JP2002286332A - Vapor compression type heat pump - Google Patents

Vapor compression type heat pump

Info

Publication number
JP2002286332A
JP2002286332A JP2001090179A JP2001090179A JP2002286332A JP 2002286332 A JP2002286332 A JP 2002286332A JP 2001090179 A JP2001090179 A JP 2001090179A JP 2001090179 A JP2001090179 A JP 2001090179A JP 2002286332 A JP2002286332 A JP 2002286332A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
leeward
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001090179A
Other languages
Japanese (ja)
Inventor
Masafumi Inoue
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001090179A priority Critical patent/JP2002286332A/en
Publication of JP2002286332A publication Critical patent/JP2002286332A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent wasteful heat dissipation and further prevent a liquid-back trouble upon returning to an ordinary operation in a defrosting operation of a heat pump that absorbs heat from fresh air. SOLUTION: A heat absorption heat exchanger 3 for forcing fresh air OA to serve to absorb heat is divided to an air upstream side section 3A and an air downstream side section 3B, and changeover is ensured between an ordinary operation where a refrigerant R is circulated in the order of a compressor 1-a heat dissipation heat exchanger 2-an expansion mechanism 5-a parallel connection circuit or a series connection circuit of the air upstream side section 3A and the air downstream side section 3B-the compressor 1, and a defrosting operation for circulating the refrigerant R in the order of the compressor 1-the air upstream side section 3A of the heat absorption heat exchanger 3-the expansion mechanism 5-heat dissipation heat exchanger 2-the compressor 1 in the state that refrigerant passing through the air downstream side section 3B of the heat absorption heat exchanger 3 is interrupted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は外気から吸熱させる
蒸気圧縮式ヒートポンプに関し、詳しくは、通常運転と
して冷媒を圧縮機―放熱用熱交換器―膨張機構―吸熱用
熱交換器―圧縮機の順に循環させる運転を実施し、この
通常運転で吸熱用熱交換器を蒸発器として外気に対し吸
熱作用させる蒸気圧縮式ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression heat pump that absorbs heat from outside air, and more specifically, in a normal operation, in the order of a compressor, a heat exchanger for heat dissipation, an expansion mechanism, a heat exchanger for heat absorption, and a compressor. The present invention relates to a vapor compression heat pump in which a circulation operation is performed, and in this normal operation, a heat absorbing heat exchanger acts as an evaporator to absorb heat to outside air.

【0002】[0002]

【従来の技術】従来、この種の蒸気圧縮式ヒートポンプ
では、通常運転で外気に対し吸熱作用している状態の吸
熱用熱交換器で外気中水分による霜付きや外気に含まれ
る雪の付着堆積などが生じたとき、除霜運転(除雪を含
む)として、四方弁などによる冷媒経路の切り換えで冷
媒を通常運転時とは逆に圧縮機―吸熱用熱交換器―膨張
機構―放熱用熱交換器―圧縮機の順に循環させる運転を
実施し、この除霜運転で吸熱用熱交換器を凝縮器として
機能させることで、吸熱用熱交換器における付着霜や付
着雪を凝縮器の発生熱により融解させて除去していた。
2. Description of the Related Art Conventionally, in this kind of vapor compression heat pump, in a heat absorbing heat exchanger in a state of absorbing heat to the outside air in a normal operation, frost due to moisture in the outside air and adhesion of snow contained in the outside air are accumulated. When the defrosting operation (including snow removal) occurs, the refrigerant is switched by a four-way valve or the like to switch the refrigerant path, and the refrigerant is reversed in the normal operation, which is a compressor-heat absorption heat exchanger-expansion mechanism-heat exchange for heat radiation. In this defrosting operation, the heat exchanger for heat absorption functions as a condenser, and the adhering frost and attached snow in the heat exchanger for heat absorption are removed by the heat generated by the condenser. It was melted and removed.

【0003】[0003]

【発明が解決しようとする課題】しかし従来、この除霜
運転において吸熱用熱交換器の凝縮器としての発生熱の
うち付着霜や付着雪の融解に有効に寄与せずに放散する
熱量が大きく、この無駄な熱放散がエネルギ効率の低下
要因やランニングコストの増大要因になる問題があっ
た。
However, conventionally, in this defrosting operation, the amount of heat dissipated without effectively contributing to melting of attached frost and attached snow is large among the heat generated as a condenser of the heat absorbing heat exchanger. However, there has been a problem that this wasteful heat dissipation causes a decrease in energy efficiency and an increase in running cost.

【0004】また、この除霜運転において、付着霜や付
着雪による冷媒冷却及び外気による冷媒冷却で凝縮した
液冷媒が凝縮器としての吸熱用熱交換器に大量に溜り込
む状態になり、これが原因で、吸熱用熱交換器を蒸発器
として機能させる通常運転への復帰の際に、圧縮機が液
冷媒を吸入する所謂液バックトラブルを生じ易い問題も
あった。
[0004] In this defrosting operation, a large amount of liquid refrigerant condensed by refrigerant cooling by adhering frost or adhering snow and refrigerant cooling by outside air is accumulated in a heat absorbing heat exchanger as a condenser. Thus, when returning to the normal operation in which the heat absorbing heat exchanger functions as an evaporator, there is also a problem that a so-called liquid back trouble in which the compressor sucks the liquid refrigerant easily occurs.

【0005】この実情に鑑み、本発明の主たる課題は、
合理的な冷媒循環形態を採ることにより、冷媒回路の複
雑化を極力抑止しながら上記の如き問題を効果的に解消
する点にある。
[0005] In view of this situation, the main problems of the present invention are:
By adopting a rational refrigerant circulation mode, the above problem is effectively solved while minimizing the complexity of the refrigerant circuit.

【0006】[0006]

【課題を解決するための手段】〔1〕請求項1に係る発
明は蒸気圧縮式ヒートポンプに係り、その特徴は、 蒸発器として外気に対し吸熱作用させる吸熱用熱交換器
を、外気通風路において風上側に位置させる風上側部分
と風下側に位置させる風下側部分とに分割し、冷媒を圧
縮機―放熱用熱交換器―膨張機構―吸熱用熱交換器の風
上側部分と風下側部分との並列接続回路又は直列接続回
路―圧縮機の順に循環させる通常運転と、吸熱用熱交換
器の風下側部分に対する冷媒通過を遮断した状態で、冷
媒を圧縮機―吸熱用熱交換器の風上側部分―膨張機構―
放熱用熱交換器―圧縮機の順に循環させる除霜運転との
切り換えが可能な構成にしてある点にある。
Means for Solving the Problems [1] The invention according to claim 1 relates to a vapor compression heat pump. The feature of the invention is that a heat absorbing heat exchanger that acts as an evaporator to absorb heat to outside air is provided in an outside air ventilation passage. Divided into a leeward part located on the leeward side and a leeward part located on the leeward side, the refrigerant is divided into a compressor, a heat exchanger for heat dissipation, an expansion mechanism, and a leeward part and a leeward part of the heat exchanger for heat absorption. The parallel connection circuit or series connection circuit of-normal operation in which the compressor is circulated in the order of the compressor, and in the state where the passage of the refrigerant to the leeward part of the heat-absorbing heat exchanger is shut off, the refrigerant flows upwind of the compressor-heat-absorbing heat exchanger. Part-expansion mechanism-
The point is that it is configured to be able to switch to a defrosting operation that circulates in the order of a heat exchanger for heat radiation and a compressor.

【0007】つまり、この構成によれば、通常運転では
上記の冷媒循環により、放熱用熱交換器を凝縮器として
機能させるのに対し、吸熱用熱交換器における並列接続
又は直列接続の風上側部分と風下側部分との両方を蒸発
器として機能させて、それら風上側部分と風下側部分と
の両方を通風外気に対し吸熱作用させる(すなわち、従
来装置と同様に吸熱用熱交換器の全体を蒸発器として外
気に対し吸熱作用させる)ことができる。
In other words, according to this configuration, in the normal operation, the heat radiating heat exchanger functions as a condenser by the above-described refrigerant circulation, whereas the heat absorbing heat exchanger has a parallel-connected or series-connected windward portion. And the leeward portion function as an evaporator, and both the leeward portion and the leeward portion absorb heat from the outside air (that is, the entire heat-absorbing heat exchanger as in the conventional device). An endothermic effect can be made to the outside air as an evaporator).

【0008】また、除霜運転では、吸熱用熱交換器の風
下側部分に対する冷媒通過を遮断した状態での上記冷媒
循環により、放熱用熱交換器を蒸発器として機能させる
のに対し、吸熱用熱交換器のうち風上側部分のみを凝縮
器として機能させ、この風上側部分での発生熱(凝縮器
発生熱)により付着霜や付着雪を融解除去するが、一般
に吸熱用熱交換器での霜付きや雪の付着堆積は外気通風
方向の風上側の部分で主に生じることから、このように
吸熱用熱交換器の風上側部分のみを凝縮器として熱発生
させるだけでも、通常の霜付きや雪付着に対しては十分
な除霜除雪効果を得ることができ、吸熱用熱交換器にお
ける付着霜や付着雪を効果的に融解除去することができ
る。
[0008] In the defrosting operation, the refrigerant circulates in a state where the passage of the refrigerant to the leeward side of the heat-absorbing heat exchanger is blocked, so that the heat-dissipating heat exchanger functions as an evaporator. Only the windward side of the heat exchanger functions as a condenser, and the heat generated at the windward side (heat generated by the condenser) melts and removes attached frost and attached snow. Since frost and snow deposits mainly occur on the windward side in the direction of outside air ventilation, even if only the windward side of the heat absorbing heat exchanger is used as a condenser to generate heat, the normal frost A sufficient defrosting and snow removing effect can be obtained with respect to snow and snow, and the frost and snow attached to the heat absorbing heat exchanger can be effectively melted and removed.

【0009】そして、除霜運転において吸熱用熱交換器
の風下側部分に対する冷媒通過は遮断するから、上記の
如く霜付きや雪の付着堆積が吸熱用熱交換器の風上側の
部分で主に生じることに対し、従来装置の如く除霜運転
で吸熱用熱交換器の全体を凝縮器として機能させるに比
べ、吸熱用熱交換器の風下側部分での不要な熱発生を無
くして付着霜や付着雪の融解除去に寄与しない無駄な熱
放散を防止することができ、また、付着霜や付着雪によ
る冷媒冷却で凝縮した液冷媒が吸熱用熱交換器に溜り込
むとしても、その溜り込みは吸熱用熱交換器の風上側部
分に限られたものになることから、吸熱用熱交換器の全
体を凝縮器として機能させる従来装置に比べ、吸熱用熱
交換器全体としての液冷媒の溜り込み量も大巾に少なく
することができる。
In the defrosting operation, the passage of the refrigerant to the leeward side of the heat absorbing heat exchanger is shut off. Therefore, as described above, frost and snow deposits mainly occur in the windward side of the heat absorbing heat exchanger. In contrast to the conventional device, the entire heat absorbing heat exchanger functions as a condenser in the defrosting operation as in the conventional device. It is possible to prevent wasteful heat dissipation that does not contribute to melting and removal of attached snow, and even if the liquid refrigerant condensed by refrigerant cooling due to attached frost or attached snow accumulates in the heat absorbing heat exchanger, the accumulation will not occur. Since the heat exchanger for heat absorption is limited to the windward side of the heat exchanger, the accumulation of the liquid refrigerant as the heat exchanger for heat absorption as a whole compared to the conventional device that makes the entire heat exchanger for heat absorption function as a condenser The amount can also be greatly reduced

【0010】すなわち、これらのことから上記構成によ
れば、先述の従来装置に比べエネルギ効率の効果的な向
上及びランニングコストの効果的な低減が可能になり、
また、除霜運転から通常運転への復帰の際の液バックト
ラブルをより確実に防止することができる。
That is, from the above, according to the above configuration, it is possible to effectively improve the energy efficiency and effectively reduce the running cost as compared with the above-described conventional device.
Further, it is possible to more reliably prevent the liquid back trouble at the time of returning from the defrosting operation to the normal operation.

【0011】ちなみに、除霜運転については、別の運転
形態として、吸熱用熱交換器の風下側部分を蒸発器とし
て機能させながら、放熱用熱交換器及び吸熱用熱交換器
の風上側部分を直列接続状態でともに凝縮器として機能
させる運転形態を採るものもあるが(特開平4−174
266号公報参照)、この場合、吸熱用熱交換器の風上
側部分と風下側部分との両方を蒸発器として機能させる
通常運転との切り換えにおいて、吸熱用熱交換器の風上
側部分を冷媒循環経路上で異なる位置に移す特殊な回路
切り換え構成が必要になり、そのことで冷媒回路構造が
複雑になる。
In the defrosting operation, as another operation mode, the leeward portion of the heat-absorbing heat exchanger functions as an evaporator while the leeward portion of the heat-dissipating heat exchanger and the leeward portion of the heat absorbing heat exchanger are used. There is an operation mode in which both are connected in series and function as a condenser (Japanese Patent Laid-Open No. 4-174).
In this case, in the switching between the normal operation in which both the leeward and leeward portions of the heat absorbing heat exchanger function as an evaporator, the upstream side of the heat absorbing heat exchanger circulates the refrigerant. A special circuit switching configuration to move to a different position on the path is required, which complicates the refrigerant circuit structure.

【0012】これに対し、上記構成によれば、除霜運転
を行なうのに、単に冷媒の循環向きを通常運転とは逆向
きにする従来装置と同様の基本回路構成に対し、吸熱用
熱交換器の風下側部分に対する冷媒通過を遮断する簡単
な構成を付加するだけで済み、この点で、上記の別運転
形態を採るものに比べ冷媒回路構造を簡単なものして装
置コストを安価にしながら、上述の如き効果を得ること
ができる。
On the other hand, according to the above configuration, in order to perform the defrosting operation, the heat exchange for heat absorption is different from the basic circuit configuration similar to that of the conventional device in which the circulation direction of the refrigerant is simply opposite to the normal operation. It is only necessary to add a simple structure for blocking the passage of the refrigerant to the leeward side of the vessel, and in this respect, the refrigerant circuit structure is simplified and the apparatus cost is reduced as compared with the above-described alternative operation mode. Thus, the effects described above can be obtained.

【0013】なお、請求項1に係る発明の実施におい
て、冷媒循環経路中の放熱用熱交換器は1器に限られる
ものではなく、また、通常運転時の放熱用熱交換器と除
霜運転時の放熱用熱交換器とは必ずしも同一の熱交換器
に限られるものではない。
In the embodiment of the present invention, the number of heat-radiating heat exchangers in the refrigerant circulation path is not limited to one, and the heat-radiating heat exchanger and the defrosting operation in the normal operation are performed. The heat radiation heat exchanger at the time is not necessarily limited to the same heat exchanger.

【0014】また、除霜運転において除霜除雪の対象と
する吸熱用熱交換器とは別の吸熱用熱交換器(通常運転
において蒸発器として機能させる熱交換器)を冷媒循環
経路中に位置させる回路構成であってもよい。
In the defrosting operation, a heat absorbing heat exchanger (a heat exchanger functioning as an evaporator in a normal operation) different from the heat absorbing heat exchanger to be subjected to defrosting and snow removal is located in the refrigerant circulation path. A circuit configuration may be used.

【0015】〔2〕請求項2に係る発明は、請求項1に
係る発明の実施に好適な実施形態を特定するものであ
り、その特徴は、冷媒を圧縮機―吸熱用熱交換器の風上
側部分と風下側部分との並列接続回路―膨張機構―放熱
用熱交換器―圧縮機の順に循環させる強除霜運転の切り
換え実施が可能な構成にしてある点にある。
[2] The second aspect of the present invention specifies a preferred embodiment for carrying out the first aspect of the present invention. The feature of the second aspect is that a refrigerant is supplied to a compressor-wind absorbing heat exchanger. The configuration is such that a strong defrosting operation that circulates in the order of the parallel connection circuit of the upper part and the leeward part, the expansion mechanism, the heat radiation heat exchanger, and the compressor can be switched.

【0016】つまり、この構成によれば、吸熱用熱交換
器のうち風上側部分のみを凝縮器として機能させる前記
の除霜運転を実施しても、そのときの外気条件などによ
り付着霜や付着雪を融解除去し切れず霜付きが吸熱用熱
交換器の風下側に進行したり、風上側部分で融解させた
霜や雪の融解水が風下側に移動して再氷結するといった
状況になったとき、上記の強除霜運転の実施により吸熱
用熱交換器の風上側部分と風下側部分との両方を凝縮器
として機能させることで、風上側部分及び風下側部分に
おける付着霜や付着雪を融解除去することができ、この
点、請求項1に係る発明により前述の如き効果を得なが
ら、吸熱用熱交換器での霜付きや雪の付着堆積に対する
防護性についても信頼性の一層高いものにすることがで
きる。
That is, according to this configuration, even if the above-described defrosting operation in which only the windward side portion of the heat absorbing heat exchanger functions as a condenser is performed, the adhering frost or adhering may occur depending on external air conditions at that time. The snow could not be completely removed by melting, and frost would progress to the leeward side of the heat exchanger for heat absorption, or the frost or the melted water of the snow melted on the windward side would move to the leeward side and re-freeze. When the above-mentioned strong defrosting operation is performed, both the leeward side part and the leeward side part of the heat absorbing heat exchanger function as a condenser. Can be melted and removed. In this regard, while the above-described effects are obtained by the invention according to claim 1, the reliability of protection against frost and snow deposition in the heat absorbing heat exchanger is further enhanced. Can be something.

【0017】また、強除霜運転において吸熱用熱交換器
の風上側部分と風下側部分との両方を凝縮器として機能
させるのに、上記の如く風上側部分と風下側部分との並
列接続回路に対して冷媒を通過させる(すなわち、冷媒
を風上側部分と風下側部分とに対し並列に通過させる)
ことにより、風下側部分と風下側部分とに対する冷媒分
配量が各部分における霜や雪の付着量に応じて自ずと調
整されるようにする(一般的には風上側部分の方が霜や
雪の付着量が多くて冷媒に対する冷却作用が大きいこと
から風上側部分の方に冷媒が偏る状態になる)ことがで
き、これにより、冷媒を風上側部分と風下側部分とに対
し直列に通過させる形態を採るに比べ、付着霜や付着雪
の融解除去をより効率的に行なうことができて、付着霜
や付着雪の融解除去に寄与しない無駄な熱放散を強除霜
運転においても効果的に抑止することができる。
In order to make both the leeward and leeward portions of the heat absorbing heat exchanger function as condensers in the strong defrosting operation, a parallel connection circuit of the leeward portion and the leeward portion as described above. (Ie, the refrigerant is passed in parallel to the leeward part and the leeward part)
Thereby, the refrigerant distribution amount to the leeward side portion and the leeward side portion is automatically adjusted according to the amount of frost and snow attached to each portion (generally, the leeward side portion is more frost and snowy). Since the amount of adhesion is large and the cooling effect on the refrigerant is large, the refrigerant is biased toward the windward portion), whereby the refrigerant passes in series to the windward portion and the leeward portion. Frost and attached snow can be melted and removed more efficiently, and wasteful heat dissipation that does not contribute to the thawing and removal of attached frost and attached snow can be effectively suppressed even in strong defrosting operation. can do.

【0018】〔3〕請求項3に係る発明は、請求項1又
は2に係る発明の実施に好適な実施形態を特定するもの
であり、その特徴は、前記風上側部分の容量を前記風下
側部分の容量よりも小さくしてある点にある。
[3] The invention according to claim 3 specifies an embodiment suitable for carrying out the invention according to claim 1 or 2, and its characteristic is that the capacity of the windward portion is changed to the leeward side. The point is that it is smaller than the capacity of the part.

【0019】つまり、この構成によれば、吸熱用熱交換
器において除霜運転時に凝縮器として機能させる風上側
部分の容量を、除霜運転時に冷媒通過を遮断する風下側
部分の容量よりも小さくしてあることで、前述の如き無
駄な熱放散の防止や溜り込み液冷媒の少量化を効果的に
促進することができ、これにより、それら無駄な熱放散
の防止や溜り込み液冷媒の少量化によるエネルギ効率の
向上、ランニングコストの低減、並びに、液バックトラ
ブルの防止を一層効果的に達成することができる。
In other words, according to this configuration, the capacity of the leeward portion functioning as a condenser during the defrosting operation in the heat absorbing heat exchanger is smaller than the capacity of the leeward portion that blocks the passage of the refrigerant during the defrosting operation. By doing so, it is possible to effectively prevent wasteful heat dissipation and reduce the amount of accumulated liquid refrigerant as described above, thereby preventing the useless heat dissipation and reducing the amount of accumulated liquid refrigerant. It is possible to more effectively achieve an improvement in energy efficiency, a reduction in running cost, and a prevention of a liquid back trouble due to the formation of a liquid.

【0020】なお、吸熱用熱交換器での霜付きや雪の付
着堆積は外気通風方向における風上側部分の中でも特に
風上端寄りの箇所で主に生じることから、上記の如く風
上側部分の容量を風下側部分の容量よりある程度小さく
しても、通常の霜付きや雪付着に対しては十分な除霜除
雪効果を得ることができる。
Since the frost and the adhesion of snow in the heat exchanger for heat absorption mainly occur in the windward part in the direction of the outside air, especially in the part near the windward end, the capacity of the windward part is as described above. Even if is slightly smaller than the capacity of the leeward portion, a sufficient defrosting and snow removing effect can be obtained with respect to normal frost and snow adhesion.

【0021】〔4〕請求項4に係る発明は、請求項1〜
3のいずれか1項に係る発明の実施に好適な実施形態を
特定するものであり、その特徴は、前記通常運転におい
て冷媒を前記風上側部分と前記風下側部分とに対しその
順に直列に通過させる構成にしてある点にある。
[4] The invention according to claim 4 is the invention according to claims 1 to
3. A preferred embodiment for carrying out the invention according to any one of (3) and (3), characterized in that in the normal operation, the refrigerant passes in series to the leeward part and the leeward part in this order in series. The point is that it is configured to be.

【0022】つまり、この構成によれば、除霜運転にお
いて吸熱用熱交換器の風下側部分に溜り込んだ凝縮液冷
媒を、通常運転への切り換え後、それまで冷媒非通過で
通常運転への切り換えとともに蒸発器として機能する状
態になる風下側部分を介して圧縮機に吸入させることが
でき、これにより、通常運転において吸熱用熱交換器の
風上側部分と風下側部分とに対し冷媒を並列に通過させ
る形態を採るに比べ、前述の溜り込み液冷媒の少量化と
相俟って、除霜運転から通常運転への復帰の際の液バッ
クトラブルを一層効果的に防止することができる。
That is, according to this configuration, in the defrosting operation, after the condensed liquid refrigerant accumulated in the leeward side of the heat absorbing heat exchanger is switched to the normal operation, the refrigerant is not passed until the normal operation without the refrigerant. The refrigerant can be sucked into the compressor through the leeward portion which becomes a state functioning as an evaporator with the switching, so that the refrigerant is arranged in parallel with the leeward portion and the leeward portion of the heat absorbing heat exchanger in normal operation. Combined with the above-described reduction in the amount of accumulated liquid refrigerant, liquid back trouble at the time of returning from the defrosting operation to the normal operation can be more effectively prevented as compared with the case of adopting the form of passing through the liquid refrigerant.

【0023】[0023]

【発明の実施の形態】図1はヒートポンプの冷媒回路を
示し、1は圧縮機、2は放熱用熱交換器、3は吸熱用熱
交換器、4は四方弁、5は膨張機構、6は四つの逆止弁
6a〜6dをブリッジ回路状に組み合わせた冷媒案内回
路、7は受液器である。また、8は給熱用熱交換器3に
対し吸熱源としての外気OAを通風するファンである。
1 shows a refrigerant circuit of a heat pump, 1 is a compressor, 2 is a heat exchanger for heat dissipation, 3 is a heat exchanger for heat absorption, 4 is a four-way valve, 5 is an expansion mechanism, and 6 is an expansion mechanism. A refrigerant guide circuit in which four check valves 6a to 6d are combined in a bridge circuit shape, and 7 is a liquid receiver. Reference numeral 8 denotes a fan that passes outside air OA as a heat absorption source to the heat supply heat exchanger 3.

【0024】吸熱用熱交換器3は、図4に示す如く、多
数の伝熱フィン9,10に蛇行伝熱管3aを貫通させた
フィンチューブコイルで構成してあり、また、2列の伝
熱管列L1,L2を有する風上側部分3Aと、3列の伝
熱管列L3〜L5を有する風下側部分3Bとに分割し
て、これら風上側部分3Aと風下側部分3Bとをその順
に風上側から並べた状態で隣接させてファン8による外
気通風路Fに配置してある。
As shown in FIG. 4, the heat absorbing heat exchanger 3 is constituted by a fin tube coil having a number of heat transfer fins 9 and 10 penetrating a meandering heat transfer tube 3a. The leeward portion 3A having the rows L1 and L2 and the leeward portion 3B having the three rows of heat transfer tube rows L3 to L5 are divided, and these leeward portions 3A and leeward portions 3B are arranged in this order from the leeward side. They are arranged adjacent to each other in the outside air ventilation path F by the fan 8.

【0025】そして、これら風上側部分3Aと風下側部
分3Bは、図1に示す如く、並列接続状態で冷媒循環路
に介装し、風下側部分3Bに対する冷媒給排路には、風
下側部分3Bに対する冷媒通過を遮断する遮断弁Vを介
装してある。
As shown in FIG. 1, the leeward portion 3A and the leeward portion 3B are interposed in the refrigerant circuit in a parallel connection state, and the leeward portion 3B is provided in the refrigerant supply / discharge passage for the leeward portion 3B. A shutoff valve V for shutting off the passage of the refrigerant to 3B is provided.

【0026】つまり、このヒートポンプでは四方弁4及
び遮断弁Vの切り換え操作により次の通常運転、除霜運
転、強除霜運転を択一的に実施する。
That is, in this heat pump, the following normal operation, defrosting operation, and strong defrosting operation are selectively performed by switching the four-way valve 4 and the shutoff valve V.

【0027】(イ)通常運転 四方弁4を順方向側に切り換え、かつ、遮断弁Vを開い
た状態で、図1に示す如く、冷媒Rを圧縮機1―四方弁
4−放熱用熱交換器2−冷媒案内回路6−受液器7−膨
張機構5−冷媒案内回路6−吸熱用熱交換器3の風上側
部分3Aと風下側部分3Bとの並列接続回路―四方弁4
−圧縮機1の順に循環させ、これにより、吸熱用熱交換
器3の風上側部分3Aと風下側部分3Bとの両方を蒸発
器として機能させて、これら風上側部分3Aと風下側部
分3Bとの両方をファン8による通風外気OAに対し吸
熱作用させ、これに対し、放熱用熱交換器2を凝縮器と
して機能させて放熱用熱交換器2で高温熱を発生させ
る。
(A) Normal operation With the four-way valve 4 switched to the forward direction and the shut-off valve V opened, as shown in FIG. Device 2-refrigerant guide circuit 6-liquid receiver 7-expansion mechanism 5-refrigerant guide circuit 6-parallel connection circuit of leeward side portion 3A and leeward side portion 3B of heat absorbing heat exchanger 3-four-way valve 4
-Circulate in the order of the compressor 1, whereby both the leeward part 3A and the leeward part 3B of the heat exchanger 3 for heat absorption function as an evaporator, and the leeward part 3A and the leeward part 3B Are made to absorb heat to the ventilated outside air OA by the fan 8, while the heat radiating heat exchanger 2 functions as a condenser to generate high-temperature heat in the heat radiating heat exchanger 2.

【0028】(ロ)除霜運転 四方弁4を逆方向側に切り換え、かつ、遮断弁Vを閉じ
て吸熱用熱交換器3の風下側部分3Bに対する冷媒通過
を遮断した状態で、図2に示す如く、冷媒Rを圧縮機1
―四方弁4−吸熱用熱交換器3の風上側部分3A−冷媒
案内回路6−受液器7−膨張機構5−冷媒案内回路6−
放熱用熱交換器2―四方弁4−圧縮機1の順に循環さ
せ、これにより、放熱用熱交換器2を蒸発器として機能
させて放熱用熱交換器2を通常運転時の熱付与対象に対
し吸熱作用させ、これに対し、吸熱用熱交換器3のうち
風上側部分3Aのみを凝縮器として機能させて、この風
上側部分3Aで高温熱を発生させる。
(B) Defrosting operation FIG. 2 shows a state in which the four-way valve 4 is switched to the reverse direction, and the shutoff valve V is closed to block the passage of the refrigerant to the leeward side portion 3B of the heat absorbing heat exchanger 3. As shown in FIG.
-Four-way valve 4-Upwind side portion 3A of heat exchanger 3 for heat absorption-Refrigerant guide circuit 6-Receptor 7-Expansion mechanism 5-Refrigerant guide circuit 6-
The heat radiating heat exchanger 2-the four-way valve 4-the compressor 1 are circulated in this order, whereby the heat radiating heat exchanger 2 functions as an evaporator, and the heat radiating heat exchanger 2 becomes a heat application target during normal operation. On the other hand, heat is absorbed, and only the windward portion 3A of the heat absorbing heat exchanger 3 functions as a condenser to generate high-temperature heat in the windward portion 3A.

【0029】すなわち、吸熱用熱交換器3を外気OAに
対して吸熱作用させる通常運転では、外気条件によって
外気中水分による霜付きや外気に含まれる雪の付着堆積
が吸熱用熱交換器3(特にその風上端寄りの部分)で生
じるが、このとき、この除霜運転を実施することで吸熱
用熱交換器3における付着霜や付着雪を風上側部分3A
での発生熱により融解除去し、その上で再び通常運転に
復帰する。
That is, in normal operation in which the heat absorbing heat exchanger 3 absorbs heat to the outside air OA, frost due to moisture in the outside air and adhesion of snow contained in the outside air due to outside air conditions cause heat absorption heat exchanger 3 ( In particular, the defrosting operation is performed at the wind end portion, and at this time, by performing the defrosting operation, the adhering frost and the adhering snow in the heat absorbing heat exchanger 3 are reduced to the windward portion 3A.
Is melted and removed by the heat generated in step (1), and then returns to normal operation.

【0030】(ハ)強除霜運転 四方弁4を逆方向側に切り換え、かつ、遮断弁Vを開い
た状態で、図3に示す如く、冷媒Rを圧縮機1―四方弁
4−吸熱用熱交換器3の風上側部分3Aと風下側部分3
Bとの並列接続回路−冷媒案内回路6−受液器7−膨張
機構5−冷媒案内回路6−放熱用熱交換器2―四方弁4
−圧縮機1の順に循環させ、これにより、放熱用熱交換
器2を蒸発器として機能させて放熱用熱交換器2を通常
運転時の熱付与対象に対し吸熱作用させ、これに対し、
吸熱用熱交換器3の風上側部分3Aと風下側部分3Bと
の両方を凝縮器として機能させて、これら風上側部分3
Aと風下側部分3Bとの両方で高温熱を発生させる。
(C) Strong defrosting operation With the four-way valve 4 switched to the opposite direction and the shut-off valve V opened, as shown in FIG. Upwind portion 3A and downwind portion 3 of heat exchanger 3
Parallel connection circuit with B-Refrigerant guide circuit 6-Receiver 7-Expansion mechanism 5-Refrigerant guide circuit 6-Heat exchanger for heat radiation 2-Four-way valve 4
-Circulate in the order of the compressor 1, thereby causing the heat-radiating heat exchanger 2 to function as an evaporator, causing the heat-radiating heat exchanger 2 to absorb heat to the heat application target during normal operation.
Both the leeward portion 3A and the leeward portion 3B of the endothermic heat exchanger 3 function as condensers,
High-temperature heat is generated in both A and the leeward portion 3B.

【0031】すなわち、前記の除霜運転を実施しても、
そのときの外気条件などにより付着霜や付着雪を融解除
去し切れず霜付きが吸熱用熱交換器の風下側に進行した
り、風上側部分で融解させた霜や雪の融解水が風下側に
移動して再氷結するといった状況になったとき、この強
除霜運転の実施することで吸熱用熱交換器3の風上側部
分3A及び風下側部分3Bにおける付着霜や付着雪をそ
れら風上側部分3A及び風下側部分3Bでの発生熱によ
り融解除去し、その上で再び通常運転に復帰する。
That is, even if the above-mentioned defrosting operation is performed,
Depending on the outside air conditions at that time, the attached frost and attached snow cannot be melted and removed, and the frost will continue to the leeward side of the heat-absorbing heat exchanger. When a situation such as re-icing occurs, the strong defrosting operation is carried out to remove the attached frost and attached snow on the windward side portion 3A and the leeward side portion 3B of the heat exchanger 3 for heat absorption. The heat is removed by the heat generated in the portion 3A and the leeward portion 3B, and then the operation is returned to the normal operation.

【0032】なお、強除霜運転は、上記の如く吸熱用熱
交換器3における付着霜や付着雪の融解除去を目的とし
て実施する他、放熱用熱交換器2での冷熱発生ないし吸
熱用熱交換器3での外気加熱を目的として実施する場合
もある。
The strong defrosting operation is carried out for the purpose of melting and removing adhering frost and adhering snow in the heat absorbing heat exchanger 3 as described above. In some cases, it is performed for the purpose of heating the outside air in the exchanger 3.

【0033】〔別実施形態〕次に本発明の別の実施形態
を列記する。
[Another Embodiment] Next, another embodiment of the present invention will be listed.

【0034】前述の実施形態では、通常運転において吸
熱用熱交換器3の風上側部分3Aと風下側部分3Bとに
対し冷媒Rを並列に通過させる例を示したが、これに代
え、通常運転において吸熱用熱交換器3の風上側部分3
Aと風下側部分3Bとに対し冷媒Rを直列に通過させる
ようにしてもよく、また、この直列通過を採用する場
合、冷媒Rを風上側部分3Aから風下側部分3Bの順の
通過させるようにすれば、除霜運転から通常運転への復
帰時における液バックトラブルを一層効果的に防止する
ことができる。
In the above-described embodiment, an example has been shown in which the refrigerant R is passed in parallel to the leeward portion 3A and the leeward portion 3B of the heat absorbing heat exchanger 3 in normal operation. Windward part 3 of the heat exchanger 3 for heat absorption
The refrigerant R may be passed in series to the A and the leeward portion 3B, and when this serial passage is adopted, the refrigerant R is passed from the leeward portion 3A to the leeward portion 3B in this order. By doing so, it is possible to more effectively prevent the liquid back trouble when returning from the defrosting operation to the normal operation.

【0035】吸熱用熱交換器3における風上側部分3A
と風下側部分3Bとの容量比(換言すれば伝熱管列の列
数比)は前述の実施形態で示した容量比に限らず種々の
変更が可能であり、また、除霜運転から通常運転への復
帰時における液バックトラブルを防止する上では、風上
側部分3Aの容量を風下側部分3Bの容量よりも小さく
するのが望ましいが、場合によっては、風上側部分3A
の容量を風下側部分3Bの容量よりも大きくしてもよ
い。
Upwind part 3A of heat exchanger 3 for heat absorption
The capacity ratio (in other words, the row number ratio of the heat transfer tube rows) between the leeward portion 3B and the leeward portion 3B is not limited to the capacity ratio shown in the above-described embodiment, and various changes are possible. In order to prevent the liquid back trouble at the time of return to the upstream side, it is desirable to make the capacity of the leeward portion 3A smaller than the capacity of the leeward portion 3B.
May be larger than the capacity of the leeward portion 3B.

【0036】前述の実施形態では、吸熱用熱交換器3を
フィンチューブコイルで構成することにおいて、風上側
部分3Aの伝熱フィン9と風下側部分3Bの伝熱フィン
10との別体にし、これにより、除霜運転において風上
側部分3Aでの発生熱が風下側部分3Bへの伝熱により
放散するのを阻止して、付着霜や付着雪の融解除去に寄
与しない無駄な熱放散の防止効果を高めるようにした
が、場合によっては、風上側部分3Aと風下側部分3B
とにわたる共通の伝熱フィンを設ける構造にしてもよ
く、その他、風上側部分3Aと風下側部分3Bとに分割
する吸熱用熱交換器3の具体的な構造及び熱交換形式は
種々の構成変更が可能である。
In the above-described embodiment, when the heat absorbing heat exchanger 3 is constituted by a fin tube coil, the heat transfer fins 9 of the windward portion 3A and the heat transfer fins 10 of the leeward portion 3B are separated. This prevents the heat generated in the leeward portion 3A from being dissipated by the heat transfer to the leeward portion 3B in the defrosting operation, thereby preventing wasteful heat dissipation that does not contribute to melting and removing attached frost and attached snow. The effect was enhanced, but in some cases, the leeward part 3A and the leeward part 3B
In addition, the specific structure and heat exchange type of the heat absorbing heat exchanger 3 divided into the windward portion 3A and the leeward portion 3B may be variously changed. Is possible.

【0037】本発明による蒸気圧縮式ヒートポンプは、
空調や融雪あるいは給湯や物品加熱など各種分野におい
て種々の用途に使用できる。
The vapor compression heat pump according to the present invention comprises:
It can be used for various applications in various fields such as air conditioning, snow melting, hot water supply and article heating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通常運転の冷媒流れを示す冷媒回路図FIG. 1 is a refrigerant circuit diagram showing a refrigerant flow in a normal operation.

【図2】除霜運転の冷媒流れを示す冷媒回路図FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow in a defrosting operation.

【図3】強除霜運転の冷媒流れを示す冷媒回路図FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow in a strong defrosting operation.

【図4】吸熱用熱交換器の一部切欠斜視図FIG. 4 is a partially cutaway perspective view of a heat exchanger for heat absorption.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱用熱交換器 3 吸熱用熱交換器 3A 風上側部分 3B 風下側部分 5 膨張機構 F 外気通風路 OA 外気 R 冷媒 DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger for heat radiation 3 Heat exchanger for heat absorption 3A Upwind part 3B Downwind part 5 Expansion mechanism F Outside air ventilation path OA Outside air R Refrigerant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器として外気に対し吸熱作用させる
吸熱用熱交換器を、外気通風路において風上側に位置さ
せる風上側部分と風下側に位置させる風下側部分とに分
割し、 冷媒を圧縮機―放熱用熱交換器―膨張機構―吸熱用熱交
換器の風上側部分と風下側部分との並列接続回路又は直
列接続回路―圧縮機の順に循環させる通常運転と、 吸熱用熱交換器の風下側部分に対する冷媒通過を遮断し
た状態で、冷媒を圧縮機―吸熱用熱交換器の風上側部分
―膨張機構―放熱用熱交換器―圧縮機の順に循環させる
除霜運転との切り換えが可能な構成にしてある蒸気圧縮
式ヒートポンプ。
1. A heat-absorbing heat exchanger acting as an evaporator for absorbing heat to outside air is divided into a windward portion located on the leeward side and a leeward portion located on the leeward side in the outside air ventilation path, and compresses the refrigerant. Heat exchanger for heat dissipation-Expansion mechanism-Parallel connection circuit or series connection circuit of the leeward and leeward parts of the heat exchanger for heat absorption-Normal operation circulating in the order of the compressor and the heat exchanger for heat absorption Defrosting operation is possible, in which the refrigerant is circulated in the order of compressor-heat absorption heat exchanger upwind-expansion mechanism-radiation heat exchanger-compressor in the state of blocking the passage of refrigerant to the leeward side. A vapor compression heat pump with a simple configuration.
【請求項2】 冷媒を圧縮機―吸熱用熱交換器の風上側
部分と風下側部分との並列接続回路―膨張機構―放熱用
熱交換器―圧縮機の順に循環させる強除霜運転の切り換
え実施が可能な構成にしてある請求項1記載の蒸気圧縮
式ヒートポンプ。
2. Switching between strong defrosting operation in which a refrigerant is circulated in the order of a compressor, a parallel connection circuit of an upwind part and a leeward part of a heat exchanger for heat absorption, an expansion mechanism, a heat exchanger for heat radiation, and a compressor. 2. The vapor compression heat pump according to claim 1, wherein the heat pump is configured to be operable.
【請求項3】 前記風上側部分の容量を前記風下側部分
の容量よりも小さくしてある請求項1又は2記載の蒸気
圧縮式ヒートポンプ。
3. The vapor compression heat pump according to claim 1, wherein the capacity of the leeward portion is smaller than the capacity of the leeward portion.
【請求項4】 前記通常運転において冷媒を前記風上側
部分と前記風下側部分とに対しその順に直列に通過させ
る構成にしてある請求項1〜3のいずれか1項に記載の
蒸気圧縮式ヒートポンプ。
4. The vapor compression heat pump according to claim 1, wherein in the normal operation, the refrigerant is passed in series to the leeward portion and the leeward portion in this order. .
JP2001090179A 2001-03-27 2001-03-27 Vapor compression type heat pump Pending JP2002286332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090179A JP2002286332A (en) 2001-03-27 2001-03-27 Vapor compression type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090179A JP2002286332A (en) 2001-03-27 2001-03-27 Vapor compression type heat pump

Publications (1)

Publication Number Publication Date
JP2002286332A true JP2002286332A (en) 2002-10-03

Family

ID=18945001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090179A Pending JP2002286332A (en) 2001-03-27 2001-03-27 Vapor compression type heat pump

Country Status (1)

Country Link
JP (1) JP2002286332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130090185A (en) * 2012-02-03 2013-08-13 엘지전자 주식회사 Outdoor heat exchanger
WO2020100768A1 (en) * 2018-11-13 2020-05-22 株式会社前川製作所 Heat exchanger and method for defrosting heat exchanger
WO2020100766A1 (en) * 2018-11-13 2020-05-22 株式会社前川製作所 Heat exchanger and heat exchanger defrosting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130090185A (en) * 2012-02-03 2013-08-13 엘지전자 주식회사 Outdoor heat exchanger
KR101872783B1 (en) 2012-02-03 2018-06-29 엘지전자 주식회사 Outdoor heat exchanger
WO2020100768A1 (en) * 2018-11-13 2020-05-22 株式会社前川製作所 Heat exchanger and method for defrosting heat exchanger
WO2020100766A1 (en) * 2018-11-13 2020-05-22 株式会社前川製作所 Heat exchanger and heat exchanger defrosting method
JP2020079681A (en) * 2018-11-13 2020-05-28 株式会社前川製作所 Heat exchanger and heat exchanger defrosting method
JP2020079677A (en) * 2018-11-13 2020-05-28 株式会社前川製作所 Heat exchanger and defrost method for the same
JP7208770B2 (en) 2018-11-13 2023-01-19 株式会社前川製作所 Heat exchanger and heat exchanger defrosting method
JP7208768B2 (en) 2018-11-13 2023-01-19 株式会社前川製作所 Heat exchanger and heat exchanger defrosting method

Similar Documents

Publication Publication Date Title
JP5619295B2 (en) Refrigeration cycle equipment
JP4428341B2 (en) Refrigeration cycle equipment
JP2005172329A (en) Cooling storage
JPH03117866A (en) Heat pump type refrigerating cycle
JP2009210174A (en) Air conditioner
KR20090102478A (en) Heat pump system for vehicles
KR100496895B1 (en) Heat pump type cooling and heating by subterranean heat
JP2011174662A (en) Air heat source heat pump water heater/air conditioner
JP2002286332A (en) Vapor compression type heat pump
JP2002286317A (en) Vapor compression heat pump
JP2004271113A (en) Heat exchanger
JP2002333242A (en) Vapor compression heat pump
JP2008304150A (en) Heat pump type air conditioner
JP3650358B2 (en) Air conditioner
JP2006170536A (en) Vapor compression type heat pump
KR100344787B1 (en) Heat Pump
JP5229076B2 (en) Refrigeration equipment
JPH11248385A (en) Cross fin tube type heat exchanger
JP2007187355A (en) Heat exchanger and air conditioner using it
JP2003202135A (en) Regenerative air-conditioning device
JP2008117034A (en) Cooling/warming cycle and vending machine using the same
JP7391223B2 (en) Refrigeration equipment outdoor unit and refrigeration equipment equipped with the same
WO2016199671A1 (en) Refrigeration system
JP2009281659A (en) Refrigerating cycle device
JP2002022307A (en) Air conditioner