easy.Since it is continuously fed to the compressor in a mist state, the compressor is cooled. It can also be operated efficiently.
On the other hand, in the case of a vertical heat conduction tube, liquid refrigerant is present at the lower side of the tube and gas refrigerant is clearly separated at the upper side, so that only the vaporized refrigerant is sent to the compressor. Thus, the moving speed of the refrigerant is slow, and the degree of superheat becomes too large in the vicinity of the outlet header of the evaporator. If the opening of the expansion valve is increased to suppress this, the liquid level of the refrigerant rapidly rises. For this reason, the change of the opening degree of the expansion valve is extremely large, and the change of the opening degree becomes abrupt and smooth transfer control of the refrigerant is very difficult and practically impossible.
In addition, when the opening of the expansion valve increases, the liquid level of the refrigerant in the heat conduction pipe rises rapidly, and when it operates as an evaporator, it becomes almost full, but at this time, in the mist state There is a high risk that the liquid refrigerant will be discharged from the evaporator and sent to the compressor, and when this liquid refrigerant is sent to the compressor, the liquid refrigerant is vaporized inside the compressor and suddenly expands, so-called A liquid back phenomenon occurs and the compressor is damaged.
Also, if the opening of the expansion valve is reduced by feeling a liquid back, the degree of superheat near the outlet of the evaporator becomes too large, so that the refrigerant becomes a complete gas (gas state) and is therefore dissolved in the refrigerant liquid. Liquids such as lubricating oil can no longer circulate in the system, causing the durability of the compressor to deteriorate.
Therefore, it is almost impossible to use a heat exchanger in which a plurality of vertical heat conduction tubes are arranged in parallel as an evaporator, and it has not been put into practical use.
The present invention has been made in view of the above problems, and the problem is that the heat exchanger in which the efficient vertical heat conduction tubes are arranged in parallel is used as a condenser and also as an evaporator, An object of the present invention is to provide an air conditioner heat exchanger that can be incorporated into a heat pump air conditioning system or the like.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a first heat exchanger in which a plurality of vertical heat conduction tubes are arranged in parallel, and a second heat exchanger in which a plurality of horizontal heat conduction tubes are arranged in parallel. Are connected in series, and when used as a condenser, the refrigerant flows in the order from the second heat exchanger to the first heat exchanger, and when used as an evaporator, the refrigerant is passed through the first heat exchanger. It is a heat exchanger of the air conditioner characterized by flowing in order of a 2nd heat exchanger.
Therefore, when used as an evaporator, even if the liquid refrigerant is full in the heat exchanger in which the first plurality of vertical heat conduction tubes are arranged in parallel, the second plurality of refrigerants are sent next. In the heat exchanger in which the horizontal heat conduction tubes are arranged in parallel, the liquid refrigerant and the gaseous refrigerant are mixed to form a mist and sent to a compressor or the like in the next process of the air conditioner. Therefore, the compressor can be prevented from being damaged by the liquid back, and the lubricating oil can be circulated smoothly.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a preferred heat exchanger for an air conditioner according to the present invention will be described with reference to the drawings.
FIG. 1 shows an overall outline of the use of the heat exchanger of the embodiment as an outdoor heat exchanger by incorporating the heat exchanger of the embodiment of the present invention into a heat pump air conditioning system. The first heat exchanger in which the heat conduction tubes are arranged in parallel and the second heat exchanger in which the plurality of horizontal heat conduction tubes of reference numeral 2 are arranged in parallel are connected in series.
A superheat control expansion valve 3 is connected to the first heat exchanger 1, a four-way switching valve 4 is connected to the second heat exchanger 2, and a compressor 5 is connected to the four-way switching valve 4. It is connected and switches the flow direction of the refrigerant. An indoor heat exchanger 6 is connected to the superheat degree control expansion valve 3 and the four-way switching valve 4.
[0007]
As shown in FIGS. 2 and 3, the first heat exchanger 1 is a so-called vertical type in which a plurality of vertical heat conduction tubes 11 are arranged in parallel, and a coil header 12 and an upper end portion at the lower end portion. The heat conduction tube 11 is a flat aluminum hollow member, and an aluminum plate corrugated fin 14 is brazed between the parallel heat conduction tubes 11 in a surface connection state. It is closely fixed by the brazing part 17 by. The joint between the heat conducting tube 11 and the corrugated fin 14 is alloyed by brazing, so that the heat exchange efficiency is good, and the structure of this heat exchanger is normally used for a radiator of a vehicle and the like. Because of its good characteristics, the fan load is small and the heat exchange efficiency is also good.
Unlike the first heat exchanger 1, the second heat exchanger 2 is a so-called horizontal type in which a plurality of horizontal heat conduction tubes 21 are arranged in parallel, and the configuration of the heat conduction tube 21 with the corrugated fins 24. Is the same as the first heat exchanger, but each heat conducting tube 21 is provided in communication with a coil header 22 at the right (left) end and a coil header 23 at the left (right) end.
The positional relationship between the first heat exchanger 1 and the second heat exchanger 2 is the second heat exchanger 2 related to the second temperature sensor 32 having a large temperature change upstream of the air flow in this embodiment. And the first heat exchanger 1 is arranged downstream.
Further, the connection between the first heat exchanger 1 and the second heat exchanger 2 is such that the coil header 13 at the upper end of the first heat exchanger 1 is the coil header at the right end of the second heat exchanger 2. The coil header 12 at the lower end of the first heat exchanger 1 is connected to the superheat degree control expansion valve 3 by the pipe 15 and the coil header at the left end of the second heat exchanger 2. 23 is connected to the four-way switching valve 4 by a pipe 25.
Further, in the present embodiment, the indoor heat exchanger 6 has the same configuration as the above-described heat exchanger as a combination of the first and second heat exchangers described above, but may be a known indoor heat exchanger 6.
[0008]
A first temperature sensor 31 is provided in the vicinity of the coil header 12 at the lower end portion, and a second temperature sensor 32 is provided in the vicinity of the coil header 23 at the left end portion. 3 is controlled.
[Operation]
Next, the operation of the present embodiment in the above configuration will be described. During the cooling operation for cooling the indoor heat exchanger 6, as shown by the dotted line in FIG. 1, the switching operation of the four-way switching valve 4 (shown by the dotted line) is performed. The outlet side pipe 51 of the compressor 5 and the coil header 23 of the second heat exchanger are connected, the indoor heat exchanger 6 and the inlet side pipe 52 of the compressor 5 are connected, and further indoor heat exchange is performed. The vessel 6 is connected to the coil header 12 at the lower end of the first heat exchanger 1 via the superheat degree control expansion valve 3.
Therefore, the flow of the refrigerant is as follows: compressor 5 → coil header 23 of the second heat exchanger → coil header 22 → coil header 13 at the upper end of the first heat exchanger → coil header 12 at the lower end → superheat degree control The expansion valve 3 → the indoor heat exchanger 6 → the compressor 5, the refrigerant is condensed by the air flow passing through the first and second heat exchangers, and the first and second heat exchangers operate as condensers. A cooling cycle is performed.
The superheat degree control expansion valve 3 is controlled so as to have a predetermined opening based on the detection values of the temperature sensor 31 ′ on the upstream side and the temperature sensor 32 ′ on the downstream side of the indoor heat exchanger 6.
[0009]
Further, during the heating operation for heating the indoor heat exchanger 6, as shown in FIG. 1, the four-way switching valve 4 is switched to a solid line passage, which is the most characteristic configuration of the embodiment of the present invention. A 2nd heat exchanger operate | moves as an evaporator so that it may explain along the operation | movement figure of the 1st, 2nd heat exchanger of FIG.
That is, the inlet side piping 52 of the compressor 5 and the coil header 23 of the second heat exchanger are connected, the indoor heat exchanger 6 is connected to the outlet side piping 51 of the compressor 5, and further, the indoor heat exchange is performed. The vessel 6 is connected to the coil header 12 at the lower end of the first heat exchanger 1 via the superheat degree control expansion valve 3.
Therefore, the flow of the refrigerant is as follows: compressor 5 → indoor heat exchanger 6 → superheat degree control expansion valve 3 → coil header 12 at the lower end of the first heat exchanger → coil header 13 at the upper end → second heat exchange. Coil header 22 → coil header 23 → compressor 5 of the heater, the refrigerant evaporates by the air flow passing through the first and second heat exchangers, and the first and second heat exchangers operate as evaporators. A normal heating cycle takes place.
Here, with respect to the temperature detected by the temperature sensor 31 in the vicinity of the coil header 12 at the lower end, the temperature detected by the temperature sensor 32 provided in the vicinity of the coil header 23 is always kept higher by about 5 ° C. The degree of opening of the superheat degree (electronic) control expansion valve 3 is controlled.
[0010]
Accordingly, when operating as an evaporator, the liquid refrigerant fills up to the upper end surface of the heat exchanger 1 in the vertical heat exchanger 1 in which the first plurality of vertical heat conducting tubes 11 are arranged in parallel. Even then, the liquid refrigerant and the gaseous refrigerant are mixed into a mist by the horizontal heat exchanger 2 in which the second plurality of horizontal heat transfer pipes to which the refrigerant is sent are arranged in parallel, and the air Since it can be sent to the compressor 5 in the next process of the conditioner, the transfer control of the refrigerant is easy, the damage of the compressor 5 due to the liquid back can be prevented, and the circulation of the lubricating oil can be smoothly performed. Durability is also improved.
[0011]
It should be noted that the present invention is not limited to the above-described embodiment as long as the features of the present invention are not impaired. For example, the present invention may be applied to a vertical heat exchanger other than the corrugated fin type. Of course, the first and second heat exchangers may be provided with a plurality of appropriate ones as necessary, and the coil headers at the left and right end portions of the second heat exchanger May be replaced because the heat conduction tube is horizontal.
Further, since the horizontal second heat exchanger 2 mainly enables control of refrigerant transfer, if it can be controlled, the heat exchange execution area is small compared to the first heat exchanger 1. Well, in this embodiment, the heat exchange execution area of the second heat exchanger 2 is about half that of the first heat exchanger 1, but the ratio is appropriately changed to increase efficiency. Change it.
[0012]
【The invention's effect】
As described above, according to the present invention, the first heat exchanger provided with the efficient vertical heat conduction tube is used as the condenser, and the horizontal heat conduction tube capable of controlling the refrigerant transfer is provided. By combining the heat exchangers in series, they can also be used as an evaporator, and can be used as an air conditioner such as a compact and efficient heat pump air conditioning system, especially when used as an evaporator, The second heat exchanger mixes the liquid refrigerant and the gaseous refrigerant into a mist that can be sent to the compressor in the next step of the air conditioner, facilitating refrigerant transfer control, and by liquid back It is possible to prevent the compressor from being damaged, and to smoothly circulate lubricating oil and the like, thereby improving the durability of the compressor.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of an entire air conditioner incorporating a heat exchanger according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram in which the heat exchanger according to the embodiment of the present invention is operated as an evaporator.
FIG. 3 (a) is a side view of the heat conduction tube of the heat exchanger of the present invention, and FIG. 3 (b) is a cross-sectional view of the heat conduction tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st heat exchanger, 11 ... Heat conduction tube, 12 ... Coil header of a lower end part,
13 ... Coil header at the upper end, 14 ... Corrugated fin, 15, 16 ... Piping,
17 ... brazed part,
2 ... second heat exchanger, 21 ... heat conduction tube, 22 ... right end coil header,
23 ... Left end coil header, 24 ... Corrugated fin, 25 ... Piping,
27 ... brazed part,
3 ... Superheat (electronic) control expansion valve, 31 ... First temperature sensor,
32 ... Second temperature sensor, 31 ', 32' ... Temperature sensor 4 ... Four-way switching valve,
5 ... Compressor, 51 ... Outlet side piping, 52 ... Inlet side piping 6 ... Indoor heat exchanger,

Claims (1)

複数の垂直の熱伝導管を並列に配置した第一の熱交換器と、複数の水平の熱伝導管を並列に配置した第二の熱交換器とを直列に接続し、凝縮器として使用する際には冷媒を第二の熱交換器から第一の熱交換器の順に流し、蒸発器として使用する際には冷媒を第一の熱交換器から第二の熱交換器の順に流すことを特徴とする空気調和機の熱交換器A first heat exchanger in which a plurality of vertical heat conduction tubes are arranged in parallel and a second heat exchanger in which a plurality of horizontal heat conduction tubes are arranged in parallel are connected in series and used as a condenser. When the refrigerant flows in the order from the second heat exchanger to the first heat exchanger, the refrigerant flows from the first heat exchanger to the second heat exchanger when used as an evaporator. Characteristic air conditioner heat exchanger
JP2003176440A 2003-06-20 2003-06-20 Heat exchanger for air conditioner Withdrawn JP2005009808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176440A JP2005009808A (en) 2003-06-20 2003-06-20 Heat exchanger for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176440A JP2005009808A (en) 2003-06-20 2003-06-20 Heat exchanger for air conditioner

Publications (1)

Publication Number Publication Date
JP2005009808A true JP2005009808A (en) 2005-01-13

Family

ID=34099323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176440A Withdrawn JP2005009808A (en) 2003-06-20 2003-06-20 Heat exchanger for air conditioner

Country Status (1)

Country Link
JP (1) JP2005009808A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048473A (en) * 2008-08-22 2010-03-04 Sharp Corp Heat exchanger unit and air conditioner equipped therewith
JP2013534061A (en) * 2010-07-13 2013-08-29 イナーテック アイピー エルエルシー System and method for cooling electronic equipment
WO2018139863A1 (en) * 2017-01-25 2018-08-02 엘지전자 주식회사 Heat exchanger of refrigerator
US10488061B2 (en) 2016-03-16 2019-11-26 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US11384989B2 (en) 2016-08-26 2022-07-12 Inertech Ip Llc Cooling systems and methods using single-phase fluid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048473A (en) * 2008-08-22 2010-03-04 Sharp Corp Heat exchanger unit and air conditioner equipped therewith
JP2013534061A (en) * 2010-07-13 2013-08-29 イナーテック アイピー エルエルシー System and method for cooling electronic equipment
US10488061B2 (en) 2016-03-16 2019-11-26 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US11415330B2 (en) 2016-03-16 2022-08-16 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-sertes heat rejection and trim cooling
US11867426B2 (en) 2016-03-16 2024-01-09 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US11384989B2 (en) 2016-08-26 2022-07-12 Inertech Ip Llc Cooling systems and methods using single-phase fluid
US11940227B2 (en) 2016-08-26 2024-03-26 Inertech Ip Llc Cooling systems and methods using single-phase fluid
WO2018139863A1 (en) * 2017-01-25 2018-08-02 엘지전자 주식회사 Heat exchanger of refrigerator

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
EP1555494B1 (en) Heating and cooling system
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
JP4428341B2 (en) Refrigeration cycle equipment
JP2003232582A (en) Air conditioner
JP2009133624A (en) Refrigerating/air-conditioning device
JP2006284134A (en) Heat exchanger
JP2006284133A (en) Heat exchanger
JP4503630B2 (en) Air conditioning system and control method thereof
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2005127529A (en) Heat exchanger
JP5627635B2 (en) Air conditioner
JP2005009808A (en) Heat exchanger for air conditioner
AU2017444848B2 (en) Heat exchanger and refrigeration cycle device
JP3650358B2 (en) Air conditioner
EP2431685B1 (en) Air conditioner
JP4710869B2 (en) Air conditioner
JPH0798162A (en) Air-conditioner
JP2013076485A (en) Air conditioner
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2013044239A (en) Exhaust heat recovery system for vehicle
KR101542120B1 (en) Chiller type air conditioner
JP2002022307A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905