JP2001330309A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2001330309A
JP2001330309A JP2000154355A JP2000154355A JP2001330309A JP 2001330309 A JP2001330309 A JP 2001330309A JP 2000154355 A JP2000154355 A JP 2000154355A JP 2000154355 A JP2000154355 A JP 2000154355A JP 2001330309 A JP2001330309 A JP 2001330309A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor
fin
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000154355A
Other languages
Japanese (ja)
Inventor
Shoji Takaku
昭二 高久
Masayuki Nonaka
正之 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000154355A priority Critical patent/JP2001330309A/en
Publication of JP2001330309A publication Critical patent/JP2001330309A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger for an air conditioner wherein the amount of dehumidification upon dehumidification operation is increased while suppressing deterioration of performance upon cooling operation and heating operation. SOLUTION: In an indoor heat exchanger having a structure where it is divided into a refrigerant upstream side heat exchanger and a refrigerant downstream side heat exchanger with a two-way valve, which includes a pressure reduction mechanism with respect to the flow of a refrigerant upon dehumidifying operation, taken as a boundary, a fin pitch of a fin group of the refrigerant downstream side heat exchanger is more narrowed than that of a fin group of the refrigerant upstream side heat exchanger to increase a heat transfer area of the refrigerant downstream side heat exchanger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除湿運転機能を備
えた空気調和機に関するものである。
TECHNICAL FIELD The present invention relates to an air conditioner having a dehumidifying operation function.

【0002】[0002]

【従来の技術】空気調和機は、冷房運転、暖房運転の他
に、除湿運転の機能を持たせることによって、年間を通
じて使用できるようになってきている。
2. Description of the Related Art An air conditioner has been used throughout the year by having a dehumidifying operation in addition to a cooling operation and a heating operation.

【0003】この空気調和機は、除湿運転とは言え、冷
房運転によって室内空気の湿度を除去するものであるた
め、室内温度が低下してしまう。そこで、室内温度を低
下させない除湿運転として、室内機内のファンを低速回
転とした弱冷房運転を行い、除湿空気を電気ヒータで加
熱することによって室内機からの吹出される空気の温度
を高くするようにしたものがある。
[0003] Although this air conditioner is a dehumidifying operation, it removes the humidity of indoor air by a cooling operation, so that the indoor temperature decreases. Therefore, as a dehumidifying operation that does not lower the indoor temperature, a weak cooling operation in which the fan in the indoor unit is rotated at a low speed is performed, and the temperature of the air blown from the indoor unit is increased by heating the dehumidified air with an electric heater. There is something that I did.

【0004】また、室内機内の熱交換器を蒸発器と凝縮
器とに分割し、分割された熱交換器の間に絞り弁を設け
ることによって、蒸発器と凝縮器とに作用させ、蒸発器
からの除湿空気を凝縮器の熱で加熱することによって、
室内機から吹き出される空気の温度を高くするようにし
たものがある。
Further, the heat exchanger in the indoor unit is divided into an evaporator and a condenser, and a throttle valve is provided between the divided heat exchangers so as to act on the evaporator and the condenser. By heating the dehumidified air from the heat of the condenser,
In some cases, the temperature of air blown from an indoor unit is increased.

【0005】近年、この除湿運転は、省電力効果が高
い、後者の除湿方式が注目されている。この除湿運転の
従来技術として、例えば、特開平9−287770号公
報がある。
In the dehumidifying operation, the latter type of dehumidifying method, which has a high power saving effect, has recently attracted attention. As a conventional technique of the dehumidifying operation, for example, there is Japanese Patent Application Laid-Open No. 9-287770.

【0006】[0006]

【発明が解決しようとする課題】上述したように、空気
調和機は、省電力が叫ばれ、種々検討されている。この
省電力化の一手段として、例えば、熱交換効率を向上さ
せるために、室内熱交換器を大型化したり、室内ファン
を高速回転させて高風量化するなどの手段がある。
As described above, various studies have been made on air conditioners in order to save power. As a means of saving power, for example, there is a method of increasing the size of an indoor heat exchanger or rotating an indoor fan at a high speed to increase the air volume in order to improve the heat exchange efficiency.

【0007】これらの手段のうち、特に、室内ファンを
高速で回転させると、室内熱交換器内の蒸発圧力が高く
なる分、冷媒の蒸発が加速するとともに、圧縮機の圧縮
仕事量が小さくなり、省電力に繋がる。
Of these means, when the indoor fan is rotated at a high speed, the evaporation pressure in the indoor heat exchanger is increased, and the evaporation of the refrigerant is accelerated and the compression work of the compressor is reduced. , Leading to power saving.

【0008】ところが、室内熱交換器の蒸発が加速する
と、室内熱交換器の冷媒上流側では、冷媒が蒸発しきっ
てしまい、冷媒下流側で液冷媒切れによって蒸発がなく
なり、逆に室内熱交換器の温度上昇による除湿効果の低
下を招いてしまう可能性がある。
However, when the evaporation of the indoor heat exchanger is accelerated, the refrigerant is completely evaporated on the upstream side of the refrigerant in the indoor heat exchanger, and the evaporation is stopped by the shortage of the liquid refrigerant on the downstream side of the refrigerant. There is a possibility that the dehumidification effect may be reduced due to the increase in the temperature.

【0009】本発明の目的は、消費電力量を抑えて除湿
量を増加させた空気調和機を提供することにある。
An object of the present invention is to provide an air conditioner in which power consumption is suppressed and dehumidification is increased.

【0010】[0010]

【課題を解決するための手段】上記目的は、室内機内の
前面部と上面部に設けられた吸込口と対向する位置に複
数枚のフィンと冷媒管からなる熱交換器を設けた空気調
和機において、前記前面部の吸込口と対向する熱交換器
のフィンピッチを前記上面部と対向する熱交換器のフィ
ンピッチより小さくしたことにより達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioner in which a heat exchanger comprising a plurality of fins and a refrigerant pipe is provided at a position facing a suction port provided on a front surface and an upper surface in an indoor unit. In this case, the fin pitch of the heat exchanger facing the suction port of the front surface is made smaller than the fin pitch of the heat exchanger facing the upper surface.

【0011】また、室内機内の前面部と上面部に設けら
れた吸込口と対向する位置に複数枚のフィンと冷媒管か
らなる熱交換器を設けた空気調和機において、前記前面
部の吸込口と対向する熱交換器のフィンに切りお超し部
を設けたことにより達成される。
Further, in an air conditioner provided with a heat exchanger comprising a plurality of fins and a refrigerant pipe at a position facing a suction port provided at a front portion and an upper portion in an indoor unit, the suction port of the front portion is provided. This is achieved by providing a cut-and-finished portion on the fin of the heat exchanger facing the above.

【0012】また、前記前面部の吸込口と対向する熱交
換器の冷媒管径を前記上面部と対向する熱交換器の冷媒
管径より大きくしたことにより達成される。
[0012] It is also achieved by making the diameter of the refrigerant pipe of the heat exchanger facing the suction port of the front part larger than the diameter of the refrigerant pipe of the heat exchanger facing the upper part.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図1及び
図2を用いて説明する。図1は、冷凍サイクルの構成図
である。図2は、室内側熱交換器の斜視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a refrigeration cycle. FIG. 2 is a perspective view of the indoor heat exchanger.

【0014】図1において、1は、空気調和機の室内
機、室外機を含めた冷凍サイクルである。2は、圧縮機
であり、スクロール形圧縮機、若しくはロータリ形圧縮
機である。3は、四方弁であり、使用者が要求する冷房
運転又は暖房運転の指令に応じて冷媒の循環方向を切換
えるためのものである。4は、室外側熱交換器である。
5は、室外側熱交換器4に室外空気を吹付け、熱交換さ
せるためのファンである。6は、絞り装置であり、冷
房、暖房の運転モードに応じて絞り量を変化させるもの
である。
In FIG. 1, reference numeral 1 denotes a refrigeration cycle including an indoor unit and an outdoor unit of an air conditioner. Reference numeral 2 denotes a compressor, which is a scroll compressor or a rotary compressor. Reference numeral 3 denotes a four-way valve for switching the direction of circulation of the refrigerant in accordance with a cooling operation or a heating operation command requested by the user. 4 is an outdoor heat exchanger.
Reference numeral 5 denotes a fan for blowing outdoor air to the outdoor heat exchanger 4 to exchange heat. Reference numeral 6 denotes an expansion device that changes the amount of expansion according to the cooling and heating operation modes.

【0015】7は、2個又は3個に分割された室内側熱
交換器である。この熱交換器7は、冷房運転又は除湿運
転の場合、7aが冷媒上流側熱交換器となり、7bが冷
媒下流側熱交換器となる。暖房運転の場合は、7aが冷
媒下流側熱交換器となり、7bが冷媒上流側熱交換器と
なる。8は、冷媒上流側熱交換器7aと冷媒下流側熱交
換器との間に介在され、減圧機構を備えた二方弁であ
る。これらの構成部品は、冷媒配管9によって連結さ
れ、一連の冷凍サイクルが構成される。10は、室内側
熱交換器7に室内空気を吸引し、室内空気と熱交換さ
せ、この熱交換によって生成された空調空気を室内に吐
出させるためのファンである。
Reference numeral 7 denotes an indoor heat exchanger divided into two or three. In the cooling operation or the dehumidifying operation, the heat exchanger 7 has a refrigerant upstream heat exchanger 7a and a refrigerant downstream heat exchanger 7b. In the case of the heating operation, 7a is a refrigerant downstream heat exchanger, and 7b is a refrigerant upstream heat exchanger. Numeral 8 is a two-way valve provided between the refrigerant upstream heat exchanger 7a and the refrigerant downstream heat exchanger and provided with a pressure reducing mechanism. These components are connected by a refrigerant pipe 9 to form a series of refrigeration cycles. Reference numeral 10 denotes a fan for sucking indoor air into the indoor heat exchanger 7, exchanging heat with the indoor air, and discharging the conditioned air generated by the heat exchange into the room.

【0016】図2において、Aは、除湿運転を行った場
合の冷媒の流れ方向を示す。室内側熱交換器7は、減圧
機構を備えた2方弁8を境に、冷媒上流側熱交換器7a
と冷媒下流側熱交換器7bとに分割されている。
In FIG. 2, A indicates the flow direction of the refrigerant when the dehumidifying operation is performed. The indoor heat exchanger 7 is separated from a refrigerant upstream heat exchanger 7a by a two-way valve 8 having a pressure reducing mechanism.
And a refrigerant downstream heat exchanger 7b.

【0017】この冷媒上流側熱交換器7aは、互いに狭
い間隔で積層されたフィン群11aと、このフィン群1
1aを直交するように貫通するパイプ群12aとからな
っている。
The refrigerant upstream heat exchanger 7a includes a fin group 11a stacked at a narrow interval from each other and a fin group 1a.
1a, and a group of pipes 12a penetrating the pipe 1a orthogonally.

【0018】冷媒下流側熱交換器7bは、同じく、互い
に狭い間隔で積層されたフィン群11bと、このフィン
群11bを直交するように貫通するパイプ群12bとか
らなっている。
Similarly, the refrigerant downstream heat exchanger 7b is composed of a fin group 11b stacked at a narrow interval from each other and a pipe group 12b penetrating the fin group 11b orthogonally.

【0019】13aは、冷媒上流側熱交換器7aの冷媒
入口部である。13bは、冷媒下流側熱交換器7bの冷
媒入口側パイプであり、13cは、冷媒出口側パイプで
ある。冷媒下流側熱交換器7bのフィン群11bは、そ
のフィンピッチが冷媒上流側熱交換器7aのフィン群1
1aのフィンピッチより小さく設定されている。
Reference numeral 13a denotes a refrigerant inlet of the refrigerant upstream heat exchanger 7a. 13b is a refrigerant inlet side pipe of the refrigerant downstream heat exchanger 7b, and 13c is a refrigerant outlet side pipe. The fin group 11b of the refrigerant downstream heat exchanger 7b has a fin pitch of the fin group 1 of the refrigerant upstream heat exchanger 7a.
It is set smaller than the fin pitch of 1a.

【0020】この室内熱交換器7における除湿運転時の
冷媒流通状態を説明する。まず冷媒は、図1に示した圧
縮機2により、高温・高圧のガス冷媒が吐出され、四方
弁3を介して室外熱交換器4内に流入する。室外機内に
設けられた室外ファン5は、室内機が設置されている部
屋の温度、湿度の状態に応じて回転数を制御され、室外
熱交換器4の熱交換量が調整される。この室外熱交換器
4内の冷媒は、凝縮し、膨張弁6に流入する。絞り装置
6は、全開または全開に近い状態になっているため、減
圧されずに冷媒配管9を介して、そのまま室内熱交換器
7の冷媒上流側熱交換器7a内に流入するので、冷媒上
流側熱交換器7a内においても凝縮し、高温を発する。
The state of refrigerant flow during the dehumidifying operation in the indoor heat exchanger 7 will be described. First, a high-temperature and high-pressure gas refrigerant is discharged from the compressor 2 shown in FIG. 1 and flows into the outdoor heat exchanger 4 via the four-way valve 3. The number of rotations of the outdoor fan 5 provided in the outdoor unit is controlled according to the temperature and humidity of the room in which the indoor unit is installed, and the heat exchange amount of the outdoor heat exchanger 4 is adjusted. The refrigerant in the outdoor heat exchanger 4 condenses and flows into the expansion valve 6. Since the expansion device 6 is in the fully opened state or almost fully opened state, it flows directly into the refrigerant upstream heat exchanger 7a of the indoor heat exchanger 7 via the refrigerant pipe 9 without being decompressed. It condenses also in the side heat exchanger 7a and emits high temperature.

【0021】冷媒上流側熱交換器7aを流出した常温・
高圧の冷媒は、減圧機構を備えた二方弁8に流入する。
冷媒は、二方弁8によって絞られて減圧され、低温・低
圧の冷媒となる。次に低温・低圧の冷媒は、冷媒下流側
熱交換器7b内に流入することによって、室内温度を吸
熱するとともに、気体に変化し、室内空気と熱交換し、
室内空気中の水分が冷媒下流側熱交換器7bに露となっ
て付着する。冷媒下流側熱交換器7bを流出した冷媒
は、四方弁3を介して圧縮機2内に戻る。
At room temperature, which has flowed out of the refrigerant upstream heat exchanger 7a,
The high-pressure refrigerant flows into a two-way valve 8 provided with a pressure reducing mechanism.
The refrigerant is throttled by the two-way valve 8 and decompressed, and becomes a low-temperature and low-pressure refrigerant. Next, the low-temperature and low-pressure refrigerant flows into the refrigerant downstream heat exchanger 7b, thereby absorbing the indoor temperature and changing into a gas, exchanging heat with indoor air,
The moisture in the indoor air is attached to the refrigerant downstream heat exchanger 7b as dew. The refrigerant flowing out of the refrigerant downstream heat exchanger 7 b returns to the inside of the compressor 2 via the four-way valve 3.

【0022】このように、除湿運転時においては、冷媒
上流側熱交換器7aを凝縮器の一部とし、冷媒下流側熱
交換器3bを蒸発器として作用させることによって、冷
媒上流側熱交換器7aで冷却された冷却空気と冷媒下流
側熱交換器7bの凝縮熱による高温空気とが混合され
て、高温の除湿空気が室内に吐出される。
As described above, during the dehumidifying operation, the upstream heat exchanger 7a of the refrigerant is used as a part of the condenser, and the downstream heat exchanger 3b of the refrigerant is operated as an evaporator, thereby providing the upstream heat exchanger of the refrigerant. The cooling air cooled in 7a and the high-temperature air due to the condensation heat of the refrigerant downstream heat exchanger 7b are mixed, and the high-temperature dehumidified air is discharged into the room.

【0023】この構成の室内熱交換器7において、冷媒
下流側熱交換器7bのフィン群11bのフィンピッチを
冷媒上流側熱交換器7aのフィン群11aのフィンピッ
チよりも狭くし、冷媒下流側熱交換器7bの伝熱面積を
増加させる。
In the indoor heat exchanger 7 having this configuration, the fin pitch of the fin group 11b of the refrigerant downstream heat exchanger 7b is made smaller than the fin pitch of the fin group 11a of the refrigerant upstream heat exchanger 7a. The heat transfer area of the heat exchanger 7b is increased.

【0024】このとき、通常の冷凍サイクルでは、室内
熱交換器の伝熱面積を増加させたり、室内ファンを高速
回転させると、蒸発圧力が上昇し、冷媒の蒸発が促進さ
れ、液冷媒不足による温度上昇による除湿量の低下が発
生する可能性がある。
At this time, in a normal refrigeration cycle, when the heat transfer area of the indoor heat exchanger is increased or the indoor fan is rotated at a high speed, the evaporation pressure increases, the evaporation of the refrigerant is accelerated, and the shortage of the liquid refrigerant is caused. A decrease in the amount of dehumidification due to an increase in temperature may occur.

【0025】しかしながら、上記構成の冷凍サイクルで
は、二方弁2の絞り量を調節することで、蒸発圧力と凝
縮圧力が同等になる。したがって、圧縮機の仕事量が抑
えられ、入力を低下させることができる上に、下流側熱
交換器7bの伝熱面積を増加させているので、蒸発器の
性能が向上し、除湿量を増加させることができる。
However, in the refrigeration cycle having the above structure, the evaporation pressure and the condensing pressure become equal by adjusting the throttle amount of the two-way valve 2. Therefore, the work of the compressor is suppressed, the input can be reduced, and the heat transfer area of the downstream heat exchanger 7b is increased, so that the performance of the evaporator is improved and the amount of dehumidification is increased. Can be done.

【0026】また、室内熱交換器7は、冷媒下流側熱交
換器7bのフィンだけが狭いフィンピッチとなっている
ため、冷房運転時や暖房運転時における同一ファン回転
数時の風量の低下を抑えることができ、冷房性能や暖房
性能の低下を極力抑えることができる。
Further, in the indoor heat exchanger 7, only the fins of the refrigerant downstream heat exchanger 7b have a narrow fin pitch, so that the air volume at the same fan rotation speed during the cooling operation or the heating operation is reduced. It is possible to suppress the deterioration of the cooling performance and the heating performance as much as possible.

【0027】ところで、除湿運転は、必ずしも冷房運転
だけによるものはなく、暖房運転によっても可能であ
る。そこで、暖房運転による除湿運転を図3にて説明す
る。
The dehumidifying operation is not necessarily performed only by the cooling operation, but can be performed by the heating operation. Therefore, the dehumidifying operation by the heating operation will be described with reference to FIG.

【0028】尚、図3は、図1に示した冷凍サイクルの
冷媒循環経路が暖房運転に変化した以外は、図1と同一
物である。
FIG. 3 is the same as FIG. 1 except that the refrigerant circulation path of the refrigeration cycle shown in FIG. 1 is changed to the heating operation.

【0029】図3に示す暖房運転においては、7bが冷
媒上流側熱交換器となり、7aが冷媒下流側熱交換器と
なる。
In the heating operation shown in FIG. 3, 7b is a refrigerant upstream heat exchanger, and 7a is a refrigerant downstream heat exchanger.

【0030】圧縮機2から高温・高圧のガス冷媒が吐出
され、四方弁3を介して室内熱交換器7内に流入する。
室内熱交換器7の冷媒上流側熱交換器7b内に流入して
凝縮し、高温を発する。この冷媒上流側熱交換器7bを
流出した常温・低圧の冷媒は、減圧機構を備えた二方弁
8に流入して絞られ、低温・低圧となる。次に、低温・
低圧の冷媒は、冷媒下流側熱交換器7a内に流入するこ
とによって、この冷媒下流側熱交換器7a内で気化する
と同時に、室内空気を吸熱し、蒸発器となって室内空気
と熱交換し、露点温度となって除湿する。
A high-temperature and high-pressure gas refrigerant is discharged from the compressor 2 and flows into the indoor heat exchanger 7 via the four-way valve 3.
The refrigerant flows into the refrigerant upstream heat exchanger 7b of the indoor heat exchanger 7 and condenses to generate a high temperature. The normal-temperature and low-pressure refrigerant flowing out of the refrigerant upstream-side heat exchanger 7b flows into the two-way valve 8 provided with a pressure reducing mechanism, is throttled, and has a low temperature and low pressure. Next, low temperature
The low-pressure refrigerant vaporizes in the refrigerant downstream heat exchanger 7a by flowing into the refrigerant downstream heat exchanger 7a, and at the same time absorbs indoor air and becomes an evaporator to exchange heat with indoor air. Dehumidifies to dew point temperature.

【0031】次に、冷媒は、絞り装置6に流入するが、
この時、絞り装置6は、全開または全開に近い状態にな
っているため、そのまま室外熱交換器4内に流入するこ
とによって、蒸発する。室外側熱交換器4を流出した冷
媒は、四方弁3を介して圧縮機2内に戻る。
Next, the refrigerant flows into the expansion device 6,
At this time, since the expansion device 6 is in a fully opened state or a state in which it is almost fully opened, it flows into the outdoor heat exchanger 4 as it is to evaporate. The refrigerant flowing out of the outdoor heat exchanger 4 returns into the compressor 2 via the four-way valve 3.

【0032】このように、暖房運転にあっても、冷媒下
流側熱交換器7aで除湿した冷却空気と冷媒上流側熱交
換7bで凝縮した高温空気とが混合されて室内に吐出さ
れるので、除湿運転による室内の温度低下が防止でき
る。
As described above, even in the heating operation, the cooling air dehumidified in the refrigerant downstream heat exchanger 7a and the high-temperature air condensed in the refrigerant upstream heat exchange 7b are mixed and discharged into the room. The indoor temperature can be prevented from being lowered by the dehumidifying operation.

【0033】この暖房運転による除湿運転では、降雪量
が多い地域での使用に適している。つまり、高湿の雪で
覆われた住宅で除湿が必要な場合、再熱温度を高くさせ
ないと寒くなってしまうので、本発明では、冷媒上流側
熱交換器7bのフィンピッチを、冷媒下流側熱交換器7
aのフィンピッチより狭くして、放熱面積を大きくして
いるので、再熱温度が高くなり、暖房効果の低下を抑え
ることが可能である。
The dehumidifying operation by the heating operation is suitable for use in an area where the amount of snowfall is large. In other words, when dehumidification is required in a house covered with high-humidity snow, it becomes cold unless the reheating temperature is raised. Therefore, in the present invention, the fin pitch of the refrigerant upstream heat exchanger 7b is changed to the refrigerant downstream side. Heat exchanger 7
Since the heat radiation area is increased by making the fin pitch narrower than the fin pitch of a, the reheating temperature increases, and it is possible to suppress a decrease in the heating effect.

【0034】また、凝縮圧力と凝縮圧力がバランスする
ので、圧縮機の仕事量が低減され、圧縮機の入力が低減
し、省電力が図れる。
Further, since the condensing pressure and the condensing pressure are balanced, the work of the compressor is reduced, the input of the compressor is reduced, and the power can be saved.

【0035】次に、本発明に係る室内側熱交換器のフィ
ン形状を図4(A)、図4(B)に示す。
Next, the fin shape of the indoor heat exchanger according to the present invention is shown in FIGS. 4 (A) and 4 (B).

【0036】図4(A)において、フィン11には、切
り起こし部14a〜14iが設けられている。この切り
起こし部14a〜14iのうち、切り起こし部14a、
14c、14e、14g、14iの切り起こし方向に対
し、切り起こし部14b、14d、14f、14hは、
反対方向に切り起こされている。
In FIG. 4A, the fin 11 is provided with cut-and-raised portions 14a to 14i. Of the cut-and-raised portions 14a to 14i, the cut-and-raised portions 14a,
The cut-and-raised portions 14b, 14d, 14f and 14h are arranged in the cut-and-raised directions of 14c, 14e, 14g and 14i.
It is cut and raised in the opposite direction.

【0037】また、図4(B)において、フィン11に
は、切り起こし部14a〜14eが設けられている。こ
の切り起こし部14a〜14eは、フィン板厚方向に対
して全て同一方向に立ち上げられている。したがって図
4(A)のフィン11と図2(B)のフィン11とを比
較すると、両方向に切り起こされたフィン11の方が通
風抵抗は大きくなるが、空気の流れが乱れることにより
熱伝達性能が高くなる。
In FIG. 4B, the fin 11 is provided with cut-and-raised portions 14a to 14e. The cut-and-raised portions 14a to 14e are all raised in the same direction with respect to the fin plate thickness direction. Therefore, comparing the fin 11 of FIG. 4 (A) with the fin 11 of FIG. 2 (B), the fin 11 cut and raised in both directions has a higher ventilation resistance, but heat transfer due to disturbance of the air flow. High performance.

【0038】図4(A)のように、切りお超し部がフィ
ン面の両面方向に切り起こされたフィン11を除湿運転
時の蒸発器側となる冷媒下流側熱交換器7bに用いるこ
とで、蒸発器としての熱交換性能を促進することがで
き、除湿量を増加させることができる。また、切りお超
し部が片側面のみに切り起こされたフィン11を冷媒上
流側熱交換器7aに用いることで、冷房運転時や暖房運
転時の風量低下を抑えることができ、冷房性能や暖房性
能の低下を抑えることができる。
As shown in FIG. 4 (A), the fins 11 whose cut-off portions are cut and raised in both directions of the fin surface are used for the refrigerant downstream heat exchanger 7b on the evaporator side during the dehumidifying operation. Thus, the heat exchange performance of the evaporator can be promoted, and the amount of dehumidification can be increased. In addition, by using the fins 11 whose cut-off portions are cut and raised only on one side surface for the refrigerant upstream heat exchanger 7a, it is possible to suppress a decrease in the air volume during the cooling operation or the heating operation, and to improve the cooling performance and the like. A decrease in heating performance can be suppressed.

【0039】図5は、本発明に係る他の実施例を示す室
内側熱交換器の構成図である。
FIG. 5 is a block diagram of an indoor heat exchanger showing another embodiment according to the present invention.

【0040】図5において、室内熱交換器7は、除湿運
転時の冷媒の流れAに対して減圧機構を備えた二方弁1
0を境に、冷媒上流側熱交換器7aと冷媒下流側熱交換
器7bに分割されている。この冷媒上流側熱交換器7a
は、互いに狭い間隔で積層されたフィン群11aと、こ
れらを直交するように貫通するパイプ群12aとからな
り、冷媒下流側熱交換器7bは、互いに狭い間隔で積層
されたフィン群11bと、これらを直交するように貫通
する太径のパイプ群12bからなっている。
In FIG. 5, the indoor heat exchanger 7 has a two-way valve 1 equipped with a pressure reducing mechanism for the refrigerant flow A during the dehumidifying operation.
At 0, the refrigerant is divided into a refrigerant upstream heat exchanger 7a and a refrigerant downstream heat exchanger 7b. This refrigerant upstream heat exchanger 7a
Is composed of a group of fins 11a stacked at a narrow interval from each other, and a group of pipes 12a penetrating them at right angles. The refrigerant downstream heat exchanger 7b includes a group of fins 11b stacked at a narrow interval from each other. It is composed of a group of large diameter pipes 12b that penetrate them orthogonally.

【0041】この室内熱交換器7の冷媒下流側熱交換器
7bは、パイプ群12bのパイプ内径を冷媒上流側熱交
換器7aのパイプ群11aの内径より太くしてあるの
で、除湿運転時に蒸発器として作用する冷媒下流側熱交
換器7bに流れる冷媒の圧力損失を低減することができ
る。この時、除湿運転時の冷媒出口パイプ15における
冷媒圧力が太径パイプ群12bを用いる前に対して同等
になるように二方弁2の絞り量を調整することにより、
冷媒下流側熱交換器の平均蒸発温度を下げることがで
き、除湿量を増加させることができる。
In the refrigerant downstream heat exchanger 7b of the indoor heat exchanger 7, the inner diameter of the pipe group 12b is made larger than the inner diameter of the pipe group 11a of the refrigerant upstream heat exchanger 7a. Pressure loss of the refrigerant flowing through the refrigerant downstream heat exchanger 7b acting as a heat exchanger can be reduced. At this time, by adjusting the throttle amount of the two-way valve 2 so that the refrigerant pressure at the refrigerant outlet pipe 15 at the time of the dehumidifying operation becomes equal to that before using the large diameter pipe group 12b,
The average evaporation temperature of the refrigerant downstream heat exchanger can be reduced, and the amount of dehumidification can be increased.

【0042】以上述べたように、本発明による空気調和
機の室内熱交換器は、除湿運転時に蒸発器となる部分の
熱交換器のフィンピッチを狭くすることで、蒸発器の伝
熱性能を向上し、除湿量を向上させることができる。
As described above, in the indoor heat exchanger of the air conditioner according to the present invention, the heat transfer performance of the evaporator is reduced by reducing the fin pitch of the heat exchanger in the portion that becomes the evaporator during the dehumidifying operation. And the amount of dehumidification can be improved.

【0043】また、室内熱交換器の一部だけフィンピッ
チを狭くしているため、冷房運転時や暖房運転時におけ
る同一ファン回転数時の風量の低下を抑えることがで
き、冷房性能や暖房性能の低下を抑えることができる。
Further, since the fin pitch is narrowed only in a part of the indoor heat exchanger, it is possible to suppress a decrease in the air volume at the same fan rotation speed during the cooling operation or the heating operation, and the cooling performance and the heating performance are reduced. Can be suppressed.

【0044】また、室内熱交換器のうち除湿運転時に蒸
発器となる部分の熱交換器に伝熱性能の良いフィンを用
いることで、蒸発器の伝熱性能を向上させることがで
き、除湿量を向上させることができる。
Further, by using fins having good heat transfer performance for the portion of the indoor heat exchanger which becomes the evaporator during the dehumidification operation, the heat transfer performance of the evaporator can be improved, and the amount of dehumidification can be improved. Can be improved.

【0045】また、除湿運転時に蒸発器となる部分の熱
交換器のパイプに太径パイプを用いることにより、除湿
運転時に蒸発器として作用する熱交換器に流れる冷媒の
圧力損失を低減することができ、蒸発器全体の平均蒸発
温度を下げることができるため、除湿量を増加させるこ
とができる。
Further, by using a large-diameter pipe as a heat exchanger pipe in a portion which becomes an evaporator during the dehumidifying operation, it is possible to reduce the pressure loss of the refrigerant flowing through the heat exchanger acting as the evaporator during the dehumidifying operation. As a result, the average evaporating temperature of the entire evaporator can be lowered, so that the dehumidification amount can be increased.

【0046】[0046]

【発明の効果】本発明によれば、消費電力量を抑えて除
湿量を増加させた空気調和機を提供できる。
According to the present invention, it is possible to provide an air conditioner with reduced power consumption and increased dehumidification amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を備えた空気調和機で冷房運転を行った
場合の冷凍サイクル図。
FIG. 1 is a refrigeration cycle diagram when a cooling operation is performed by an air conditioner equipped with the present invention.

【図2】本発明を備えた室内熱交換器の斜視図。FIG. 2 is a perspective view of an indoor heat exchanger provided with the present invention.

【図3】本発明を備えた空気調和機で暖房運転を行った
場合の冷凍サイクル図。
FIG. 3 is a refrigeration cycle diagram when a heating operation is performed by an air conditioner equipped with the present invention.

【図4】本発明を備えた室内熱交換器にフィンの形状を
示す図。
FIG. 4 is a diagram showing the shape of a fin in an indoor heat exchanger provided with the present invention.

【図5】本発明の他の実施例を示す室内熱交換器の構成
図。
FIG. 5 is a configuration diagram of an indoor heat exchanger showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…冷凍サイクル、2…圧縮機、3…四方弁、4…室外熱
交換器、5…室外ファン、6…冷媒絞り装置、7…室内
熱交換器、8…二方弁、9…冷媒配管、10…室内ファ
ン、11…フィン、12…パイプ。
1 ... Refrigeration cycle, 2 ... Compressor, 3 ... Four-way valve, 4 ... Outdoor heat exchanger, 5 ... Outdoor fan, 6 ... Refrigerator expansion device, 7 ... Indoor heat exchanger, 8 ... Two-way valve, 9 ... Refrigerant piping 10, indoor fan, 11 fin, 12 pipe.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】室内機内の前面部と上面部に設けられた吸
込口と対向する位置に複数枚のフィンと冷媒管からなる
熱交換器を設けた空気調和機において、前記前面部の吸
込口と対向する熱交換器のフィンピッチを前記上面部と
対向する熱交換器のフィンピッチより小さくした空気調
和機。
1. An air conditioner provided with a heat exchanger comprising a plurality of fins and a refrigerant pipe at a position facing a suction port provided at a front part and an upper part in an indoor unit, wherein the suction port at the front part is provided. An air conditioner in which the fin pitch of the heat exchanger facing the upper surface is smaller than the fin pitch of the heat exchanger facing the upper surface.
【請求項2】室内機内の前面部と上面部に設けられた吸
込口と対向する位置に複数枚のフィンと冷媒管からなる
熱交換器を設けた空気調和機において、前記前面部の吸
込口と対向する熱交換器のフィンに切りお超し部を設け
た空気調和機。
2. An air conditioner provided with a heat exchanger comprising a plurality of fins and a refrigerant pipe at a position facing a suction port provided at a front part and an upper part in an indoor unit, wherein the suction port at the front part is provided. An air conditioner that has a fin of a heat exchanger opposite to the fin and a cut-off portion.
【請求項3】前記前面部の吸込口と対向する熱交換器の
冷媒管径を前記上面部と対向する熱交換器の冷媒管径よ
り大きくした空気調和機。
3. An air conditioner wherein a diameter of a refrigerant pipe of a heat exchanger facing the suction port of the front part is larger than a diameter of a refrigerant pipe of the heat exchanger facing the upper part.
JP2000154355A 2000-05-22 2000-05-22 Air conditioner Pending JP2001330309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154355A JP2001330309A (en) 2000-05-22 2000-05-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154355A JP2001330309A (en) 2000-05-22 2000-05-22 Air conditioner

Publications (1)

Publication Number Publication Date
JP2001330309A true JP2001330309A (en) 2001-11-30

Family

ID=18659460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154355A Pending JP2001330309A (en) 2000-05-22 2000-05-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP2001330309A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258306A (en) * 2005-03-15 2006-09-28 Sharp Corp Indoor unit for air conditioner
JP2007187414A (en) * 2006-01-16 2007-07-26 Sharp Corp Indoor unit for air conditioner
JP2009127882A (en) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp Heat exchanger, indoor unit, and air conditioner
WO2016002015A1 (en) * 2014-07-01 2016-01-07 三菱電機株式会社 Indoor unit of air conditioner
JP2017048953A (en) * 2015-09-01 2017-03-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258306A (en) * 2005-03-15 2006-09-28 Sharp Corp Indoor unit for air conditioner
JP4624146B2 (en) * 2005-03-15 2011-02-02 シャープ株式会社 Air conditioner indoor unit
JP2007187414A (en) * 2006-01-16 2007-07-26 Sharp Corp Indoor unit for air conditioner
JP2009127882A (en) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp Heat exchanger, indoor unit, and air conditioner
WO2016002015A1 (en) * 2014-07-01 2016-01-07 三菱電機株式会社 Indoor unit of air conditioner
JPWO2016002015A1 (en) * 2014-07-01 2017-04-27 三菱電機株式会社 Air conditioner indoor unit
JP2017048953A (en) * 2015-09-01 2017-03-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Similar Documents

Publication Publication Date Title
JP5068235B2 (en) Refrigeration air conditioner
JP6494765B2 (en) Air conditioning system
JP4835688B2 (en) Air conditioner, air conditioning system
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
JP3283706B2 (en) Air conditioner
JP5575029B2 (en) Desiccant ventilation fan
JP2006343088A (en) Air conditioner
JP2006317012A (en) Air conditioner
JPH11337104A (en) Air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JP2001330309A (en) Air conditioner
JP4505486B2 (en) Heat pump air conditioner
CN216203824U (en) Air conditioner
Cao et al. Comprehensive analysis of exhaust air heat pump heat recovery efficiency in dedicated outdoor air system
JP3724011B2 (en) Air conditioner
JPH10246506A (en) Indoor unit for air conditioner
JP2002250540A (en) Thin heat pump type fresh air processing air conditioner
JP3677887B2 (en) Air conditioner
JP2008121995A (en) Air conditioner
JP3885063B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
KR100930762B1 (en) air conditioner
JP2017048953A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822