JP5575029B2 - Desiccant ventilation fan - Google Patents

Desiccant ventilation fan Download PDF

Info

Publication number
JP5575029B2
JP5575029B2 JP2011065637A JP2011065637A JP5575029B2 JP 5575029 B2 JP5575029 B2 JP 5575029B2 JP 2011065637 A JP2011065637 A JP 2011065637A JP 2011065637 A JP2011065637 A JP 2011065637A JP 5575029 B2 JP5575029 B2 JP 5575029B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
refrigerant heat
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011065637A
Other languages
Japanese (ja)
Other versions
JP2012052782A (en
Inventor
純治 安部
秀之 枡見
Original Assignee
株式会社長府製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長府製作所 filed Critical 株式会社長府製作所
Priority to JP2011065637A priority Critical patent/JP5575029B2/en
Publication of JP2012052782A publication Critical patent/JP2012052782A/en
Application granted granted Critical
Publication of JP5575029B2 publication Critical patent/JP5575029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、顕熱交換器およびデシカント式水分吸着器を一つの筐体内に備え、前記デシカント式水分吸着器の除湿機能および加湿機能の再生に冷凍サイクルの凝縮器で発生する熱を利用するデシカント式換気扇に関する。   The present invention comprises a sensible heat exchanger and a desiccant type moisture adsorber in a single housing, and a desiccant that uses heat generated in a condenser of a refrigeration cycle to regenerate the dehumidifying function and humidifying function of the desiccant type moisture adsorber. It relates to a type ventilation fan.

従来例としては、特許文献1に記載されたものがある。特許文献1はデシカント空気調和機と通常の冷凍サイクルにより屋内を冷房する冷凍装置を組み合わせたものである。   As a conventional example, there is one described in Patent Document 1. Patent Document 1 is a combination of a desiccant air conditioner and a refrigeration apparatus that cools the room indoors by a normal refrigeration cycle.

従来例のデシカント空気調和機としては送風機を用いて屋外空気を強制的に屋内に流入させ同時に別の送風機を用いて屋内空気を強制的に排出させ、屋内空気と屋外空気の間で熱交換器を用いて熱移動をおこなうようにした、換気時に温度変化が少ない換気を行えるものである。そして、この換気と同時に除湿をデシカント(ゼオライト、シリカゲル等の吸着剤・吸湿材)で行い得るものである。   As a conventional desiccant air conditioner, a blower is used to force outdoor air to flow indoors, and another air blower is used to forcibly discharge indoor air, and a heat exchanger is used between indoor air and outdoor air. It is designed to perform heat transfer by using a ventilator with little temperature change during ventilation. At the same time as this ventilation, dehumidification can be performed with a desiccant (adsorbent / hygroscopic material such as zeolite or silica gel).

また同時に、屋内に冷凍サイクルの冷房器となる蒸発器が設けられ、屋内の冷房を行うと同時に、冷凍サイクルの凝縮器で発生する熱を用いてデシカントに吸着した水分の脱着、所謂デシカント除湿器の再生を行うものもあった。   At the same time, an evaporator serving as a cooling unit for a refrigeration cycle is provided indoors, and at the same time, the desorption of moisture adsorbed on the desiccant using the heat generated in the condenser of the refrigeration cycle, so-called desiccant dehumidifier There was also a thing that replayed.

特開2003−130391号公報JP 2003-130391 A

一般的な冷凍サイクル式の空冷式空調機で屋内を冷房する場合には、屋内の冷房器となる蒸発器で液体の冷媒を蒸発させ、低温低圧の気体となった冷媒を圧縮機で高温高圧の気体にし、この高温高圧の気体の冷媒を凝縮器により凝縮させて再度液体にして冷凍サイクルを構成する必要がある。そして、高温高圧の気体状の冷媒を凝縮させて液体状の冷媒になり易くするために、凝縮器を屋外に設置して凝縮器近傍に設けた送風機を用いて屋外の空気を凝縮器に当て、凝縮器内の高温高圧の気体状の冷媒から発生する熱を屋外空気に放熱させるようにしていた。つまり、冷媒が凝縮器で凝縮して液体状になるためには屋外空気が循環する環境が必要であり、屋外空気の循環が阻害される場合(所謂ショートサイクル)や、屋外空気の温度が高い場合には、凝縮器で冷媒の凝縮不足が発生し全部の冷媒が液体状とならない状態となる。凝縮不足が発生するということは、屋内側の蒸発器においては液化された冷媒が少なくなるということであり、液化した冷媒が蒸発器で蒸発することにより冷房能力が発揮されるのであるから、屋内の冷房器である蒸発器の冷房能力が低下することになった。   When a room is cooled with a general refrigeration cycle air-cooled air conditioner, the liquid refrigerant is evaporated with an evaporator that is an indoor air conditioner, and the refrigerant that has become a low-temperature and low-pressure gas is heated with a compressor. It is necessary to condense the high-temperature and high-pressure gaseous refrigerant with a condenser and make it liquid again to form a refrigeration cycle. In order to condense the high-temperature and high-pressure gaseous refrigerant into a liquid refrigerant, the outdoor air is applied to the condenser using a blower installed in the vicinity of the condenser. The heat generated from the high-temperature and high-pressure gaseous refrigerant in the condenser is radiated to the outdoor air. In other words, in order for the refrigerant to condense in the condenser and become liquid, an environment in which outdoor air circulates is necessary, and when outdoor air circulation is hindered (so-called short cycle) or the temperature of outdoor air is high In such a case, the refrigerant is insufficiently condensed in the condenser, so that all the refrigerant does not become liquid. The occurrence of insufficient condensation means that the liquefied refrigerant is reduced in the indoor evaporator, and since the liquefied refrigerant evaporates in the evaporator, the cooling capacity is exhibited. As a result, the cooling capacity of the evaporator, which is the air conditioner, declined.

そして、特許文献1の発明においては、冷凍サイクルの凝縮器(特許文献1の記載によれば「再生加熱器12」)の放熱に用いられる空気は、「回転型顕熱熱交換器6」で熱交換された後の屋内空気となる。特許文献1の図3によれば、「B1」の屋内空気の温度「27℃」が、「加湿器8」の蒸発潜熱により冷却されて「B2」で「19.5℃」となり、「回転型顕熱熱交換器6」で熱交換されて「B3」で「50℃」となっている。よって、「排気用ファン41」を用いて「50℃」の高温の屋内空気を凝縮器に当てて熱交換させて冷媒を凝縮させることになる。   And in invention of patent document 1, the air used for the heat radiation of the condenser ("regenerative heater 12" according to description of patent document 1) of the refrigerating cycle is "rotary sensible heat exchanger 6". It becomes indoor air after heat exchange. According to FIG. 3 of Patent Document 1, the indoor air temperature “27 ° C.” of “B1” is cooled by the latent heat of vaporization of “humidifier 8” and becomes “19.5 ° C.” at “B2”. The heat is exchanged by the type sensible heat exchanger 6 ”and“ B3 ”is“ 50 ° C. ”. Therefore, using the “exhaust fan 41”, high-temperature indoor air of “50 ° C.” is applied to the condenser to perform heat exchange to condense the refrigerant.

一般的に各種の冷媒を用いる冷凍サイクルの凝縮器側を空冷する場合には、その空気の温度は夏季の外気温度を基準として設計されているので、特許文献1の凝縮器を冷却する空気の温度は一般的な夏季の外気温度から見ると高いものとなる。また、屋内空気の温度は例示された温度であるので、使用条件によっては屋内空気温度が高くなる場合がある。そのため、凝縮器における冷媒の凝縮不足が発生する可能性が高いものとなり、結果、屋内空気を冷却させる蒸発器での冷却が行えず、冷却効果を発揮できないという問題があった。   In general, when the condenser side of a refrigeration cycle using various refrigerants is air-cooled, the temperature of the air is designed based on the outdoor air temperature in summer. The temperature is high when viewed from the general outdoor temperature in summer. Moreover, since the temperature of indoor air is the temperature illustrated, the indoor air temperature may become high depending on use conditions. Therefore, there is a high possibility that the refrigerant will be insufficiently condensed in the condenser. As a result, there is a problem in that the cooling cannot be performed by the evaporator that cools the indoor air and the cooling effect cannot be exhibited.

上記の課題を解決するため、本発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

第1発明のデシカント式換気扇は、回転型顕熱交換器と、回転型デシカント式水分吸着器と、前記回転型デシカント式水分吸着器および前記回転型顕熱交換器を経由して屋外空気が通過する第一の風路と、前記回転型顕熱交換器および前記回転型デシカント式水分吸着器を経由して屋内空気が通過する第二の風路と、前記屋外空気が通過する前記第一の風路に空気を通過させる第一の送風機と、前記屋内空気が通過する前記第二の風路に空気を通過させる第二の送風機と、前記第一の風路側で前記回転型デシカント式水分吸着器の上流側に設けられた第一の冷媒用熱交換器と、前記第一の風路側で前記回転型顕熱交換器の下流側に設けられた第二の冷媒用熱交換器と、前記第二の風路側で前記回転型デシカント式水分吸着器の上流側に設けられた第三の冷媒用熱交換器と、前記第二の風路側で前記回転型デシカント式水分吸着器の下流側に設けられた第四の冷媒用熱交換器とを備え、前記第三の冷媒用熱交換器、前記第四の冷媒用熱交換器、前記第一の冷媒用熱交換器および第二の冷媒用熱交換器が冷媒配管で前記の順序で直列に接続されている。 The desiccant ventilation fan of the first invention is a rotary sensible heat exchanger, a rotary desiccant moisture adsorber, and outdoor air passes through the rotary desiccant moisture adsorber and the rotary sensible heat exchanger. A first air passage through which the indoor air passes through the rotary sensible heat exchanger and the rotary desiccant moisture adsorber, and the first air passage through which the outdoor air passes. A first blower for passing air through an air passage, a second blower for passing air through the second air passage through which the indoor air passes, and the rotary desiccant-type moisture adsorption on the first air passage side A first refrigerant heat exchanger provided on the upstream side of the vessel, a second refrigerant heat exchanger provided on the first air path side and on the downstream side of the rotary sensible heat exchanger, Provided on the upstream side of the rotary desiccant type moisture adsorber on the second air passage side Third refrigerant heat exchanger, and a said rotary desiccant moisture adsorber fourth refrigerant heat exchanger provided downstream in the second wind roadside, said third refrigerant The heat exchanger for heat, the fourth heat exchanger for refrigerant, the first heat exchanger for refrigerant, and the second heat exchanger for refrigerant are connected in series by the refrigerant pipe in the above order.

さらに、第1発明のデシカント式換気扇においては、前記第一の風路の空気を除湿する場合は、前記第一の冷媒用熱交換器および前記第二の冷媒用熱交換器が蒸発器で前記第三の冷媒用熱交換器および前記第四の冷媒用熱交換器が凝縮器となる冷凍サイクルが構成されることにより、前記回転型デシカント式水分吸着器が除湿器となり、前記第一の風路の空気を加湿する場合は、前記第一の冷媒用熱交換器および前記第二の冷媒用熱交換器が凝縮器で前記第三の冷媒用熱交換器および前記第四の冷媒用熱交換器が蒸発器となる冷凍サイクルが構成されることにより、前記回転型デシカント式水分吸着器が加湿器となっている。 Furthermore, in the desiccant-type ventilation fan according to the first aspect of the present invention, when the air in the first air passage is dehumidified, the first refrigerant heat exchanger and the second refrigerant heat exchanger are evaporators. By configuring a refrigeration cycle in which the third refrigerant heat exchanger and the fourth refrigerant heat exchanger serve as a condenser, the rotary desiccant moisture adsorber serves as a dehumidifier, and the first wind When humidifying the air in the passage, the first refrigerant heat exchanger and the second refrigerant heat exchanger are condensers, and the third refrigerant heat exchanger and the fourth refrigerant heat exchange The rotary desiccant type moisture adsorber serves as a humidifier by configuring a refrigeration cycle in which the evaporator serves as an evaporator.

以上のような、技術的手段を有することにより、以下の効果を有する。   Having the technical means as described above has the following effects.

第1発明によれば、デシカント式換気扇の第二の風路側で前記回転型デシカント式水分吸着器の下流側に設けられた第四の冷媒用熱交換器が設けられたことで、除湿時において第四の冷媒用熱交換器を凝縮器とすることができ、回転型デシカント式水分吸着器で水分が脱着される際の蒸発潜熱が奪われることにより、温度が下がった屋内空気で、凝縮器である第四の冷媒用熱交換器を冷却できるので、凝縮不足が発生しない構成とすることができる。   According to the first aspect of the present invention, the fourth refrigerant heat exchanger provided on the downstream side of the rotary desiccant-type moisture adsorber on the second air path side of the desiccant-type ventilation fan is provided at the time of dehumidification. The fourth refrigerant heat exchanger can be a condenser, and the condenser is the indoor air whose temperature has dropped due to the removal of latent heat of evaporation when moisture is desorbed by the rotary desiccant type moisture adsorber. Since the fourth refrigerant heat exchanger can be cooled, it can be configured such that insufficient condensation does not occur.

また、第一の風路側を通過する屋外空気の温度が高い場合は回転型デシカント式水分吸着器の上流側にある第一の冷媒用熱交換器が蒸発器となり、回転型デシカント式水分吸着器を通過する屋外空気が冷却されることにより屋外空気の相対湿度が上昇するので回転型デシカント式水分吸着器での水分の吸着量が増加し、それに伴って第二の風路側での回転型デシカント式水分吸着器の水分の脱着量が増加することで蒸発潜熱も増加し、回転型デシカント式水分吸着器を通過する屋内空気の温度も下がるので凝縮器となる第四の冷媒用熱交換器の凝縮不足は発生しない構成とすることができる。   In addition, when the temperature of the outdoor air passing through the first air passage side is high, the first refrigerant heat exchanger on the upstream side of the rotary desiccant moisture adsorber becomes an evaporator, and the rotary desiccant moisture adsorber As the outdoor air passing through the air is cooled, the relative humidity of the outdoor air rises, increasing the amount of moisture adsorbed in the rotary desiccant-type moisture adsorber, and accompanying this, the rotary desiccant on the second air passage side. As the amount of moisture desorbed by the water adsorber increases, the latent heat of vaporization increases, and the temperature of the indoor air passing through the rotary desiccant water adsorber also decreases. It can be set as the structure which does not generate insufficient condensation.

さらには、第三の冷媒用熱交換器と第四の冷媒用熱交換器を直列に繋ぐことが可能であるので、第三の冷媒用熱交換器で凝縮不足が発生したとしても第四の冷媒用熱交換器で凝縮不足を解消できる構成にすることができ、延いては除湿能力を向上させることになる。   Furthermore, since it is possible to connect the third refrigerant heat exchanger and the fourth refrigerant heat exchanger in series, the fourth refrigerant heat exchanger can be used even if insufficient condensation occurs in the third refrigerant heat exchanger. It can be set as the structure which can eliminate condensing shortage with the heat exchanger for refrigerant | coolants, and a dehumidification capability will be improved by extension.

そして、第一の風路の空気を除湿する場合は、第一の冷媒用熱交換器および第二の冷媒用熱交換器が蒸発器で、第三の冷媒用熱交換器および第四の冷媒用熱交換器が凝縮器となる冷凍サイクルが構成されることにより、前記回転型デシカント式水分吸着器が除湿器となり、第一の風路の空気を加湿する場合は、第一の冷媒用熱交換器および第二の冷媒用熱交換器が凝縮器で第三の冷媒用熱交換器および第四の冷媒用熱交換器が蒸発器となる冷凍サイクルが構成されることにより、回転型デシカント式水分吸着器が加湿器となることで、除湿と加湿が簡単に切換えられるデシカント式換気扇を提供できる。 When dehumidifying the air in the first air passage, the first refrigerant heat exchanger and the second refrigerant heat exchanger are evaporators, the third refrigerant heat exchanger and the fourth refrigerant. If the rotary desiccant type moisture adsorber becomes a dehumidifier by configuring a refrigeration cycle in which the heat exchanger for the condenser serves as a condenser, the air for the first air passage is humidified. The refrigeration cycle is configured in which the exchanger and the second refrigerant heat exchanger are condensers, and the third refrigerant heat exchanger and the fourth refrigerant heat exchanger are evaporators. Since the moisture adsorber becomes a humidifier, it is possible to provide a desiccant type ventilation fan in which dehumidification and humidification can be easily switched.

本発明の実施例1に係るデシカント式換気扇の全体構成の概要図である。It is a schematic diagram of the whole structure of the desiccant type ventilation fan concerning Example 1 of the present invention. 本発明の実施例1に係るデシカント式換気扇の除湿運転時についての説明図である。It is explanatory drawing about the time of the dehumidification driving | operation of the desiccant type ventilation fan which concerns on Example 1 of this invention. 本発明の実施例1に係るデシカント式換気扇の除湿運転時の冷凍サイクルを説明するp−h線図である。It is a ph diagram explaining the refrigerating cycle at the time of dehumidification operation of the desiccant type exhaust fan concerning Example 1 of the present invention. 本発明の実施例1に係るデシカント式換気扇の加湿運転時についての説明図である。It is explanatory drawing about the time of the humidification driving | operation of the desiccant type exhaust fan which concerns on Example 1 of this invention. 本発明の実施例1に係るデシカント式換気扇の加湿運転時の冷凍サイクルを説明するp−h線図である。It is a ph diagram explaining the refrigerating cycle at the time of humidification operation of the desiccant type exhaust fan concerning Example 1 of the present invention.

発明を実施する形態について、図面に基づいて具体的に説明する。   Embodiments for carrying out the invention will be specifically described with reference to the drawings.

(全体的な構成)
本発明のデシカント式換気扇1の全体的な構成について図1を用いて説明する。デシカント式換気扇1は、屋外から屋内に向かって屋外空気が第一の送風機(給気送風機)26により流される第一の風路(給気風路)25と、屋内から屋外に向かって屋内空気が第二の送風機(排気送風機)36によって流される第二の風路(排気風路)35よりなる。第一の風路25および第二の風路35のそれぞれに直交して、屋外側から、回転型デシカント式水分吸着器12、回転型顕熱交換器11が設けられており、回転型デシカント式水分吸着器12を通過する際に屋外空気と屋内空気の間で水分の移動が行われ、回転型顕熱交換器11を通過する際に屋外空気と屋内空気の間で熱移動が行われる。第一の風路25および第二の風路35はその途中において屋外空気と屋内空気とが混ざらないように気密性を保つ構造となっている。
(Overall configuration)
The overall configuration of the desiccant ventilation fan 1 of the present invention will be described with reference to FIG. The desiccant-type ventilation fan 1 includes a first air passage (air supply air passage) 25 through which outdoor air flows from the outside toward the indoors by a first air blower (air supply air blower) 26, and indoor air from the indoor to the outside. The second air passage (exhaust air passage) 35 is flowed by the second air blower (exhaust air blower) 36. A rotary desiccant type moisture adsorber 12 and a rotary sensible heat exchanger 11 are provided from the outdoor side perpendicular to the first air path 25 and the second air path 35, respectively. Moisture is transferred between outdoor air and indoor air when passing through the moisture adsorber 12, and heat is transferred between outdoor air and indoor air when passing through the rotary sensible heat exchanger 11. The first air passage 25 and the second air passage 35 have a structure that maintains airtightness so that outdoor air and indoor air are not mixed in the middle.

第一の風路25には、回転型デシカント式水分吸着器12の上流側には第一の冷媒用熱交換器13が、回転型顕熱交換器11の下流側には第二の冷媒用熱交換器14が設けられている。第二の風路35の回転型顕熱交換器11の下流で回転型デシカント式水分吸着器12の上流側には第三の冷媒用熱交換器15が、回転型デシカント式水分吸着器12の下流側には第四の冷媒用熱交換器16が設けられている。第一の冷媒用熱交換器13、第二の冷媒用熱交換器14、第三の冷媒用熱交換器15および第四の冷媒用熱交換器16は冷媒圧縮機41を冷媒循環手段として冷媒配管51〜57により直列に結ばれて冷媒循環回路が形成される。また、冷媒配管56の途中には第一の膨張弁(絞り装置)43が、冷媒配管57の途中には第二の膨張弁44が設けられている。また、冷媒配管51、冷媒配管52、冷媒配管53および冷媒配管54の流路の切換手段として四方弁42が設けられている。冷媒圧縮機41、四方弁42、第一の冷媒用熱交換器13、第二の冷媒用熱交換器14、第三の冷媒用熱交換器15、第四の冷媒用熱交換器16、第一の膨張弁43、第二の膨張弁44およびこれらをつなぐ冷媒配管51〜57で冷凍サイクルが構成されている。またこれら、冷媒圧縮機41、冷媒配管51〜57およびこれに付随する第一の膨張弁43、第二の膨張弁44および四方弁42は冷媒圧縮機41を除いて大きな部品ではなく、デシカント式換気扇1の筐体に内蔵することも容易である。   The first air passage 25 has a first refrigerant heat exchanger 13 upstream of the rotary desiccant moisture adsorber 12 and a second refrigerant heat exchanger downstream of the rotary sensible heat exchanger 11. A heat exchanger 14 is provided. A third refrigerant heat exchanger 15 is disposed downstream of the rotary sensible heat exchanger 11 in the second air passage 35 and upstream of the rotary desiccant moisture adsorber 12. A fourth refrigerant heat exchanger 16 is provided on the downstream side. The first refrigerant heat exchanger 13, the second refrigerant heat exchanger 14, the third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16 are refrigerants using the refrigerant compressor 41 as a refrigerant circulation means. A refrigerant circulation circuit is formed by connecting the pipes 51 to 57 in series. A first expansion valve (throttle device) 43 is provided in the middle of the refrigerant pipe 56, and a second expansion valve 44 is provided in the middle of the refrigerant pipe 57. A four-way valve 42 is provided as a switching means for the refrigerant pipe 51, the refrigerant pipe 52, the refrigerant pipe 53, and the refrigerant pipe 54. Refrigerant compressor 41, four-way valve 42, first refrigerant heat exchanger 13, second refrigerant heat exchanger 14, third refrigerant heat exchanger 15, fourth refrigerant heat exchanger 16, The one expansion valve 43, the second expansion valve 44, and the refrigerant pipes 51 to 57 connecting them constitute a refrigeration cycle. Further, the refrigerant compressor 41, the refrigerant pipes 51 to 57, and the first expansion valve 43, the second expansion valve 44, and the four-way valve 42 associated therewith are not large parts except the refrigerant compressor 41, and are desiccant type. It is easy to incorporate in the housing of the ventilation fan 1.

第一の送風機26、第二の送風機36、回転型デシカント式水分吸着器12、回転型顕熱交換器11、冷媒圧縮機41、第一の膨張弁43、第二の膨張弁44および四方弁42の駆動部は電気が供給されることにより駆動し、この駆動の制御は制御基板10および操作装置(図示せず)によって行われる。   First blower 26, second blower 36, rotary desiccant moisture adsorber 12, rotary sensible heat exchanger 11, refrigerant compressor 41, first expansion valve 43, second expansion valve 44 and four-way valve The drive unit 42 is driven by supplying electricity, and this drive control is performed by the control board 10 and an operation device (not shown).

(回転型顕熱交換器)
本発明のデシカント式換気扇1の主要機能部品について説明する。回転型顕熱交換器11は、対向する二つの面が第一の風路25および第二の風路35に跨り、空気を通過させる部分となる。空気を通過させる部分は形状が円柱状でモーターにより回転させられる構造であり、モーターの駆動により空気を通過させる部分は、1分間当たり数回転するよう制御されている。空気が通過する部分の材質は、空気を通過させる際に空気中の顕熱を蓄熱する又は放熱する吸熱部材となっている。空気が通過する二つの面は中央部分により二つに仕切られ、仕切られた部分の一方が第一の風路25となり、もう一方が第二の風路35となる。屋内が暖房されている場合において、第二の風路35を流れる暖められた屋内空気の顕熱は回転型顕熱交換器11の空気が通過する部分の吸熱部材が蓄熱し、蓄熱した空気を通過させる部分が回転して第一の風路25で冷たい屋外空気に放熱することで、屋外空気に顕熱を移動させることができる。これにより、暖房時においては、屋内の暖房効果を損なうことなく屋内を換気することができる。冷房時においては逆に、第二の風路35を流れる冷却された屋内空気により、回転型顕熱交換器11の空気が通過する部分の吸熱部材が冷やされ、冷やされた空気が通過する部分が回転して第一の風路25で暖かい屋外空気の顕熱を吸熱することで、屋外空気から顕熱を奪うことができる。これにより、冷房時においては、冷房効率を損なうことなく屋内を換気することができる。
(Rotary sensible heat exchanger)
The main functional parts of the desiccant type ventilation fan 1 of the present invention will be described. The rotary sensible heat exchanger 11 is a portion where two opposing surfaces straddle the first air passage 25 and the second air passage 35 and allow air to pass therethrough. The portion that allows air to pass is a cylindrical shape that is rotated by a motor, and the portion that allows air to pass by driving the motor is controlled to rotate several times per minute. The material of the part through which the air passes is a heat absorbing member that stores or dissipates sensible heat in the air when passing the air. The two surfaces through which air passes are divided into two by a central portion, and one of the divided portions becomes the first air passage 25 and the other becomes the second air passage 35. In the case where the room is heated, the sensible heat of the heated indoor air flowing through the second air passage 35 is stored by the heat absorbing member in the portion of the rotary sensible heat exchanger 11 through which the air passes, and the stored air is The portion to be passed rotates and radiates heat to the cold outdoor air in the first air passage 25, so that sensible heat can be moved to the outdoor air. Thereby, at the time of heating, indoors can be ventilated without impairing the indoor heating effect. On the contrary, at the time of cooling, by the cooled indoor air flowing through the second air passage 35, the endothermic member of the portion where the air of the rotary sensible heat exchanger 11 passes is cooled, and the portion where the cooled air passes Rotates to absorb the sensible heat of the warm outdoor air through the first air passage 25, so that the sensible heat can be taken from the outdoor air. Thereby, at the time of cooling, indoors can be ventilated without impairing the cooling efficiency.

(回転型デシカント式水分吸着器)
回転型デシカント式水分吸着器12は対向する二つの面が第一の風路25および第二の風路35に跨り、空気を通過させる部分となる。空気を通過させる部分は形状が扁平な円柱状で内部にデシカントが備えられ、モーターにより回転させられる構造となっており、空気が通過する部分は、モーターの駆動により1分間当たり数回転させられるよう制御されている。デシカントは空気中の水分を吸着又は脱着する性質を有している。空気が通過する二つの面は中央部分で二つに仕切られ、仕切られた部分の一方が第一の風路25となり、もう一方が第二の風路35となる。回転型デシカント式水分吸着器12が除湿器として働く場合は、第一の風路25を通過する屋外空気が回転型デシカント式水分吸着器12を通過するとデシカントにより屋外空気中の水分が吸着され除湿機能を発揮する。空気が通過する円柱状の部分をモーターにより回転させることで、水分を吸着したデシカントは、後述の第三の冷媒用熱交換器15で加熱され第二の風路35を通過する屋内の空気に水分を脱着し、吸着機能が再生される。また、回転型デシカント式水分吸着器12が加湿器として働く場合は、第一の風路25を通過する屋外空気が後述の第一の冷媒用熱交換器13で加熱され回転型デシカント式水分吸着器12を通過すると、デシカントに含まれる水分が屋外空気によって脱着され加湿機能を発揮する。空気が通過する円柱状の部分をモーターにより回転させることで水分を脱着したデシカントは第二の風路35を通過する屋内の空気に含まれる水分を吸着する。
(Rotary type desiccant type moisture adsorber)
The rotating desiccant type moisture adsorber 12 is a portion through which two opposing surfaces straddle the first air passage 25 and the second air passage 35 and allow air to pass therethrough. The part that allows air to pass through is a flat cylindrical shape with a desiccant inside, and it can be rotated by a motor. The part that passes air can be rotated several times per minute by driving the motor. It is controlled. The desiccant has the property of adsorbing or desorbing moisture in the air. The two surfaces through which air passes are divided into two at the central portion, and one of the divided portions becomes the first air passage 25 and the other becomes the second air passage 35. When the rotary desiccant moisture adsorber 12 works as a dehumidifier, when the outdoor air passing through the first air passage 25 passes through the rotary desiccant moisture adsorber 12, moisture in the outdoor air is adsorbed by the desiccant. Demonstrate the function. The desiccant that has adsorbed moisture by rotating the cylindrical portion through which the air passes is heated by a third refrigerant heat exchanger 15 described later into indoor air that passes through the second air passage 35. Moisture is desorbed and the adsorption function is regenerated. When the rotary desiccant type moisture adsorber 12 functions as a humidifier, the outdoor air passing through the first air passage 25 is heated by the first refrigerant heat exchanger 13 to be described later and the rotary type desiccant type moisture adsorber 12 is used. When passing through the vessel 12, the moisture contained in the desiccant is desorbed by the outdoor air and exhibits a humidifying function. The desiccant from which moisture has been desorbed by rotating a cylindrical portion through which air passes by a motor adsorbs moisture contained in indoor air passing through the second air passage 35.

(第一の冷媒用熱交換器および第二の冷媒用熱交換器)
第一の冷媒用熱交換器13および第二の冷媒用熱交換器14は、第一の風路25の屋外空気が通過する断面のほぼ全面に亘って設けられ、冷媒が循環する熱伝導性の良い銅等の金属管と、金属管の熱伝導面積を広げるためのアルミニウム等の金属製のフィンより構成される。第一の冷媒用熱交換器13および第二の冷媒用熱交換器14が凝縮器となる場合には、金属管および金属製フィンの外表面を流れる屋外空気に対して高温高圧の気体状の冷媒より熱が移動し、冷媒は熱を奪われ液化し、この際の凝縮熱で屋外空気は暖められる。第一の冷媒用熱交換器13および第二の冷媒用熱交換器14が蒸発器となる場合には、低温低圧の冷媒が蒸発する際の気化熱で屋外空気より熱を奪い屋外空気は冷やされる。第一の冷媒用熱交換器13は冷媒配管56および冷媒配管57と接続され、第二の冷媒用熱交換器14は冷媒配管54および冷媒配管57と接続されている。
(First refrigerant heat exchanger and second refrigerant heat exchanger)
The first refrigerant heat exchanger 13 and the second refrigerant heat exchanger 14 are provided over almost the entire cross section of the first air passage 25 through which outdoor air passes, and the heat conductivity through which the refrigerant circulates. It is composed of a good metal tube such as copper and a fin made of metal such as aluminum for expanding the heat conduction area of the metal tube. When the first refrigerant heat exchanger 13 and the second refrigerant heat exchanger 14 are condensers, the high-temperature and high-pressure gaseous state with respect to the outdoor air flowing on the outer surfaces of the metal tubes and metal fins Heat is transferred from the refrigerant, the refrigerant is deprived of heat and liquefied, and the outdoor air is warmed by the condensation heat at this time. When the first refrigerant heat exchanger 13 and the second refrigerant heat exchanger 14 are evaporators, the outdoor air is cooled by taking heat away from the outdoor air by the heat of vaporization when the low-temperature and low-pressure refrigerant evaporates. It is. The first refrigerant heat exchanger 13 is connected to the refrigerant pipe 56 and the refrigerant pipe 57, and the second refrigerant heat exchanger 14 is connected to the refrigerant pipe 54 and the refrigerant pipe 57.

第一の冷媒用熱交換器13は、除湿時においては屋外空気の予冷装置となり、加湿時においては回転型デシカント式水分吸着器12の再生加熱器となる。また、第二の冷媒用熱交換器14は、除湿時においては屋外空気の冷却装置となり、加湿時においては屋外空気の加熱器となる。   The first refrigerant heat exchanger 13 serves as a pre-cooling device for outdoor air during dehumidification, and serves as a regenerative heater for the rotary desiccant moisture adsorber 12 during humidification. The second refrigerant heat exchanger 14 serves as an outdoor air cooling device during dehumidification, and serves as an outdoor air heater during humidification.

(第三の冷媒用熱交換器および第四の冷媒用熱交換器)
第三の冷媒用熱交換器15および第四の冷媒用熱交換器16は、第二の風路35の屋内空気が通過する断面のほぼ全面に亘って設けられ、冷媒が循環する熱伝導性の良い銅等の金属管と、金属管の熱伝導面積を広げるためのアルミニウム等の金属製のフィンより構成される。第三の冷媒用熱交換器15および第四の冷媒用熱交換器16が凝縮器となる場合には、金属管および金属製フィンの外表面を流れる空気に対して高温高圧の気体状の冷媒より熱が移動し、冷媒は熱を奪われ液化し、この際の凝縮熱で屋内空気は暖められる。蒸発器となる場合には、低温低圧の冷媒が蒸発する場合の気化熱が屋内空気より熱を奪う。第三の冷媒用熱交換器15は冷媒配管53および冷媒配管55と接続され、第四の冷媒用熱交換器16は冷媒配管55および冷媒配管56と接続されている。
(Third refrigerant heat exchanger and fourth refrigerant heat exchanger)
The third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16 are provided over almost the entire surface of the second air passage 35 through which the indoor air passes, and the heat conductivity through which the refrigerant circulates. It is composed of a good metal tube such as copper and a fin made of metal such as aluminum for expanding the heat conduction area of the metal tube. When the third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16 are condensers, a gaseous refrigerant having a high temperature and a high pressure with respect to the air flowing on the outer surfaces of the metal pipe and the metal fin. More heat moves, the refrigerant is deprived of heat and liquefies, and the indoor air is warmed by the heat of condensation at this time. In the case of an evaporator, the heat of vaporization when the low-temperature and low-pressure refrigerant evaporates takes heat from the indoor air. The third refrigerant heat exchanger 15 is connected to the refrigerant pipe 53 and the refrigerant pipe 55, and the fourth refrigerant heat exchanger 16 is connected to the refrigerant pipe 55 and the refrigerant pipe 56.

第三の冷媒用熱交換器15は、除湿時においては回転型デシカント式水分吸着器12の再生加熱器となり、加湿時においては屋内空気の冷却装置となる。また、第四の冷媒用熱交換器16は、除湿時においては再凝縮装置となり、加湿時においては屋内空気の冷却装置となる   The third refrigerant heat exchanger 15 serves as a regenerative heater of the rotary desiccant-type moisture adsorber 12 during dehumidification, and serves as an indoor air cooling device during humidification. The fourth refrigerant heat exchanger 16 serves as a recondensing device during dehumidification, and serves as an indoor air cooling device during humidification.

(冷媒圧縮機)
冷媒圧縮機41は電気的に駆動して、回転式(ローターリー式)や往復式(レシプロ式)等の方式により気体状の冷媒を圧縮し、高温高圧にして次工程で冷媒が液化しやすいようにしている。冷媒圧縮機41は吐出側に冷媒配管51が、吸入側に冷媒配管52が接続されている。
(Refrigerant compressor)
The refrigerant compressor 41 is electrically driven and compresses the gaseous refrigerant by a rotary (rotary type) or reciprocating type (reciprocating type) method, and is easily liquefied in the next step by increasing the temperature and pressure. I am doing so. The refrigerant compressor 41 has a refrigerant pipe 51 connected to the discharge side and a refrigerant pipe 52 connected to the suction side.

(四方弁)
四方弁42は冷媒循環回路の流路を切り換える装置であり、接続口42a、接続口42b、接続口42c、接続口42dの四つの接続口を有している。電気的に駆動することにより接続口42aと接続口42cが四方弁42の内部で連通し、接続口42bと接続口42dが四方弁42の内部で連通する組合せ、又は接続口42aと接続口42dが四方弁42の内部で連通し、接続口42bと接続口42cが四方弁42の内部で連通する組合せが選択できる。接続口42aには冷媒配管51が、接続口42bには冷媒配管52が、接続口42cには冷媒配管53が、接続口42dには冷媒配管54が接続されている。
(Four-way valve)
The four-way valve 42 is a device that switches the flow path of the refrigerant circulation circuit, and has four connection ports: a connection port 42a, a connection port 42b, a connection port 42c, and a connection port 42d. By electrically driving, the connection port 42a and the connection port 42c communicate with each other inside the four-way valve 42, and the connection port 42b and the connection port 42d communicate with each other inside the four-way valve 42, or the connection port 42a and the connection port 42d. Can be selected so that the connection port 42b and the connection port 42c communicate with each other inside the four-way valve 42. A refrigerant pipe 51 is connected to the connection port 42a, a refrigerant pipe 52 is connected to the connection port 42b, a refrigerant pipe 53 is connected to the connection port 42c, and a refrigerant pipe 54 is connected to the connection port 42d.

(膨張弁)
第一の膨張弁43および第二の膨張弁44は、液化した冷媒を減圧して気化し易くするもので、電気的に駆動することで通過する冷媒流量の調整が可能となっている。第一の膨張弁43は冷媒配管56の途中に、第二の膨張弁44は冷媒配管57の途中に設けられている。
(Expansion valve)
The first expansion valve 43 and the second expansion valve 44 reduce the pressure of the liquefied refrigerant so that it can be easily vaporized, and the flow rate of the refrigerant passing therethrough can be adjusted by being electrically driven. The first expansion valve 43 is provided in the middle of the refrigerant pipe 56, and the second expansion valve 44 is provided in the middle of the refrigerant pipe 57.

(除湿運転時の構成)
除湿運転時について図2を用いて説明する。除湿運転時には、第一の送風機26および第二の送風機36は駆動しており、第一の風路25中を左から右方向に屋外空気が流れ、第二の風路35中を右から左方に屋内空気が流れる。回転型顕熱交換器11および回転型デシカント式水分吸着器12も同時に駆動し、回転型顕熱交換器11においては、空気を通過させる際に空気中の顕熱を蓄熱する又は放熱する吸熱部材を介して屋外空気と屋内空気が保有する熱の移動が行われる。回転型デシカント式水分吸着器12において第一の風路25側では、空気が通過する際にデシカントにより屋外空気の水分が吸着され、第二の風路35側に回転型デシカント式水分吸着器12が回転して移動すると、デシカントの水分は第三の冷媒用熱交換器15により加熱された屋内空気によって脱着が行われ屋外に排出される。これにより、屋外からは新たな水分が供給されず、屋内からは水分を含んだ空気が排出されるので屋内の湿度は低下する。
(Configuration during dehumidifying operation)
The dehumidifying operation will be described with reference to FIG. During the dehumidifying operation, the first blower 26 and the second blower 36 are driven, outdoor air flows in the first air passage 25 from the left to the right, and in the second air passage 35 from the right to the left. Indoor air flows in the direction. The rotary sensible heat exchanger 11 and the rotary desiccant moisture adsorber 12 are also driven at the same time. In the rotary sensible heat exchanger 11, a heat absorbing member that stores or dissipates sensible heat in the air when passing air. The heat of outdoor air and indoor air is transferred through In the rotary desiccant type moisture adsorber 12, on the first air passage 25 side, moisture of outdoor air is adsorbed by the desiccant when the air passes, and on the second air passage 35 side, the rotary desiccant type water adsorber 12 is adsorbed. Is rotated and moved, the desiccant moisture is desorbed by the indoor air heated by the third refrigerant heat exchanger 15 and discharged to the outside. As a result, new moisture is not supplied from the outdoors, and air containing moisture is discharged from the indoors, so the indoor humidity is lowered.

除湿運転時の冷媒循環回路の構成及び動作について説明する。四方弁42は内部において接続口42aと接続口42cが連通し、接続口42bと接続口42dが連通された状態となっている。これにより、冷媒圧縮機41を起点として、冷媒配管51、四方弁42(接続口42aと接続口42c)、冷媒配管53、第三の冷媒用熱交換器15、冷媒配管55、第四の冷媒用熱交換器16、冷媒配管56および途中の第一の膨張弁43、第一の冷媒用熱交換器13、冷媒配管57および途中の第二の膨張弁44、第二の冷媒用熱交換器14、冷媒配管54、四方弁42(接続口42dと接続口42b)、冷媒配管52から冷媒圧縮機41に戻る冷凍サイクルが形成されている。   The configuration and operation of the refrigerant circuit during the dehumidifying operation will be described. The four-way valve 42 is in a state where the connection port 42a and the connection port 42c communicate with each other and the connection port 42b and the connection port 42d communicate with each other. Thus, starting from the refrigerant compressor 41, the refrigerant pipe 51, the four-way valve 42 (connection port 42a and connection port 42c), the refrigerant pipe 53, the third refrigerant heat exchanger 15, the refrigerant pipe 55, the fourth refrigerant. Heat exchanger 16, refrigerant pipe 56 and first intermediate expansion valve 43, first refrigerant heat exchanger 13, refrigerant pipe 57 and intermediate second expansion valve 44, second refrigerant heat exchanger 14, a refrigerant pipe 54, a four-way valve 42 (connection port 42d and connection port 42b), and a refrigeration cycle returning from the refrigerant pipe 52 to the refrigerant compressor 41 are formed.

この冷媒循環回路により、冷媒圧縮機41が駆動されること及び第一の膨張弁43と第二の膨張弁の絞り開度を所定の開度とすることで、第三の冷媒用熱交換器15と第四の冷媒用熱交換器16は凝縮器となり、第一の冷媒用熱交換器13と第二の冷媒用熱交換器14は蒸発器となる。これにより、第三の冷媒用熱交換器15と第四の冷媒用熱交換器16においては、冷媒圧縮機41により圧縮された高温高圧の気体状の冷媒が屋内空気により熱を奪われ液化し、屋内空気には熱が移動することで屋内空気が暖められる。この暖められた屋内空気により、回転型デシカント式水分吸着器12に吸着された水分はより脱着され易くなるので、回転型デシカント式水分吸着器12の吸着機能はより完全に再生される。第一の冷媒用熱交換器13と第二の冷媒用熱交換器14は蒸発器となっているので、液化した冷媒が気化することで屋外空気の熱を奪い屋外空気は冷却され屋内に送られる。   By this refrigerant circulation circuit, the refrigerant compressor 41 is driven, and the throttle opening of the first expansion valve 43 and the second expansion valve is set to a predetermined opening, so that the third refrigerant heat exchanger 15 and the 4th refrigerant | coolant heat exchanger 16 become a condenser, and the 1st refrigerant | coolant heat exchanger 13 and the 2nd refrigerant | coolant heat exchanger 14 become an evaporator. Thereby, in the third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16, the high-temperature and high-pressure gaseous refrigerant compressed by the refrigerant compressor 41 is deprived of heat by the indoor air and liquefied. The indoor air is warmed by the heat moving to the indoor air. This warmed indoor air makes it easier for the moisture adsorbed on the rotary desiccant type moisture adsorber 12 to be desorbed, so that the adsorption function of the rotary desiccant type moisture adsorber 12 is more completely regenerated. Since the first refrigerant heat exchanger 13 and the second refrigerant heat exchanger 14 are evaporators, the liquefied refrigerant evaporates to take heat from the outdoor air and the outdoor air is cooled and sent indoors. It is done.

除湿運転時の冷凍サイクルをp−h線図により表したものが、図3である。縦軸に圧力(MPa 絶対圧)、横軸に比エンタルピー(kJ/kg)をとり、所定の冷媒の飽和液線と飽和蒸気線が図示された状態での実施例1の冷媒の状態変化を示している。冷媒圧縮機41で冷媒は圧縮されることにより冷媒の圧力が増加して等エントロピー線と平行にg点からa点に変化し、第三の冷媒用熱交換器15で凝縮することにより冷媒の圧力は一定のまま比エンタルピーが減少してa点からb点に変化し(この際、第三の冷媒用熱交換器15は放熱する。)、さらに第四の冷媒用熱交換器16で凝縮することにより圧力は一定のまま比エンタルピーが減少して冷媒は液状となるb点からc点に変化し(この際、第四の冷媒用熱交換器16は放熱する。)、第一の膨張弁43により比エンタルピーが一定のまま圧力が減少してc点からd点に変化し、第一の冷媒用熱交換器13で蒸発することにより冷媒の圧力は一定のまま比エンタルピーが増大してd点からe点に変化し(この際、第一の冷媒用熱交換器13は吸熱する。)、第二の膨張弁44により比エンタルピーが一定のまま圧力が若干減少してe点からf点に変化し、第二の冷媒用熱交換器14でさらに蒸発することにより冷媒の圧力は一定のまま比エンタルピーが増大してf点からg点に変化し(この際、第二の冷媒用熱交換器14は吸熱する。)、冷媒圧縮機41に戻る。   FIG. 3 shows the refrigeration cycle during the dehumidifying operation by a ph diagram. Taking the pressure (MPa absolute pressure) on the vertical axis and the specific enthalpy (kJ / kg) on the horizontal axis, the state change of the refrigerant in Example 1 in the state where the saturated liquid line and saturated vapor line of the predetermined refrigerant are illustrated. Show. When the refrigerant is compressed by the refrigerant compressor 41, the pressure of the refrigerant increases and changes from the point g to the point a in parallel with the isentropic line, and is condensed by the third heat exchanger 15 for refrigerant. While the pressure remains constant, the specific enthalpy decreases and changes from point a to point b (in this case, the third refrigerant heat exchanger 15 dissipates heat), and further condenses in the fourth refrigerant heat exchanger 16. As a result, the specific enthalpy decreases with the pressure kept constant, and the refrigerant changes from the point b where it becomes liquid to the point c (at this time, the fourth refrigerant heat exchanger 16 dissipates heat), and the first expansion. The pressure decreases with the valve 43 while the specific enthalpy remains constant, changes from the point c to the point d, and evaporates in the first refrigerant heat exchanger 13 to increase the specific enthalpy while the refrigerant pressure remains constant. Change from point d to point e (At this time, heat exchange for the first refrigerant 13 absorbs heat.) The pressure is slightly reduced by the second expansion valve 44 while the specific enthalpy remains constant, and changes from the e point to the f point, and is further evaporated by the second refrigerant heat exchanger 14. The specific enthalpy increases while changing the pressure of the refrigerant and changes from the f point to the g point (at this time, the second refrigerant heat exchanger 14 absorbs heat) and returns to the refrigerant compressor 41.

以上の除湿運転時の構成により図2において、高温多湿(例えば30℃・絶対湿度20.2g/kg−DA)の屋外空気が第一の風路25に第一の送風機26によって吸い込まれると、高温多湿の屋外空気は第一の冷媒用熱交換器13を通過することでやや高温多湿(27.4℃・絶対湿度20.2g/kg−DA)と冷却される。このやや高温多湿の屋外空気が回転型デシカント式水分吸着器12を通過することで除湿されると同時に潜熱が発生することで昇温し、高温少湿(47℃・絶対湿度13.24g/kg−DA)の屋外空気となり、高温少湿の屋外空気は回転型顕熱交換器11を通過することで顕熱のみ熱交換され中温少湿(33.6℃・絶対湿度13.24g/kg−DA)の屋外空気となり、中温少湿の屋外空気は第二の冷媒用熱交換器14により冷却されて低温少湿(26.5℃・絶対湿度13.24g/kg−DA)の屋外空気となって屋内に供給される。   When the outdoor air of high temperature and high humidity (for example, 30 ° C. and absolute humidity 20.2 g / kg-DA) is sucked into the first air passage 25 by the first blower 26 in FIG. The hot and humid outdoor air is cooled to slightly hot and humid (27.4 ° C., absolute humidity 20.2 g / kg-DA) by passing through the first refrigerant heat exchanger 13. This slightly hot and humid outdoor air is dehumidified by passing through the rotary desiccant-type moisture adsorber 12, and at the same time the latent heat is generated to raise the temperature, resulting in high temperature and low humidity (47 ° C, absolute humidity 13.24 g / kg). -DA) outdoor air, high-temperature and low-humidity outdoor air passes through the rotary sensible heat exchanger 11, and only sensible heat is exchanged, and medium-temperature and low-humidity (33.6 ° C, absolute humidity 13.24g / kg- DA) outdoor air, the medium temperature and low humidity outdoor air is cooled by the second refrigerant heat exchanger 14 and is cooled to low temperature and low humidity (26.5 ° C, absolute humidity 13.24 g / kg-DA). It is supplied indoors.

一方、低温少湿の屋内空気が第二の風路35に第二の送風機36によって吸い込まれると、低温少湿(例えば28℃・絶対湿度18g/kg−DA)の屋内空気は回転型顕熱交換器11を通過することで顕熱のみ熱交換され高温少湿(43℃・絶対湿度18g/kg−DA)の屋内空気となり、高温少湿の屋内空気は第三の冷媒用熱交換器15により加熱されてさらに高温少湿(59℃・絶対湿度18g/kg−DA)の屋内空気となり、回転型デシカント式水分吸着器12を通過することにより、吸着された水分を脱着して同時に潜熱が奪われ高温多湿(36℃・絶対湿度20g/kg−DA)の屋内空気となり、高温多湿の屋内空気は第四の冷媒用熱交換器16でさらに加熱されて屋外に排出される。   On the other hand, when low-temperature and low-humidity indoor air is sucked into the second air passage 35 by the second blower 36, the low-temperature and low-humidity indoor air (for example, 28 ° C. and absolute humidity 18 g / kg-DA) is rotated by sensible heat. By passing through the exchanger 11, only sensible heat is exchanged to become high-temperature and low-humidity indoor air (43 ° C., absolute humidity 18 g / kg-DA). The high-temperature and low-humidity indoor air is the third heat exchanger 15 for refrigerant. Is heated to become indoor air of high temperature and low humidity (59 ° C., absolute humidity 18 g / kg-DA) and passes through the rotary desiccant type moisture adsorber 12, so that the adsorbed moisture is desorbed and latent heat is simultaneously generated. It is deprived to become high-temperature and high-humidity (36 ° C., absolute humidity 20 g / kg-DA) indoor air, and the high-temperature and high-humidity indoor air is further heated by the fourth refrigerant heat exchanger 16 and discharged outside.

第三の冷媒用熱交換器15と第四の冷媒用熱交換器16では、冷媒の凝縮が行われるが、第三の冷媒用熱交換器15に比較して第四の冷媒用熱交換器16の方が回転型デシカント式水分吸着器12を通過した後の屋内空気であることから回転型デシカント式水分吸着器12を通過した際に潜熱が奪われた屋内空気となり、前述の例においても7℃低い温度の屋内空気が第四の冷媒用熱交換器16を通過するので第四の冷媒用熱交換器16においての冷媒の凝縮不足は発生しない。   In the third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16, the refrigerant is condensed. Compared to the third refrigerant heat exchanger 15, the fourth refrigerant heat exchanger 15. Since 16 is indoor air after passing through the rotary desiccant type moisture adsorber 12, it becomes indoor air from which latent heat has been removed when passing through the rotary desiccant type moisture adsorber 12, and also in the above example Since indoor air having a temperature lower by 7 ° C. passes through the fourth refrigerant heat exchanger 16, insufficient condensation of the refrigerant in the fourth refrigerant heat exchanger 16 does not occur.

また、第三の冷媒用熱交換器15を通過した後の冷媒を第四の冷媒用熱交換器16で凝縮させるのであるから、第三の冷媒用熱交換器15で冷媒の凝縮不足が発生しても第四の冷媒用熱交換器16で冷媒の凝縮不足を解消できる。   In addition, since the refrigerant after passing through the third refrigerant heat exchanger 15 is condensed by the fourth refrigerant heat exchanger 16, insufficient refrigerant condensation occurs in the third refrigerant heat exchanger 15. Even so, the fourth refrigerant heat exchanger 16 can solve the insufficient condensation of the refrigerant.

(加湿運転時の構成)
加湿運転時について図4を用いて説明する。加湿運転時には、第一の送風機26および第二の送風機36は駆動しており、第一の風路25中を左から右方向に屋外空気が流れ、第二の風路35中を右から左方向に屋内空気が流れる。回転型顕熱交換器11および回転型デシカント式水分吸着器12も同時に駆動し、回転型顕熱交換器11においては、空気が通過する際に空気中の顕熱を蓄熱する又は放熱する吸熱部材を介して屋外空気と屋内空気とで保有する熱の移動が行われる。回転型デシカント式水分吸着器12において第二の風路35側では、空気が通過する際にデシカントにより屋内空気の水分が吸着され、第一の風路25側に回転型デシカント式水分吸着器12が回転して移動すると、デシカントの水分は第一の冷媒用熱交換器13により加熱された屋外空気によって脱着が行われる。これにより、屋外からは水分を含んだ空気が供給され、屋内から排出される空気中の水分は再び屋内に戻されるので、屋内は加湿されることになる。
(Configuration during humidification operation)
The humidifying operation will be described with reference to FIG. During the humidifying operation, the first blower 26 and the second blower 36 are driven, outdoor air flows through the first air passage 25 from the left to the right, and the second air passage 35 passes from the right to the left. Indoor air flows in the direction. The rotary sensible heat exchanger 11 and the rotary desiccant moisture adsorber 12 are also driven at the same time. In the rotary sensible heat exchanger 11, a heat absorbing member that stores or radiates sensible heat in the air when the air passes therethrough. The movement of the heat retained by the outdoor air and the indoor air is performed through the air. In the rotary desiccant type moisture adsorber 12, on the second air passage 35 side, the moisture of the indoor air is adsorbed by the desiccant when the air passes, and the rotary desiccant type water adsorber 12 is placed on the first air passage 25 side. Is rotated, the moisture of the desiccant is desorbed by the outdoor air heated by the first refrigerant heat exchanger 13. As a result, air containing moisture is supplied from the outside, and moisture in the air discharged from the indoors is returned to the indoors again, so that the indoors are humidified.

加湿運転時の冷媒循環回路の構成及び動作について説明する。四方弁42は内部において接続口42aと接続口42dが連通し、接続口42bと接続口42cが連通された状態となっている。これにより、冷媒圧縮機41を起点として、冷媒配管51、四方弁42(接続口42aと接続口42d)、冷媒配管54、第二の冷媒用熱交換器14、冷媒配管57および途中の第二の膨張弁44、第一の冷媒用熱交換器13、冷媒配管56および途中の第一の膨張弁43、第四の冷媒用熱交換器16、冷媒配管55、第三の冷媒用熱交換器15、冷媒配管53、四方弁42(接続口42cと接続口42b)、冷媒配管52から冷媒圧縮機41に戻る冷凍サイクルが形成されている。   The configuration and operation of the refrigerant circuit during the humidification operation will be described. The four-way valve 42 is in a state in which the connection port 42a and the connection port 42d communicate with each other and the connection port 42b and the connection port 42c communicate with each other. Thereby, starting from the refrigerant compressor 41, the refrigerant pipe 51, the four-way valve 42 (the connection port 42a and the connection port 42d), the refrigerant pipe 54, the second refrigerant heat exchanger 14, the refrigerant pipe 57 and the second halfway. Expansion valve 44, first refrigerant heat exchanger 13, refrigerant pipe 56 and first expansion valve 43, fourth refrigerant heat exchanger 16, refrigerant pipe 55, and third refrigerant heat exchanger. 15, the refrigerant | coolant piping 53, the four-way valve 42 (connection port 42c and connection port 42b), and the refrigerating cycle which returns to the refrigerant | coolant compressor 41 from the refrigerant | coolant piping 52 is formed.

この冷媒循環回路により、冷媒圧縮機41が駆動されること及び第一の膨張弁43と第二の膨張弁44の絞り開度を所定の開度とすることで、第一の冷媒用熱交換器13と第二の冷媒用熱交換器14は凝縮器となり、第三の冷媒用熱交換器15と第四の冷媒用熱交換器16は蒸発器となる。これにより、第一の冷媒用熱交換器13と第二の冷媒用熱交換器14においては、冷媒圧縮機41により圧縮された高温高圧の気体状の冷媒が屋外空気により熱を奪われ液化し、この際の凝縮熱で屋外空気に熱が移動することで屋外空気が暖められる。この暖められた屋外空気により、回転型デシカント式水分吸着器12に吸着された水分はより脱着され易くなるので、回転型デシカント式水分吸着器12の吸着機能はより完全に再生される。第三の冷媒用熱交換器15と第四の冷媒用熱交換器16は蒸発器となっているので、液化した冷媒が気化することで屋内空気の熱を奪い屋内空気は冷却され屋外に排出される。   By this refrigerant circulation circuit, the refrigerant compressor 41 is driven, and the throttle openings of the first expansion valve 43 and the second expansion valve 44 are set to predetermined opening degrees, whereby the first refrigerant heat exchange is performed. The condenser 13 and the second refrigerant heat exchanger 14 are condensers, and the third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16 are evaporators. Thereby, in the first refrigerant heat exchanger 13 and the second refrigerant heat exchanger 14, the high-temperature and high-pressure gaseous refrigerant compressed by the refrigerant compressor 41 is deprived of heat by the outdoor air and liquefied. The outdoor air is warmed by the heat transferred to the outdoor air by the condensation heat at this time. Since the water adsorbed on the rotary desiccant type moisture adsorber 12 is more easily desorbed by the heated outdoor air, the adsorption function of the rotary type desiccant type moisture adsorber 12 is more completely regenerated. Since the third refrigerant heat exchanger 15 and the fourth refrigerant heat exchanger 16 are evaporators, the liquefied refrigerant is vaporized to take away the heat of the indoor air and the indoor air is cooled and discharged to the outside. Is done.

加湿運転時の冷凍サイクルをp−h線図により表したものが、図5である。縦軸に圧力(MPa 絶対圧)、横軸に比エンタルピー(kJ/kg)をとり、所定の冷媒の飽和液線と飽和蒸気線が図示された状態での実施例1の冷媒の状態変化を示している。冷媒圧縮機41で冷媒は圧縮されることにより冷媒の圧力が増加して等エントロピー線と平行にg点からa点に変化し、第二の冷媒用熱交換器14で凝縮することにより冷媒の圧力は一定のまま比エンタルピーが減少してa点からb点に変化し(この際、第二の冷媒用熱交換器14は放熱する。)、第二の膨張弁44により比エンタルピーが一定のまま圧力が若干減少してb点からc点に変化し、第一の冷媒用熱交換器13で凝縮することにより圧力は一定のまま比エンタルピーが減少して冷媒は液状となるc点からd点に変化し(この際、第一の冷媒用熱交換器13は放熱する。)、第一の膨張弁43により比エンタルピーが一定のまま圧力が減少してd点からe点に変化し、第四の冷媒用熱交換器16で蒸発することにより冷媒の圧力は一定のまま比エンタルピーが増大してe点からf点に変化し(この際、第四の冷媒用熱交換器16は吸熱する。)、第三の冷媒用熱交換器15でさらに蒸発することにより冷媒の圧力は一定のまま比エンタルピーが増大してf点からg点に変化し(この際、第三の冷媒用熱交換器15は吸熱する。)、冷媒圧縮機41に戻る。   FIG. 5 shows a refrigeration cycle during the humidification operation by a ph diagram. Taking the pressure (MPa absolute pressure) on the vertical axis and the specific enthalpy (kJ / kg) on the horizontal axis, the state change of the refrigerant in Example 1 in the state where the saturated liquid line and saturated vapor line of the predetermined refrigerant are illustrated. Show. When the refrigerant is compressed by the refrigerant compressor 41, the pressure of the refrigerant increases and changes from the point g to the point a in parallel with the isentropic line, and the refrigerant is condensed by the second refrigerant heat exchanger 14. While the pressure remains constant, the specific enthalpy decreases and changes from point a to point b (in this case, the second refrigerant heat exchanger 14 dissipates heat), and the second expansion valve 44 makes the specific enthalpy constant. The pressure decreases slightly to change from the point b to the point c, and condensing in the first refrigerant heat exchanger 13 causes the specific enthalpy to decrease while the pressure remains constant, and the refrigerant becomes liquid from the point c to the point d. (At this time, the first refrigerant heat exchanger 13 dissipates heat), the first expansion valve 43 reduces the pressure while the specific enthalpy remains constant, and changes from point d to point e. By evaporating in the fourth refrigerant heat exchanger 16, the pressure of the refrigerant is The specific enthalpy increases and changes from point e to point f (in this case, the fourth refrigerant heat exchanger 16 absorbs heat) and further evaporates in the third refrigerant heat exchanger 15. As a result, the specific enthalpy increases while changing the pressure of the refrigerant and changes from the f point to the g point (at this time, the third refrigerant heat exchanger 15 absorbs heat) and returns to the refrigerant compressor 41.

以上の加湿運転時の構成により図4において、低温少湿(例えば7℃・絶対湿度4.02g/kg−DA)の屋外空気が第一の風路25に第一の送風機26によって吸い込まれると、低温少湿の屋外空気は第一の冷媒用熱交換器13を通過することにより暖められ中温少湿(23.2℃・絶対湿度4.02g/kg−DA)の屋外空気となり、この中温少湿の屋外空気が回転型デシカント式水分吸着器12を通過することで加湿され同時に潜熱が奪われて中温多湿(15.5℃・絶対湿度5.5g/kg−DA)の屋外空気となる。この中温多湿の屋外空気が回転型顕熱交換器11を通過することで顕熱のみ熱交換され中温多湿(18.9℃・絶対湿度5.5g/kg−DA)の屋外空気となり、中温多湿の屋外空気は第二の冷媒用熱交換器14により加熱されてさらに高温多湿(31.7℃・絶対湿度5.5g/kg−DA)の屋外空気となって屋内に供給される。   When the outdoor air of low temperature and low humidity (for example, 7 ° C. and absolute humidity of 4.02 g / kg-DA) is sucked into the first air passage 25 by the first blower 26 in FIG. The low-temperature, low-humidity outdoor air is warmed by passing through the first refrigerant heat exchanger 13, and becomes medium-temperature, low-humidity (23.2 ° C, absolute humidity 4.02 g / kg-DA) outdoor air. The low-humidity outdoor air is humidified by passing through the rotary desiccant-type moisture adsorber 12, and at the same time, the latent heat is taken away, resulting in an outdoor air of medium temperature and high humidity (15.5 ° C, absolute humidity 5.5 g / kg-DA). . By passing the sensible heat through the rotary sensible heat exchanger 11, only the sensible heat is exchanged, and the intermediate temperature and humidity outdoor air is converted into the intermediate temperature and humidity (18.9 ° C, absolute humidity 5.5g / kg-DA). The outdoor air is heated by the second refrigerant heat exchanger 14 and further becomes high temperature and high humidity (31.7 ° C., absolute humidity 5.5 g / kg-DA) outdoor air and is supplied indoors.

中温多湿の屋内空気が第二の風路35に第二の送風機36によって吸い込まれると、中温多湿(例えば20℃・絶対湿度5.06g/kg−DA)の屋内空気は回転型顕熱交換器11を通過することで顕熱のみ熱交換され若干温度を下げた中温多湿(19.3℃・絶対湿度5.06g/kg−DA)の屋内空気となり、この若干温度を下げた中温多湿の屋内空気が第三の冷媒用熱交換器15で冷却され低温多湿(0.2℃・絶対湿度5.06g/kg−DA)の屋内空気となり、この低温多湿の屋内空気が回転型デシカント式水分吸着器12を通過することにより水分が吸着され同時に潜熱が発生することで昇温して中温少湿(17.5℃・絶対湿度3.5g/kg−DA)の屋内空気となり、中温少湿の屋内空気は第一の冷媒用熱交換器14により冷却されて低温少湿の屋内空気となって屋外に排出される。なお、個々に上げた数値は一例であって、構成部品の能力(各冷媒用熱交換器の大きさ、各送風機の風量、冷媒の種類、冷媒圧縮機の能力等)により変わるので、各膨張弁の開度、各送風機の回転数等は個々にテストしながら決定する必要がある。   When the indoor air with intermediate temperature and humidity is sucked into the second air passage 35 by the second blower 36, the indoor air with intermediate temperature and humidity (for example, 20 ° C. and absolute humidity 5.06 g / kg-DA) is turned into a rotary sensible heat exchanger. Passing through 11, the sensible heat is exchanged and the temperature is slightly reduced to a moderately humid indoor air (19.3 ° C, absolute humidity 5.06 g / kg-DA). The air is cooled by the third refrigerant heat exchanger 15 and becomes low-temperature and high-humidity (0.2 ° C., absolute humidity 5.06 g / kg-DA) indoor air. This low-temperature and high-humidity indoor air is rotated by desiccant moisture adsorption. The water is adsorbed by passing through the vessel 12 and the latent heat is generated at the same time, raising the temperature to indoor air of medium temperature and low humidity (17.5 ° C, absolute humidity 3.5 g / kg-DA). Indoor air is the first refrigerant heat exchanger 1 Is discharged to the outdoors is cooled a room air of the low temperature low humidity by. In addition, the numerical value raised individually is an example, and changes depending on the capacity of each component (size of each heat exchanger for refrigerant, air volume of each fan, type of refrigerant, capacity of refrigerant compressor, etc.) It is necessary to determine the opening degree of the valve, the rotational speed of each blower, etc. while testing individually.

1:デシカント式換気扇
10:制御基板
11:回転型顕熱交換器
12:回転型デシカント式水分吸着器
13:第一の冷媒用熱交換器
14:第二の冷媒用熱交換器
15:第三の冷媒用熱交換器
16:第四の冷媒用熱交換器
25:第一の風路
26:第一の送風機
35:第二の風路
36:第二の送風機
41:冷媒圧縮機
42:四方弁
42a、42b、42c、42d:接続口
43:第一の膨張弁
44:第二の膨張弁
51、52、53、54、55、56、57:冷媒配管
1: Desiccant ventilation fan 10: Control board 11: Rotary sensible heat exchanger 12: Rotary desiccant moisture adsorber 13: First refrigerant heat exchanger 14: Second refrigerant heat exchanger
15: Third refrigerant heat exchanger 16: Fourth refrigerant heat exchanger
25: First air passage 26: First air blower 35: Second air passage 36: Second air blower 41: Refrigerant compressor 42: Four-way valves 42a, 42b, 42c, 42d: Connection port 43: First air passage Expansion valve 44: Second expansion valve 51, 52, 53, 54, 55, 56, 57: Refrigerant piping

Claims (1)

回転型顕熱交換器と、回転型デシカント式水分吸着器と、前記回転型デシカント式水分吸着器および前記回転型顕熱交換器を経由して屋外空気が通過する第一の風路と、前記回転型顕熱交換器および前記回転型デシカント式水分吸着器を経由して屋内空気が通過する第二の風路と、前記屋外空気が通過する前記第一の風路に空気を通過させる第一の送風機と、前記屋内空気が通過する前記第二の風路に空気を通過させる第二の送風機と、前記第一の風路側で前記回転型デシカント式水分吸着器の上流側に設けられた第一の冷媒用熱交換器と、前記第一の風路側で前記回転型顕熱交換器の下流側に設けられた第二の冷媒用熱交換器と、前記第二の風路側で前記回転型デシカント式水分吸着器の上流側に設けられた第三の冷媒用熱交換器と、前記第二の風路側で前記回転型デシカント式水分吸着器の下流側に設けられた第四の冷媒用熱交換器とを備え、前記第三の冷媒用熱交換器、前記第四の冷媒用熱交換器、前記第一の冷媒用熱交換器および第二の冷媒用熱交換器が冷媒配管で前記の順序で直列に接続され、前記第一の風路の空気を除湿する場合は、前記第一の冷媒用熱交換器および前記第二の冷媒用熱交換器が蒸発器で前記第三の冷媒用熱交換器および前記第四の冷媒用熱交換器が凝縮器となる冷凍サイクルが構成されることにより、前記回転型デシカント式水分吸着器が除湿器となり、前記第一の風路の空気を加湿する場合は、前記第一の冷媒用熱交換器および前記第二の冷媒用熱交換器が凝縮器で前記第三の冷媒用熱交換器および前記第四の冷媒用熱交換器が蒸発器となる冷凍サイクルが構成されることにより、前記回転型デシカント式水分吸着器が加湿器となるデシカント式換気扇。 A rotary sensible heat exchanger, a rotary desiccant moisture adsorber, a first air passage through which outdoor air passes through the rotary desiccant moisture adsorber and the rotary sensible heat exchanger; A first air passage through which the indoor air passes through the rotary sensible heat exchanger and the rotary desiccant-type moisture adsorber and the first air passage through which the outdoor air passes are passed through. A second blower that allows air to pass through the second air passage through which the indoor air passes, and a second air blower provided upstream of the rotary desiccant-type moisture adsorber on the first air passage side. One refrigerant heat exchanger, a second refrigerant heat exchanger provided downstream of the rotary sensible heat exchanger on the first air passage side, and the rotary type on the second air passage side A third refrigerant heat exchanger provided on the upstream side of the desiccant-type moisture adsorber; And a fourth refrigerant heat exchanger provided downstream of said in two wind roadside rotary desiccant moisture adsorption device, said third refrigerant heat exchanger, heat exchange the fourth refrigerant The first refrigerant heat exchanger and the second refrigerant heat exchanger are connected in series in the above order by refrigerant piping, and the first air passage is dehumidified, The refrigerant heat exchanger and the second refrigerant heat exchanger are evaporators, and the third refrigerant heat exchanger and the fourth refrigerant heat exchanger are condensers. Thus, when the rotary desiccant moisture adsorber becomes a dehumidifier and humidifies the air in the first air passage, the first refrigerant heat exchanger and the second refrigerant heat exchanger are Refrigeration in which the third refrigerant heat exchanger and the fourth refrigerant heat exchanger are evaporators in a condenser By cycle is configured, desiccant ventilators said rotary desiccant moisture adsorption device becomes humidifier.
JP2011065637A 2010-08-05 2011-03-24 Desiccant ventilation fan Active JP5575029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065637A JP5575029B2 (en) 2010-08-05 2011-03-24 Desiccant ventilation fan

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010175836 2010-08-05
JP2010175836 2010-08-05
JP2011065637A JP5575029B2 (en) 2010-08-05 2011-03-24 Desiccant ventilation fan

Publications (2)

Publication Number Publication Date
JP2012052782A JP2012052782A (en) 2012-03-15
JP5575029B2 true JP5575029B2 (en) 2014-08-20

Family

ID=45906292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065637A Active JP5575029B2 (en) 2010-08-05 2011-03-24 Desiccant ventilation fan

Country Status (1)

Country Link
JP (1) JP5575029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314483A (en) * 2017-05-12 2017-11-03 上海交通大学 The double dehumidify evaporimeters of two-stage are double except wet condenser dehumidifying heat pump and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879857B (en) * 2015-04-25 2017-12-12 张国添 Intelligent moisture absorption apparatus
RU2708264C1 (en) * 2019-04-04 2019-12-05 Владимир Евгеньевич Воскресенский Supply air conditioner with non-fluid rotary heating
CN110173776B (en) * 2019-05-16 2021-06-01 东南大学 Pre-cooling type runner humidifying fresh air treatment device
RU2708419C1 (en) * 2019-06-20 2019-12-06 Владимир Евгеньевич Воскресенский Supply air conditioning system with non-liquid rotary heating
RU2716552C1 (en) * 2019-07-22 2020-03-12 Владимир Евгеньевич Воскресенский Plenum air conditioner with non-fluid rotary heating and cooling
WO2023148854A1 (en) * 2022-02-02 2023-08-10 三菱電機株式会社 Heat-exchange-type ventilation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141353A (en) * 1994-11-25 1996-06-04 Toyo Eng Works Ltd Dehumidifier
JP4169747B2 (en) * 2005-03-09 2008-10-22 三洋電機株式会社 Air conditioner
JP4835688B2 (en) * 2008-12-25 2011-12-14 三菱電機株式会社 Air conditioner, air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314483A (en) * 2017-05-12 2017-11-03 上海交通大学 The double dehumidify evaporimeters of two-stage are double except wet condenser dehumidifying heat pump and method
CN107314483B (en) * 2017-05-12 2020-04-24 上海交通大学 Two-stage double-dehumidification-evaporator double-dehumidification-condenser dehumidification heat pump system and method

Also Published As

Publication number Publication date
JP2012052782A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5068235B2 (en) Refrigeration air conditioner
JP5575029B2 (en) Desiccant ventilation fan
US9234667B2 (en) Dehumidifying system
JP4321650B2 (en) Humidity control device
JP4835688B2 (en) Air conditioner, air conditioning system
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
JP5631415B2 (en) Air conditioning system and humidity control device
JP2001241693A (en) Air conditioner
JP2006017316A (en) Heat exchanger and air conditioner
US9651282B2 (en) Refrigeration and air-conditioning apparatus and humidity control device
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
JP4912382B2 (en) Refrigeration air conditioner
JP2019199998A (en) Air conditioning device
JP4075950B2 (en) Air conditioner
WO2015125250A1 (en) Air-conditioning device and method for controlling air-conditioning device
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
JP2011208828A (en) Air conditioning system using steam adsorbent
JP4999518B2 (en) Dehumidifying / humidifying device and refrigeration cycle device
JP2000257907A (en) Dehumidifying apparatus
US10712025B2 (en) Dehumidifying apparatus
JP3807409B2 (en) Humidity control device
JP2011094904A (en) Desiccant type ventilation fan
JP2011141057A (en) Desiccant type ventilation fan
JP2008304113A (en) Humidifying air-conditioning system
JPWO2020217341A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5575029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250