JP2002286317A - Vapor compression heat pump - Google Patents

Vapor compression heat pump

Info

Publication number
JP2002286317A
JP2002286317A JP2001090180A JP2001090180A JP2002286317A JP 2002286317 A JP2002286317 A JP 2002286317A JP 2001090180 A JP2001090180 A JP 2001090180A JP 2001090180 A JP2001090180 A JP 2001090180A JP 2002286317 A JP2002286317 A JP 2002286317A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
outside air
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001090180A
Other languages
Japanese (ja)
Inventor
Masafumi Inoue
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001090180A priority Critical patent/JP2002286317A/en
Publication of JP2002286317A publication Critical patent/JP2002286317A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump capable of effectively preventing the adherence of frost or the adherence and accumulation of snow in a heat absorbing heat exchanger (evaporator) while a primary operation is continued in a stable way by maintaining a high heat pump efficiency. SOLUTION: In a vapor compression heat pump, a refrigerant R is circulated in regular order of a compressor 1, to a hear radiating heat exchanger 2, to an expansion mechanism 5, to the heat absorbing heat exchanger 3, to a compressor 1, and the heat absorbing heat exchanger 3 functioning as an evaporator in the circulation of the refrigerant performs a heat absorbing action to outside air OA. In the refrigerant circulation path, a super-cooling device 9 using the outside air as a cooling source is interposed between the heat radiating heat exchanger 2 and the expansion mechanism 5. The super-cooling device 9 is provided adjacently to the windward part 3A of the heat absorbing heat exchanger 3 in an outside air ventilation passage F.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外気から吸熱させ
る蒸気圧縮式のヒートポンプに関し、詳しくは、冷媒を
圧縮機―放熱用熱交換器―膨張機構―吸熱用熱交換器―
圧縮機の順に循環させ、この冷媒循環で蒸発器として機
能させる吸熱用熱交換器を外気に対して吸熱作用させる
蒸気圧縮式ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression type heat pump for absorbing heat from outside air, and more particularly, to a compressor for compressing a refrigerant, a heat exchanger for heat radiation, an expansion mechanism, and a heat exchanger for heat absorption.
The present invention relates to a vapor compression heat pump that circulates in the order of a compressor and causes a heat-absorbing heat exchanger that functions as an evaporator to function as an evaporator in the refrigerant circulation to absorb heat to outside air.

【0002】[0002]

【従来の技術】従来、この種の蒸気圧縮式ヒートポンプ
では、蒸発器として外気に対し吸熱作用している状態の
吸熱用熱交換器で外気中水分による霜付きや外気中の雪
の付着堆積などが生じたとき、その吸熱用熱交換器を凝
縮器として機能させる状態に冷媒の循環経路を切り換え
て凝縮器の発生熱で付着霜や付着雪を融解させる、ある
いは、その吸熱用熱交換器に付加装備の電気ヒータによ
り付着霜や付着雪を融解させるといった除霜除雪運転を
行なっていた。
2. Description of the Related Art Conventionally, in a vapor compression type heat pump of this type, a heat absorbing heat exchanger in which heat is absorbed by the outside air as an evaporator, such as frost due to moisture in the outside air and deposition of snow in the outside air. When this occurs, the refrigerant circulation path is switched to a state in which the heat-absorbing heat exchanger functions as a condenser to melt the attached frost and attached snow with the heat generated by the condenser. Defrosting and snow removal operations such as melting attached frost and attached snow were performed by an additional electric heater.

【0003】[0003]

【発明が解決しようとする課題】しかし、吸熱用熱交換
器を凝縮器として機能させる状態に冷媒循環経路を切り
換える方式(いわゆるホットガス方式)の除霜除雪運転
では、次の(イ)〜(ハ)の問題があった。
However, in the defrosting and snow removing operation of the system in which the refrigerant circulation path is switched to a state where the heat absorbing heat exchanger functions as a condenser (so-called hot gas system), the following (a) to (a). C) There was a problem.

【0004】(イ)除雪除霜運転の実施期間中、吸熱用
熱交換器で外気から吸熱して放熱用熱交換器で熱発生さ
せる本来の運転を休止する必要がある。 (ロ)その本来の運転を極力長く継続するには、除霜除
雪運転の実施頻度を制限することが必要になって、付着
霜や付着雪により外気通風が阻害された状態の運転をあ
る程度まで強制的に継続実施することになり、そのこと
でヒートポンプ効率が大きく低下する。 (ハ)除雪除霜運転の実施期間中に付着霜や付着雪によ
る冷媒冷却で大量の凝縮液冷媒が吸熱用熱交換器に溜り
込み、この為、吸熱用熱交換器を蒸発器として機能させ
る状態に冷媒循環経路を戻して除霜除雪運転から本来の
運転に復帰したとき、圧縮機が液冷媒を吸入する所謂液
バックトラブルを生じ易い。
(A) During the snow removal and defrosting operation, the original operation of absorbing heat from the outside air by the heat absorbing heat exchanger and generating heat by the heat radiating heat exchanger must be stopped. (B) In order to keep the original operation as long as possible, it is necessary to limit the frequency of the defrosting and snow removal operation, and to a certain extent the operation in a state in which the outside air ventilation is hindered by attached frost or attached snow. The operation is forcibly continued, which greatly reduces the heat pump efficiency. (C) During the snow removal and defrosting operation, a large amount of condensed liquid refrigerant accumulates in the heat-absorbing heat exchanger due to the cooling of the refrigerant due to the adhering frost and the adhering snow, so that the heat-absorbing heat exchanger functions as an evaporator. When the refrigerant circulation path is returned to the original state and the operation is returned from the defrosting and snow removing operation to the original operation, a so-called liquid back trouble in which the compressor sucks the liquid refrigerant is likely to occur.

【0005】一方、電気ヒータにより付着霜や付着雪を
融解させる方式の除霜除雪運転では、上記(イ)〜
(ハ)の如き問題を回避できるものの、電気ヒータの消
費電力が大きくて全体としてのエネルギ効率が低くな
り、運転コストが高く付く問題があった。
[0005] On the other hand, in the defrosting and snow removing operation of the type in which the attached heater is melted by the electric heater, the above-mentioned (a) to
Although the problem as described in (c) can be avoided, there is a problem that the power consumption of the electric heater is large, the energy efficiency as a whole is low, and the operating cost is high.

【0006】この実情に鑑み、本発明の主たる課題は、
合理的な冷媒回路構造により上記の如き問題を効果的に
解消する点にある。
In view of this situation, the main problems of the present invention are:
The problem is that the above-mentioned problem is effectively solved by a rational refrigerant circuit structure.

【0007】[0007]

【課題を解決するための手段】〔1〕請求項1に係る発
明は蒸気圧縮式ヒートポンプに係り、その特徴は、冷媒
を圧縮機―放熱用熱交換器―膨張機構―吸熱用熱交換器
―圧縮機の順に循環させ、この冷媒循環で蒸発器として
機能させる前記吸熱用熱交換器を外気に対して吸熱作用
させる構成において、冷媒循環路において前記放熱用熱
交換器と前記膨張機構との間に、外気を冷却源とする過
冷却器を介装し、この過冷却器を外気通風路において前
記吸熱用熱交換器の風上側部分に隣接させてある点にあ
る。
Means for Solving the Problems [1] The invention according to claim 1 relates to a vapor compression heat pump, and the feature of the invention is that a refrigerant is compressed by a compressor, a heat exchanger for heat radiation, an expansion mechanism, a heat exchanger for heat absorption, In a configuration in which the heat absorbing heat exchanger functioning as an evaporator in the circulation of the compressor is made to absorb heat to outside air in the refrigerant circulation path, the heat radiating heat exchanger and the expansion mechanism are arranged in a refrigerant circuit. In this case, a supercooler using outside air as a cooling source is interposed, and this supercooler is located adjacent to the windward side of the heat-absorbing heat exchanger in the outside air ventilation path.

【0008】つまり、霜付きや雪の付着堆積は吸熱用熱
交換器における外気通風方向の風上側部分で集中的に生
じることから、この吸熱用熱交換器の風上側部分に過冷
却器(所謂サブクーラ)を隣接させる上記構成によれ
ば、吸熱用熱交換器に及ぶ過冷却器の放出熱(すなわ
ち、凝縮器としての放熱用熱交換器から送出される凝縮
液冷媒から奪取した顕熱)により、吸熱用熱交換器での
霜付きや雪の付着堆積を効果的に防止することができ
る。
That is, since frost and snow deposits are concentrated on the windward side of the heat-absorbing heat exchanger in the direction of outside air flow, a supercooler (so-called “cooler”) is provided on the windward side of the heat-absorbing heat exchanger. According to the above-described configuration in which the subcooler is adjacent to the heat exchanger, the heat released from the supercooler reaching the heat exchanger for heat absorption (that is, the sensible heat taken from the condensed liquid refrigerant sent from the heat exchanger for heat dissipation as a condenser) is used. In addition, it is possible to effectively prevent frost and adhesion and deposition of snow in the heat exchanger for heat absorption.

【0009】そして、このように過冷却器の放出熱を利
用することから、吸熱用熱交換器で外気から吸熱して放
熱用熱交換器で熱発生させる本来の運転を休止すること
なく、吸熱用熱交換器での霜付きや雪の付着堆積を防止
することができ、また、そのことで付着霜や付着雪によ
り外気通風が阻害された状態の運転を強制的に継続する
といったことも不要になり、これにより、霜付きや雪の
付着堆積が生じ易い外気条件の下でも高いヒートポンプ
効率を保って本来の運転を安定的に継続することができ
る。
Since the heat released from the supercooler is utilized in this way, the heat absorbing heat exchanger absorbs heat from the outside air and generates heat in the heat radiating heat exchanger without stopping the original operation. To prevent frost and snow from accumulating in the heat exchanger, and it is not necessary to forcibly continue operation in a state where the outside air is blocked by the adhering frost or snow. As a result, the original operation can be stably continued while maintaining a high heat pump efficiency even under an external air condition in which frost and snow are likely to adhere and accumulate.

【0010】また、吸熱用熱交換器を蒸発器として機能
させながら過冷却器の放出熱により霜付きや雪の付着堆
積を防止するから、付着霜や付着雪による冷媒冷却で凝
縮液冷媒が吸熱用熱交換器に溜り込むといったこともな
く、そのことで先述の如き液バックトラブルも効果的に
回避できる。
In addition, since the heat exchanger for heat absorption functions as an evaporator and prevents the formation of frost and snow from adhering due to the heat released from the supercooler, the condensed liquid refrigerant absorbs heat by cooling the refrigerant due to frost and snow. The liquid back trouble as described above can be effectively avoided without accumulation in the heat exchanger.

【0011】しかも、電気ヒータの如き付加的なエネル
ギ消費装置も不要であるから、全体としてのエネルギ効
率も高く維持することができて、運転コストの上昇も回
避でき、さらには、外気を冷却源として放熱用熱交換器
からの送出凝縮冷媒を過冷却(サブクール)することに
よるヒートポンプ能力の向上も期待できる。
Further, since an additional energy consuming device such as an electric heater is not required, the energy efficiency as a whole can be maintained at a high level, and an increase in operating cost can be avoided. As a result, it is expected that the heat pump capacity will be improved by supercooling (subcooling) the condensed refrigerant delivered from the heat exchanger for heat radiation.

【0012】ちなみに、本来の運転を継続しながら吸熱
用熱交換器での霜付きや雪の付着堆積を防止するのに、
凝縮器での発生熱(冷媒の凝縮潜熱)の一部を用いて霜
付きや雪の付着堆積を防止することも考えられるが、こ
の場合、凝縮器での発生熱の一部を霜付きや雪の付着堆
積の防止に消費するため実質的なヒートポンプ能力が低
下する問題が生じ、この点で、外気を冷却源とする過冷
却器の放出熱を利用する、また、過冷却によるヒートポ
ンプ能力の向上も期待できる上記構成の方が有利であ
る。
By the way, in order to prevent frost and snow from adhering and depositing in the heat absorbing heat exchanger while continuing the original operation,
It is also conceivable to prevent frost and snow from accumulating and depositing by using part of the heat generated by the condenser (condensation latent heat of the refrigerant). There is a problem that the heat pump capacity is reduced substantially because it is consumed to prevent the adhesion and deposition of snow.In this regard, the heat released from the subcooler that uses outside air as a cooling source is used. The above configuration, which can be expected to improve, is more advantageous.

【0013】〔2〕請求項2に係る発明は、請求項1に
係る発明の実施に好適な実施形態を特定するものであ
り、その特徴は、前記過冷却器及び前記吸熱用熱交換器
の夫々を風上側部分と風下側部分とに分割し、前記外気
通風路において、これら過冷却器の風上側部分と吸熱用
熱交換器の風上側部分と過冷却器の風下側部分と吸熱用
熱交換器の風下側部分とを、その順に風上側から並べた
状態で互いに隣接させてある点にある。
[2] The invention according to claim 2 specifies an embodiment suitable for carrying out the invention according to claim 1, and the feature thereof is that the subcooler and the heat-absorbing heat exchanger are characterized by the following features. Each is divided into a windward portion and a leeward portion, and in the outside air passage, the windward portion of the supercooler, the windward portion of the heat absorbing heat exchanger, the leeward portion of the supercooler, and the heat absorbing heat are provided. The point is that the leeward portion of the exchanger is adjacent to each other in a state of being arranged in that order from the leeward side.

【0014】つまり、この構成によれば、前述の如く吸
熱用熱交換器の風上側部分(特にその風上側部分の中で
も風上寄りの部分)で集中的に発生する霜付きや雪の付
着堆積を、吸熱用熱交換器の風上側部分に対して外気通
風方向の風上側から隣接する過冷却器風上側部分の放出
熱により効果的に防止することができる。
In other words, according to this configuration, as described above, frost and snow deposits are concentrated on the windward portion of the heat-absorbing heat exchanger (particularly, the windward portion of the windward portion). Can be effectively prevented by the heat released from the windward portion of the supercooler adjacent to the windward portion of the heat exchanger for heat absorption from the windward side in the direction of outside air ventilation.

【0015】そしてまた、吸着用熱交換器の外気通風方
向における寸法が大きい場合など、条件によっては、吸
熱用熱交換器の風上側部分で生じた霜や雪の融解水が通
風外気により風下側へ移動して吸熱用熱交換器の風下側
部分で再氷結するといった虞が生じることもあり得る
が、このような場合、上記構成によれば、そのような再
氷結も吸熱用熱交換器の風上側部分と風下側部分との間
に位置する過冷却器風下側部分の放出熱をもって効果的
に防止することができ、この点で、吸着用熱交換器での
霜付きや雪の付着堆積に対する防護性に一層優れたヒー
トポンプにすることができる。
Further, depending on conditions such as when the size of the heat exchanger for adsorption in the outside air ventilation direction is large, melted water of frost and snow generated on the windward side of the heat exchanger for heat absorption is reduced by the outside air to the leeward side. May be re-freezing at the leeward side of the heat-absorbing heat exchanger, but in such a case, according to the above configuration, such re-freezing also occurs in the heat-absorbing heat exchanger. The supercooler located between the leeward and leeward parts can effectively prevent the heat released from the leeward part, and in this regard, frost and snow accumulate and accumulate in the heat exchanger for adsorption. The heat pump can be more excellent in protection against heat.

【0016】〔3〕請求項3に係る発明は、請求項1又
は2に係る発明の実施に好適な実施形態を特定するもの
であり、その特徴は、前記吸熱用熱交換器を構成する伝
熱管と前記過冷却器を構成する伝熱管とにわたる共通の
伝熱フィンを、それら伝熱管に多数設けてある点にあ
る。
[3] The invention according to claim 3 specifies an embodiment suitable for carrying out the invention according to claim 1 or 2, and the feature thereof is that the transmission constituting the heat-absorbing heat exchanger is characterized. The point is that a large number of common heat transfer fins extending over the heat tubes and the heat transfer tubes constituting the supercooler are provided on these heat transfer tubes.

【0017】つまり、この構成によれば、過冷却器の放
出熱を上記の多数の共通伝熱フィンにより効率良く確実
に吸熱用熱交換器の側に伝熱することができ、これによ
り、過冷却器の放出熱を利用した前述の如き霜付き防止
や雪付着防止を一層効果的かつ確実なものにすることが
できる。
In other words, according to this configuration, the heat released from the supercooler can be efficiently and reliably transmitted to the heat-absorbing heat exchanger by the large number of common heat transfer fins. The prevention of frost and the prevention of snow adhesion as described above using the heat released from the cooler can be made more effective and reliable.

【0018】〔4〕請求項4に係る発明は、請求項1〜
3のいずれか1項に係る発明の実施に好適な実施形態を
特定するものであり、その特徴は、前記過冷却器に循環
冷媒を通過させる状態とその過冷却器に対するバイパス
路に循環冷媒を通過させる状態とに冷媒の循環経路を切
り換える切換弁を設けてある点にある。
[4] The invention according to claim 4 is the invention according to claims 1 to
The present invention specifies a preferred embodiment for practicing the invention according to any one of (3) and (3), characterized in that the circulating refrigerant passes through the supercooler and the circulating refrigerant passes through a bypass for the subcooler. The point is that a switching valve for switching the circulation path of the refrigerant between the passage state and the passage state is provided.

【0019】つまり、この構成によれば、過冷却器に対
するバイパス路に循環冷媒を通過させる状態(すなわ
ち、過冷却器を迂回させて冷媒循環させる状態)への切
り換えを行なえることで、過冷却器を必要としない運転
や例えば圧力損失の低減の面などで逆に過冷却器を用い
ない方が有利になる運転などに対して対応できるように
なり、この点で機能性に一層優れたヒートポンプにな
る。
In other words, according to this configuration, the state can be switched to a state in which the circulating refrigerant passes through the bypass passage for the subcooler (that is, a state in which the refrigerant is circulated by bypassing the subcooler), whereby the subcooling is performed. Heat pumps that can be used for operations that do not require a cooler or for which it is more advantageous not to use a supercooler, for example, in terms of reducing pressure loss, etc. become.

【0020】[0020]

【発明の実施の形態】図1はヒートポンプの冷媒回路を
示し、1は圧縮機、2は放熱用熱交換器、3は吸熱用熱
交換器、4は四方弁、5は膨張機構、6は四つの逆止弁
6a〜6dをブリッジ回路状に組み合わせた冷媒案内回
路、7は受液器である。そして、このヒートポンプで
は、四方弁4による冷媒循環経路の切り換えにより基本
的に次の順方向運転と逆方向運転とを択一的に実施す
る。
1 shows a refrigerant circuit of a heat pump, 1 is a compressor, 2 is a heat exchanger for heat dissipation, 3 is a heat exchanger for heat absorption, 4 is a four-way valve, 5 is an expansion mechanism, and 6 is an expansion mechanism. A refrigerant guide circuit in which four check valves 6a to 6d are combined in a bridge circuit shape, and 7 is a liquid receiver. In this heat pump, the following forward operation and reverse operation are basically selectively performed by switching the refrigerant circulation path by the four-way valve 4.

【0021】すなわち、順方向運転では、図中実線の矢
印で示す如く、冷媒Rを圧縮機1―四方弁4−放熱用熱
交換器2−冷媒案内回路6−受液器7−膨張機構5−冷
媒案内回路6−吸熱用熱交換器3―四方弁4−圧縮機1
の順に循環させ、これにより、吸熱用熱交換器3を蒸発
器として機能させて吸熱用熱交換器3をファン8による
通風外気OAに対し吸熱作用させ、これに対し、放熱用
熱交換器2を凝縮器として機能させて放熱用熱交換器2
で高温熱を発生させる。
That is, in the forward operation, the refrigerant R is supplied to the compressor 1, the four-way valve 4, the heat exchanger for heat radiation 2, the refrigerant guide circuit 6, the liquid receiver 7, and the expansion mechanism 5, as indicated by solid arrows in the drawing. -Refrigerant guide circuit 6-Heat exchanger for heat absorption 3-Four-way valve 4-Compressor 1
In this order, the heat absorbing heat exchanger 3 functions as an evaporator, causing the heat absorbing heat exchanger 3 to absorb heat from the fan 8 against the ventilated outside air OA. Function as a condenser to release heat exchanger 2
To generate high temperature heat.

【0022】また、逆方向運転では、図中破線の矢印に
示す如く、冷媒Rを逆に圧縮機1―四方弁4−吸熱用熱
交換器3−冷媒案内回路6−受液器7−膨張機構5−冷
媒案内回路6−放熱用熱交換器2―四方弁4−圧縮機1
の順に循環させ、これにより、放熱用熱交換器2を蒸発
器として機能させて放熱用熱交換器2を順方向運転時の
熱付与対象に対し吸熱作用させ、これに対し、吸熱用熱
交換器3を凝縮器として機能させて吸熱用熱交換器3で
高温熱を発生させる。
In the reverse operation, as shown by a broken line arrow in the figure, the refrigerant R is supplied to the compressor 1, the four-way valve 4, the heat absorbing heat exchanger 3, the refrigerant guide circuit 6, the liquid receiver 7, and the expansion. Mechanism 5-refrigerant guide circuit 6-radiator heat exchanger 2-four-way valve 4-compressor 1
In this order, the heat-radiating heat exchanger 2 is caused to function as an evaporator, and the heat-radiating heat exchanger 2 is made to absorb heat on the object to which heat is applied in the forward operation. The heat exchanger 3 functions as a condenser to generate high-temperature heat in the heat exchanger 3 for heat absorption.

【0023】9は冷媒循環路において放熱用熱交換器2
と膨張機構5との間(具体的には受液器7との間)に介
装した過冷却器であり、この過冷却器9は外気OAを冷
却源とする。
Reference numeral 9 denotes a heat radiating heat exchanger 2 in the refrigerant circuit.
The supercooler is interposed between the fluid and the expansion mechanism 5 (specifically, between the liquid receiver 7), and the supercooler 9 uses outside air OA as a cooling source.

【0024】10は過冷却器9に対するバイパス路であ
り、11は順方向運転及び逆方向運転の夫々において過
冷却器9に循環冷媒Rを通過させる状態とバイパス路1
0に循環冷媒Rを通過させる(すなわち、過冷却器9を
迂回させる)状態とに冷媒Rの循環経路を切り換える切
換弁である。
Reference numeral 10 denotes a bypass for the subcooler 9, and reference numeral 11 denotes a state in which the circulating refrigerant R passes through the subcooler 9 in the forward operation and the reverse operation, respectively.
This is a switching valve that switches the circulation path of the refrigerant R between a state in which the circulation refrigerant R is passed through 0 (that is, a state in which the subcooler 9 is bypassed).

【0025】吸熱用熱交換器3及び過冷却器9は図2に
示す如きフィンチューブコイル構造Uにしてあり、吸熱
用熱交換器3については、吸熱用熱交換器3を構成する
並列伝熱管3a(チューブ)の夫々を蛇行させて4列の
伝熱管列3A〜3Dを形成し、これら4列の伝熱管列3
A〜3Dを外気OAの通風方向に並置して、それら4列
の伝熱管列3A〜3Dにわたる伝熱フィン12を、各伝
熱フィン12に対し多数の伝熱管3aを貫通させた状態
で伝熱管列3A〜3Dに所定ピッチで多数付設した構造
にしてある。
The heat-absorbing heat exchanger 3 and the subcooler 9 have a fin tube coil structure U as shown in FIG. 2, and the heat-absorbing heat exchanger 3 is a parallel heat transfer tube constituting the heat-absorbing heat exchanger 3. 3a (tubes) are meandered to form four rows of heat transfer tube rows 3A to 3D.
A to 3D are arranged side by side in the ventilation direction of the outside air OA, and the heat transfer fins 12 extending over the four heat transfer tube rows 3A to 3D are transferred to the heat transfer fins 12 with a large number of heat transfer tubes 3a penetrating therethrough. A large number of heat pipe arrays 3A to 3D are provided at a predetermined pitch.

【0026】また、過冷却器9については、過冷却器9
を構成する並列伝熱管9a(チューブ)の夫々を蛇行さ
せて2列の伝熱管列9A,9Bを形成し、これら2列の
伝熱管列9A,9Bのうちの一方を、吸熱用熱交換器3
の伝熱管列3A〜3Dのうち外気通風方向で最も風上側
に位置する伝熱管列3Aの風上側に隣接させて配置する
とともに、他方を吸熱用熱交換器3の伝熱管列3A〜3
Dのうち外気通風方向で3列目の伝熱管列3Cと4列目
の伝熱管列3Dとの間に両伝熱管列3C,3Dに対する
隣接状態で配置し、そして、前記の伝熱フィン12を吸
熱用熱交換器3と過冷却器9との共通の伝熱フィンとし
て、過冷却器9の伝熱管列9A,9Bを形成する伝熱管
9aを吸熱用熱交換器3の各伝熱管列3A〜3Dを形成
する伝熱管3aとともに各伝熱フィン12に対し貫通さ
せた構造にしてある。
As for the subcooler 9, the subcooler 9
Each of the parallel heat transfer tubes 9a (tubes) is meandered to form two heat transfer tube arrays 9A and 9B, and one of the two heat transfer tube arrays 9A and 9B is connected to a heat-absorbing heat exchanger. 3
Among the heat transfer tube rows 3A to 3D, the heat transfer tube row 3A of the heat exchanger 3 for heat absorption is arranged adjacent to the windward side of the heat transfer tube row 3A positioned at the most windward side in the outside air ventilation direction.
D, between the third row of heat transfer pipes 3C and the fourth row of heat transfer pipes 3D in the direction of outside air ventilation in the state adjacent to the two heat transfer pipe rows 3C and 3D. Are used as heat transfer fins common to the heat exchanger for heat absorption 3 and the supercooler 9, and the heat transfer tubes 9a forming the heat transfer tube arrays 9A and 9B of the supercooler 9 are used as the heat transfer tube arrays of the heat exchanger 3 for heat absorption. It has a structure penetrating through each heat transfer fin 12 together with the heat transfer tubes 3a forming 3A to 3D.

【0027】すなわち、吸熱用熱交換器3については、
各伝熱管列3A〜3Dの伝熱管3aに冷媒Rを通過させ
ることにより、順方向運転ではその管内通過過程で冷媒
Rを外気OAからの吸熱により蒸発させ、逆方向運転で
はその管内通過過程で冷媒Rを凝縮させて熱発生させ
る。また、過冷却器9については、順方向運転において
凝縮器としての放熱用熱交換器2から送出される凝縮液
冷媒Rを各伝熱管列9A,9Bの伝熱管9aに通過させ
ることにより、その凝縮液冷媒Rを管内通過過程で外気
OAにより冷却(外気による過冷却)する。
That is, regarding the heat exchanger 3 for absorbing heat,
By passing the refrigerant R through the heat transfer tubes 3a of each of the heat transfer tube rows 3A to 3D, the refrigerant R is evaporated by heat absorption from the outside air OA in the forward passage operation in the forward operation, and the refrigerant R in the backward passage operation in the reverse operation. The refrigerant R is condensed to generate heat. In the subcooler 9, the condensed liquid refrigerant R sent from the heat-radiating heat exchanger 2 as a condenser in the forward operation is caused to pass through the heat transfer tubes 9a of the heat transfer tube rows 9A and 9B, whereby The condensed liquid refrigerant R is cooled by the outside air OA during the passage in the pipe (supercooling by the outside air).

【0028】そして、吸熱用熱交換器3及び過冷却器9
を構成するのに上記のフィンチューブコイル構造Uを採
ることにより、吸熱用熱交換器3と過冷却器9との夫々
を風上側部分3A〜3C,9Aと風下側部分3D,9B
とに分割して、それら過冷却器の風上側部分9Aと、吸
熱用熱交換器3の風上側部分3A〜3Cと、過冷却器9
の風下側部分9Bと、吸熱用熱交換器3の風下側部分3
Dとを、その順に風上側から並べた状態で互いに隣接さ
せてファン8による外気通風路Fに配置した構成にして
ある。
Then, the heat absorbing heat exchanger 3 and the supercooler 9
By adopting the fin tube coil structure U described above, the heat absorbing heat exchanger 3 and the subcooler 9 can be connected to the windward portions 3A to 3C and 9A and the leeward portions 3D and 9B, respectively.
And the windward portion 9A of the supercooler, the windward portions 3A to 3C of the heat absorbing heat exchanger 3, and the supercooler 9
Leeward portion 9B of the heat-absorbing heat exchanger 3
D are arranged in the outside air passage F by the fan 8 adjacent to each other in a state of being arranged from the windward side in that order.

【0029】つまり、吸熱用熱交換器3を蒸発器として
外気OAに対し吸熱作用させる順方向運転では、外気条
件によって吸熱用熱交換器3の風上側部分3A〜3C
(特にその風上側部分3A〜3Cの中でも風上寄りの部
分3A)で外気中水分による霜付きや外気中の雪の付着
堆積が生じる虞があるが、上記構成を採ることにより、
これら吸熱用熱交換器3の風上側部分3Aでの霜付きや
雪の付着堆積を過冷却器9の風上側部分9Aの放出熱に
より防止する。
That is, in the forward operation in which the heat-absorbing heat exchanger 3 acts as an evaporator to absorb heat to the outside air OA, the windward portions 3A to 3C of the heat-absorbing heat exchanger 3 depend on the outside air condition.
(Especially, the windward portion 3A among the windward portions 3A to 3C, there is a possibility that frost due to moisture in the outside air and adhesion and deposition of snow in the outside air may occur at the windward portion 3A.
Frosting and deposition of snow on the windward portion 3A of the heat absorbing heat exchanger 3 are prevented by the heat released from the windward portion 9A of the supercooler 9.

【0030】また、条件によって、過冷却器風上側部分
9Aの放出熱で融解させた霜や雪の融解水が通風外気O
Aにより風下側へ移動して吸熱用熱交換器3の風下側部
分3D(ないし3C,3D)で再氷結する虞があること
に対し、そのような風下側での再氷結を過冷却器9の風
下側部分9Bの放出熱により確実に防止する。
Depending on the conditions, the frost or snow melted by the heat released from the supercooler windward portion 9A may be melted by the outside air O.
In contrast to the possibility of re-freezing at the leeward portion 3D (or 3C, 3D) of the heat-absorbing heat exchanger 3 due to the movement to the leeward side by A, the supercooler 9 Of the leeward side portion 9B of the fin is reliably prevented.

【0031】なお、順方向運転では、切換弁11を閉弁
状態に保って放熱用熱交換器2からの送出液冷媒Rを過
冷却器9により常に過冷却する運転形態(換言すれば、
過冷却器9の放出熱による霜付き防止や雪付着防止を常
に行なう運転形態)、あるいは、外気状態の検出や霜付
き・雪付着の検出に基づいて霜付き防止や雪付着防止の
必要時にのみ切換弁11を閉じて過冷却器9を機能させ
る運転形態のいずれを採用してもよい。
In the forward operation, the switching valve 11 is kept in the closed state, and the liquid refrigerant R delivered from the heat radiating heat exchanger 2 is always supercooled by the supercooler 9 (in other words,
Only when it is necessary to prevent frost or snow adhesion based on the detection of the outside air condition or the detection of frost or snow adhesion based on the detection of the outside air condition or the detection of frost or snow adhesion. Any of the operation modes in which the switching valve 11 is closed and the subcooler 9 functions can be adopted.

【0032】また、逆方向運転は、放熱用熱交換器2で
の冷熱発生ないし吸熱用熱交換器3での外気加熱を目的
として実施する他、順方向運転時において過冷却器9の
放出熱では吸熱用熱交換器3での霜付きや雪の付着堆積
を防止し切れなくなったときの除霜除雪を目的として一
時的に実施するが、これら逆方向運転は切換弁11を開
弁状態に保って過冷却器9を機能停止させた状態で実施
する。
The reverse operation is performed for the purpose of generating cold heat in the heat exchanger 2 for heat radiation or for heating the outside air in the heat exchanger 3 for heat absorption. In the heat exchanger 3 for heat absorption, frost and snow are prevented from adhering and accumulating, and temporarily implemented for the purpose of defrosting and removing snow when it is no longer possible. In the reverse operation, the switching valve 11 is opened. The operation is performed with the supercooler 9 stopped functioning.

【0033】〔別実施形態〕次に本発明の別の実施形態
を列記する。
[Another Embodiment] Next, another embodiment of the present invention will be listed.

【0034】前述の実施形態では、過冷却器9を風上側
部分9Aと風下側部分9Bとに分割して、過冷却器9の
風上側部分9Aと吸熱用熱交換器3の風上側部分3A〜
3Cと過冷却器9の風下側部分9Bと吸熱用熱交換器3
の風下側部分3Dとを、その順に風上側から並べた状態
で互いに隣接させる構成を示したが、これに代え、過冷
却器9の分割を行なわずに過冷却器9を外気通風路Fに
おいて吸熱用熱交換器3の風上側部分に対し風上側から
隣接(場合によっては風下側から隣接)させる構成にし
てもよい。
In the above-described embodiment, the subcooler 9 is divided into the windward portion 9A and the leeward portion 9B, and the windward portion 9A of the supercooler 9 and the windward portion 3A of the heat exchanger 3 for heat absorption are divided. ~
3C, the leeward portion 9B of the supercooler 9 and the heat exchanger 3 for heat absorption.
The leeward portion 3D is arranged adjacent to each other in a state where the leeward portion 3D is arranged in this order from the windward side. Instead, the subcooler 9 is divided in the outside air ventilation path F without dividing the subcooler 9. A configuration may be adopted in which the heat absorption side heat exchanger 3 is adjacent to the windward side from the windward side (adjacent in some cases from the leeward side).

【0035】過冷却器9の風上側部分9Aと吸熱用熱交
換器3の風上側部分3A〜3Cと過冷却器9の風下側部
分9Bと吸熱用熱交換器3の風下側部分3Dとを、その
順に風上側から並べた状態で互いに隣接させる場合、そ
れら各部分の容量比(前述の実施形態で言えば各部分に
おける伝熱管列の列数比)は、前述の実施形態で示した
容量比に限定されるものではなく、また、過冷却器9及
び吸熱用熱交換器3の各々について、それらの風上側部
分9A,3A〜3Cと風下側部分9B,3Dとは、冷媒
経路上において並列のもの、あるいは直列のもののいず
れであってもよい。
The leeward portion 9A of the subcooler 9, the leeward portions 3A to 3C of the heat absorbing heat exchanger 3, the leeward portion 9B of the supercooler 9, and the leeward portion 3D of the heat absorbing heat exchanger 3 are connected. When they are adjacent to each other in a state of being arranged from the windward side in that order, the capacity ratio of these portions (the ratio of the number of heat transfer tube rows in each portion in the aforementioned embodiment) is the capacity shown in the aforementioned embodiment. The ratio is not limited, and for each of the supercooler 9 and the heat-exchanging heat exchanger 3, the leeward portions 9A, 3A to 3C and the leeward portions 9B, 3D are located on the refrigerant path. It may be either parallel or serial.

【0036】外気通風路Fにおいて、過冷却器9の風上
側部分9Aと吸熱用熱交換器3の風上側部分3A〜3C
と過冷却器9の風下側部分9Bと吸熱用熱交換器3の風
下側部分3Dとを、その順に風上側から並べた状態で互
いに隣接させる場合、あるいは、過冷却器9の分割を行
なわずに過冷却器9を吸熱用熱交換器3の風上側部分に
対し隣接させる場合、その具体的な隣接構造は前述の実
施形態の如き伝熱管列どうしの隣接構造に限らず、種々
の構成変更が可能であり、また、前述の実施形態では、
過冷却器9と吸熱用熱交換器3とを共通の伝熱フィン1
2により連結する構造を示したが、場合によっては、過
冷却器9と吸熱用熱交換器3とを分離状態で隣接させる
構成にしてもよい。
In the outside air passage F, the windward portion 9A of the supercooler 9 and the windward portions 3A to 3C of the heat absorbing heat exchanger 3
When the leeward part 9B of the supercooler 9 and the leeward part 3D of the heat absorbing heat exchanger 3 are arranged adjacent to each other in this order from the windward side, or the subcooler 9 is not divided. When the supercooler 9 is made to be adjacent to the windward side of the heat exchanger 3 for heat absorption, the specific adjacent structure is not limited to the adjacent structure between the heat transfer tube rows as in the above-described embodiment, and various configurations are changed. Is also possible, and in the above embodiment,
A common heat transfer fin 1 is used for the supercooler 9 and the heat absorbing heat exchanger 3.
Although the structure in which the supercooler 9 and the heat-absorbing heat exchanger 3 are separated from each other may be used in some cases, the structure is shown in FIG.

【0037】本発明による蒸気圧縮式ヒートポンプは、
空調や融雪あるいは給湯や物品加熱など各種分野におい
て種々の用途に使用できる。
The vapor compression heat pump according to the present invention comprises:
It can be used for various applications in various fields such as air conditioning, snow melting, hot water supply and article heating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷媒回路図FIG. 1 is a refrigerant circuit diagram.

【図2】吸熱用熱交換器及び過冷却器の構造を示す切欠
斜視図
FIG. 2 is a cutaway perspective view showing the structures of a heat exchanger for heat absorption and a subcooler.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱用熱交換器 3 吸熱用熱交換器 3a 伝熱管 3A〜3C 吸熱用熱交換器の風上側部分 3D 吸熱用熱交換器の風下側部分 5 膨張機構 9 過冷却器 9a 伝熱管 9A 過冷却器の風上側部分 9B 過冷却器の風下側部分 10 バイパス路 11 切換弁 12 伝熱フィン OA 外気 R 冷媒 DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger for heat dissipation 3 Heat exchanger for heat absorption 3a Heat transfer tube 3A-3C Upwind part of heat exchanger for heat absorption 3D Downwind part of heat exchanger for heat absorption 5 Expansion mechanism 9 Subcooler 9a Heat transfer tube 9A Upwind part of subcooler 9B Downwind part of subcooler 10 Bypass path 11 Switching valve 12 Heat transfer fin OA Outside air R Refrigerant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮機―放熱用熱交換器―膨張機
構―吸熱用熱交換器―圧縮機の順に循環させ、この冷媒
循環で蒸発器として機能させる前記吸熱用熱交換器を外
気に対して吸熱作用させる蒸気圧縮式ヒートポンプであ
って、 冷媒循環路において前記放熱用熱交換器と前記膨張機構
との間に、外気を冷却源とする過冷却器を介装し、 この過冷却器を外気通風路において前記吸熱用熱交換器
の風上側部分に隣接させてある蒸気圧縮式ヒートポン
プ。
1. A refrigerant is circulated in the order of a compressor, a heat exchanger for heat dissipation, an expansion mechanism, a heat exchanger for heat absorption, and a compressor, and the heat exchanger for heat absorption, which functions as an evaporator in the circulation of the refrigerant, is supplied to the outside air. A steam compression heat pump for absorbing heat to the heat exchanger, wherein a supercooler that uses outside air as a cooling source is interposed between the heat radiating heat exchanger and the expansion mechanism in a refrigerant circulation path. A vapor compression heat pump which is adjacent to the windward side of the heat absorbing heat exchanger in the outside air ventilation passage.
【請求項2】 前記過冷却器及び前記吸熱用熱交換器の
夫々を風上側部分と風下側部分とに分割し、 前記外気通風路において、これら過冷却器の風上側部分
と吸熱用熱交換器の風上側部分と過冷却器の風下側部分
と吸熱用熱交換器の風下側部分とを、その順に風上側か
ら並べた状態で互いに隣接させてある請求項1記載の蒸
気圧縮式ヒートポンプ。
2. The heat exchanger for heat absorption according to claim 1, wherein each of the subcooler and the heat exchanger for heat absorption is divided into a windward portion and a leeward portion. 2. The vapor compression heat pump according to claim 1, wherein a leeward portion of the heat exchanger, a leeward portion of the supercooler, and a leeward portion of the heat absorbing heat exchanger are adjacent to each other in that order from the leeward side.
【請求項3】 前記吸熱用熱交換器を構成する伝熱管と
前記過冷却器を構成する伝熱管とにわたる共通の伝熱フ
ィンを、それら伝熱管に多数設けてある請求項1又は2
記載の蒸気圧縮式ヒートポンプ。
3. The heat transfer tube according to claim 1, wherein a plurality of common heat transfer fins extending from the heat transfer tube forming the heat absorbing heat exchanger to the heat transfer tube forming the subcooler are provided.
A vapor compression heat pump as described.
【請求項4】 前記過冷却器に循環冷媒を通過させる状
態とその過冷却器に対するバイパス路に循環冷媒を通過
させる状態とに冷媒の循環経路を切り換える切換弁を設
けてある請求項1〜3のいずれか1項に記載の蒸気圧縮
式ヒートポンプ。
4. A switching valve for switching a refrigerant circulation path between a state in which the circulating refrigerant passes through the subcooler and a state in which the circulating refrigerant passes through a bypass passage for the subcooler. The vapor compression heat pump according to any one of the above.
JP2001090180A 2001-03-27 2001-03-27 Vapor compression heat pump Pending JP2002286317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090180A JP2002286317A (en) 2001-03-27 2001-03-27 Vapor compression heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090180A JP2002286317A (en) 2001-03-27 2001-03-27 Vapor compression heat pump

Publications (1)

Publication Number Publication Date
JP2002286317A true JP2002286317A (en) 2002-10-03

Family

ID=18945002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090180A Pending JP2002286317A (en) 2001-03-27 2001-03-27 Vapor compression heat pump

Country Status (1)

Country Link
JP (1) JP2002286317A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system
JP2004324935A (en) * 2003-04-22 2004-11-18 Denso Corp Refrigerating cycle and heat exchanger
JP2006329452A (en) * 2005-05-23 2006-12-07 Tokyo Gas Co Ltd Carbon dioxide heat pump cooling/heating system
JP2009103453A (en) * 2009-02-16 2009-05-14 Takasago Thermal Eng Co Ltd Air conditioning facility
JP2013170747A (en) * 2012-02-21 2013-09-02 Nakano Refrigerators Co Ltd Refrigerant leakage detection device and freezing device
KR101475929B1 (en) * 2012-05-31 2014-12-23 (주) 비앤에프솔루션 Cooling and heating apparatus
CN104344456A (en) * 2013-07-29 2015-02-11 广东美的暖通设备有限公司 Multi-split air conditioning system and outdoor unit refrigerant distribution unevenness adjusting method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system
JP2004324935A (en) * 2003-04-22 2004-11-18 Denso Corp Refrigerating cycle and heat exchanger
JP2006329452A (en) * 2005-05-23 2006-12-07 Tokyo Gas Co Ltd Carbon dioxide heat pump cooling/heating system
JP2009103453A (en) * 2009-02-16 2009-05-14 Takasago Thermal Eng Co Ltd Air conditioning facility
JP2013170747A (en) * 2012-02-21 2013-09-02 Nakano Refrigerators Co Ltd Refrigerant leakage detection device and freezing device
KR101475929B1 (en) * 2012-05-31 2014-12-23 (주) 비앤에프솔루션 Cooling and heating apparatus
CN104344456A (en) * 2013-07-29 2015-02-11 广东美的暖通设备有限公司 Multi-split air conditioning system and outdoor unit refrigerant distribution unevenness adjusting method thereof

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP4428341B2 (en) Refrigeration cycle equipment
US20140338389A1 (en) Vapor compression system with thermal energy storage
US4407137A (en) Fast defrost heat exchanger
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
CN102759193A (en) Air source heat pump system
JP2001221531A (en) Air conditioner
JP2013083439A5 (en)
JP2002286317A (en) Vapor compression heat pump
JPH10300265A (en) Refrigerating equipment
EP3165852B1 (en) Anti-frost heat pump
JP2002333242A (en) Vapor compression heat pump
CN101004302B (en) Frostless air-source heat pump
JP2018063058A (en) Refrigerator and control method for the same
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method
JP5229076B2 (en) Refrigeration equipment
JP5434207B2 (en) Refrigeration equipment
KR100389269B1 (en) Heat pump system
JP2002286332A (en) Vapor compression type heat pump
JP2002022307A (en) Air conditioner
JP2008117034A (en) Cooling/warming cycle and vending machine using the same
JP2003202135A (en) Regenerative air-conditioning device
KR20000017355A (en) Heat pump
KR100559784B1 (en) High efficiency air conditioning with constant temperature
CN112303948A (en) Multistage heat exchange system