JP2008304150A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner Download PDF

Info

Publication number
JP2008304150A
JP2008304150A JP2007153414A JP2007153414A JP2008304150A JP 2008304150 A JP2008304150 A JP 2008304150A JP 2007153414 A JP2007153414 A JP 2007153414A JP 2007153414 A JP2007153414 A JP 2007153414A JP 2008304150 A JP2008304150 A JP 2008304150A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
heat
port
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007153414A
Other languages
Japanese (ja)
Inventor
Masateru Saito
真輝 斉藤
Yukio Miyajima
幸夫 宮島
Shozo Tokuda
昌三 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2007153414A priority Critical patent/JP2008304150A/en
Publication of JP2008304150A publication Critical patent/JP2008304150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type air conditioner capable of quickly draining drain water dripped in a lower casing to an external part without staying in heating operation in winter. <P>SOLUTION: This heat pump type air conditioner has whole heat exchangers 4 straddling an air supply flow passage 2 and an exhaust flow passage 3 between the air supply flow passage 2 having an outside air introducing port 2a and an air supply port 2b to an air-conditioning object chamber and the exhaust flow passage 3 having an air circulating port 3a from the air-conditioning object chamber and an exhaust port 3b to the external part, and performs cooling operation of the air-conditioning object chamber by making a refrigerant from a compressor 12 flow in order of a first exchanger 6 and a second heat exchanger 10 to the first heat exchanger 6 arranged on the downstream side of the air supply flow passage 2 of the whole heat exchangers 4 and the second heat exchanger 10 arranged on the downstream side of the exhaust flow passage 3, and is provided with the lower casing 23 arranged under the second heat exchanger 10, and a tubular coil part 15 storing a refrigerant liquid condensed by the first heat exchanger 6 in heating operation in the lower casing 23 and warming up the inside of the lower casing 23 by using remaining heat of the refrigerant liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒回路の操作により冷房と暖房を切り替えて行うことができるヒートポンプ式空気調和装置に関するものであり、特に、冬季の暖房運転時に、下部ケーシング内に滴下されたドレン水を滞留させることなく速やかに外部へ排出することができるようにしたヒートポンプ式空気調和装置に関する。   The present invention relates to a heat pump type air conditioner capable of switching between cooling and heating by operating a refrigerant circuit, and in particular, retaining drain water dripped in a lower casing during a heating operation in winter. The present invention relates to a heat pump type air conditioner that can be quickly discharged to the outside.

従来、導入した外気を空気調和して被空調室に送り、該被空調室からの還気を外部に排出する外気処理タイプの空気調和装置においては、導入外気を空気調和して被空調室に送る給気流路と、該被空調室からの還気を外部に排出する排気流路との間にこれら2つの流路を跨ぐ全熱交換器を設け、この全熱交換器による外気と還気との熱交換により還気中の残留熱エネルギを回収するとともに、前記2つの流路にそれぞれヒートポンプ回路の一方の熱交換器を配してさらなる廃熱回収を行い、省エネルギ化を図るようにしたものが広く知られている(例えば、特許文献1参照)。
特開平7−310964号公報。
Conventionally, in an outside air processing type air conditioner that air-conditions introduced outside air to the air-conditioned room and discharges return air from the air-conditioned room to the outside, the introduced outside air is air-conditioned to the air-conditioned room. A total heat exchanger straddling these two flow paths is provided between the air supply flow path to be sent and the exhaust flow path for discharging the return air from the air-conditioned chamber to the outside. The remaining heat energy in the return air is recovered by heat exchange with the heat exchanger, and one of the heat exchangers of the heat pump circuit is arranged in each of the two flow paths to further recover waste heat, thereby saving energy. This is widely known (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 7-310964.

ところで、特許文献1に示すような空気調和装置においては、暖房運転時に排気流路内に設けた熱交換器の表面に水滴(以下、「ドレン水」という)が付着し、これが滴下する。このため、ドレン水を受ける下部ケーシングを熱交換器の下側に設け、ドレン水を下部ケーシングで受けた後、外部に排出する構造になっている。しかし、下部ケーシングに滴下されたドレン水は、冬季には凍結して熱交換器の下部に滞留することがあり、問題とされていた。   By the way, in an air conditioner as shown in Patent Document 1, water droplets (hereinafter referred to as “drain water”) adhere to the surface of the heat exchanger provided in the exhaust passage during heating operation, and this drops. For this reason, the lower casing which receives drain water is provided in the lower side of a heat exchanger, and after receiving drain water with a lower casing, it has the structure discharged | emitted outside. However, the drain water dropped on the lower casing may freeze in the winter and stay in the lower part of the heat exchanger, which has been a problem.

そこで、冬季の暖房運転時に、下部ケーシングに滴下されたドレン水を、下部ケーシングに滞留させずに外部へ速やかに排出することができるようにしたヒートポンプ式空気調和装置を提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, in order to provide a heat pump type air conditioner that can quickly drain the drain water dropped on the lower casing to the outside without staying in the lower casing during the heating operation in winter. A technical problem arises, and the present invention aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、外気導入口と被空調室への給気口とを有する給気流路と、被空調室からの還気口と外部への排気口とを有する排気流路との間に、これら給気流路と排気流路を跨ぐ全熱交換器を備え、前記給気流路における全熱交換器の下流側に設けた第1熱交換器と、前記排気流路における全熱交換器の下流側に設けた第2熱交換器とに対し、圧縮機からの冷媒を前記第1熱交換器と第2熱交換器の順またはその逆に流通せしめて被空調室に対する冷房運転と暖房運転を切り替えて空気調和を行うように構成したヒートポンプ式空気調和装置において、前記第2熱交換器の下部のチューブを暖房運転時に前記第1熱交換器で凝縮した冷媒液を貯えるとともに該冷媒液の余熱を用いて下部ケーシングを温める機能を備えるヒートポンプ式空気調和装置を提供する。   The present invention has been proposed to achieve the above object, and the invention according to claim 1 is characterized in that an air supply passage having an outside air introduction port and an air supply port to the air-conditioned room, A total heat exchanger is provided between the return air port and the exhaust channel having an exhaust port to the outside. The total heat exchanger straddles the supply channel and the exhaust channel, and is provided downstream of the total heat exchanger in the supply channel. For the first heat exchanger provided and the second heat exchanger provided downstream of the total heat exchanger in the exhaust passage, the refrigerant from the compressor is exchanged with the first heat exchanger and the second heat exchanger. In a heat pump air conditioner configured to perform air conditioning by switching between cooling operation and heating operation with respect to the air-conditioned room by circulating in the order of the heat exchangers, heating operation is performed on the lower tube of the second heat exchanger. Sometimes the refrigerant liquid condensed in the first heat exchanger is stored and the residual heat of the refrigerant liquid is stored. A heat pump type air conditioner having a function of using and warming a lower casing is provided.

この構成によれば、冷房運転・暖房運転時の各熱交換器内の冷媒量の変化を、冷媒液の一部をチューブ状コイル部に貯えることで吸収することができる。また、チューブ状コイル部内の冷媒液は、通常20〜25℃程度に温められているので、この冷媒液の余熱によりチューブ状コイル部の外表面も温められる。したがって、暖房運転時に下部ケーシングに滴下されたドレン水は、チューブ状コイル部により温められて凍結することなく外部に
速やかに排出できる。
According to this structure, the change of the refrigerant | coolant amount in each heat exchanger at the time of air_conditionaing | cooling operation / heating operation can be absorbed by storing a part of refrigerant liquid in a tubular coil part. Moreover, since the refrigerant | coolant liquid in a tubular coil part is normally warmed at about 20-25 degreeC, the outer surface of a tubular coil part is also warmed by the residual heat of this refrigerant | coolant liquid. Therefore, the drain water dropped on the lower casing during the heating operation can be quickly discharged to the outside without being heated and frozen by the tubular coil portion.

請求項1に記載の発明は、暖房運転時に下部ケーシングに滴下されたドレン水は、凍結して滞留することなく外部へスムーズに排出される。また、冷房運転・暖房運転時の各熱交換器内の冷媒量の変化を、冷媒液の一部をチューブ状コイル部に貯えることで吸収することができるので、冷媒量の変化を吸収するレシーバーが不要になる。   According to the first aspect of the present invention, the drain water dropped on the lower casing during the heating operation is smoothly discharged to the outside without freezing and staying. In addition, a change in the amount of refrigerant in each heat exchanger during cooling operation / heating operation can be absorbed by storing a part of the refrigerant liquid in the tube-shaped coil part, so a receiver that absorbs the change in the refrigerant amount Is no longer necessary.

冬季の暖房運転時に、下部ケーシングに滴下されたドレン水を滞留させずに外部に速やかに排出することができるようにしたヒートポンプ式空気調和装置を提供するという目的を達成するために、外気導入口と被空調室への給気口とを有する給気流路と、被空調室からの還気口と外部への排気口とを有する排気流路との間に、これら給気流路と排気流路を跨ぐ全熱交換器を備え、前記給気流路における全熱交換器の下流側に設けた第1熱交換器と、前記排気流路における全熱交換器の下流側に設けた第2熱交換器とに対し、圧縮機からの冷媒を前記第1熱交換器と第2熱交換器の順またはその逆に流通せしめて被空調室に対する冷房運転と暖房運転を切り替えて空気調和を行うように構成したヒートポンプ式空気調和装置において、前記第2熱交換器の下部チューブを暖房運転時に前記第1熱交換器で凝縮した冷媒液を貯えるとともに該冷媒液の余熱を用いて下部ケーシングを温める機能を備えるヒートポンプ式空気調和装置としたことにより実現した。   In order to achieve the object of providing a heat pump type air conditioner that can quickly discharge the drain water dripped onto the lower casing to the outside during the heating operation in winter, Between the air supply passage having the air supply port to the air-conditioned room and the exhaust flow passage having the return air outlet from the air-conditioned room and the exhaust outlet to the outside. A first heat exchanger provided on the downstream side of the total heat exchanger in the air supply flow path, and a second heat exchange provided on the downstream side of the total heat exchanger in the exhaust flow path. The refrigerant from the compressor is circulated in the order of the first heat exchanger and the second heat exchanger or vice versa, and the air conditioning is performed by switching between the cooling operation and the heating operation for the air-conditioned room. In the heat pump type air conditioner configured, the second heat This was realized by making the lower tube of the exchanger a heat pump type air conditioner having a function of storing the refrigerant liquid condensed in the first heat exchanger during heating operation and warming the lower casing using the residual heat of the refrigerant liquid.

以下、本発明のヒートポンプ式空気調和装置について、好適な実施例をあげて説明する。   Hereinafter, the heat pump type air conditioner of the present invention will be described with reference to preferred embodiments.

図1は、本発明の実施の形態に係るヒートポンプ式空気調和装置の構成を示す系統図である。図1において、ケーシング1内には、外気導入口2aから被空調室(図示省略)への給気口2bに至る給気流路2と、被空調室からの還気を導入する還気口3aから外部への排気口3bに至る排気流路3とが設けられていて、給気流路2と排気流路3との間には、これら2つの流路を跨ぐ全熱交換器4を備えている。   FIG. 1 is a system diagram showing a configuration of a heat pump type air conditioner according to an embodiment of the present invention. In FIG. 1, in a casing 1, an air supply passage 2 extending from an outside air introduction port 2 a to an air supply port 2 b to an air-conditioned room (not shown), and a return air port 3 a for introducing return air from the air-conditioned room. And an exhaust passage 3 extending from the exhaust port 3b to the outside, and a total heat exchanger 4 straddling the two passages is provided between the supply passage 2 and the exhaust passage 3. Yes.

前記給気流路2には、外気口2a側から給気口2bに向かって順に、フィルタ5、前記全熱交換器4、第1熱交換器6、加湿器7、送風機8を設けてある。なお、フィルタ5は、例えばプレフィルタ5aと中性能フィルタ5bとの2段構成のものとしてある。   In the air supply flow path 2, a filter 5, the total heat exchanger 4, the first heat exchanger 6, a humidifier 7, and a blower 8 are provided in order from the outside air port 2 a toward the air supply port 2 b. The filter 5 has a two-stage configuration, for example, a pre-filter 5a and a medium performance filter 5b.

他方、前記排気流路3には、還気口3aから排気口3bに向かって順に、フィルタ9、前記全熱交換器4、第2熱交換器10、送風機11を設けてある。   On the other hand, the exhaust passage 3 is provided with a filter 9, the total heat exchanger 4, the second heat exchanger 10, and the blower 11 in order from the return air port 3 a to the exhaust port 3 b.

また、排気流路3におけるフィルタ9と全熱交換器4との間には、冷媒回路の圧縮機12を設けてある。該圧縮機12からの冷媒は、前記第1熱交換器6と第2熱交換器10をこの順に、またはその逆となるように四方弁13により切替えて供給され、アキュムレータ14を介して圧縮機12に戻される構成となっておいる。すなわち、上記四方弁13の切替えにより、冷房運転と暖房運転が切替えできるようになっている。   In addition, a compressor 12 of a refrigerant circuit is provided between the filter 9 and the total heat exchanger 4 in the exhaust flow path 3. The refrigerant from the compressor 12 is supplied by switching the first heat exchanger 6 and the second heat exchanger 10 by a four-way valve 13 in this order or vice versa, and the compressor is connected via an accumulator 14. The configuration is returned to 12. That is, the cooling operation and the heating operation can be switched by switching the four-way valve 13.

さらに、排気流路3における第2熱交換器10の下部には、レシーバー兼用のチューブ状コイル部15を設けている。該チューブ状コイル部15は、暖房運転時に第1熱交換器6で凝縮された冷媒液が通って第2熱交換器10に送られる冷媒液の通路を形成する。また、チューブ状コイル部15の内部には冷媒液の一部を貯えることができ、冷房運転・暖房運転時における各熱交換器6,10内の冷媒量の変化を、該チューブ状コイル部15内に冷媒液を貯えることで吸収できるようになっている。   Further, a tube-shaped coil portion 15 also serving as a receiver is provided in the lower portion of the second heat exchanger 10 in the exhaust flow path 3. The tubular coil portion 15 forms a refrigerant liquid passage through which the refrigerant liquid condensed in the first heat exchanger 6 is sent to the second heat exchanger 10 during the heating operation. Further, a part of the refrigerant liquid can be stored inside the tubular coil portion 15, and changes in the amount of refrigerant in each of the heat exchangers 6 and 10 during the cooling operation / heating operation are represented by the tubular coil portion 15. It can be absorbed by storing the refrigerant liquid inside.

また、チューブ状コイル部15の直ぐ下側には、第2熱交換器10の表面に付着し、かつ滴下して来るドレン水を受ける下部ケーシング23を設けている。この下部ケーシング23の内部は、チューブ状コイル部15内に貯えられた冷媒液の余熱で温められ、冬季等に下部ケーシング23内でドレン水が凍結するのを防ぐことができるようになっている。   A lower casing 23 that receives the drain water that adheres to the surface of the second heat exchanger 10 and drops is provided immediately below the tubular coil portion 15. The inside of the lower casing 23 is warmed by the residual heat of the refrigerant liquid stored in the tube-shaped coil portion 15 so that the drain water can be prevented from freezing in the lower casing 23 in winter. .

なお、図1中において符号19,20はそれぞれ第1熱交換器6,第2熱交換器10用の各膨張弁を示し、21,22はそれぞれ第1熱交換器6,第2熱交換器10用の逆止弁を示している。また、第2熱交換器10用の膨張弁20及び逆止弁22は、冷房運転時に圧縮機12から送り出される冷媒液が、チューブ状コイル部15内を通らずに第2熱交換器10に直接送られ、さらに第2熱交換器10から逆止弁22を通って第1熱交換器6に送られるバイパス流路手段24を形成している。   In FIG. 1, reference numerals 19 and 20 denote expansion valves for the first heat exchanger 6 and the second heat exchanger 10, respectively, and 21 and 22 denote the first heat exchanger 6 and the second heat exchanger, respectively. A check valve for 10 is shown. In addition, the expansion valve 20 and the check valve 22 for the second heat exchanger 10 are configured so that the refrigerant liquid sent out from the compressor 12 during the cooling operation does not pass through the tubular coil portion 15 and enters the second heat exchanger 10. A bypass passage means 24 is formed which is directly sent and further sent from the second heat exchanger 10 to the first heat exchanger 6 through the check valve 22.

次に、上述した構成のヒートポンプ式空気調和装置による作用について説明する。まず、四方弁13の切替えによる冷房運転時における冷媒の流れと暖房運転時における冷媒の流れについて説明する。   Next, the effect | action by the heat pump type air conditioning apparatus of the structure mentioned above is demonstrated. First, the refrigerant flow during the cooling operation by switching the four-way valve 13 and the refrigerant flow during the heating operation will be described.

冷房運転時には、図1中に実線矢印で示されるように、圧縮機12からの冷媒が四方弁13を介して排気側熱交換器である第2熱交換器10に送られ、排気流路3を流過する空気との熱交換により凝縮される。ここでの冷媒は、チューブ状コイル部15内は通らずに、第2熱交換器10から逆止弁22を通って給気側熱交換器である第1熱交換器6に送られる。また、該第1熱交換器6において蒸発させられて、給気流路2内を流過する空気を冷却した後、アキュムレータ14に送られ、該アキュムレータ14にて気液分離されて圧縮機12に戻される。なお、第1熱交換器6にて冷却された空気は被空調室に送られる。   During the cooling operation, as indicated by a solid arrow in FIG. 1, the refrigerant from the compressor 12 is sent to the second heat exchanger 10 that is the exhaust side heat exchanger via the four-way valve 13, and the exhaust passage 3 It is condensed by heat exchange with air flowing through. The refrigerant here does not pass through the tubular coil portion 15, but is sent from the second heat exchanger 10 through the check valve 22 to the first heat exchanger 6, which is a supply-side heat exchanger. Further, after the air that has been evaporated in the first heat exchanger 6 and flows through the air supply passage 2 is cooled, the air is sent to the accumulator 14, where it is gas-liquid separated by the accumulator 14. Returned. The air cooled by the first heat exchanger 6 is sent to the air-conditioned room.

他方、暖房運転時には、図1中に破線矢印で示されるように、圧縮機12からの冷媒が四方弁13を介して第1熱交換器6に送られ、給気流路2を流過する空気との熱交換によって凝縮して給気流路2内の空気を加熱し、凝縮した冷媒は第2熱交換器10に送られる。   On the other hand, during the heating operation, as indicated by broken line arrows in FIG. 1, the refrigerant from the compressor 12 is sent to the first heat exchanger 6 through the four-way valve 13 and flows through the air supply passage 2. The air is condensed by heat exchange with the air to heat the air in the air supply passage 2, and the condensed refrigerant is sent to the second heat exchanger 10.

第2交換器10に送られた冷媒は、チューブ状コイル部15内を通り、このチューブ状コイル部15内に一度貯えられた後、第2熱交換器10に入る。そして、該第2熱交換器10において蒸発させられて、排気流路3内を流過する空気の熱を奪い、その後アキュムレータ14にて気液分離されて圧縮機12に戻される。なお、第1熱交換器6にて加熱された空気は被空調室に送られる。   The refrigerant sent to the second exchanger 10 passes through the tubular coil portion 15, and once stored in the tubular coil portion 15, enters the second heat exchanger 10. Then, it is evaporated in the second heat exchanger 10 to take away the heat of the air flowing through the exhaust passage 3, and is then separated into gas and liquid by the accumulator 14 and returned to the compressor 12. In addition, the air heated with the 1st heat exchanger 6 is sent to an air-conditioned room.

また、暖房運転時、チューブ状コイル部15内を流れる冷媒液は、通常20〜25℃程度に温められているので、この冷媒液が持つ余熱によりチューブ状コイル部15の外表面も温められる。したがって、暖房運転時に下部ケーシング23内に滴下されたドレン水は、チューブ状コイル部15により温められて凍結することなく外部に排出される。   Further, during the heating operation, the refrigerant liquid flowing in the tubular coil portion 15 is normally warmed to about 20 to 25 ° C., so that the outer surface of the tubular coil portion 15 is also warmed by the residual heat of the refrigerant liquid. Therefore, the drain water dripped in the lower casing 23 during the heating operation is warmed by the tubular coil portion 15 and discharged outside without freezing.

次に、ヒートポンプ式空気調和装置全体の作用について説明する。冬季の暖房暖運転時においては、外気導入口2aからの空気がフィルタ5を経て全熱交換器4を流過し、排気流路3内の空気と熱交換した後、第1熱交換器6及び加湿器7に送られる。暖房運転時においては、この第1熱交換器6が凝縮器として作用するので、給気流路2内の空気は第1熱交換器6において所要の温度に加温され、送風機8の駆動により給気口2bから送出され、該給気口2bに接続されたダクト等(図示省略)の送気手段によって被空調室に送られる。   Next, the effect | action of the whole heat pump type air conditioning apparatus is demonstrated. During the heating and warming operation in winter, the air from the outside air inlet 2a flows through the total heat exchanger 4 through the filter 5, exchanges heat with the air in the exhaust passage 3, and then the first heat exchanger 6 And sent to the humidifier 7. During the heating operation, the first heat exchanger 6 acts as a condenser, so that the air in the air supply passage 2 is heated to a required temperature in the first heat exchanger 6 and is supplied by driving the blower 8. The air is sent from the air inlet 2b and sent to the air-conditioned room by air supply means such as a duct (not shown) connected to the air inlet 2b.

そして、被空調室からダクト等の送気手段によって戻された還気は、還気口3aから排
気流路3内に流入してフィルタ9を通過し、全熱交換器4に送られて給気流路2内の空気と熱交換し、第2熱交換器10にて冷媒の蒸発熱により冷却され、送風機11の駆動により排気口3bから外部に排出される。
The return air returned from the air-conditioned room by the air supply means such as a duct flows into the exhaust passage 3 from the return air port 3a, passes through the filter 9, and is sent to the total heat exchanger 4 to be supplied. Heat is exchanged with the air in the air flow path 2, the second heat exchanger 10 cools the refrigerant by the heat of evaporation of the refrigerant, and the fan 11 is driven to discharge the air from the exhaust port 3 b.

他方、夏季の冷運転時においては、外気導入口2aからの空気がフィルタ5を経て全熱交換器4を流過し、排気流路3内の空気と熱交換した後、第1熱交換器6に送られる。冷房運転時においては、この第1熱交換器6が蒸発器として作用するので、給気流路2内の空気は第1熱交換器6において所要の温度に冷却され、送風機8の駆動により給気口2bから送出され、給気口2bに接続されたダクト等(図示省略)の送気手段によって被空調室に送られる。   On the other hand, during the cold operation in summer, the air from the outside air inlet 2a flows through the total heat exchanger 4 through the filter 5 and exchanges heat with the air in the exhaust passage 3, and then the first heat exchanger. 6 is sent. During the cooling operation, the first heat exchanger 6 acts as an evaporator, so that the air in the air supply passage 2 is cooled to a required temperature in the first heat exchanger 6 and is supplied by driving the blower 8. The air is sent out from the port 2b and sent to the air-conditioned room by air feeding means such as a duct (not shown) connected to the air supply port 2b.

そして、被空調室からダクト等の送気手段によって戻された還気は、還気口3aから排気流路3内に流入してフィルタ9を通過し、全熱交換器4に送られて給気流路2内の空気と熱交換し、第2熱交換器10にて冷媒の凝縮熱により加熱され、送風機11の駆動により排気口3bから外部に排出される。   The return air returned from the air-conditioned room by the air supply means such as a duct flows into the exhaust passage 3 from the return air port 3a, passes through the filter 9, and is sent to the total heat exchanger 4 to be supplied. Heat exchange with the air in the air flow path 2 is performed by the heat of condensation of the refrigerant in the second heat exchanger 10, and the air is discharged to the outside through the exhaust port 3 b by driving the blower 11.

したがって、本実施の形態におけるヒートポンプ式空気調和装置では、冷房運転・暖房運転時の各熱交換器6,10内の冷媒量の変化を、冷媒液をチューブ状コイル部15に貯えることで吸収することができるので、冷媒量の変化を吸収ためのレシーバーが不要になる。   Therefore, in the heat pump type air conditioner according to the present embodiment, changes in the amount of refrigerant in each of the heat exchangers 6 and 10 during the cooling operation and the heating operation are absorbed by storing the refrigerant liquid in the tubular coil portion 15. This eliminates the need for a receiver for absorbing changes in the refrigerant amount.

また、暖房運転時に下部ケーシング23内に滴下されたドレン水は、チューブ状コイル部15により温められ、凍結することなく外部へ速やかに排出されることになる。   Moreover, the drain water dripped in the lower casing 23 at the time of heating operation is warmed by the tube-shaped coil part 15, and is quickly discharged | emitted outside without freezing.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明の実施の形態に係るヒートポンプ式空気調和装置の構成を示す系統図。The system diagram which shows the structure of the heat pump type air conditioning apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 ケーシング
2 給気流路
2a 外気導入口
2b 給気口
3 排気流路
3a 還気口
3b 排気口
4 全熱交換器
5 フィルタ
6 第1熱交換器
7 加湿器
8 送風機
9 フィルタ
10 第2熱交換器
11 送風機
12 圧縮機
13 四方弁
14 アキュムレータ
15 チューブ状コイル部
19 膨張弁
20 膨張弁
21 逆止弁
22 逆止弁
23 下部ケーシング
24 バイパス流路手段
DESCRIPTION OF SYMBOLS 1 Casing 2 Air supply flow path 2a Outside air introduction port 2b Air supply port 3 Exhaust flow channel 3a Return air port 3b Exhaust port 4 Total heat exchanger 5 Filter 6 1st heat exchanger 7 Humidifier 8 Blower 9 Filter 10 2nd heat exchange 11 Blower 12 Compressor 13 Four-way valve 14 Accumulator 15 Tubular coil portion 19 Expansion valve 20 Expansion valve 21 Check valve 22 Check valve 23 Lower casing 24 Bypass flow path means

Claims (1)

外気導入口と被空調室への給気口とを有する給気流路と、被空調室からの還気口と外部への排気口とを有する排気流路との間に、これら給気流路と排気流路を跨ぐ全熱交換器を備え、前記給気流路における全熱交換器の下流側に設けた第1熱交換器と、前記排気流路における全熱交換器の下流側に設けた第2熱交換器とに対し、圧縮機からの冷媒を前記第1熱交換器と第2熱交換器の順またはその逆に流通せしめて被空調室に対する冷房運転と暖房運転を切り替えて空気調和を行うように構成したヒートポンプ式空気調和装置において、
前記第2熱交換器を構成するチューブのうち、下部のいくつかのチューブが暖房運転時に前記第1熱交換器で凝縮した冷媒液を貯えるとともに該冷媒液の余熱を用いて下部ケーシングを温める機能を備えてなることを特徴とするヒートポンプ式空気調和装置。
These air supply passages are provided between an air supply passage having an outside air introduction port and an air supply port to the air-conditioned room, and an exhaust passage having a return air port from the air-conditioned room and an exhaust port to the outside. A first heat exchanger provided on the downstream side of the total heat exchanger in the air supply flow path; and a first heat exchanger provided on the downstream side of the total heat exchanger in the exhaust flow path. The refrigerant from the compressor is circulated in the order of the first heat exchanger and the second heat exchanger or vice versa for the two heat exchangers to switch between the cooling operation and the heating operation with respect to the air-conditioned room, thereby adjusting the air conditioning. In a heat pump type air conditioner configured to perform,
Among the tubes constituting the second heat exchanger, several lower tubes store the refrigerant liquid condensed in the first heat exchanger during heating operation, and warm the lower casing using the residual heat of the refrigerant liquid A heat pump type air conditioner characterized by comprising:
JP2007153414A 2007-06-08 2007-06-08 Heat pump type air conditioner Pending JP2008304150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153414A JP2008304150A (en) 2007-06-08 2007-06-08 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153414A JP2008304150A (en) 2007-06-08 2007-06-08 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JP2008304150A true JP2008304150A (en) 2008-12-18

Family

ID=40233022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153414A Pending JP2008304150A (en) 2007-06-08 2007-06-08 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2008304150A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114998A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Air conditioning equipment
CN105202795A (en) * 2011-01-19 2015-12-30 北狄空气应对加拿大公司 Heat pump system having a pre-processing module
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9885486B2 (en) 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US10274210B2 (en) 2010-08-27 2019-04-30 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196170A (en) * 1984-10-15 1986-05-14 Diesel Kiki Co Ltd Selector valve device
JPS6238584A (en) * 1985-08-12 1987-02-19 Matsushita Electric Ind Co Ltd Electronic still camera
JPH05180534A (en) * 1991-12-26 1993-07-23 Mitsubishi Heavy Ind Ltd Evaporator for low temperature
JP2006317078A (en) * 2005-05-12 2006-11-24 Toyo Eng Works Ltd Heat pump type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196170A (en) * 1984-10-15 1986-05-14 Diesel Kiki Co Ltd Selector valve device
JPS6238584A (en) * 1985-08-12 1987-02-19 Matsushita Electric Ind Co Ltd Electronic still camera
JPH05180534A (en) * 1991-12-26 1993-07-23 Mitsubishi Heavy Ind Ltd Evaporator for low temperature
JP2006317078A (en) * 2005-05-12 2006-11-24 Toyo Eng Works Ltd Heat pump type air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885486B2 (en) 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US10274210B2 (en) 2010-08-27 2019-04-30 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
CN105202795A (en) * 2011-01-19 2015-12-30 北狄空气应对加拿大公司 Heat pump system having a pre-processing module
US9920960B2 (en) 2011-01-19 2018-03-20 Nortek Air Solutions Canada, Inc. Heat pump system having a pre-processing module
JP2014114998A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Air conditioning equipment
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10634392B2 (en) 2013-03-13 2020-04-28 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method

Similar Documents

Publication Publication Date Title
US11607926B2 (en) Vehicular air conditioning system
US7340912B1 (en) High efficiency heating, ventilating and air conditioning system
JP4518998B2 (en) Heat pump air conditioner
US8528354B2 (en) Vehicle air-conditioning system
KR101015640B1 (en) Air conditioning system for vehicle
KR20160133416A (en) Rooftop liquid desiccant systems and methods
WO2004056594A1 (en) Air conditioner
CN102378880A (en) Air-conditioning device
CN102062492A (en) Air conditioner
JP2005299935A (en) Air conditioner
JP2010107156A (en) Engine-driven heat pump
JP4182494B2 (en) Large temperature difference air conditioning system
JP2008304150A (en) Heat pump type air conditioner
JP4023320B2 (en) Heater for air conditioner
JP2009192155A (en) Air conditioning system for vehicle
JP2011122801A (en) Air heat source heat pump system and method of operating the same
KR20070039282A (en) Heat pump system for vehicle
KR20130081396A (en) A combined refrigerating and air conditioning system
JP5268136B2 (en) Heat pump air conditioner
WO2013046723A1 (en) Hot-water-supplying, air-conditioning system
JP2005106303A (en) Water heat source heat pump-type air conditioner
JP3859568B2 (en) Hybrid air conditioner
CN117157497B (en) Central air-conditioning heat pump system with cooling device
KR101127463B1 (en) The air-conditioning and heating cycle for the vehicle
JP2006132804A (en) Refrigerating cycle and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025