JP2005172329A - Cooling storage - Google Patents

Cooling storage Download PDF

Info

Publication number
JP2005172329A
JP2005172329A JP2003411376A JP2003411376A JP2005172329A JP 2005172329 A JP2005172329 A JP 2005172329A JP 2003411376 A JP2003411376 A JP 2003411376A JP 2003411376 A JP2003411376 A JP 2003411376A JP 2005172329 A JP2005172329 A JP 2005172329A
Authority
JP
Japan
Prior art keywords
high temperature
temperature side
heat
heat exchanger
circulation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003411376A
Other languages
Japanese (ja)
Other versions
JP2005172329A5 (en
Inventor
Isamu Chin
▲偉▼ 陳
Tsuneyoshi Cho
張  恒良
Tetsuya Yoneda
哲也 米田
Masaaki Masuda
雅昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003411376A priority Critical patent/JP2005172329A/en
Priority to AU2003289495A priority patent/AU2003289495A1/en
Priority to EP03781003A priority patent/EP1707907A1/en
Priority to US10/582,168 priority patent/US20070101730A1/en
Priority to KR1020067011300A priority patent/KR100759655B1/en
Priority to CNA2003801108155A priority patent/CN1878995A/en
Priority to PCT/JP2003/016485 priority patent/WO2005057102A1/en
Publication of JP2005172329A publication Critical patent/JP2005172329A/en
Publication of JP2005172329A5 publication Critical patent/JP2005172329A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling storage comprising a Stirling refrigeration engine capable of sufficiently exerting its freezing performance by increasing heat radiating efficiency of the Stirling refrigeration engine. <P>SOLUTION: A heat exchanger 42 for inside cooling is connected with a low temperature-side heat exchanger 41 mounted on a low temperature part of the Stirling refrigeration engine 30 to form a low temperature-side refrigerant circulating circuit 40. A first high temperature-side heat exchanger 51 and a second high temperature-side heat exchanger 61 are mounted on a high-temperature part of the Stirling refrigeration engine 30. A heat exchanger 52 for heat radiation is connected with the first high temperature-side heat exchanger 51 to form a first high temperature-side refrigerant circulating circuit 50. A heat exchanging part 62 for promoting the evaporation of drain and a heat exchanging part 63 for preventing dew condensation on a wall of the cooling storage are connected with the second high temperature-side heat exchanger 61 to form a second high temperature-side refrigerant circulating circuit 60. The first high temperature-side refrigerant circulating circuit 50 circulates the refrigerant by natural circulation. The second high temperature-side refrigerant circulating circuit 60 is provided with a circulation pump 64 for forcibly circulating the refrigerant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はスターリングエンジンにより庫内の冷却を行う冷却庫に関する。「冷却庫」とは食品その他の物品の保存のために「庫内」と呼称される密閉空間の温度を下げる装置全般を指す概念であり、「冷蔵庫」「冷凍庫」「冷凍冷蔵庫」といった商品としての名称を問わない。     The present invention relates to a refrigerator that cools the inside of a warehouse by a Stirling engine. "Refrigerator" is a concept that refers to all devices that lower the temperature of an enclosed space called "inside" for the preservation of food and other items. Products such as "refrigerator", "freezer", and "refrigerated refrigerator" No matter what the name.

冷却庫の冷凍サイクルには特定フロン(CFC:chlorofluorocarbon)や代替フロン(HCFC:hydrochlorofluorocarbon)が冷媒として使用されている。これらの冷媒は大気中に放出されると程度の差こそあれオゾン層の破壊につながるので、その生産及び使用は国際的な規制の対象となっている。     Specific chlorofluorocarbon (CFC) and alternative chlorofluorocarbon (HCFC) are used as refrigerants in the refrigeration cycle of the refrigerator. The production and use of these refrigerants is subject to international regulations, as they are, to some extent, lead to the destruction of the ozone layer.

そこで、冷媒としてオゾン破壊物質を使用しないスターリング冷凍エンジンが脚光を浴びている。スターリング冷凍エンジンではヘリウム等の不活性ガスを作動媒体として使用し、外部動力によりピストンとディスプレーサを動作させて作動媒体の圧縮・膨張を繰り返し、低温部(コールドセクション)と高温部(ウォームセクション)を形成する。そして低温部で庫内から吸熱を行い、高温部で周囲環境に放熱を行うものである。スターリング冷凍エンジンを用いた冷却庫は、特許文献1にその例に見ることができる。
特開平3−36468号公報(第3−5頁、図1)
Therefore, Stirling refrigeration engines that do not use ozone-depleting substances as a refrigerant are in the spotlight. The Stirling refrigeration engine uses an inert gas such as helium as the working medium, and the piston and displacer are operated by external power to repeatedly compress and expand the working medium. The low temperature part (cold section) and the high temperature part (warm section) Form. Then, heat is absorbed from the inside in the low temperature part, and heat is radiated to the surrounding environment in the high temperature part. An example of a refrigerator using a Stirling refrigeration engine can be found in US Pat.
JP-A-3-36468 (page 3-5, FIG. 1)

スターリング冷凍エンジンは構成がコンパクトであり、低温部、高温部ともに冷凍能力に比較して表面積が小さい。そのため、吸熱と放熱をいかに効率良く行うかが冷却庫の性能に大きな影響を及ぼす。特許文献1記載の冷却庫では、放熱ファンが気流を形成する放熱路にスターリング冷凍エンジンの高温側熱交換器を置き、強制空冷で高温側熱交換器から熱を逃がすようにしている。     The Stirling refrigeration engine has a compact configuration, and both the low temperature part and the high temperature part have a smaller surface area than the refrigeration capacity. Therefore, how efficiently the heat absorption and heat dissipation are performed has a great influence on the performance of the refrigerator. In the refrigerator described in Patent Document 1, a high temperature side heat exchanger of a Stirling refrigeration engine is placed in a heat radiation path where a heat radiating fan forms an air flow, and heat is released from the high temperature side heat exchanger by forced air cooling.

前述のように構成される強制空冷方式では、伝熱面積の小さい高温部から十分な熱を奪うためには多数のフィンを高密度に配置したラジエータを高温部に取り付ける必要がある。また大量の冷却空気をラジエータに吹き付ける必要がある。このような構造には、放熱フィンの間にゴミが詰まる、送風による騒音が大きい、あるいは送風ファンが大量の電力を消費するといった問題が伴う。     In the forced air cooling system configured as described above, a radiator having a large number of fins arranged at a high density needs to be attached to the high temperature portion in order to remove sufficient heat from the high temperature portion having a small heat transfer area. In addition, a large amount of cooling air needs to be blown to the radiator. Such a structure is accompanied by problems such as dust clogging between radiating fins, loud noise caused by blowing air, or a large amount of power consumed by the blowing fan.

加えて、空冷方式はそもそも熱抵抗が大きく、熱を奪いにくい。そのため高温部と周囲環境との温度差がなかなか縮まらず、スターリング冷凍エンジンのCOP(coefficient of performance) が向上しないという問題がある。     In addition, the air cooling method has a large thermal resistance in the first place, and it is difficult to take heat away. Therefore, there is a problem that the temperature difference between the high temperature portion and the surrounding environment is not easily reduced and the COP (coefficient of performance) of the Stirling refrigeration engine is not improved.

また冷却庫では、扉に設けたガスケット、あるいはガスケットで囲まれる冷却庫壁に庫内の低温空気が接触する。そのため、ガスケットの外面、あるいはその周囲で庫外に面した冷却庫壁から熱が奪われ、空気中の水分が結露する。結露すると水滴が垂れて床を濡らすほか、鋼板に塗装を施してある冷却庫壁に錆が発生する。これを防止するため、従来の冷却庫ではガスケット近傍の壁内に電熱ヒーターを配置して結露を防止しており、電力消費が多くなるという問題があった。     Further, in the refrigerator, the low-temperature air in the storage comes into contact with a gasket provided on the door or a cooling wall surrounded by the gasket. For this reason, heat is taken away from the outer surface of the gasket or the cooling wall facing the outside in the periphery, and moisture in the air is condensed. Condensation causes water droplets to drip and wet the floor, and rust is generated on the cooling wall where the steel sheet is painted. In order to prevent this, in the conventional refrigerator, an electric heater is disposed in the wall near the gasket to prevent condensation, and there is a problem that power consumption increases.

さらに、冷却庫の庫内冷却用の熱交換器には不可避的に霜がつく。霜がついたままだと冷却能力が低下するので、時々除霜して冷却能力を回復する必要がある。霜が溶けて、あるいはその他の原因で発生したドレンはドレンパンに受けられる。ドレンパンを一々取り外してドレンを捨てるという面倒さをなくすため、ドレンパンに熱を加えてドレンの蒸発を促進するという手法が一般的に採用される。コンプレッサで冷媒を圧縮する従来型の冷却庫では、冷媒圧縮に伴う熱を利用してドレンパンを加熱することができる。ところがスターリング冷凍エンジンを用いる冷却庫は従来のコンプレッサに相当する要素を備えておらず、ドレンパンの加熱に電熱ヒーターを用いる必要があり、これまた電力消費を多くする要因となっていた。     Furthermore, the heat exchanger for cooling the inside of the refrigerator is inevitably frosted. If the frost is left on, the cooling capacity decreases, so it is necessary to remove the frost from time to time to restore the cooling capacity. Drain generated by frost melting or other causes is received by the drain pan. In order to eliminate the trouble of removing the drain pans one by one and discarding the drains, a method is generally employed in which heat is applied to the drain pans to promote drain evaporation. In a conventional refrigerator that compresses a refrigerant with a compressor, the drain pan can be heated by using heat accompanying refrigerant compression. However, a refrigerator using a Stirling refrigeration engine does not include an element equivalent to a conventional compressor, and it is necessary to use an electric heater to heat the drain pan, which also increases power consumption.

また、庫内冷却用熱交換器を加熱して除霜するのにも従来は電熱ヒーターが用いられており、それだけ電力消費が多くなっていた。     In addition, conventionally, an electric heater has been used to defrost by heating the internal-cooling heat exchanger, and power consumption has increased accordingly.

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、スターリング冷凍エンジンの放熱効率を高め、スターリング冷凍エンジンの冷凍能力を十分に発揮させられるようにすることにある。また、スターリング冷凍エンジンの高温部の発する熱を冷却庫の機能向上に役立て、同時に電力消費量を低減できるようにすることにある。     The present invention has been made in view of the above points, and an object of the present invention is to improve the heat radiation efficiency of the Stirling refrigeration engine in a refrigerator that cools the interior by the Stirling refrigeration engine, and the refrigeration capacity of the Stirling refrigeration engine. It is to be able to fully demonstrate. Another object is to use the heat generated by the high temperature part of the Stirling refrigeration engine to improve the function of the refrigerator and at the same time reduce the power consumption.

上記課題を解決するため、本発明では冷却庫を次のように構成する。     In order to solve the above problems, in the present invention, the refrigerator is configured as follows.

(1)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、前記スターリング冷凍エンジンの高温部の熱を気液二相の冷媒に伝え、ドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する。     (1) In a refrigerator that cools the interior with a Stirling refrigeration engine, the heat of the high-temperature part of the Stirling refrigeration engine is transmitted to a gas-liquid two-phase refrigerant to promote drain evaporation, prevent condensation on the refrigerator wall, and the interior Used for at least one defrosting of the cooling heat exchanger.

(2)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、前記スターリング冷凍エンジンの高温部の熱を庫外に放熱する第1高温側冷媒循環回路と、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路とを形成する。     (2) In a refrigerator that cools the inside by a Stirling refrigeration engine, a first high-temperature side refrigerant circulation circuit that dissipates heat from the high-temperature portion of the Stirling refrigeration engine to the outside of the chamber, and promotes evaporation of drainage from the heat of the high-temperature portion. And a second high-temperature side refrigerant circulation circuit that is used for at least one of prevention of dew condensation on the cooling wall and defrosting of the heat exchanger for cooling in the refrigerator.

(3)前述のように構成される冷却庫において、前記第1高温側冷媒循環回路と前記第2高温側冷媒循環回路とを互いに独立させる。     (3) In the refrigerator configured as described above, the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit are made independent of each other.

(4)前述のように構成される冷却庫において、前記第1高温側冷媒循環回路では自然循環により冷媒を循環させ、前記第2高温側冷媒循環回路では強制循環により冷媒を循環させる。     (4) In the refrigerator configured as described above, the first high temperature side refrigerant circulation circuit circulates the refrigerant by natural circulation, and the second high temperature side refrigerant circulation circuit circulates the refrigerant by forced circulation.

(5)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、前記スターリング冷凍エンジンの高温部に設けた高温側熱交換器と、庫外環境に放熱を行うための放熱用熱交換器と、前記高温側熱交換器と放熱用熱交換器との間に形成されたループ状サーモサイフォンである第1高温側冷媒循環回路と、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路と、前記高温側熱交換器内の冷媒を前記第2高温側冷媒循環回路に送り出す循環ポンプとを備える。     (5) In a refrigerator that cools the inside by a Stirling refrigeration engine, a high-temperature side heat exchanger provided in a high-temperature part of the Stirling refrigeration engine, a heat-dissipating heat exchanger for dissipating heat to the outside environment, A first high-temperature side refrigerant circulation circuit, which is a loop thermosyphon formed between the high-temperature side heat exchanger and the heat-dissipating heat exchanger, accelerates the evaporation of the drainage heat from the high-temperature part, and prevents condensation on the refrigerator wall And a second high temperature side refrigerant circulation circuit used for at least one of defrosting of the internal cooling heat exchanger, and a circulation pump for sending the refrigerant in the high temperature side heat exchanger to the second high temperature side refrigerant circulation circuit With.

(6)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、前記スターリング冷凍エンジンの高温部の熱を庫外に放熱する第1高温側冷媒循環回路と、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路とを形成するとともに、前記第1高温側冷媒循環回路と第2高温側冷媒循環回路を、前記高温部に設けた共通の高温側熱交換器に互いに並列に接続する。     (6) In a refrigerator that cools the inside of the storage by a Stirling refrigeration engine, a first high-temperature side refrigerant circulation circuit that dissipates heat from the high temperature portion of the Stirling refrigeration engine to the outside of the storage, and promotes evaporation of drainage from the heat of the high temperature portion. And forming a second high-temperature side refrigerant circulation circuit for use in at least one of prevention of dew condensation on the cooling wall and defrosting of the heat exchanger for cooling inside the cabinet, and the first high-temperature side refrigerant circulation circuit and the second The high temperature side refrigerant circulation circuit is connected in parallel to a common high temperature side heat exchanger provided in the high temperature section.

(7)前述のように構成される冷却庫において、前記高温側熱交換器を複数個設けるとともに、第1高温側冷媒循環回路と第2高温側冷媒循環回路を、前記複数個の高温側熱交換器のそれぞれに対して互いに並列に接続する。     (7) In the refrigerator configured as described above, a plurality of the high temperature side heat exchangers are provided, and the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit are connected to the plurality of high temperature side heats. Connect to each of the exchangers in parallel with each other.

そして、前記複数個の高温側熱交換器のすべてより、第1高温側冷媒循環回路と第2高温側冷媒循環回路に冷媒の供給が行われ、また、複数個の高温側熱交換器のすべてに対し、第1高温側冷媒循環回路と第2高温側冷媒循環回路から冷媒が還流する。     Then, all of the plurality of high temperature side heat exchangers supply refrigerant to the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit, and all of the plurality of high temperature side heat exchangers On the other hand, the refrigerant recirculates from the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit.

更に、第1高温側冷媒循環回路をループ状サーモサイフォンとして構成するとともに、第2高温側冷媒循環回路に対しては、高温側熱交換器内の冷媒を第2高温側冷媒循環回路に送り出す循環ポンプを設ける。     Further, the first high temperature side refrigerant circulation circuit is configured as a loop thermosyphon, and for the second high temperature side refrigerant circulation circuit, the refrigerant in the high temperature side heat exchanger is sent to the second high temperature side refrigerant circulation circuit. Provide a pump.

また、前記循環ポンプを第2高温側冷媒循環回路の最上流部に配置する。     Further, the circulation pump is disposed in the most upstream part of the second high temperature side refrigerant circulation circuit.

(8)前述のように構成される冷却庫において、前記第1高温側冷媒循環回路の還流用冷媒配管を前記循環ポンプの吸込側に接続する。     (8) In the refrigerator configured as described above, the reflux refrigerant pipe of the first high temperature side refrigerant circulation circuit is connected to the suction side of the circulation pump.

(9)前述のように構成される冷却庫において、前記第1高温側冷媒循環回路と第2高温側冷媒循環回路の一方又は双方において、冷媒を気液二相の形で用いる。     (9) In the refrigerator configured as described above, the refrigerant is used in a gas-liquid two-phase form in one or both of the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit.

(10)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とを並列接続し、この並列接続構造を前記スターリング冷凍エンジンの高温部に設けられる熱交換器に直列接続して高温側冷媒循環回路を形成する。     (10) In a refrigerator that cools the interior with a Stirling refrigeration engine, a heat exchange unit provided for promoting evaporation of drain and a heat exchange unit provided for preventing condensation on the refrigerator wall are connected in parallel. This parallel connection structure is connected in series to a heat exchanger provided in the high temperature part of the Stirling refrigeration engine to form a high temperature side refrigerant circulation circuit.

(11)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、前記スターリング冷凍エンジンの高温部に設けられる熱交換器と、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とを直列接続して高温側冷媒循環回路を形成する。     (11) In a refrigerator that cools the interior with a Stirling refrigeration engine, a heat exchanger provided in a high-temperature part of the Stirling refrigeration engine, a heat exchange part provided to promote evaporation of drain, and condensation in a refrigerator wall A high-temperature side refrigerant circulation circuit is formed by connecting in series with a heat exchange unit provided for prevention.

(12)前述のように構成される冷却庫において、前記スターリング冷凍エンジンの低温部に設けた熱交換器と庫内冷却用熱交換器とを含む低温側冷媒循環回路を形成するとともに、前記庫内冷却用熱交換器に対し除霜用熱交換部を設け、この除霜用熱交換部と前記スターリング冷凍エンジンの高温部に設けられる熱交換器とを含む高温側冷媒循環回路を形成する。     (12) In the refrigerator configured as described above, a low-temperature side refrigerant circulation circuit including a heat exchanger provided in a low-temperature portion of the Stirling refrigeration engine and a heat exchanger for cooling in the refrigerator is formed, and the refrigerator A defrosting heat exchange part is provided for the internal cooling heat exchanger, and a high temperature side refrigerant circulation circuit including the defrosting heat exchange part and a heat exchanger provided in a high temperature part of the Stirling refrigeration engine is formed.

(13)前述のように構成される冷却庫において、前記除霜用熱交換部と前記スターリング冷凍エンジンの高温部に設けられる熱交換器とを含む高温側冷媒循環回路中に蓄熱部を設ける。     (13) In the refrigerator configured as described above, a heat storage unit is provided in a high temperature side refrigerant circulation circuit including the heat exchanger for defrosting and a heat exchanger provided in a high temperature part of the Stirling refrigeration engine.

(1)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、スターリング冷凍エンジンの高温部の熱を気液二相の冷媒に伝え、ドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用するから、スターリング冷凍エンジンの高温部の放熱をドレンの蒸発促進、冷却庫壁の結露防止、庫内冷却用熱交換器の除霜といった仕事に有効活用できる。これによりドレンのメンテナンスフリー化を図ることができる。また電熱ヒーターを用いずに冷却庫壁の結露を防止し、庫内冷却用熱交換器の除霜を行うことができ、冷却庫の機能あるいは使い勝手が向上するとともに、加熱を電熱ヒーターにより行う場合に比べ、消費電力を抑えることができる。     (1) In a refrigerator that cools the interior with a Stirling refrigeration engine, the heat of the high-temperature part of the Stirling refrigeration engine is transferred to a gas-liquid two-phase refrigerant to accelerate drain evaporation, prevent condensation on the refrigerator wall, and cool the interior Because it is used for at least one defrosting of the heat exchanger for the heat, the heat radiation of the high temperature part of the Stirling refrigeration engine is used to promote the evaporation of the drain, prevent the condensation of the cooling wall, and the defrosting of the heat exchanger for cooling the inside of the refrigerator. Can be used effectively. As a result, the drain can be made maintenance-free. In addition, it is possible to prevent condensation on the wall of the refrigerator without using an electric heater, and to defrost the internal heat exchanger for cooling, improving the function or convenience of the refrigerator and heating with an electric heater Power consumption can be suppressed compared to.

またドレン水、結露懸念部、あるいは庫内冷却用熱交換器から周囲環境より温度の低い冷熱を回収してスターリング冷凍エンジンの高温部を冷却するので、放熱システム全体の放熱効率が向上する。スターリング冷凍エンジンのCOPも向上し、冷却庫の電力消費量を低減できる。     In addition, since the cold heat having a temperature lower than that of the surrounding environment is recovered from the drain water, the dew condensation concern portion, or the internal cooling heat exchanger to cool the high temperature portion of the Stirling refrigeration engine, the heat dissipation efficiency of the entire heat dissipation system is improved. The COP of the Stirling refrigeration engine is also improved, and the power consumption of the refrigerator can be reduced.

そして、冷媒を気液二相の形で用いるから、冷媒の蒸発・凝縮という、潜熱が熱交換に利用されることになり、熱抵抗を小さく抑えることができ、放熱効率が高まる。これにより熱交換効率が飛躍的に高まり、スターリング冷凍エンジンの効率が向上し、消費電力を低減できる。     And since a refrigerant | coolant is used in the form of a gas-liquid two phase, the latent heat of evaporation / condensation of a refrigerant | coolant will be utilized for heat exchange, a thermal resistance can be restrained small, and thermal radiation efficiency will increase. As a result, the heat exchange efficiency is dramatically increased, the efficiency of the Stirling refrigeration engine is improved, and the power consumption can be reduced.

(2)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、スターリング冷凍エンジンの高温部の熱を庫外に放熱する第1高温側冷媒循環回路を設けることにより、高温部の熱を安定して放熱できる。加えて、高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路を設けるので、スターリング冷凍エンジンの高温部の放熱をドレンの蒸発促進、冷却庫壁の結露防止、庫内冷却用熱交換器の除霜といった仕事に有効活用できる。これによりドレンのメンテナンスフリー化を図ることができる。また電熱ヒーターを用いずに冷却庫壁の結露を防止し、庫内冷却用熱交換器の除霜を行うことができ、冷却庫の機能あるいは使い勝手が向上するとともに、加熱を電熱ヒーターにより行う場合に比べ、消費電力を抑えることができる。     (2) In a refrigerator that cools the interior with a Stirling refrigeration engine, by providing a first high-temperature side refrigerant circulation circuit that dissipates heat from the high-temperature portion of the Stirling refrigeration engine to the outside, the heat of the high-temperature portion is stabilized. Can dissipate heat. In addition, since the second high-temperature side refrigerant circulation circuit that uses heat of the high-temperature part for at least one of acceleration of drain evaporation, prevention of condensation on the cooling wall, and defrosting of the heat exchanger for cooling in the refrigerator is provided, Stirling The heat radiation of the high temperature part of the refrigeration engine can be effectively used for work such as promoting the evaporation of drain, preventing condensation on the cooling wall, and defrosting the heat exchanger for cooling in the refrigerator. As a result, the drain can be made maintenance-free. In addition, it is possible to prevent condensation on the wall of the refrigerator without using an electric heater, and to defrost the internal heat exchanger for cooling, improving the function or convenience of the refrigerator and heating with an electric heater Power consumption can be suppressed compared to.

またドレン水、結露懸念部、あるいは庫内冷却用熱交換器から周囲環境より温度の低い冷熱を回収してスターリング冷凍エンジンの高温部を冷却するので、放熱システム全体の放熱効率が向上する。スターリング冷凍エンジンのCOPも向上し、冷却庫の電力消費量を低減できる。     In addition, since the cold heat having a temperature lower than that of the surrounding environment is recovered from the drain water, the dew condensation concern portion, or the internal cooling heat exchanger to cool the high temperature portion of the Stirling refrigeration engine, the heat dissipation efficiency of the entire heat dissipation system is improved. The COP of the Stirling refrigeration engine is also improved, and the power consumption of the refrigerator can be reduced.

(3)前述のように構成される冷却庫において、第1高温側冷媒循環回路と第2高温側冷媒循環回路とを互いに独立させるから、第1高温側冷媒循環回路により放熱を確保しつつ、第2高温側冷媒循環回路を機動的に活用し、ドレンの蒸発促進、冷却庫壁の結露防止、あるいは庫内冷却用熱交換器の除霜を必要に応じて実施できる。これは、第2高温側冷媒循環回路内の循環ポンプを常時運転するのでなく、ドレンの蒸発促進や扉周辺の結露防止が必要となったときのみ運転すればよいということを意味する。これにより、循環ポンプの電力消費を節約し、循環ポンプの稼働寿命を延ばすことができる。また扉周辺を必要以上に長く加熱しないので、冷却庫の熱負荷を低減し、消費電力を抑制することができる。     (3) In the refrigerator configured as described above, since the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit are made independent of each other, while ensuring heat radiation by the first high temperature side refrigerant circulation circuit, The second high-temperature refrigerant circulation circuit can be used flexibly to accelerate drain evaporation, prevent condensation on the cooling wall, or defrost the internal heat exchanger for cooling. This means that the circulation pump in the second high-temperature side refrigerant circulation circuit is not always operated, but only when it is necessary to promote drain evaporation and prevent condensation around the door. Thereby, the power consumption of the circulation pump can be saved and the operation life of the circulation pump can be extended. Moreover, since the door periphery is not heated longer than necessary, the heat load of the refrigerator can be reduced and the power consumption can be suppressed.

(4)前述のように構成される冷却庫において、第1高温側冷媒循環回路では自然循環により冷媒を循環させ、第2高温側冷媒循環回路では強制循環により冷媒を循環させるから、第1高温側冷媒循環回路では人工的なエネルギーを使用することなく恒常的な放熱を図ることができる。他方第2高温側冷媒循環回路では、必要時機動的に冷媒を強制循環させて放熱あるいは冷熱回収を図ることができる。これにより、不必要にエネルギーを消費することなく効率的に冷却を行うことができる。     (4) In the refrigerator configured as described above, the first high temperature side refrigerant circulation circuit circulates the refrigerant by natural circulation, and the second high temperature side refrigerant circulation circuit circulates the refrigerant by forced circulation. In the side refrigerant circulation circuit, constant heat dissipation can be achieved without using artificial energy. On the other hand, in the second high-temperature side refrigerant circulation circuit, the refrigerant can be forcedly circulated when necessary to achieve heat dissipation or cold recovery. Thereby, it can cool efficiently, without consuming energy unnecessarily.

(5)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、スターリング冷凍エンジンの高温部に設けた高温側熱交換器と、庫外環境に放熱を行うための放熱用熱交換器との間にループ状サーモサイフォンである第1高温側冷媒循環回路を形成するから、高温側熱交換器より、第1高温側冷媒循環回路を用いて、人工的なエネルギーを使用することなく熱をくみ出すことができる。他方第2高温側冷媒循環回路では、循環ポンプにより冷媒を送り、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに確実に利用することができる。     (5) In a refrigerator that cools the interior with a Stirling refrigeration engine, between a high-temperature side heat exchanger provided in a high-temperature part of the Stirling refrigeration engine and a heat-dissipating heat exchanger for radiating heat to the outside environment. Since the first high-temperature side refrigerant circulation circuit that is a loop-shaped thermosyphon is formed, the first high-temperature side refrigerant circulation circuit is used to extract heat from the high-temperature side heat exchanger without using artificial energy. Can do. On the other hand, in the second high temperature side refrigerant circulation circuit, the refrigerant is sent by a circulation pump, and at least one of the heat of the high temperature portion is promoted to evaporate the drain, the condensation of the cooling wall is prevented, and the defrosting of the heat exchanger for cooling in the warehouse. Can be used reliably.

(6)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、スターリング冷凍エンジンの高温部の熱を庫外に放熱する第1高温側冷媒循環回路と、高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路とを形成するとともに、第1高温側冷媒循環回路と第2高温側冷媒循環回路とを、高温部に設けた共通の高温側熱交換器に互いに並列に接続するから、第1高温側冷媒循環回路と第2高温側冷媒循環回路の一方において何らかの原因により回路が使用不可となったとしても、他方の回路により高温部からの放熱を続けることができる。このため、スターリング冷凍エンジンが放熱不良でダメージを被るといった事態を回避しやすくなる。     (6) In a refrigerator that cools the interior with a Stirling refrigeration engine, a first high-temperature side refrigerant circulation circuit that dissipates heat from the high-temperature portion of the Stirling refrigeration engine to the outside of the chamber, and promotes evaporation and cooling of the heat from the high-temperature portion. A second high temperature side refrigerant circulation circuit and a second high temperature side refrigerant circuit are formed for use in at least one of dew condensation prevention of the warehouse wall and defrosting of the heat exchanger for cooling inside the cabinet. Since the circulation circuit is connected in parallel to the common high temperature side heat exchanger provided in the high temperature section, the circuit cannot be used for any reason in one of the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit. Even if it becomes, heat dissipation from a high temperature part can be continued by the other circuit. For this reason, it becomes easy to avoid the situation where the Stirling refrigerating engine suffers damage due to poor heat dissipation.

(7)前述のように構成される冷却庫において、高温側熱交換器を複数個設けるとともに、第1高温側冷媒循環回路と第2高温側冷媒循環回路を、複数個の高温側熱交換器のそれぞれに対して互いに並列に接続するから、どの高温側熱交換器を取り上げても高温側冷媒循環回路が複数個確保されることになり、回路閉塞による冷媒循環停止といった事態を回避しやすくなる。     (7) In the cooler configured as described above, a plurality of high temperature side heat exchangers are provided, and the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit are provided with a plurality of high temperature side heat exchangers. Therefore, a plurality of high-temperature side refrigerant circulation circuits are secured regardless of which high-temperature side heat exchanger is picked up, and it is easy to avoid a situation such as a refrigerant circulation stop due to circuit blockage. .

そして、複数個の高温側熱交換器のすべてより、第1高温側冷媒循環回路と第2高温側冷媒循環回路に冷媒の供給が行われ、複数個の高温側熱交換器のすべてに対し、第1高温側冷媒循環回路と第2高温側冷媒循環回路から冷媒が還流するものとしたから、複数個の高温側熱交換器をすべて外部への熱供給に関与させることができる。     Then, the refrigerant is supplied to the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit from all of the plurality of high temperature side heat exchangers, and for all of the plurality of high temperature side heat exchangers, Since the refrigerant recirculates from the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit, all of the plurality of high temperature side heat exchangers can be involved in the heat supply to the outside.

更に、第1高温側冷媒循環回路をループ状サーモサイフォンとして構成するから、高温側熱交換器より、第1高温側冷媒循環回路を用いて、人工的なエネルギーを使用することなく熱をくみ出すことができる。また第2高温側冷媒循環回路では、循環ポンプにより冷媒を送り、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに確実に利用することができる。     Furthermore, since the first high-temperature side refrigerant circulation circuit is configured as a loop thermosyphon, heat is extracted from the high-temperature side heat exchanger using the first high-temperature side refrigerant circulation circuit without using artificial energy. be able to. Further, in the second high temperature side refrigerant circulation circuit, the refrigerant is sent by a circulation pump, and at least one of the heat of the high temperature part is promoted to evaporate the drain, the condensation on the cooling wall is prevented, and the defrosting of the heat exchanger for cooling the inside of the warehouse. Can be used reliably.

また、循環ポンプを第2高温側冷媒循環回路の最上流部に配置するから、高温側熱交換器から循環ポンプまでの管路抵抗が少なく、冷媒はスムーズに循環ポンプに流れ込む。循環ポンプに冷媒を供給する管路の抵抗が大きいと、循環ポンプの吸込側にキャビテーションが生じて冷媒が不必要に蒸発し、循環効率を損なうことがある。循環ポンプを第2高温側冷媒循環回路の最上流部に配置しておけば、そのような事態を避けることができる。     In addition, since the circulation pump is arranged at the most upstream part of the second high temperature side refrigerant circulation circuit, the pipe resistance from the high temperature side heat exchanger to the circulation pump is small, and the refrigerant smoothly flows into the circulation pump. If the resistance of the pipe for supplying the refrigerant to the circulation pump is large, cavitation occurs on the suction side of the circulation pump, and the refrigerant evaporates unnecessarily, which may impair the circulation efficiency. Such a situation can be avoided if the circulation pump is arranged at the most upstream part of the second high temperature side refrigerant circulation circuit.

(8)前述のように構成される冷却庫において、第1高温側冷媒循環回路の還流用冷媒配管を前記循環ポンプの吸込側に接続するから、第2高温側冷媒循環回路を流れる冷媒に、第1高温側冷媒循環回路を流れた飽和温度の冷媒を合流させて、第2高温側冷媒循環回路を流れる冷媒の総熱量を増大させることができる。これにより、スターリング冷凍エンジンの発生する熱の利用効率を高めることができる。     (8) In the refrigerator configured as described above, since the refrigerant pipe for recirculation of the first high temperature side refrigerant circulation circuit is connected to the suction side of the circulation pump, the refrigerant flowing through the second high temperature side refrigerant circulation circuit is It is possible to increase the total amount of heat of the refrigerant flowing through the second high temperature side refrigerant circulation circuit by merging the refrigerant having the saturation temperature flowing through the first high temperature side refrigerant circulation circuit. Thereby, the utilization efficiency of the heat which a Stirling refrigerating engine generates can be improved.

(9)前述のように構成される冷却庫において、第1高温側冷媒循環回路と第2高温側冷媒循環回路の一方又は双方において、冷媒を気液二相の形で用いるから、冷媒の蒸発・凝縮という、潜熱が熱交換に利用されることになり、熱抵抗を小さく抑えることができ、放熱効率が高まる。これにより熱交換効率が飛躍的に高まり、スターリング冷凍エンジンの効率が向上し、消費電力を低減できる。     (9) In the refrigerator configured as described above, the refrigerant is used in a gas-liquid two-phase form in one or both of the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit.・ Condensation latent heat is used for heat exchange, heat resistance can be kept small, and heat dissipation efficiency is increased. As a result, the heat exchange efficiency is dramatically increased, the efficiency of the Stirling refrigeration engine is improved, and the power consumption can be reduced.

(10)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とを並列接続し、この並列接続構造をスターリング冷凍エンジンの高温部に設けられる熱交換器に直列接続して高温側冷媒循環回路を形成するから、スターリング冷凍エンジンの高温部の放熱をドレンの蒸発促進及び冷却庫壁の結露防止に有効活用できる。これによりドレンのメンテナンスフリー化を図ることができる。また電熱ヒーターを用いずに冷却庫壁の結露を防止することができ、冷却庫の機能あるいは使い勝手が向上するとともに、電熱ヒーターを用いる場合に比べ、消費電力を抑えることができる。     (10) In a refrigerator that cools the interior with a Stirling refrigeration engine, a heat exchange unit provided for promoting evaporation of drain and a heat exchange unit provided for preventing condensation on the refrigerator wall are connected in parallel. Since this parallel connection structure is connected in series to the heat exchanger provided in the high-temperature part of the Stirling refrigeration engine to form a high-temperature side refrigerant circulation circuit, the heat radiation of the high-temperature part of the Stirling refrigeration engine is promoted to promote the evaporation of drain and the cooling wall It can be effectively used to prevent condensation. As a result, the drain can be made maintenance-free. Further, condensation on the wall of the refrigerator can be prevented without using an electric heater, so that the function or usability of the refrigerator can be improved and the power consumption can be suppressed as compared with the case where an electric heater is used.

そして熱交換に冷媒の蒸発・凝縮という、潜熱を利用するので、熱抵抗を小さく抑えることができ、放熱効率が高まる。これによりスターリング冷凍エンジンの効率が向上し、消費電力を低減できる。     Since the latent heat of evaporation / condensation of the refrigerant is used for heat exchange, the thermal resistance can be kept small, and the heat dissipation efficiency is increased. This improves the efficiency of the Stirling refrigeration engine and can reduce power consumption.

またドレン水及び結露懸念部から周囲環境より温度の低い冷熱を回収してスターリング冷凍エンジンの高温部を冷却するので、放熱システム全体の放熱効率が向上する。スターリング冷凍エンジンのCOPも向上し、冷却庫の電力消費量を低減できる。     Moreover, since the cold heat whose temperature is lower than the surrounding environment is recovered from the drain water and the dew condensation concern part and the high temperature part of the Stirling refrigeration engine is cooled, the heat radiation efficiency of the entire heat radiation system is improved. The COP of the Stirling refrigeration engine is also improved, and the power consumption of the refrigerator can be reduced.

ドレンの蒸発促進のために設けられる熱交換部と冷却庫壁の結露防止のために設けられる熱交換部とを並列接続したので、冷媒の流動抵抗を低くできる。冷媒の流動抵抗が低いので、循環ポンプを用いる場合、その消費電力を大幅に削減できる。     Since the heat exchanging part provided for promoting the evaporation of the drain and the heat exchanging part provided for preventing condensation on the cooling wall are connected in parallel, the flow resistance of the refrigerant can be lowered. Since the flow resistance of the refrigerant is low, the power consumption of the circulating pump can be greatly reduced.

前記並列構造部において、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とにそれぞれ弁を直列接続することとすれば、その時点で冷媒を流す必要のない側の熱交換部は冷媒の流れを止めることができ、循環ポンプの負荷を減らすことにより、その消費電力を削減できる。また扉周辺を必要以上に長く加熱することがないので、冷却庫の熱負荷を低減し、消費電力を抑制することができる。     In the parallel structure part, if the valves are connected in series to the heat exchange part provided for promoting drain evaporation and the heat exchange part provided for preventing condensation on the refrigerator wall, The heat exchange section on the side where it is not necessary to flow the refrigerant can stop the flow of the refrigerant, and the power consumption can be reduced by reducing the load of the circulation pump. Moreover, since the door periphery is not heated longer than necessary, the heat load of the refrigerator can be reduced and the power consumption can be suppressed.

(11)スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、スターリング冷凍エンジンの高温部に設けられる熱交換器と、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とを直列接続して高温側冷媒循環回路を形成するから、スターリング冷凍エンジンの高温部の放熱をドレンの蒸発促進及び冷却庫壁の結露防止に有効活用できる。これによりドレンのメンテナンスフリー化を図ることができる。また電熱ヒーターを用いずに冷却庫壁の結露を防止することができ、冷却庫の機能あるいは使い勝手が向上するとともに、電熱ヒーターを用いる場合に比べ、消費電力を抑えることができる。     (11) In a refrigerator that cools the interior with a Stirling refrigeration engine, a heat exchanger provided in a high-temperature part of the Stirling refrigeration engine, a heat exchange part provided to promote evaporation of drain, and prevention of condensation on the refrigerator wall Since the high-temperature side refrigerant circulation circuit is formed by connecting in series with the heat exchange section provided for the purpose, the heat radiation from the high-temperature section of the Stirling refrigeration engine can be effectively used for promoting drain evaporation and preventing condensation on the refrigerator wall. As a result, the drain can be made maintenance-free. Further, condensation on the wall of the refrigerator can be prevented without using an electric heater, so that the function or usability of the refrigerator can be improved and the power consumption can be suppressed as compared with the case where an electric heater is used.

スターリング冷凍エンジンの高温部に設けられる熱交換器と、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とは直列接続なので、配管構成が簡単であり、組立工数が少なくて済む。     Since the heat exchanger provided in the high-temperature part of the Stirling refrigeration engine, the heat exchange part provided to accelerate drain evaporation, and the heat exchange part provided to prevent condensation on the refrigerator wall are connected in series, the piping configuration Is simple and requires fewer assembly steps.

(12)前述のように構成される冷却庫において、スターリング冷凍エンジンの低温部に設けた熱交換器と庫内冷却用熱交換器とを含む低温側冷媒循環回路を形成するとともに、庫内冷却用熱交換器に対し除霜用熱交換部を設け、この除霜用熱交換部と前記スターリング冷凍エンジンの高温部に設けられる熱交換器とを含む高温側冷媒循環回路を形成するから、除霜用の電熱ヒーターを使わないで霜取りを行うことができる。霜の持つ冷熱を回収して高温部を冷やすので、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率も向上する。     (12) In the cooler configured as described above, a low-temperature side refrigerant circulation circuit including a heat exchanger provided in a low-temperature part of the Stirling refrigeration engine and a heat exchanger for cooling the interior is formed, and the interior is cooled The heat exchanger for defrosting is provided in the heat exchanger for heat and a high temperature side refrigerant circulation circuit including the heat exchanger for defrosting and the heat exchanger provided in the high temperature part of the Stirling refrigeration engine is formed. Defrosting can be performed without using a frost electric heater. Since the cold heat of the frost is recovered and the high temperature part is cooled, the heat load of the heat dissipation system is reduced, and the heat dissipation efficiency of the entire heat dissipation system is improved.

(13)前述のように構成される冷却庫において、除霜用熱交換部とスターリング冷凍エンジンの高温部に設けられる熱交換器とを含む高温側冷媒循環回路中に蓄熱部を設けるから、スターリング冷凍エンジンが停止していても蓄熱部に蓄えた熱を利用して霜取りを行うことができる。霜の持つ冷熱が蓄熱部に回収され、通常運転時に高温部を冷やすのに使われるので、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率も向上する。これによりスターリング冷凍エンジン30の作動COPが向上し、消費電力を低減できる。     (13) In the refrigerator configured as described above, since the heat storage unit is provided in the high-temperature side refrigerant circulation circuit including the heat exchange unit for defrosting and the heat exchanger provided in the high-temperature unit of the Stirling refrigeration engine, Stirling is provided. Even if the refrigeration engine is stopped, defrosting can be performed using heat stored in the heat storage section. The cold heat of the frost is collected in the heat storage part and used to cool the high temperature part during normal operation, reducing the heat load of the heat dissipation system and improving the heat dissipation efficiency of the entire heat dissipation system. As a result, the operating COP of the Stirling refrigerating engine 30 is improved, and the power consumption can be reduced.

以下、本発明の実施形態を図に基づき説明する。     Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は冷却庫の断面を示している。冷却庫1は食品保存用であり、断熱構造のハウジング10を備える。ハウジング10には上下3段の冷却室11、12、13が設けられている。冷却室11、12、13はそれぞれハウジング10の正面側(図1において左側)に開口部を有し、この開口部を開閉自在な断熱扉14、15、16が閉ざす。断熱扉14、15、16の裏面には冷却室11、12、13の開口部をそれぞれ囲む形のガスケット17が装着されている。冷却室11、12、13の内部には収納する食品の種類に適合した棚18を適宜設置する。     FIG. 1 shows a cross section of the refrigerator. The refrigerator 1 is for food preservation and includes a housing 10 having a heat insulating structure. The housing 10 is provided with three upper and lower cooling chambers 11, 12, and 13. Each of the cooling chambers 11, 12, and 13 has an opening on the front side (left side in FIG. 1) of the housing 10, and the heat insulating doors 14, 15, and 16 that can be opened and closed are closed. Gaskets 17 each having a shape surrounding the openings of the cooling chambers 11, 12, 13 are mounted on the back surfaces of the heat insulating doors 14, 15, 16. Inside the cooling chambers 11, 12, and 13, shelves 18 suitable for the type of food to be stored are installed as appropriate.

ハウジング10の上面から背面、さらには下面にかけて、スターリング冷凍エンジンを中心的要素とする冷却システム及び放熱システムが設置される。図1(断面図)及び図2(配管構成図)に示すのはその第1実施形態である。     A cooling system and a heat dissipation system having a Stirling refrigeration engine as a central element are installed from the upper surface to the rear surface and further to the lower surface of the housing 10. FIG. 1 (sectional view) and FIG. 2 (pipe configuration diagram) show the first embodiment.

ハウジング10の上面と背面の角に収納スペース19が設けられ、ここにスターリング冷凍エンジン30が設置される。スターリング冷凍エンジン30の一部は低温部となり、ここに低温側熱交換器41が取り付けられる。冷却室13の奥には庫内冷却用熱交換器42が設置される。低温側熱交換器41と庫内冷却用熱交換器42とは冷媒配管で接続され、低温側冷媒循環回路40を構成する(図2参照)。低温側冷媒循環回路40にはCO2などの自然冷媒を封入する。低温側熱交換器41の内部には多数のフィンが設けられ、冷媒との間で効率よく熱交換を行えるようになっている。 Storage spaces 19 are provided at the corners of the upper surface and the rear surface of the housing 10, and the Stirling refrigeration engine 30 is installed here. A part of the Stirling refrigerating engine 30 becomes a low temperature part, and the low temperature side heat exchanger 41 is attached here. An interior cooling heat exchanger 42 is installed in the back of the cooling chamber 13. The low temperature side heat exchanger 41 and the internal cooling heat exchanger 42 are connected by a refrigerant pipe to constitute a low temperature side refrigerant circulation circuit 40 (see FIG. 2). The low-temperature side refrigerant circulation circuit 40 is filled with a natural refrigerant such as CO 2 . A large number of fins are provided inside the low temperature side heat exchanger 41 so that heat can be efficiently exchanged with the refrigerant.

ハウジング10の内部には庫内冷却用熱交換器42により熱を奪われた空気を冷却室11、12、13に分配するダクト20が設けられている。ダクト20は冷却室11、12、13に連通する冷気吹出口21を適所に有する。ダクト20の内部には冷気を強制的に送気するための送風ファン22が適所に設置される。     Inside the housing 10 is provided a duct 20 that distributes the air deprived of heat by the internal cooling heat exchanger 42 to the cooling chambers 11, 12, and 13. The duct 20 has a cold air outlet 21 in communication with the cooling chambers 11, 12, and 13 at appropriate positions. A blower fan 22 for forcibly supplying cool air is installed in the duct 20 at a proper place.

図示しないが、冷却室11、12、13から空気を回収するダクトもハウジング10に設けられている。このダクトは庫内冷却用熱交換器42の下方に吹出口を有し、冷却されるべき空気を図1の破線矢印のように庫内冷却用熱交換器42に供給する。     Although not shown, the housing 10 is also provided with a duct for collecting air from the cooling chambers 11, 12, and 13. This duct has a blower outlet below the interior cooling heat exchanger 42 and supplies the air to be cooled to the interior cooling heat exchanger 42 as indicated by the broken line arrows in FIG.

庫内冷却用熱交換器42の下にドレン受け樋25が設けられる。ドレン受け樋25は庫内冷却用熱交換器42から滴り落ちるドレンを集め、ハウジング10の底面に設けられたドレンパン26に流し出す。     A drain receiving rod 25 is provided under the internal cooling heat exchanger 42. The drain receptacle 25 collects the dripping from the internal cooling heat exchanger 42 and flows it out to the drain pan 26 provided on the bottom surface of the housing 10.

スターリング冷凍エンジン30の他の一部は高温部となり、ここに高温側熱交換器が取り付けられる。第1実施形態の場合、高温側熱交換器はリングを半割にした形状の第1高温側熱交換器51と第2高温側熱交換器61からなる。第1高温側熱交換器51と第2高温側熱交換器61の内部にはそれぞれ多数のフィンが設けられ、冷媒との間で効率よく熱交換を行えるようになっている。     The other part of the Stirling refrigerating engine 30 becomes a high temperature part, and a high temperature side heat exchanger is attached here. In the case of the first embodiment, the high temperature side heat exchanger includes a first high temperature side heat exchanger 51 and a second high temperature side heat exchanger 61 each having a shape in which a ring is halved. A large number of fins are provided in the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61, respectively, so that heat can be efficiently exchanged with the refrigerant.

高温側熱交換器が単一リングの形状であると、スターリング冷凍エンジン30の高温部にしっかり接触させるためには、形状を厳しく管理してはめ合い精度を確保することが必要になる。しかしながら本実施形態の場合、第1高温側熱交換器51と第2高温側熱交換器61はリングを半割にした形状なので、両者間にスターリング冷凍エンジン30の高温部を挟んで締め付けるときの締付圧を調節することにより、高温部との接触圧のコントロールが可能である。すなわち形状誤差により接触圧が不十分となり、高温部との間の熱伝達率が低下するといった事態に陥ることが少ない。リングをさらに多くのブロックに分割しても同じことが言える。     If the high temperature side heat exchanger has the shape of a single ring, it is necessary to strictly manage the shape and secure the fitting accuracy in order to firmly contact the high temperature portion of the Stirling refrigeration engine 30. However, in the case of the present embodiment, the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 have a shape in which the ring is halved, so that when the high temperature portion of the Stirling refrigeration engine 30 is sandwiched between the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 By adjusting the tightening pressure, the contact pressure with the high temperature part can be controlled. That is, the contact pressure becomes insufficient due to the shape error, and the heat transfer coefficient with the high temperature portion is unlikely to fall. The same is true if the ring is divided into more blocks.

第1高温側熱交換器51を含む形で第1高温側冷媒循環回路50が構成され、第2高温側熱交換器61を含む形で第2高温側冷媒循環回路60が構成される。     The first high temperature side refrigerant circulation circuit 50 is configured to include the first high temperature side heat exchanger 51, and the second high temperature side refrigerant circulation circuit 60 is configured to include the second high temperature side heat exchanger 61.

第1高温側冷媒循環回路50は、第1高温側熱交換器51と、ハウジング10の上面に設置された放熱用熱交換器52と、これらを閉ループ状に接続する冷媒配管により構成される。放熱用熱交換器52は庫外環境に放熱を行うものであり、送風ファン53が設けられている。第1高温側冷媒循環回路50には水(水溶液を含む)あるいは炭化水素系の冷媒を密封する。第1高温側冷媒循環回路50はループ状サーモサイフォンとして機能し、冷媒が自然循環する。     The first high-temperature side refrigerant circulation circuit 50 includes a first high-temperature side heat exchanger 51, a heat-dissipation heat exchanger 52 installed on the upper surface of the housing 10, and a refrigerant pipe that connects these in a closed loop shape. The heat-dissipating heat exchanger 52 radiates heat to the outside environment, and is provided with a blower fan 53. The first high-temperature refrigerant circulation circuit 50 is sealed with water (including an aqueous solution) or a hydrocarbon-based refrigerant. The first high-temperature side refrigerant circulation circuit 50 functions as a loop thermosyphon, and the refrigerant naturally circulates.

第2高温側冷媒循環回路60は、第2高温側熱交換器61と、熱交換部62、63と、冷媒強制循環用の循環ポンプ64と、これらを接続する冷媒配管により構成される。第2高温側冷媒循環回路60には水などの自然冷媒を封入する。なお、本明細書では、第2高温側熱交換器61の冷媒吐出側を第2高温側冷媒回路60の「最上流部」と表現する。循環ポンプ64はこの最上流部に配置されている。     The second high temperature side refrigerant circulation circuit 60 includes a second high temperature side heat exchanger 61, heat exchange units 62 and 63, a circulation pump 64 for forced refrigerant circulation, and a refrigerant pipe connecting them. The second high temperature side refrigerant circulation circuit 60 is filled with a natural refrigerant such as water. In the present specification, the refrigerant discharge side of the second high temperature side heat exchanger 61 is expressed as the “most upstream part” of the second high temperature side refrigerant circuit 60. The circulation pump 64 is disposed at the most upstream part.

熱交換部62は配管の一部をジグザグ状にしたものであり、ドレンパン24の下に配置され、冷媒の持つ温熱でドレンパン24に溜まったドレンを加熱してその蒸発を促進するという役割を担う。     The heat exchanging part 62 has a part of the pipe made in a zigzag shape, and is disposed under the drain pan 24 and plays a role of heating the drain accumulated in the drain pan 24 with the heat of the refrigerant to promote its evaporation. .

熱交換部63は配管の一部を冷却室11、12、13の開口部に引き回したものであり、冷媒の持つ温熱でこの箇所を加熱することにより、結露が生じるのを防ぐという役割を担う。     The heat exchanging part 63 is a part of the piping routed to the openings of the cooling chambers 11, 12, and 13, and plays the role of preventing dew condensation by heating this part with the warm heat of the refrigerant. .

続いて冷却庫1の動作を説明する。     Next, the operation of the refrigerator 1 will be described.

スターリング冷凍エンジン30を駆動すると、その低温部は冷え、高温部は温度が上昇する。低温側熱交換器41は熱を奪われ、内部の冷媒は凝縮状態で低温側冷媒循環回路40を通って庫内冷却用熱交換器42に流れ込む。     When the Stirling refrigerating engine 30 is driven, the low temperature part is cooled and the temperature of the high temperature part is increased. The low temperature side heat exchanger 41 is deprived of heat, and the internal refrigerant flows into the internal cooling heat exchanger 42 through the low temperature side refrigerant circulation circuit 40 in a condensed state.

庫内冷却用熱交換器42に流れ込んだ冷媒は庫内冷却用熱交換器42で蒸発し、庫内冷却用熱交換器42の表面温度を下げる。庫内冷却用熱交換器42を通り抜ける空気は熱を奪われて冷気となり、ダクト20の冷気吹出口21から冷却室11、12、13に吹き出し、冷却室11、12、13の温度を下げる。その後空気は図示しないダクトを通って庫内冷却用熱交換器42に還流する。     The refrigerant that has flowed into the internal cooling heat exchanger 42 evaporates in the internal cooling heat exchanger 42 and lowers the surface temperature of the internal cooling heat exchanger 42. The air passing through the internal cooling heat exchanger 42 is deprived of heat and becomes cold air, blown out from the cold air outlet 21 of the duct 20 to the cooling chambers 11, 12, 13, and lowers the temperature of the cooling chambers 11, 12, 13. Thereafter, the air flows back to the internal cooling heat exchanger 42 through a duct (not shown).

蒸発した冷媒は低温側冷媒循環回路40を通って低温側熱交換器41に還流し、熱を奪われて凝縮する。そして再び庫内冷却用熱交換器42へと流れて行く。     The evaporated refrigerant flows back to the low temperature side heat exchanger 41 through the low temperature side refrigerant circulation circuit 40, and is deprived of heat and condensed. Then, it flows again to the internal cooling heat exchanger 42.

スターリング冷凍エンジン30が仕事をすることにより生じる熱、また低温部が庫内から回収した熱は高温部から放熱される。この熱により、第1高温側熱交換器51及び第2高温側熱交換器61が加熱される。     The heat generated when the Stirling refrigeration engine 30 performs work and the heat recovered by the low temperature portion from the interior are dissipated from the high temperature portion. The first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 are heated by this heat.

第1高温側熱交換器51が加熱されると内部の冷媒が蒸発し、放熱用熱交換器52に流れ込む。送風ファン53が放熱用熱交換器52の表面に空気を吹き付けており、冷媒は熱を奪われて凝縮する。凝縮した冷媒は第1高温側熱交換器51に還流し、再び蒸発する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、放熱用熱交換器52でそれを冷却用空気に伝えて凝縮するというサイクルが繰り返される。     When the first high temperature side heat exchanger 51 is heated, the internal refrigerant evaporates and flows into the heat dissipation heat exchanger 52. The blower fan 53 blows air onto the surface of the heat exchanger 52 for heat dissipation, and the refrigerant is condensed by being deprived of heat. The condensed refrigerant is refluxed to the first high temperature side heat exchanger 51 and evaporated again. In this way, the cycle in which the refrigerant receives heat from the high temperature portion of the Stirling refrigeration engine 30 and evaporates and transmits it to the cooling air by the heat-dissipating heat exchanger 52 to condense is repeated.

第1高温側冷媒循環回路50では冷媒を気相と液相が混在する気液二相の形で用いる。気液二相の相変化を伴う熱交換では、冷媒を蒸発/凝縮させ、潜熱を利用して行う。このため、相変化を伴わない熱交換に比べ、熱伝達率が飛躍的に向上する。     In the first high-temperature side refrigerant circulation circuit 50, the refrigerant is used in a gas-liquid two-phase form in which a gas phase and a liquid phase are mixed. The heat exchange accompanied by the gas-liquid two-phase change is performed by evaporating / condensing the refrigerant and using latent heat. For this reason, compared with the heat exchange which does not accompany a phase change, a heat transfer rate improves dramatically.

上記を説明する。スターリング冷凍エンジン30の放熱量Qは次式で表される。
Q=h・A・ΔTm
ここで
h :熱伝達率
A :伝熱面積
ΔTm:温度差
従って熱伝達率hが高いほどスターリング冷凍エンジン30の高温部温度を下げることができ、COPを向上できる。
The above will be described. The heat dissipation amount Q of the Stirling refrigerating engine 30 is expressed by the following equation.
Q = h · A · ΔTm
Here, h: heat transfer coefficient A: heat transfer area ΔTm: temperature difference Accordingly, the higher the heat transfer coefficient h, the lower the temperature of the high temperature section of the Stirling refrigeration engine 30 and the COP.

一般的に、相変化を伴わないブライン方式の冷媒利用では、熱伝達率は数百〜1000w/m2kとなる。しかも熱伝達率はブラインを循環させるためのポンプの消費電力に比例する。     Generally, in the case of using a brine type refrigerant without phase change, the heat transfer coefficient is several hundred to 1000 w / m 2 k. Moreover, the heat transfer rate is proportional to the power consumption of the pump for circulating the brine.

これに対し気液二相の相変化を伴う熱交換では、冷媒の蒸発/凝縮過程の潜熱を利用するため、3000〜10000w/m2kの熱伝達率を得ることができる。この熱伝達率の値は、ブライン方式の場合の数倍〜10数倍に達する。     On the other hand, in the heat exchange accompanied by the phase change of the gas-liquid two phases, since the latent heat in the evaporation / condensation process of the refrigerant is used, a heat transfer coefficient of 3000 to 10000 w / m 2 k can be obtained. The value of this heat transfer coefficient reaches several times to 10 times the value in the case of the brine method.

第1高温側冷媒循環回路50では冷媒を上記のような気液二相流として循環させるので効率良く熱を交換できる。熱交換時に生じる熱抵抗が極めて低く、同様条件(同等の環境温度、同等の放熱量)であってもスターリング冷凍エンジン30の高温部がより低温に保たれる。これによりスターリング冷凍エンジン30の作動COPが向上し、消費電力を低減できる。     In the first high temperature side refrigerant circulation circuit 50, the refrigerant is circulated as a gas-liquid two-phase flow as described above, so that heat can be exchanged efficiently. The heat resistance generated at the time of heat exchange is extremely low, and the high temperature part of the Stirling refrigerating engine 30 is kept at a lower temperature even under the same conditions (equivalent environmental temperature and equivalent heat dissipation). As a result, the operating COP of the Stirling refrigerating engine 30 is improved, and the power consumption can be reduced.

第2高温側熱交換器61が加熱されると冷媒が蒸発する。ここでも冷媒は気液二相の形で用いられる。この気液二相の冷媒を循環ポンプ64が熱交換部62、63へと送り出す。     When the second high temperature side heat exchanger 61 is heated, the refrigerant evaporates. Again, the refrigerant is used in a gas-liquid two-phase form. The circulation pump 64 sends out the gas-liquid two-phase refrigerant to the heat exchange units 62 and 63.

冷媒はまず熱交換部62を流れ、その上のドレンパン26に熱を伝える。これによりドレンパン26の中のドレンは、電熱ヒーターを用いるまでもなく温度上昇し、蒸発が促進される。従ってドレンパン26に溜まったドレンを捨てる作業が不要になり、ドレンのメンテナンスフリー化が図れる。     The refrigerant first flows through the heat exchanging portion 62 and transfers heat to the drain pan 26 thereabove. As a result, the temperature of the drain in the drain pan 26 rises without using an electric heater, and evaporation is promoted. Accordingly, the work of discarding the drain accumulated in the drain pan 26 becomes unnecessary, and the drain can be made maintenance-free.

続いて冷媒は熱交換部63を流れ、冷却室11、12、13の開口部の周囲を加熱する。ガスケット17がハウジング10に接するあたりの箇所、すなわち庫内と庫外の境界領域には結露が生じやすいのであるが、このように冷媒を通すことにより、冷却庫壁の外気に接する箇所の温度が露点温度以上に保たれ、電熱ヒーターを用いるまでもなく結露が防止される。     Subsequently, the refrigerant flows through the heat exchanging unit 63 and heats the periphery of the openings of the cooling chambers 11, 12, and 13. Condensation is likely to occur at a location where the gasket 17 is in contact with the housing 10, that is, a boundary region between the inside and outside of the cabinet. By passing the refrigerant in this way, the temperature at the location where the outside of the cooling wall is in contact with the air is reduced. It is kept above the dew point temperature, and condensation is prevented without using an electric heater.

冷媒は熱交換部62でドレンから冷熱を回収し、熱交換部63でハウジング10から冷熱を回収する。このように冷熱を回収した冷媒は、気相であったものが液相に戻り、液相の単相の形で第2高温側熱交換器61に流れ込む。そして気相と接触することにより気相を液化させて蒸気圧を低下させ、これにより蒸発を促進させて再び気液二相を回復する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、熱交換部62、63で凝縮して放熱し、冷熱を回収するというサイクルが繰り返される。循環ポンプ64の運転を停止すれば、このサイクルは中断する。     The refrigerant collects cold heat from the drain at the heat exchange unit 62, and collects cold heat from the housing 10 at the heat exchange unit 63. Thus, the refrigerant | coolant which collect | recovered cold heat returns to a liquid phase what was a gaseous phase, and flows into the 2nd high temperature side heat exchanger 61 in the form of the single phase of a liquid phase. Then, by contacting with the gas phase, the gas phase is liquefied to lower the vapor pressure, thereby promoting evaporation and recovering the gas-liquid two-phase again. In this way, a cycle is repeated in which the refrigerant receives heat from the high temperature portion of the Stirling refrigerating engine 30 and evaporates, condenses and dissipates heat in the heat exchanging portions 62 and 63, and collects the cold heat. If the operation of the circulation pump 64 is stopped, this cycle is interrupted.

冷媒はドレンに対し、また冷却室11、12、13の開口部近傍に対し、温熱を供給し、代わりに環境より低い温度帯の冷熱を回収してスターリング冷凍エンジン30の高温部を冷やす。このため、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率も向上する。これによりスターリング冷凍エンジン30の作動COPが向上し、消費電力を低減できる。     The refrigerant supplies the heat to the drain and to the vicinity of the openings of the cooling chambers 11, 12, and 13, and instead collects the cold heat in a temperature zone lower than the environment to cool the high temperature portion of the Stirling refrigerating engine 30. For this reason, the heat load of the heat dissipation system is reduced, and the heat dissipation efficiency of the entire heat dissipation system is also improved. As a result, the operating COP of the Stirling refrigerating engine 30 is improved, and the power consumption can be reduced.

第1高温側冷媒循環回路50と第2高温側冷媒循環回路60とは互いに独立しており、並列に設けられている。このため、第1高温側冷媒循環回路50による放熱と第2高温側冷媒循環回路60による放熱とは相互に依存することなく独立して行うことができる。このことは、冷却庫1の熱負荷状態をふまえた個別の運転制御が可能となるということを意味する。例えば、循環ポンプ64を常時運転するのでなく、ドレンの蒸発促進や扉周辺の結露防止が必要となったときのみ運転することとすることができる。これにより、循環ポンプ64の電力消費を節約し、循環ポンプ64の稼働寿命を延ばすことができる。     The first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 are independent of each other and are provided in parallel. For this reason, the heat radiation by the first high temperature side refrigerant circulation circuit 50 and the heat radiation by the second high temperature side refrigerant circulation circuit 60 can be performed independently without depending on each other. This means that individual operation control based on the heat load state of the refrigerator 1 becomes possible. For example, the circulation pump 64 is not always operated, but can be operated only when it is necessary to promote drain evaporation and prevent condensation around the door. Thereby, the power consumption of the circulation pump 64 can be saved, and the operating life of the circulation pump 64 can be extended.

また循環ポンプ64は第2高温側冷媒循環回路60の最上流部に配置されているので、第2高温側熱交換器61から循環ポンプ64までの管路抵抗が少なく、冷媒はスムーズに循環ポンプ64に流れ込む。循環ポンプ64に冷媒を供給する管路の抵抗が大きいと、循環ポンプ64の吸込側にキャビテーションが生じて冷媒が不必要に蒸発し、循環効率を損なうことがあるが、このように循環ポンプ64が第2高温側冷媒循環回路60の最上流部に配置されていれば、そのような事態を避けることができる。     Further, since the circulation pump 64 is disposed at the most upstream part of the second high temperature side refrigerant circulation circuit 60, the pipe resistance from the second high temperature side heat exchanger 61 to the circulation pump 64 is small, and the refrigerant is smoothly circulated. 64. If the resistance of the pipe for supplying the refrigerant to the circulation pump 64 is large, cavitation occurs on the suction side of the circulation pump 64 and the refrigerant evaporates unnecessarily, thereby impairing the circulation efficiency. Is disposed at the most upstream portion of the second high temperature side refrigerant circulation circuit 60, such a situation can be avoided.

気液二相に関して言えば、第2高温側冷媒循環回路60において、熱交換部62、63でドレン処理と結露防止を行うあたりでは冷媒が液相のみであっても構わない。その冷媒が第2高温側熱交換器61に還流した時点では、その還液と冷媒蒸気との潜熱熱交換となるため、ここで高い熱交換効率が得られる。     Regarding the gas-liquid two-phase, in the second high-temperature side refrigerant circulation circuit 60, the refrigerant may be only in the liquid phase when the heat exchange units 62 and 63 perform the drain treatment and the dew condensation prevention. When the refrigerant is refluxed to the second high temperature side heat exchanger 61, latent heat exchange is performed between the return liquid and the refrigerant vapor, so that high heat exchange efficiency is obtained here.

続いて、第2実施形態以下の実施形態を図3以下の図に基づき説明する。図3〜図17はいずれも配管構成図であり、そこに示された配管が図1の冷却庫1の中で実現されているものとする。第1実施形態と共通する構成要素については第1実施形態の説明で使用した符号をそのまま使用し、説明は省略する。     Subsequently, the second and following embodiments will be described with reference to FIG. 3 to 17 are piping configuration diagrams, and the piping shown therein is assumed to be realized in the refrigerator 1 of FIG. Constituent elements common to the first embodiment are used as they are in the description of the first embodiment, and description thereof is omitted.

本発明冷却庫の第2実施形態を図3に示す。ここではドレンの蒸発促進のための熱交換部62と冷却庫壁の結露防止のための熱交換部63とを並列接続し、この並列接続構造を第2高温側熱交換器61及び循環ポンプ64に直列接続する。循環ポンプ64はここでも第2高温側冷媒循環回路60の最上流部に配置される。そして前記並列接続構造の内部において、熱交換部62の上流側に弁65を直列接続し、熱交換部63の上流側に弁66を直列接続する。     A second embodiment of the refrigerator of the present invention is shown in FIG. Here, a heat exchanging part 62 for promoting the evaporation of drain and a heat exchanging part 63 for preventing condensation on the cooling wall are connected in parallel, and this parallel connection structure is connected to the second high temperature side heat exchanger 61 and the circulation pump 64. Connect in series. The circulation pump 64 is also arranged at the most upstream part of the second high temperature side refrigerant circulation circuit 60 here. In the parallel connection structure, a valve 65 is connected in series on the upstream side of the heat exchange unit 62, and a valve 66 is connected in series on the upstream side of the heat exchange unit 63.

上記構成によれば、熱交換部62、63の箇所における冷媒の流動抵抗が第1実施形態の約半分になり、循環ポンプ64の消費電力を大幅に削減できる。また熱交換部62、63に弁65、66を組み合わせたので、ドレンの蒸発促進と冷却庫壁の結露防止のいずれかが必要でなければ、必要でない側の弁を閉じて冷媒の流動を止めることができる。循環ポンプの負荷を減らすことにより、循環ポンプ64の消費電力をさらに削減できる。     According to the said structure, the flow resistance of the refrigerant | coolant in the location of the heat exchange parts 62 and 63 becomes about half of 1st Embodiment, and the power consumption of the circulation pump 64 can be reduced significantly. Further, since the valves 65 and 66 are combined with the heat exchanging parts 62 and 63, if either the drain evaporation promotion or the condensation prevention of the cooling wall is not required, the unnecessary valve is closed to stop the flow of the refrigerant. be able to. By reducing the load on the circulation pump, the power consumption of the circulation pump 64 can be further reduced.

結露防止のため必要なとき以外は弁66を閉じることとすれば、扉14、15、16の周辺が必要以上に長く加熱されることがなくなる。これにより冷却室11、12、13の熱負荷を低減し、消費電力を抑制することができる。     If the valve 66 is closed except when necessary to prevent condensation, the surroundings of the doors 14, 15, 16 are not heated longer than necessary. Thereby, the thermal load of the cooling chambers 11, 12, and 13 can be reduced, and power consumption can be suppressed.

熱交換部62、63のそれぞれに専用の弁を設けるのでなく、共通の三方弁を設け、この三方弁の切り替え操作により「熱交換部62、63の両方に冷媒が通る」「熱交換部62だけに冷媒が通る」「熱交換部63だけに冷媒が通る」の3状態を選択するようにすることもできる。また自動制御を容易にするため、弁は電磁弁としておくのがよい。     Instead of providing a dedicated valve for each of the heat exchange units 62 and 63, a common three-way valve is provided, and “the refrigerant passes through both of the heat exchange units 62 and 63” by the switching operation of the three-way valve. It is also possible to select three states of “the refrigerant passes only” and “the refrigerant passes only through the heat exchange section 63”. In order to facilitate automatic control, the valve is preferably a solenoid valve.

なお第1高温側冷媒循環回路50と第2高温側冷媒循環回路60を流れる冷媒はいずれも気液二相である。     Note that the refrigerant flowing through the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 is gas-liquid two-phase.

本発明冷却庫の第3実施形態を図4に示す。湿度の高い環境にあってはドレンの蒸発促進と冷却庫壁の結露防止を休みなく行わねばならないが、第3実施形態の配管構造はこのような場合に適するものである。     A third embodiment of the refrigerator of the present invention is shown in FIG. In a high humidity environment, drain evaporation must be promoted and condensation on the cooling wall must be prevented without interruption, but the piping structure of the third embodiment is suitable for such a case.

第3実施形態では、単一型の高温側熱交換器71がスターリング冷凍エンジン30の高温部に取り付けられている。第1高温側熱交換器51及び第2高温側熱交換器61と同様、高温側熱交換器71の内部には多数のフィンが設けられ、冷媒との間で効率よく熱交換を行えるようになっている。高温側熱交換器71には、冷媒の流れの上流側から順に、循環ポンプ64、ドレンの蒸発促進用の熱交換部62、冷却庫壁の結露防止用の熱交換部63、及び放熱用熱交換器52が直列回路をなすように接続され、高温側冷媒循環回路70を構成する。     In the third embodiment, a single type high temperature side heat exchanger 71 is attached to the high temperature part of the Stirling refrigeration engine 30. Like the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61, the high temperature side heat exchanger 71 is provided with a large number of fins so that heat can be efficiently exchanged with the refrigerant. It has become. The high temperature side heat exchanger 71 includes, in order from the upstream side of the refrigerant flow, a circulation pump 64, a heat exchange portion 62 for promoting drain evaporation, a heat exchange portion 63 for preventing condensation on the cooling wall, and heat for heat radiation. The exchanger 52 is connected so as to form a series circuit, and constitutes a high temperature side refrigerant circulation circuit 70.

スターリング冷凍エンジン30を駆動すると高温側熱交換器71が加熱される。高温側熱交換器71が加熱されると冷媒が蒸発し、気相と液相が混在する気液二相の形になる。高温側冷媒循環回路70の最上流部に配置された循環ポンプ64により、気液二相の冷媒が熱交換部62へと送り出される。     When the Stirling refrigerating engine 30 is driven, the high temperature side heat exchanger 71 is heated. When the high temperature side heat exchanger 71 is heated, the refrigerant evaporates, and a gas-liquid two-phase shape in which the gas phase and the liquid phase are mixed is formed. A gas-liquid two-phase refrigerant is sent out to the heat exchanging unit 62 by a circulation pump 64 arranged at the most upstream part of the high temperature side refrigerant circulation circuit 70.

気液二相の冷媒は熱交換部62を流れ、ドレンパン26に熱を伝えてドレンの蒸発を促進する。冷媒は続いて熱交換部63を流れ、冷却庫壁の外気に接する箇所に熱を伝えてこの箇所の温度を露点温度以上に保つ。     The gas-liquid two-phase refrigerant flows through the heat exchanging section 62 and transfers heat to the drain pan 26 to promote drain evaporation. The refrigerant then flows through the heat exchanging section 63 and transfers heat to a location in contact with the outside air on the refrigerator wall to keep the temperature at this location at or above the dew point temperature.

熱交換部62でドレンから冷熱を回収し、熱交換部63でハウジング10から冷熱を回収した冷媒は、気相であったものがかなり液相に戻った状態で放熱用熱交換器52に流入する。送風ファン53が放熱用熱交換器52の表面に空気を吹き付けているので冷媒はさらに熱を奪われ、液化が進んで、ほぼ液相の単相の形で高温側熱交換器71に還流する。そして一部が蒸発し、再び気液二相を回復する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、熱交換部62、63で凝縮して放熱し、冷熱を回収するというサイクルが繰り返される。循環ポンプ64の運転を停止すれば、このサイクルは中断する。     The refrigerant that collects cold heat from the drain in the heat exchange unit 62 and collects cold heat from the housing 10 in the heat exchange unit 63 flows into the heat-dissipating heat exchanger 52 in a state where the gas phase is considerably returned to the liquid phase. To do. Since the blower fan 53 blows air onto the surface of the heat-dissipating heat exchanger 52, the refrigerant is further deprived of heat, liquefaction progresses, and recirculates to the high-temperature side heat exchanger 71 in the form of an almost liquid phase. . And a part evaporates and a gas-liquid two phase is recovered | restored again. In this way, a cycle is repeated in which the refrigerant receives heat from the high temperature portion of the Stirling refrigerating engine 30 and evaporates, condenses and dissipates heat in the heat exchanging portions 62 and 63, and collects the cold. If the operation of the circulation pump 64 is stopped, this cycle is interrupted.

上記構成によれば、高温側冷媒循環回路70の配管構造が簡単で、組立工数が少なくて済むというメリットがある。     According to the above configuration, there is an advantage that the piping structure of the high-temperature side refrigerant circulation circuit 70 is simple and the number of assembly steps can be reduced.

熱交換部62、63の位置を逆転し、先に冷却庫壁を加熱し、次いでドレンパン26を加熱するようにしてもよい。なお、気液二相の冷媒による熱搬送が望ましいが、液相のみのブライン方式による熱搬送も採用可能である。     The positions of the heat exchange parts 62 and 63 may be reversed, the cooling wall may be heated first, and then the drain pan 26 may be heated. Note that heat transfer using a gas-liquid two-phase refrigerant is desirable, but heat transfer using a liquid phase-only brine method can also be employed.

本発明冷却庫の第4実施形態を図5に示す。第4実施形態においても、単一型の高温側熱交換器71がスターリング冷凍エンジン30の高温部に取り付けられている。高温側熱交換器71の内部には多数のフィンが設けられ、冷媒との間で効率よく熱交換を行えるようになっている。高温側熱交換器71の下流側には循環ポンプ64が接続され、上流側には放熱用熱交換器52が接続される。     5th Embodiment of this invention refrigerator is shown in FIG. Also in the fourth embodiment, the single high temperature side heat exchanger 71 is attached to the high temperature part of the Stirling refrigerating engine 30. A large number of fins are provided inside the high temperature side heat exchanger 71 so that heat can be efficiently exchanged with the refrigerant. A circulation pump 64 is connected to the downstream side of the high temperature side heat exchanger 71, and a heat dissipation heat exchanger 52 is connected to the upstream side.

循環ポンプ64と放熱用熱交換器52の間にドレンの蒸発促進用の熱交換部62と冷却庫壁の結露防止用の熱交換部63が配置される。熱交換部62、63は第3実施形態のような直列接続ではなく、第2実施形態と同じく並列接続となっている。この並列接続構造を高温側熱交換器71及び循環ポンプ64に直列接続する。そして前記並列接続構造の内部において、熱交換部62の上流側に弁65を直列接続し、熱交換部63の上流側に弁66を直列接続する。このようにして高温側冷媒循環回路70が構成される。     Between the circulation pump 64 and the heat dissipating heat exchanger 52, a heat exchanging portion 62 for promoting drain evaporation and a heat exchanging portion 63 for preventing condensation on the cooling wall are disposed. The heat exchange units 62 and 63 are not connected in series as in the third embodiment, but are connected in parallel as in the second embodiment. This parallel connection structure is connected in series to the high temperature side heat exchanger 71 and the circulation pump 64. In the parallel connection structure, a valve 65 is connected in series on the upstream side of the heat exchange unit 62, and a valve 66 is connected in series on the upstream side of the heat exchange unit 63. In this way, the high temperature side refrigerant circulation circuit 70 is configured.

スターリング冷凍エンジン30を駆動すると高温側熱交換器71が加熱される。高温側熱交換器71が加熱されると内部の冷媒の一部が蒸発し、冷媒は気液二相の形になる。高温側冷媒循環回路70の最上流部に配置された循環ポンプ64により、気液二相の冷媒は熱交換部62、63へと送り出される。     When the Stirling refrigerating engine 30 is driven, the high temperature side heat exchanger 71 is heated. When the high temperature side heat exchanger 71 is heated, a part of the internal refrigerant evaporates, and the refrigerant becomes a gas-liquid two-phase form. The gas-liquid two-phase refrigerant is sent out to the heat exchanging units 62 and 63 by the circulation pump 64 arranged at the most upstream part of the high temperature side refrigerant circulation circuit 70.

冷媒は分流して熱交換部62、63を流れ、ドレンパン26に熱を伝えてドレンの蒸発を促進し、また冷却庫壁の外気に接する箇所に熱を伝えてこの箇所の温度を露点温度以上に保つ。     The refrigerant is diverted and flows through the heat exchanging parts 62 and 63, and heat is transmitted to the drain pan 26 to accelerate the evaporation of the drain. Further, the heat is transmitted to a location in contact with the outside air on the refrigerator wall, and the temperature of this location is higher than the dew point temperature. Keep on.

熱交換部62でドレンから冷熱を回収し、熱交換部63でハウジング10から冷熱を回収した冷媒は、気相であったものがかなり液相に戻った状態で放熱用熱交換器52に流入する。送風ファン53が放熱用熱交換器52の表面に空気を吹き付けているので冷媒はさらに熱を奪われ、液化が進んで、ほぼ液相の単相の形で高温側熱交換器71に還流する。そして一部が蒸発し、再び気液二相を回復する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、熱交換部62、63で凝縮して放熱し、冷熱を回収するというサイクルが繰り返される。循環ポンプ64の運転を停止すれば、このサイクルは中断する。     The refrigerant that collects cold heat from the drain in the heat exchange unit 62 and collects cold heat from the housing 10 in the heat exchange unit 63 flows into the heat-dissipating heat exchanger 52 in a state where the gas phase is considerably returned to the liquid phase. To do. Since the blower fan 53 blows air onto the surface of the heat-dissipating heat exchanger 52, the refrigerant is further deprived of heat, liquefaction progresses, and recirculates to the high-temperature side heat exchanger 71 in the form of an almost liquid phase. . And a part evaporates and a gas-liquid two phase is recovered | restored again. In this way, a cycle is repeated in which the refrigerant receives heat from the high temperature portion of the Stirling refrigerating engine 30 and evaporates, condenses and dissipates heat in the heat exchanging portions 62 and 63, and collects the cold heat. If the operation of the circulation pump 64 is stopped, this cycle is interrupted.

本発明冷却庫の第5実施形態を図6に示す。第2実施形態と同様、ドレンの蒸発促進のための熱交換部62と冷却庫壁の結露防止のための熱交換部63とを並列接続し、この並列接続構造を第2高温側熱交換器61及び循環ポンプ64に直列接続している。そして前記並列接続構造の内部において、熱交換部62の上流側に弁65が直列接続され、熱交換部63の上流側に弁66が直列接続されている。     A fifth embodiment of the refrigerator of the present invention is shown in FIG. As in the second embodiment, a heat exchanging portion 62 for promoting drain evaporation and a heat exchanging portion 63 for preventing condensation on the refrigerator wall are connected in parallel, and this parallel connection structure is used as a second high temperature side heat exchanger. 61 and the circulation pump 64 are connected in series. In the parallel connection structure, a valve 65 is connected in series on the upstream side of the heat exchange unit 62, and a valve 66 is connected in series on the upstream side of the heat exchange unit 63.

第5実施形態では、熱交換部62、63の並列接続構造に除霜用冷媒循環回路80が並列接続される。除霜用冷媒循環回路80は除霜用熱交換器81と、その上流側及び下流側に接続された弁82、83を含む。除霜用熱交換器81は熱伝導又は対流により庫内冷却用熱交換器42に熱を伝える。除霜用熱交換器81と庫内冷却用熱交換器42の間に送風ファンによる強制対流が生じるようにしてもよい。庫内冷却用熱交換器42の一部を区画して除霜用熱交換器81を構成することも可能である。     In the fifth embodiment, the defrosting refrigerant circulation circuit 80 is connected in parallel to the parallel connection structure of the heat exchange units 62 and 63. The defrosting refrigerant circulation circuit 80 includes a defrosting heat exchanger 81 and valves 82 and 83 connected to the upstream side and the downstream side thereof. The defrosting heat exchanger 81 transfers heat to the internal cooling heat exchanger 42 by heat conduction or convection. Forced convection by a blower fan may be generated between the defrosting heat exchanger 81 and the internal cooling heat exchanger 42. It is also possible to configure a defrosting heat exchanger 81 by partitioning a part of the internal cooling heat exchanger 42.

冷却室11、12、13の冷却は、弁65、66を開き、弁82、83を閉じた状態で行う。スターリング冷凍エンジン30を駆動すると、低温側熱交換器41は熱を奪われ、内部の冷媒は凝縮状態で低温側冷媒循環回路40を通って庫内冷却用熱交換器42に流れ込む。     Cooling of the cooling chambers 11, 12, and 13 is performed with the valves 65 and 66 opened and the valves 82 and 83 closed. When the Stirling refrigeration engine 30 is driven, the low temperature side heat exchanger 41 is deprived of heat, and the internal refrigerant flows into the internal cooling heat exchanger 42 through the low temperature side refrigerant circulation circuit 40 in a condensed state.

庫内冷却用熱交換器42に流れ込んだ冷媒は庫内冷却用熱交換器42を通り抜ける空気の熱で蒸発し、庫内冷却用熱交換器42の表面温度を下げる。庫内冷却用熱交換器42を通り抜ける空気は熱を奪われて冷気となり、ダクト20の冷気吹出口21から冷却室11、12、13に吹き出し、冷却室11、12、13の温度を下げる。その後空気は図示しないダクトを通って庫内冷却用熱交換器42に還流する。     The refrigerant that has flowed into the internal cooling heat exchanger 42 is evaporated by the heat of the air passing through the internal cooling heat exchanger 42, and the surface temperature of the internal cooling heat exchanger 42 is lowered. The air passing through the internal cooling heat exchanger 42 is deprived of heat and becomes cold air, blown out from the cold air outlet 21 of the duct 20 to the cooling chambers 11, 12, 13, and lowers the temperature of the cooling chambers 11, 12, 13. Thereafter, the air flows back to the internal cooling heat exchanger 42 through a duct (not shown).

スターリング冷凍エンジン30が仕事をすることにより生じる熱、また低温部が庫内から回収した熱は高温部から放熱されるべき熱となる。この熱により、第1高温側熱交換器51及び第2高温側熱交換器61が加熱される。     The heat generated when the Stirling refrigerating engine 30 performs work, and the heat recovered from the inside of the low temperature portion is heat that should be radiated from the high temperature portion. The first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 are heated by this heat.

第1高温側熱交換器51が加熱されると内部の冷媒の一部が蒸発し、冷媒は気液二相の形で放熱用熱交換器52に流れ込む。送風ファン53が放熱用熱交換器52の表面に空気を吹き付けており、気相の冷媒は熱を奪われて凝縮する。凝縮し、液相となった冷媒は第1高温側熱交換器51に還流し、再び蒸発する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、放熱用熱交換器52でそれを冷却用空気に伝えて凝縮するというサイクルが繰り返される。     When the first high temperature side heat exchanger 51 is heated, a part of the internal refrigerant evaporates, and the refrigerant flows into the heat dissipation heat exchanger 52 in a gas-liquid two-phase form. The blower fan 53 blows air onto the surface of the heat-dissipating heat exchanger 52, and the gas-phase refrigerant is deprived of heat and condensed. The refrigerant that has condensed to a liquid phase is refluxed to the first high temperature side heat exchanger 51 and evaporated again. In this way, the cycle in which the refrigerant receives heat from the high temperature portion of the Stirling refrigeration engine 30 and evaporates and transmits it to the cooling air by the heat-dissipating heat exchanger 52 to condense is repeated.

第2高温側熱交換器61が加熱されると内部の冷媒の一部が蒸発し、冷媒は気液二相の形になる。第2高温側冷媒循環回路60の最上流部に配置された循環ポンプ64により、気液二相の冷媒は熱交換部62、63へと送り出される。冷媒は分流して熱交換部62、63を流れ、ドレンパン26に熱を伝えてドレンの蒸発を促進し、また冷却庫壁の外気に接する箇所に熱を伝えてこの箇所の温度を露点温度以上に保つ。     When the second high temperature side heat exchanger 61 is heated, a part of the internal refrigerant evaporates, and the refrigerant is in a gas-liquid two-phase form. The gas-liquid two-phase refrigerant is sent out to the heat exchanging units 62 and 63 by the circulation pump 64 arranged at the most upstream part of the second high temperature side refrigerant circulation circuit 60. The refrigerant is diverted and flows through the heat exchanging parts 62 and 63, and heat is transmitted to the drain pan 26 to accelerate the evaporation of the drain. Further, the heat is transmitted to a location in contact with the outside air on the refrigerator wall, and the temperature of this location is higher than the dew point temperature. Keep on.

熱交換部62でドレンから冷熱を回収し、熱交換部63でハウジング10から冷熱を回収した冷媒は、気相であったものの液化が進み、ほぼ液相の単相の形で第2高温側熱交換器61に還流する。そして一部が蒸発し、再び気液二相を回復する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、熱交換部62、63で凝縮して放熱し、冷熱を回収するというサイクルが繰り返される。弁82、83が閉じているため、冷媒の持つ温熱が庫内冷却用熱交換器42に伝わることはない。循環ポンプ64の運転を停止すれば、このサイクルは中断する。     The refrigerant that collects the cold heat from the drain in the heat exchange unit 62 and collects the cold heat from the housing 10 in the heat exchange unit 63 is a gas phase, but the liquefaction proceeds, and the second high temperature side in the form of a substantially liquid phase. Reflux to heat exchanger 61. And a part evaporates and a gas-liquid two phase is recovered | restored again. In this way, a cycle is repeated in which the refrigerant receives heat from the high temperature portion of the Stirling refrigerating engine 30 and evaporates, condenses and dissipates heat in the heat exchanging portions 62 and 63, and collects the cold heat. Since the valves 82 and 83 are closed, the heat of the refrigerant is not transmitted to the internal cooling heat exchanger 42. If the operation of the circulation pump 64 is stopped, this cycle is interrupted.

庫内冷却用熱交換器42の表面温度が下がると、庫内冷却用熱交換器42を通り抜ける空気は熱を奪われて冷気となる。同時に、空気に含まれる水分、すなわち冷却室11、12、13に侵入してきた水分や、冷却室内の貯蔵食品から奪われた水分が庫内冷却用熱交換器42に霜となって付着する。霜がつくと、霜の断熱作用のため庫内冷却用熱交換器42と空気の間の熱交換効率が低下する。また庫内冷却用熱交換器42のフィンの隙間が霜により狭められ、通風量が低下する。これにより、冷却能力が一層低下する。     When the surface temperature of the internal cooling heat exchanger 42 decreases, the air passing through the internal cooling heat exchanger 42 is deprived of heat and becomes cold. At the same time, moisture contained in the air, that is, moisture that has entered the cooling chambers 11, 12, and 13 and moisture that has been taken away from the stored food in the cooling chamber adheres to the internal cooling heat exchanger 42 as frost. When the frost is formed, the heat exchange efficiency between the internal cooling heat exchanger 42 and the air is lowered due to the heat insulating action of the frost. Moreover, the clearance gap between the fins of the internal-cooling heat exchanger 42 is narrowed by frost, and the air flow rate is reduced. Thereby, the cooling capacity is further reduced.

そこで、適当なタイミングで弁82、83を開き、第2高温側熱交換器61から出た冷媒を除霜用熱交換器81に流す。すると冷媒の持つ温熱が庫内冷却用熱交換器42に伝わり、庫内冷却用熱交換器42に付着している霜を溶かす。溶けた霜はドレンとなってドレンパン26に流出する。     Therefore, the valves 82 and 83 are opened at an appropriate timing, and the refrigerant discharged from the second high temperature side heat exchanger 61 is caused to flow to the defrosting heat exchanger 81. Then, the heat of the refrigerant is transmitted to the internal cooling heat exchanger 42, and the frost adhering to the internal cooling heat exchanger 42 is melted. The melted frost flows into the drain pan 26 as a drain.

庫内冷却用熱交換器42の持つ冷熱、主として霜の持つ冷熱は冷媒に回収される。冷熱を回収して温度低下し、液化が進んだ冷媒は第2高温側熱交換器61に還流し、再び気液二相となる。霜取りの効率を高め、霜取り時間を短縮するため、除霜期間の間は弁65、66を閉じ、冷媒が除霜用熱交換器81に集中して流れるようにするとよい。     The cold heat of the internal cooling heat exchanger 42, mainly the cold heat of frost, is recovered by the refrigerant. The refrigerant whose temperature is lowered by recovering the cold heat and the liquefaction has progressed returns to the second high temperature side heat exchanger 61 and becomes a gas-liquid two phase again. In order to increase the efficiency of defrosting and shorten the defrosting time, it is preferable to close the valves 65 and 66 during the defrosting period so that the refrigerant flows in the defrosting heat exchanger 81 in a concentrated manner.

この構成によれば、除霜用の電熱ヒーターを設けることなく庫内冷却用熱交換器42の霜取りを行うことができる。また霜の持つ冷熱を回収してスターリング冷凍エンジン30の高温部を冷やすので、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率も向上する。     According to this configuration, it is possible to defrost the inside-cooling heat exchanger 42 without providing an electric heater for defrosting. Further, since the cold heat of the frost is recovered to cool the high temperature portion of the Stirling refrigerating engine 30, the heat load of the heat dissipation system is reduced, and the heat dissipation efficiency of the entire heat dissipation system is improved.

第1高温側冷媒循環回路50はループ状サーモサイフォンであるから、第1高温側熱交換器51より、人工的なエネルギーを使用することなく熱をくみ出すことができる。他方第2高温側冷媒循環回路60では、循環ポンプ64により冷媒を送り、高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに確実に利用することができる。     Since the first high temperature side refrigerant circulation circuit 50 is a loop thermosyphon, heat can be extracted from the first high temperature side heat exchanger 51 without using artificial energy. On the other hand, in the second high temperature side refrigerant circulation circuit 60, the refrigerant is sent by the circulation pump 64, and at least one of the heat of the high temperature part is promoted to evaporate the drain, the condensation of the cooling wall is prevented, and the defrosting of the heat exchanger for cooling in the warehouse. Can be used reliably.

熱交換部62、63の並列接続構造に除霜用熱交換器81を直列接続する構成とすることも可能である。この場合、弁82、83は不要となる。弁65、66を開いておいて循環ポンプ64を運転すれば、ドレンの蒸発促進、冷却庫壁の加熱、及び霜取りが同時に行われる。弁65を閉じればドレンの蒸発促進が休止状態となり、弁66を閉じれば冷却庫壁の加熱が休止状態となる。循環ポンプ64を停止すれば、熱交換部62、63、及び除霜用熱交換器81の動作はすべて停止する。     A defrosting heat exchanger 81 may be connected in series to the parallel connection structure of the heat exchange units 62 and 63. In this case, the valves 82 and 83 are unnecessary. If the circulation pump 64 is operated with the valves 65 and 66 open, drain evaporation promotion, cooling wall heating, and defrosting are performed simultaneously. When the valve 65 is closed, the drain evaporation is stopped, and when the valve 66 is closed, the heating of the cooling wall is stopped. If the circulation pump 64 is stopped, the operations of the heat exchangers 62 and 63 and the defrosting heat exchanger 81 are all stopped.

本発明冷却庫の第6実施形態を図7に示す。第6実施形態は第5実施形態に次の要素を付加したものである。すなわち熱交換部62、熱交換部63、除霜用熱交換器81の並列接続構造と第2高温側熱交換器61との間に熱交換器型の蓄熱部90を設けたものである。     A sixth embodiment of the refrigerator of the present invention is shown in FIG. The sixth embodiment is obtained by adding the following elements to the fifth embodiment. That is, the heat exchanger type heat storage unit 90 is provided between the parallel connection structure of the heat exchange unit 62, the heat exchange unit 63, and the defrosting heat exchanger 81 and the second high temperature side heat exchanger 61.

弁65、66を開き、弁82、83を閉じた状態でスターリング冷凍エンジン30を駆動すると、低温側熱交換器41は熱を奪われ、内部の冷媒は凝縮状態で庫内冷却用熱交換器42に流れ込む。庫内冷却用熱交換器42に流れ込んだ冷媒は蒸発して庫内冷却用熱交換器42の表面温度を下げる。これにより冷却室11、12、13の冷却が行われる。     When the Stirling refrigeration engine 30 is driven with the valves 65 and 66 open and the valves 82 and 83 closed, the low temperature side heat exchanger 41 is deprived of heat, and the internal refrigerant is condensed and the internal cooling heat exchanger. It flows into 42. The refrigerant flowing into the interior cooling heat exchanger 42 evaporates and lowers the surface temperature of the interior cooling heat exchanger 42. Thereby, cooling of the cooling chambers 11, 12, and 13 is performed.

他方第1高温側熱交換器51及び第2高温側熱交換器61は加熱される。第1高温側熱交換器51が加熱されると内部の冷媒の一部が蒸発し、冷媒は気液二相の形で放熱用熱交換器52に流れ込む。送風ファン53が放熱用熱交換器52の表面に空気を吹き付けており、気相の冷媒は熱を奪われて凝縮する。凝縮し、液相となった冷媒は第1高温側熱交換器51に還流し、再び蒸発する。このようにして、冷媒がスターリング冷凍エンジン30の高温部から熱を受け取って蒸発し、放熱用熱交換器52でそれを冷却用空気に伝えて凝縮するというサイクルが繰り返される。     On the other hand, the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 are heated. When the first high temperature side heat exchanger 51 is heated, a part of the internal refrigerant evaporates, and the refrigerant flows into the heat dissipation heat exchanger 52 in a gas-liquid two-phase form. The blower fan 53 blows air onto the surface of the heat-dissipating heat exchanger 52, and the gas-phase refrigerant is deprived of heat and condensed. The refrigerant that has condensed to a liquid phase is refluxed to the first high temperature side heat exchanger 51 and evaporated again. In this way, the cycle in which the refrigerant receives heat from the high temperature portion of the Stirling refrigeration engine 30 and evaporates and transmits it to the cooling air by the heat-dissipating heat exchanger 52 to condense is repeated.

第2高温側熱交換器61が加熱されると内部の冷媒の一部が蒸発し、冷媒は気液二相の形になる。第2高温側冷媒循環回路60の最上流部に配置された循環ポンプ64により、気液二相の冷媒は熱交換部62、63へと送り出される。冷媒は分流して熱交換部62、63を流れ、ドレンパン26に熱を伝えてドレンの蒸発を促進し、また冷却庫壁の外気に接する箇所に熱を伝えてこの箇所の温度を露点温度以上に保つ。     When the second high temperature side heat exchanger 61 is heated, a part of the internal refrigerant evaporates, and the refrigerant becomes a gas-liquid two-phase form. The gas-liquid two-phase refrigerant is sent out to the heat exchanging units 62 and 63 by the circulation pump 64 arranged at the most upstream part of the second high temperature side refrigerant circulation circuit 60. The refrigerant is diverted and flows through the heat exchanging parts 62 and 63, and heat is transmitted to the drain pan 26 to accelerate the evaporation of the drain. Further, the heat is transmitted to a location in contact with the outside air on the refrigerator wall, and the temperature of this location exceeds the dew point temperature. Keep on.

熱交換部62、63を出た冷媒は蓄熱部90を通る。熱交換部62、63で放熱した後の余熱が蓄熱部90に蓄積される。蓄熱部90に余熱を与えた冷媒は、気相であったものの液化が進み、ほぼ液相の形で第2高温側熱交換器61に還流する。そして一部が蒸発し、再び気液二相を回復する。このようにして、冷媒が高温部で熱を受け取って蒸発し、熱交換部62、63、及び蓄熱部90で凝縮して放熱し、冷熱を回収するというサイクルが繰り返される。弁82、83が閉じているため、冷媒の持つ温熱が庫内冷却用熱交換器42に伝わることはない。循環ポンプ64の運転を停止すれば、このサイクルは中断する。     The refrigerant that has exited the heat exchange units 62 and 63 passes through the heat storage unit 90. The residual heat after radiating heat at the heat exchange units 62 and 63 is accumulated in the heat storage unit 90. The refrigerant that has given residual heat to the heat storage unit 90 is in a gas phase, but liquefaction proceeds, and is returned to the second high temperature side heat exchanger 61 in a substantially liquid phase form. And a part evaporates and a gas-liquid two phase is recovered | restored again. In this way, the cycle in which the refrigerant receives heat at the high temperature part and evaporates, condenses and dissipates heat at the heat exchange parts 62 and 63 and the heat storage part 90, and collects the cold heat is repeated. Since the valves 82 and 83 are closed, the heat of the refrigerant is not transmitted to the internal cooling heat exchanger 42. If the operation of the circulation pump 64 is stopped, this cycle is interrupted.

庫内冷却用熱交換器42の霜取りを行う場合は、弁82、83を開き、第2高温側熱交換器61から出た冷媒を除霜用熱交換器81に流す。すると冷媒の持つ温熱が庫内冷却用熱交換器42に伝わり、庫内冷却用熱交換器42に付着している霜を溶かす。溶けた霜はドレンとなってドレンパン26に流出する。     When defrosting the internal-cooling heat exchanger 42, the valves 82 and 83 are opened, and the refrigerant that has come out of the second high temperature side heat exchanger 61 is caused to flow to the defrost heat exchanger 81. Then, the heat of the refrigerant is transmitted to the internal cooling heat exchanger 42, and the frost adhering to the internal cooling heat exchanger 42 is melted. The melted frost flows into the drain pan 26 as a drain.

庫内冷却用熱交換器42の持つ冷熱、主として霜の持つ冷熱は冷媒に回収される。冷熱を回収して温度低下した冷媒は蓄熱部90を通る際に蓄熱部90と熱交換する。冷熱を放出し、蓄熱部90から温熱をもらって温度上昇した後、冷媒は第2高温側熱交換器61に還流し、再び気液二相となる。霜取りの効率を高め、霜取り時間を短縮するため、除霜期間の間は弁65、66を閉じ、冷媒が除霜用熱交換器81に集中して流れるようにしておく。     The cold heat of the internal cooling heat exchanger 42, mainly the cold heat of frost, is recovered by the refrigerant. The refrigerant whose temperature has decreased by collecting the cold heat exchanges heat with the heat storage unit 90 when passing through the heat storage unit 90. After releasing the cold heat and increasing the temperature by receiving warm heat from the heat storage unit 90, the refrigerant returns to the second high temperature side heat exchanger 61 and again becomes a gas-liquid two phase. In order to increase the efficiency of defrosting and shorten the defrosting time, the valves 65 and 66 are closed during the defrosting period so that the refrigerant flows in the defrosting heat exchanger 81 in a concentrated manner.

このように、霜取り工程中は霜からの冷熱が蓄熱部90に蓄積されて行く。霜取り工程が終了し、通常運転に戻ると、蓄熱部90は通過する冷媒に冷熱を伝え、スターリング冷凍エンジン30の高温部を冷やす。代わりに蓄熱部90は高温部からの熱を蓄積し、次回の霜取り工程に備える。     Thus, cold heat from frost is accumulated in the heat storage unit 90 during the defrosting process. When the defrosting process is completed and the normal operation is resumed, the heat storage unit 90 transmits cold heat to the passing refrigerant, and cools the high temperature portion of the Stirling refrigerating engine 30. Instead, the heat storage unit 90 accumulates heat from the high temperature part and prepares for the next defrosting step.

この構成によれば、除霜用の電熱ヒーターを設けることなく庫内冷却用熱交換器42の霜取りを行うことができる。スターリング冷凍エンジン30を停止したとしても、循環ポンプ64を駆動しさえすれば、蓄熱部90に蓄えた温熱で冷媒を加熱して霜取りを行うことができる。     According to this configuration, it is possible to defrost the inside-cooling heat exchanger 42 without providing an electric heater for defrosting. Even if the Stirling refrigerating engine 30 is stopped, as long as the circulation pump 64 is driven, the refrigerant can be heated with the warm heat stored in the heat storage section 90 to perform defrosting.

第5実施形態と同様、霜の持つ冷熱を回収してスターリング冷凍エンジン30の高温部を冷やすので、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率も向上する。これによりスターリング冷凍エンジン30の作動COPが向上し、消費電力を低減できる。     Similarly to the fifth embodiment, the cold heat of the frost is recovered to cool the high temperature part of the Stirling refrigeration engine 30, so that the heat load of the heat dissipation system is reduced and the heat dissipation efficiency of the entire heat dissipation system is improved. As a result, the operating COP of the Stirling refrigerating engine 30 is improved, and the power consumption can be reduced.

熱交換部62、63の並列接続構造に除霜用熱交換器81を直列接続する構成とすることも可能である。この場合、弁82、83は不要となる。弁65、66を開いておいて循環ポンプ64を運転すれば、ドレンの蒸発促進、冷却庫壁の加熱、及び霜取りが同時に行われる。弁65を閉じればドレンの蒸発促進が休止状態となり、弁66を閉じれば冷却庫壁の加熱が休止状態となる。循環ポンプ64を停止すれば、熱交換部62、63、及び除霜用熱交換器81の動作はすべて停止する。     A defrosting heat exchanger 81 may be connected in series to the parallel connection structure of the heat exchange units 62 and 63. In this case, the valves 82 and 83 are unnecessary. If the circulation pump 64 is operated with the valves 65 and 66 open, drain evaporation promotion, cooling wall heating, and defrosting are performed simultaneously. When the valve 65 is closed, the drain evaporation is stopped, and when the valve 66 is closed, the heating of the cooling wall is stopped. If the circulation pump 64 is stopped, the operations of the heat exchangers 62 and 63 and the defrosting heat exchanger 81 are all stopped.

本発明冷却庫の第7実施形態を図8に示す。第7実施形態は第2実施形態に対し高温側熱交換器が単一型になっている点が異なる。すなわち本実施形態では単一型の高温側熱交換器71がスターリング冷凍エンジン30の高温部に取り付けられている。高温側熱交換器71の内部には多数のフィンが設けられ、冷媒との間で効率よく熱交換を行えるようになっている。     FIG. 8 shows a seventh embodiment of the present refrigerator. The seventh embodiment is different from the second embodiment in that the high temperature side heat exchanger is a single type. That is, in this embodiment, the single type high temperature side heat exchanger 71 is attached to the high temperature part of the Stirling refrigerating engine 30. A large number of fins are provided inside the high temperature side heat exchanger 71 so that heat can be efficiently exchanged with the refrigerant.

この高温側熱交換器71を含む形で、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60が構成されている。すなわち高温側熱交換器71は第1高温側冷媒循環回路50と第2高温側冷媒循環回路60の双方に共通の高温側熱交換器であり、この共通の高温側熱交換器71に第1高温側冷媒循環回路50と第2高温側冷媒循環回路60が互いに並列に接続された形になっている。     A first high temperature side refrigerant circulation circuit 50 and a second high temperature side refrigerant circulation circuit 60 are configured to include the high temperature side heat exchanger 71. That is, the high temperature side heat exchanger 71 is a high temperature side heat exchanger common to both the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60, and the common high temperature side heat exchanger 71 includes the first high temperature side heat exchanger 71. The high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 are connected to each other in parallel.

本発明冷却庫の第8実施形態を図9に示す。湿度の高い環境にあってはドレンの蒸発促進と冷却庫壁の結露防止を休みなく行わねばならないが、第8実施形態の配管構造はこのような場合に適するものである。     FIG. 9 shows an eighth embodiment of the present refrigerator. In a high humidity environment, drain evaporation must be promoted and condensation on the cooling wall must be prevented without any breaks. The piping structure of the eighth embodiment is suitable for such a case.

第8実施形態は第1実施形態に対し高温側熱交換器が単一型になっている点が異なる。すなわち本実施形態では単一型の高温側熱交換器71がスターリング冷凍エンジン30の高温部に取り付けられている。高温側熱交換器71の内部には多数のフィンが設けられ、冷媒との間で効率よく熱交換を行えるようになっている。     The eighth embodiment is different from the first embodiment in that the high temperature side heat exchanger is a single type. That is, in this embodiment, the single type high temperature side heat exchanger 71 is attached to the high temperature part of the Stirling refrigerating engine 30. A large number of fins are provided inside the high temperature side heat exchanger 71 so that heat can be efficiently exchanged with the refrigerant.

この高温側熱交換器71を含む形で、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60が構成されている。すなわち高温側熱交換器71は第1高温側冷媒循環回路50と第2高温側冷媒循環回路60の双方に共通の高温側熱交換器であり、この共通の高温側熱交換器71に第1高温側冷媒循環回路50と第2高温側冷媒循環回路60が互いに並列に接続された形になっている。     A first high temperature side refrigerant circulation circuit 50 and a second high temperature side refrigerant circulation circuit 60 are configured to include the high temperature side heat exchanger 71. That is, the high temperature side heat exchanger 71 is a high temperature side heat exchanger common to both the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60, and the common high temperature side heat exchanger 71 includes the first high temperature side heat exchanger 71. The high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 are connected to each other in parallel.

上記構成によれば、高温側冷媒循環回路60の配管構造が簡単で、組立工数が少なくて済むというメリットがある。     According to the above configuration, there is an advantage that the piping structure of the high-temperature side refrigerant circulation circuit 60 is simple and the number of assembly steps can be reduced.

熱交換部62、63の位置を逆転し、先に冷却庫壁を加熱し、次いでドレンパン26を加熱するようにしてもよい。     The positions of the heat exchange parts 62 and 63 may be reversed, the cooling wall may be heated first, and then the drain pan 26 may be heated.

本発明冷却庫の第9実施形態を図10に示す。第9実施形態は第8実施形態とほぼ同様の構成を備えるが、次の点が第8実施形態と異なる。すなわち第8実施形態の場合、第1高温側冷媒循環回路50において高温側熱交換器71に冷媒を還流させる働きをする還流用冷媒配管は高温側熱交換器71に接続されていたが、第9実施形態ではその還流用冷媒配管が循環ポンプ64の吸込側に接続されている。     10th Embodiment of this invention refrigerator is shown in FIG. The ninth embodiment has substantially the same configuration as that of the eighth embodiment, but differs from the eighth embodiment in the following points. That is, in the case of the eighth embodiment, the reflux refrigerant pipe that serves to recirculate the refrigerant to the high temperature side heat exchanger 71 in the first high temperature side refrigerant circulation circuit 50 is connected to the high temperature side heat exchanger 71. In the ninth embodiment, the reflux refrigerant pipe is connected to the suction side of the circulation pump 64.

この構成によれば、自然循環の形で高温側熱交換器71から放熱用熱交換器52に流れ込んだ冷媒は、放熱用熱交換器52から還流する際、高温側熱交換器71に直接入るのではなく、第2高温側冷媒循環回路60を流れる冷媒に合流する。このため、高温側熱交換器71から第2高温側冷媒循環回路60に流れ出した冷媒の持つ熱量に、放熱用熱交換器52から還流した飽和温度の冷媒の持つ熱量が加わり、第2高温側冷媒循環回路60を流れる冷媒の総熱量が増大する。これにより、ドレンの蒸発促進用の熱交換部62と冷却庫壁の結露防止用の熱交換部63に与えられる熱量が増大し、スターリング冷凍エンジン30の発生する熱の利用効率を高めることができる。     According to this configuration, the refrigerant flowing from the high temperature side heat exchanger 71 into the heat radiation heat exchanger 52 in the form of natural circulation directly enters the high temperature side heat exchanger 71 when returning from the heat radiation heat exchanger 52. Instead, the refrigerant flows through the second high-temperature refrigerant circulation circuit 60. For this reason, the heat amount of the refrigerant flowing out from the high temperature side heat exchanger 71 to the second high temperature side refrigerant circulation circuit 60 is added to the heat amount of the refrigerant having the saturation temperature recirculated from the heat radiating heat exchanger 52, and the second high temperature side The total heat quantity of the refrigerant flowing through the refrigerant circulation circuit 60 increases. As a result, the amount of heat given to the heat exchanging portion 62 for promoting drain evaporation and the heat exchanging portion 63 for preventing condensation on the cooling wall increases, and the utilization efficiency of the heat generated by the Stirling refrigeration engine 30 can be increased. .

本発明冷却庫の第10実施形態を図11に示す。第10実施形態は第5実施形態と同様の構成であるが、高温側熱交換器が単一型になっている点が第5実施形態と異なる。この構成により、第5実施形態同様に、除霜用の電熱ヒーターを設けることなく庫内冷却用熱交換器42の霜取りを行うことができる。また霜の持つ冷熱を回収してスターリング冷凍エンジン30の高温部を冷やすので、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率が向上する。     FIG. 11 shows a tenth embodiment of the present invention refrigerator. The tenth embodiment has the same configuration as the fifth embodiment, but differs from the fifth embodiment in that the high-temperature side heat exchanger is a single type. With this configuration, similarly to the fifth embodiment, the inside cooling heat exchanger 42 can be defrosted without providing an electric heater for defrosting. Further, since the cold heat of the frost is recovered to cool the high temperature portion of the Stirling refrigerating engine 30, the heat load of the heat dissipation system is reduced, and the heat dissipation efficiency of the entire heat dissipation system is improved.

本発明冷却庫の第11実施形態を図12に示す。第11実施形態は第6実施形態と同様の構成であるが、高温側熱交換器が単一型になっている点が第6実施形態と異なる。この構成により、第6実施形態同様に、除霜用の電熱ヒーターを設けることなく庫内冷却用熱交換器42の霜取りを行うことができるうえ、スターリング冷凍エンジン30を停止したとしても、循環ポンプ64を駆動しさえすれば、蓄熱部90に蓄えた温熱で冷媒を加熱して霜取りを行うことができる。     An eleventh embodiment of the refrigerator of the present invention is shown in FIG. The eleventh embodiment has the same configuration as that of the sixth embodiment, but differs from the sixth embodiment in that the high temperature side heat exchanger is a single type. With this configuration, as in the sixth embodiment, the inside cooling heat exchanger 42 can be defrosted without providing an electric heater for defrosting, and even if the Stirling refrigeration engine 30 is stopped, the circulation pump As long as 64 is driven, defrosting can be performed by heating the refrigerant with the warm heat stored in the heat storage section 90.

本発明冷却庫の第12実施形態を図13に示す。第12実施形態は、第2実施形態の構成を次のように変更したものである。すなわち第2実施形態の場合、第1高温側熱交換器51は第1高温側冷媒循環回路50に専属し、第2高温側熱交換器61は第2高温側冷媒循環回路60に専属していた。第12実施形態では、第1高温側熱交換器51と第2高温側熱交換器61の両方を、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60で共通に使用する。     FIG. 13 shows a twelfth embodiment of the present refrigerator. In the twelfth embodiment, the configuration of the second embodiment is changed as follows. That is, in the case of the second embodiment, the first high temperature side heat exchanger 51 is dedicated to the first high temperature side refrigerant circulation circuit 50, and the second high temperature side heat exchanger 61 is dedicated to the second high temperature side refrigerant circulation circuit 60. It was. In the twelfth embodiment, both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 are commonly used in the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60.

図13に見られるように、第1高温側冷媒循環回路50の冷媒配管は第1高温側熱交換器51と第2高温側熱交換器61の両方から並列に出、途中で合流して放熱用熱交換器52に入る。放熱用熱交換器52を出た冷媒配管は途中で分岐し、並列をなして第1高温側熱交換器51と第2高温側熱交換器61に戻る。     As shown in FIG. 13, the refrigerant piping of the first high temperature side refrigerant circulation circuit 50 comes out in parallel from both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 and merges in the middle to dissipate heat. The heat exchanger 52 is entered. The refrigerant piping that exits the heat-dissipating heat exchanger 52 branches in the middle, returns in parallel to the first high-temperature side heat exchanger 51 and the second high-temperature side heat exchanger 61.

第2高温側冷媒循環回路60の冷媒配管は第1高温側熱交換器51と第2高温側熱交換器61の両方から並列に出、途中で合流して循環ポンプ64に入る。ドレンの蒸発促進のための熱交換部62と冷却庫壁の結露防止のための熱交換部63の並列接続構造を出た冷媒配管は途中で分岐し、並列をなして第1高温側熱交換器51と第2高温側熱交換器61に戻る。     The refrigerant piping of the second high-temperature side refrigerant circulation circuit 60 exits in parallel from both the first high-temperature side heat exchanger 51 and the second high-temperature side heat exchanger 61, joins in the middle, and enters the circulation pump 64. The refrigerant piping exiting the parallel connection structure of the heat exchanging portion 62 for promoting evaporation of the drain and the heat exchanging portion 63 for preventing condensation on the cooling wall branches in the middle, and in parallel, the first high temperature side heat exchange Return to the vessel 51 and the second high temperature side heat exchanger 61.

別の言い方をすれば、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60とは、第1高温側熱交換器51と第2高温側熱交換器61のそれぞれに対して、互いに並列に接続されている。     In other words, the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 are respectively connected to the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61. They are connected to each other in parallel.

上記構成により、第1高温側熱交換器51と第2高温側熱交換器61の両方から、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60に冷媒の供給が行われることになる。また第1高温側熱交換器51と第2高温側熱交換器61の両方に対し、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60から冷媒が還流することになる。     With the above configuration, the refrigerant is supplied from both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 to the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60. become. In addition, the refrigerant flows back from both the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 to both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61.

この構成によれば、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60を、第1高温側熱交換器51と第2高温側熱交換器61のそれぞれに対して互いに並列に接続するから、第1高温側熱交換器51と第2高温側熱交換器61のいずれを取り上げても高温側冷媒循環回路が複数個確保されることになる。このため、回路が使用不可となって冷媒循環が停止し、その結果スターリング冷凍エンジン30が放熱不良でダメージを被るといった事態の回避が容易である。     According to this configuration, the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 are parallel to each other with respect to the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61, respectively. Since they are connected, a plurality of high-temperature side refrigerant circulation circuits are secured regardless of which of the first high-temperature side heat exchanger 51 and the second high-temperature side heat exchanger 61 is taken up. For this reason, it is easy to avoid a situation in which the circuit becomes unusable and the refrigerant circulation stops, and as a result, the Stirling refrigerating engine 30 is damaged due to poor heat dissipation.

加えて、第1高温側熱交換器51と第2高温側熱交換器61の両方が第1高温側冷媒循環回路50と第2高温側冷媒循環回路60に対し冷媒の供給及び還流を受け持つから、第1高温側熱交換器51と第2高温側熱交換器61を両方とも外部への熱供給と外部からの冷熱回収とに関与させることができる。     In addition, both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 are responsible for supplying and refluxing the refrigerant to the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60. Both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 can be involved in the supply of heat to the outside and the recovery of cold from the outside.

本発明冷却庫の第13実施形態を図14に示す。第13実施形態は、第8実施形態の構成を次のように変更したものである。すなわち第8実施形態では単一型の高温側熱交換器71を用いたが、第13実施形態では分割型の高温側熱交換器、すなわち第1高温側熱交換器51と第2高温側熱交換器61が用いられている。     FIG. 14 shows a thirteenth embodiment of the present refrigerator. In the thirteenth embodiment, the configuration of the eighth embodiment is changed as follows. That is, in the eighth embodiment, the single type high temperature side heat exchanger 71 is used, but in the thirteenth embodiment, a split type high temperature side heat exchanger, that is, the first high temperature side heat exchanger 51 and the second high temperature side heat is used. An exchanger 61 is used.

図14に見られるように、第1高温側冷媒循環回路50の冷媒配管は第1高温側熱交換器51と第2高温側熱交換器61の両方から並列に出、途中で合流して放熱用熱交換器52に入る。放熱用熱交換器52を出た冷媒配管は途中で分岐し、並列をなして第1高温側熱交換器51と第2高温側熱交換器61に戻る。     As shown in FIG. 14, the refrigerant piping of the first high temperature side refrigerant circulation circuit 50 comes out in parallel from both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61, and merges in the middle to dissipate heat. The heat exchanger 52 is entered. The refrigerant piping that exits the heat-dissipating heat exchanger 52 branches in the middle, returns in parallel to the first high-temperature side heat exchanger 51 and the second high-temperature side heat exchanger 61.

第2高温側冷媒循環回路60の冷媒配管は第1高温側熱交換器51と第2高温側熱交換器61の両方から並列に出、途中で合流して循環ポンプ64に入る。ドレンの蒸発促進のための熱交換部62を経た後、冷却庫壁の結露防止のための熱交換部63を出た冷媒配管は途中で分岐し、並列をなして第1高温側熱交換器51と第2高温側熱交換器61に戻る。     The refrigerant piping of the second high-temperature side refrigerant circulation circuit 60 exits in parallel from both the first high-temperature side heat exchanger 51 and the second high-temperature side heat exchanger 61, joins in the middle, and enters the circulation pump 64. After passing through the heat exchange section 62 for promoting drain evaporation, the refrigerant pipe exiting the heat exchange section 63 for preventing condensation on the refrigerator wall branches in the middle, and in parallel, the first high temperature side heat exchanger 51 and return to the second high temperature side heat exchanger 61.

別の言い方をすれば、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60とは、第1高温側熱交換器51と第2高温側熱交換器61のそれぞれに対して、互いに並列に接続されている。     In other words, the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 are respectively connected to the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61. They are connected to each other in parallel.

上記構成により、第1高温側熱交換器51と第2高温側熱交換器61の両方から、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60に冷媒の供給が行われることになる。また第1高温側熱交換器51と第2高温側熱交換器61の両方に対し、第1高温側冷媒循環回路50と第2高温側冷媒循環回路60から冷媒が還流することになる。     With the above configuration, the refrigerant is supplied from both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 to the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60. become. In addition, the refrigerant flows back from both the first high temperature side refrigerant circulation circuit 50 and the second high temperature side refrigerant circulation circuit 60 to both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61.

本発明冷却庫の第14実施形態を図15に示す。第14実施形態は、第9実施形態の構成を次のように変更したものである。すなわち第9実施形態では単一型の高温側熱交換器71を用いたが、第13実施形態では分割型の高温側熱交換器、すなわち第1高温側熱交換器51と第2高温側熱交換器61が用いられている。     FIG. 15 shows a fourteenth embodiment of the present invention refrigerator. In the fourteenth embodiment, the configuration of the ninth embodiment is changed as follows. That is, in the ninth embodiment, the single type high temperature side heat exchanger 71 is used, but in the thirteenth embodiment, a split type high temperature side heat exchanger, that is, the first high temperature side heat exchanger 51 and the second high temperature side heat are used. An exchanger 61 is used.

図15に見られるように、第1高温側冷媒循環回路50の冷媒配管は第1高温側熱交換器51と第2高温側熱交換器61の両方から並列に出、途中で合流して放熱用熱交換器52に入る。放熱用熱交換器52を出た還流用冷媒配管は循環ポンプ64の吸込側に接続される。     As shown in FIG. 15, the refrigerant piping of the first high temperature side refrigerant circulation circuit 50 comes out in parallel from both the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61 and merges in the middle to dissipate heat. The heat exchanger 52 is entered. The reflux refrigerant pipe exiting the heat dissipation heat exchanger 52 is connected to the suction side of the circulation pump 64.

第2高温側冷媒循環回路60の冷媒配管は第1高温側熱交換器51と第2高温側熱交換器61の両方から並列に出、途中で合流して循環ポンプ64に入る。ドレンの蒸発促進のための熱交換部62を経た後、冷却庫壁の結露防止のための熱交換部63を出た冷媒配管は途中で分岐し、並列をなして第1高温側熱交換器51と第2高温側熱交換器61に戻る。     The refrigerant piping of the second high-temperature side refrigerant circulation circuit 60 exits in parallel from both the first high-temperature side heat exchanger 51 and the second high-temperature side heat exchanger 61, joins in the middle, and enters the circulation pump 64. After passing through the heat exchange section 62 for promoting drain evaporation, the refrigerant pipe exiting the heat exchange section 63 for preventing condensation on the refrigerator wall branches in the middle, and in parallel, the first high temperature side heat exchanger 51 and return to the second high temperature side heat exchanger 61.

第1高温側冷媒循環回路50が閉塞した場合、第2高温側冷媒循環回路60によって第1高温側熱交換器51と第2高温側熱交換器61の冷媒循環を継続できることはもちろんであるが、逆に循環ポンプ64が故障してそこから先に冷媒を遅れなくなった場合でも、第1高温側冷媒配管50の冷媒循環は、第1高温側熱交換器51と第2高温側熱交換器61から循環ポンプ64に向かう冷媒配管を逆流する形で継続される。このため、回路が使用不可となって冷媒循環が停止し、その結果スターリング冷凍エンジン30が放熱不良でダメージを被るといった事態の回避が容易である。     Of course, when the first high temperature side refrigerant circulation circuit 50 is blocked, the second high temperature side refrigerant circulation circuit 60 can continue the refrigerant circulation of the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61. On the contrary, even when the circulation pump 64 fails and the refrigerant is no longer delayed, the refrigerant circulation in the first high temperature side refrigerant pipe 50 is performed by the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger. It continues in the form which backflows the refrigerant | coolant piping which goes to the circulation pump 64 from 61. FIG. For this reason, it is easy to avoid a situation in which the circuit becomes unusable and the refrigerant circulation stops, and as a result, the Stirling refrigerating engine 30 is damaged due to poor heat dissipation.

本発明冷却庫の第15実施形態を図16に示す。第15実施形態は、第5実施形態及び第10実施形態と同じく、熱交換部62、63の並列接続構造に除霜用冷媒循環回路80を並列接続した。除霜用冷媒循環回路80は除霜用熱交換器81と、その上流側及び下流側に接続された弁82、83を含む。除霜用熱交換器81は熱伝導又は対流により、あるいは送風ファンによる強制対流により、庫内冷却用熱交換器42に熱を伝える。     A fifteenth embodiment of the refrigerator of the present invention is shown in FIG. In the fifteenth embodiment, similarly to the fifth and tenth embodiments, the defrosting refrigerant circulation circuit 80 is connected in parallel to the parallel connection structure of the heat exchange units 62 and 63. The defrosting refrigerant circulation circuit 80 includes a defrosting heat exchanger 81 and valves 82 and 83 connected to the upstream side and the downstream side thereof. The defrosting heat exchanger 81 transfers heat to the internal cooling heat exchanger 42 by heat conduction or convection, or by forced convection by a blower fan.

この構成によれば、除霜用の電熱ヒーターを設けることなく庫内冷却用熱交換器42の霜取りを行うことができる。また霜の持つ冷熱を回収してスターリング冷凍エンジン30の高温部を冷やすので、放熱システムの熱負荷が軽減され、放熱システム全体の放熱効率も向上する。これによりスターリング冷凍エンジン30の作動COPが向上し、消費電力を低減できる。     According to this configuration, it is possible to defrost the inside-cooling heat exchanger 42 without providing an electric heater for defrosting. Further, since the cold heat of the frost is recovered to cool the high temperature portion of the Stirling refrigerating engine 30, the heat load of the heat dissipation system is reduced, and the heat dissipation efficiency of the entire heat dissipation system is improved. As a result, the operating COP of the Stirling refrigerating engine 30 is improved, and the power consumption can be reduced.

本発明冷却庫の第16実施形態を図17に示す。第16実施形態は、第15実施形態に次の要素を付加したものである。すなわち、熱交換部62、熱交換部63、除霜用熱交換器81の並列接続構造と第1高温側熱交換器51及び第2高温側熱交換器61との間に、第6実施形態及び第11実施形態と同じく熱交換器型の蓄熱部90を設けたものである。     A sixteenth embodiment of the refrigerator of the present invention is shown in FIG. In the sixteenth embodiment, the following elements are added to the fifteenth embodiment. That is, between the parallel connection structure of the heat exchange unit 62, the heat exchange unit 63, and the defrosting heat exchanger 81 and the first high temperature side heat exchanger 51 and the second high temperature side heat exchanger 61, the sixth embodiment. As in the eleventh embodiment, a heat exchanger type heat storage unit 90 is provided.

この構成によれば、除霜用の電熱ヒーターを設けることなく庫内冷却用熱交換器42の霜取りを行うことができるうえ、スターリング冷凍エンジン30を停止したとしても、循環ポンプ64を駆動しさえすれば、蓄熱部90に蓄えた温熱で冷媒を加熱して霜取りを行うことができる。     According to this configuration, the inside cooling heat exchanger 42 can be defrosted without providing an electric heater for defrosting, and even if the Stirling refrigeration engine 30 is stopped, the circulation pump 64 can be driven. If it carries out, defrosting can be performed by heating a refrigerant | coolant with the warm heat stored in the thermal storage part 90.

以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。     As mentioned above, although each embodiment of the present invention was described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.

本発明は家庭用又は業務用の冷却庫であって、スターリング冷凍機を冷熱源とするもの全般に利用可能である。     INDUSTRIAL APPLICABILITY The present invention is a household or commercial refrigerator, and can be used in general with a Stirling refrigerator as a cold heat source.

冷却庫の断面図Cross section of refrigerator 本発明冷却庫の第1実施形態を示す配管構成図Piping configuration diagram showing the first embodiment of the refrigerator of the present invention 本発明冷却庫の第2実施形態を示す配管構成図Piping configuration diagram showing a second embodiment of the refrigerator of the present invention 本発明冷却庫の第3実施形態を示す配管構成図Piping configuration diagram showing a third embodiment of the present invention refrigerator 本発明冷却庫の第4実施形態を示す配管構成図Piping configuration diagram showing a fourth embodiment of the refrigerator of the present invention 本発明冷却庫の第5実施形態を示す配管構成図Piping configuration diagram showing a fifth embodiment of the present invention refrigerator 本発明冷却庫の第6実施形態を示す配管構成図Piping configuration diagram showing a sixth embodiment of the refrigerator of the present invention 本発明冷却庫の第7実施形態を示す配管構成図Piping configuration diagram showing a seventh embodiment of the present invention refrigerator 本発明冷却庫の第8実施形態を示す配管構成図Piping configuration diagram showing the eighth embodiment of the refrigerator of the present invention 本発明冷却庫の第9実施形態を示す配管構成図Piping configuration diagram showing a ninth embodiment of the present invention refrigerator 本発明冷却庫の第10実施形態を示す配管構成図Piping configuration diagram showing a tenth embodiment of the present invention refrigerator 本発明冷却庫の第11実施形態を示す配管構成図Piping configuration diagram showing an eleventh embodiment of the refrigerator of the present invention 本発明冷却庫の第12実施形態を示す配管構成図Piping configuration diagram showing the twelfth embodiment of the present invention refrigerator 本発明冷却庫の第13実施形態を示す配管構成図Piping configuration diagram showing a thirteenth embodiment of the refrigerator of the present invention 本発明冷却庫の第14実施形態を示す配管構成図Piping configuration diagram showing a fourteenth embodiment of the present invention refrigerator 本発明冷却庫の第15実施形態を示す配管構成図Piping configuration diagram showing a fifteenth embodiment of the present invention refrigerator 本発明冷却庫の第16実施形態を示す配管構成図Piping configuration diagram showing a sixteenth embodiment of the present invention refrigerator

符号の説明Explanation of symbols

1 冷却庫
10 ハウジング
11、12、13 冷却室
14、15、16 断熱扉
17 ガスケット
26 ドレンパン
30 スターリング冷凍エンジン
40 低温側冷媒循環回路
41 低温側熱交換器
42 庫内冷却用熱交換器
50 第1高温側冷媒循環回路
51 第1高温側熱交換器
52 放熱用熱交換器
53 送風ファン
60 第2高温側冷媒循環回路
61 第2高温側熱交換器
62、63 熱交換部
64 循環ポンプ
65、66 弁
70 高温側冷媒循環回路
71 高温側熱交換器
80 除霜用冷媒循環回路
81 除霜用熱交換器
82、83 弁
90 蓄熱部
DESCRIPTION OF SYMBOLS 1 Cooling chamber 10 Housing 11, 12, 13 Cooling chamber 14, 15, 16 Thermal insulation door 17 Gasket 26 Drain pan 30 Stirling refrigeration engine 40 Low temperature side refrigerant circulation circuit 41 Low temperature side heat exchanger 42 Heat exchanger for cooling in a cabinet 50 1st High temperature side refrigerant circulation circuit 51 First high temperature side heat exchanger 52 Heat dissipation heat exchanger 53 Blower fan 60 Second high temperature side refrigerant circulation circuit 61 Second high temperature side heat exchanger 62, 63 Heat exchange unit 64 Circulation pumps 65, 66 Valve 70 High-temperature side refrigerant circulation circuit 71 High-temperature side heat exchanger 80 Defrosting refrigerant circulation circuit 81 Defrosting heat exchanger 82, 83 Valve 90 Heat storage section

Claims (13)

スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、
前記スターリング冷凍エンジンの高温部の熱を気液二相の冷媒に伝え、ドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用することを特徴とする冷却庫。
In a refrigerator that cools the interior with a Stirling refrigeration engine,
The heat of the high temperature part of the Stirling refrigeration engine is transmitted to the gas-liquid two-phase refrigerant, and is used for at least one of promoting drain evaporation, preventing condensation on the cooling wall, and defrosting the heat exchanger for cooling in the refrigerator. A refrigerator characterized by.
スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、
前記スターリング冷凍エンジンの高温部の熱を庫外に放熱する第1高温側冷媒循環回路と、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路とを形成することを特徴とする冷却庫。
In a refrigerator that cools the interior with a Stirling refrigeration engine,
A first high-temperature side refrigerant circulation circuit that dissipates heat from the high-temperature portion of the Stirling refrigeration engine to the outside of the chamber, promotes evaporation of drainage of heat from the high-temperature portion, prevents condensation on the cooling wall, and heat exchanger for cooling in the chamber And a second high-temperature side refrigerant circulation circuit used for at least one of the defrosting.
前記第1高温側冷媒循環回路と前記第2高温側冷媒循環回路とを互いに独立させることを特徴とする請求項2に記載の冷却庫。   The refrigerator according to claim 2, wherein the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit are made independent of each other. 前記第1高温側冷媒循環回路では自然循環により冷媒を循環させ、前記第2高温側冷媒循環回路では強制循環により冷媒を循環させることを特徴とする請求項2又は3に記載の冷却庫。   The refrigerator according to claim 2 or 3, wherein the first high temperature side refrigerant circulation circuit circulates the refrigerant by natural circulation, and the second high temperature side refrigerant circulation circuit circulates the refrigerant by forced circulation. スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、
前記スターリング冷凍エンジンの高温部に設けた高温側熱交換器と、庫外環境に放熱を行うための放熱用熱交換器と、前記高温側熱交換器と放熱用熱交換器との間に形成されたループ状サーモサイフォンである第1高温側冷媒循環回路と、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路と、前記高温側熱交換器内の冷媒を前記第2高温側冷媒循環回路に送り出す循環ポンプとを備えることを特徴とする冷却庫。
In a refrigerator that cools the interior with a Stirling refrigeration engine,
Formed between the high temperature side heat exchanger provided in the high temperature part of the Stirling refrigeration engine, the heat exchanger for heat dissipation for radiating heat to the outside environment, and the high temperature side heat exchanger and the heat exchanger for heat dissipation At least one of the first high-temperature side refrigerant circulation circuit, which is a looped thermosyphon, and the heat of the high-temperature portion for promoting the evaporation of drain, preventing condensation on the cooling wall, and defrosting the heat exchanger for cooling in the refrigerator A cooling room comprising: a second high temperature side refrigerant circulation circuit used for the above, and a circulation pump for sending the refrigerant in the high temperature side heat exchanger to the second high temperature side refrigerant circulation circuit.
スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、
前記スターリング冷凍エンジンの高温部の熱を庫外に放熱する第1高温側冷媒循環回路と、前記高温部の熱をドレンの蒸発促進、冷却庫壁の結露防止、及び庫内冷却用熱交換器の除霜の少なくとも一つに利用する第2高温側冷媒循環回路とを形成するとともに、前記第1高温側冷媒循環回路と第2高温側冷媒循環回路を、前記高温部に設けた共通の高温側熱交換器に互いに並列に接続することを特徴とする冷却庫。
In a refrigerator that cools the interior with a Stirling refrigeration engine,
A first high-temperature side refrigerant circulation circuit that dissipates heat from the high-temperature portion of the Stirling refrigeration engine to the outside of the chamber, promotes evaporation of drainage of heat from the high-temperature portion, prevents condensation on the cooling wall, and heat exchanger for cooling in the chamber Forming a second high temperature side refrigerant circulation circuit to be used for at least one of the defrosting, and providing the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit in the high temperature section. A refrigerator characterized by being connected in parallel to the side heat exchanger.
前記高温側熱交換器を複数個設けるとともに、第1高温側冷媒循環回路と第2高温側冷媒循環回路を、前記複数個の高温側熱交換器のそれぞれに対して互いに並列に接続することを特徴とする請求項6に記載の冷却庫。   A plurality of the high temperature side heat exchangers are provided, and the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit are connected in parallel to each of the plurality of high temperature side heat exchangers. The refrigerator according to claim 6 characterized by things. 前記第1高温側冷媒循環回路の還流用冷媒配管を前記循環ポンプの吸込側に接続することを特徴とする請求項5に記載の冷却庫。   The refrigerator according to claim 5, wherein a reflux refrigerant pipe of the first high temperature side refrigerant circulation circuit is connected to a suction side of the circulation pump. 前記第1高温側冷媒循環回路と第2高温側冷媒循環回路の一方又は双方において、冷媒を気液二相の形で用いることを特徴とする請求項2〜8のいずれか1項に記載の冷却庫。   9. The refrigerant according to claim 2, wherein the refrigerant is used in a gas-liquid two-phase form in one or both of the first high temperature side refrigerant circulation circuit and the second high temperature side refrigerant circulation circuit. Refrigerator. スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、
ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とを並列接続し、この並列接続構造を前記スターリング冷凍エンジンの高温部に設けられる熱交換器に直列接続して高温側冷媒循環回路を形成することを特徴とする冷却庫。
In a refrigerator that cools the interior with a Stirling refrigeration engine,
A heat exchanging part provided for promoting drain evaporation and a heat exchanging part provided for preventing condensation on the refrigerator wall are connected in parallel, and this parallel connection structure is used for heat provided in the high temperature part of the Stirling refrigeration engine. A refrigerator having a high-temperature side refrigerant circulation circuit connected in series to an exchanger.
スターリング冷凍エンジンにより庫内冷却を行う冷却庫において、
前記スターリング冷凍エンジンの高温部に設けられる熱交換器と、ドレンの蒸発促進のために設けられる熱交換部と、冷却庫壁の結露防止のために設けられる熱交換部とを直列接続して高温側冷媒循環回路を形成することを特徴とする冷却庫。
In a refrigerator that cools the interior with a Stirling refrigeration engine,
The heat exchanger provided in the high temperature part of the Stirling refrigeration engine, the heat exchange part provided for promoting the evaporation of drain, and the heat exchange part provided for preventing condensation on the cooling wall are connected in series. A refrigerator having a side refrigerant circulation circuit.
前記スターリング冷凍エンジンの低温部に設けた熱交換器と庫内冷却用熱交換器とを含む低温側冷媒循環回路を形成するとともに、前記庫内冷却用熱交換器に対し除霜用熱交換部を設け、この除霜用熱交換部と前記スターリング冷凍エンジンの高温部に設けられる熱交換器とを含む高温側冷媒循環回路を形成することを特徴とする請求項1〜11のいずれか1項に記載の冷却庫。   A low temperature side refrigerant circulation circuit including a heat exchanger provided in a low temperature part of the Stirling refrigeration engine and an internal cooling heat exchanger is formed, and a defrosting heat exchange part for the internal cooling heat exchanger The high-temperature side refrigerant circulation circuit including the heat exchanger for defrosting and the heat exchanger provided in the high-temperature part of the Stirling refrigeration engine is formed. The refrigerator as described in. 前記除霜用熱交換部と前記スターリング冷凍エンジンの高温部に設けられる熱交換器とを含む高温側冷媒循環回路中に蓄熱部を設けることを特徴とする請求項12に記載の冷却庫。   The refrigerator according to claim 12, wherein a heat storage unit is provided in a high-temperature side refrigerant circulation circuit including the heat exchange unit for defrosting and a heat exchanger provided in a high-temperature part of the Stirling refrigeration engine.
JP2003411376A 2003-12-10 2003-12-10 Cooling storage Withdrawn JP2005172329A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003411376A JP2005172329A (en) 2003-12-10 2003-12-10 Cooling storage
AU2003289495A AU2003289495A1 (en) 2003-12-10 2003-12-22 Cooling box
EP03781003A EP1707907A1 (en) 2003-12-10 2003-12-22 Cooling box
US10/582,168 US20070101730A1 (en) 2003-12-10 2003-12-22 Cold stocker
KR1020067011300A KR100759655B1 (en) 2003-12-10 2003-12-22 Cooling box
CNA2003801108155A CN1878995A (en) 2003-12-10 2003-12-22 Cooling box
PCT/JP2003/016485 WO2005057102A1 (en) 2003-12-10 2003-12-22 Cooling box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411376A JP2005172329A (en) 2003-12-10 2003-12-10 Cooling storage

Publications (2)

Publication Number Publication Date
JP2005172329A true JP2005172329A (en) 2005-06-30
JP2005172329A5 JP2005172329A5 (en) 2006-08-17

Family

ID=34674985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411376A Withdrawn JP2005172329A (en) 2003-12-10 2003-12-10 Cooling storage

Country Status (7)

Country Link
US (1) US20070101730A1 (en)
EP (1) EP1707907A1 (en)
JP (1) JP2005172329A (en)
KR (1) KR100759655B1 (en)
CN (1) CN1878995A (en)
AU (1) AU2003289495A1 (en)
WO (1) WO2005057102A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017022A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Refrigerator
WO2007080708A1 (en) * 2006-01-10 2007-07-19 Sharp Kabushiki Kaisha Cooling chamber
JP2012154576A (en) * 2011-01-27 2012-08-16 Panasonic Corp Refrigerator
JP2014070837A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Device for generating cold water and drying cold air

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100018224A1 (en) * 2005-06-23 2010-01-28 Hengliang Zhang Stirling cooler
EP1799021B1 (en) * 2005-12-14 2012-06-06 Denso Corporation Waterproof case
KR101868624B1 (en) * 2011-12-21 2018-06-18 엘지전자 주식회사 Refrigerator
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
DE102012223069A1 (en) * 2012-12-13 2014-06-18 Bayerische Motoren Werke Aktiengesellschaft Coolant circuit for an internal combustion engine
FR3012638B1 (en) * 2013-10-24 2017-01-13 Bull USE OF STIRLING MACHINES FOR INFORMATION PROCESSING SYSTEM
KR20160001389A (en) * 2014-06-27 2016-01-06 삼성전자주식회사 Refrigerator and method for controlling the same
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
CN106500386B (en) * 2016-12-28 2022-12-30 宁波华斯特林电机制造有限公司 Cooling device based on Stirling motor
TWM544620U (en) * 2016-12-29 2017-07-01 潤弘精密工程事業股份有限公司 Appliance waste heat recovery apparatus
KR101968172B1 (en) 2018-06-28 2019-08-19 (주)팀코스파 supercooling device
CN114111213A (en) * 2021-11-29 2022-03-01 四方科技集团股份有限公司 Method for controlling temperature of air heat transfer equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930000941B1 (en) * 1990-12-27 1993-02-11 주식회사 금성사 Stirling cycle type refrigerator
US5642622A (en) * 1995-08-17 1997-07-01 Sunpower, Inc. Refrigerator with interior mounted heat pump
US5907956A (en) * 1996-10-31 1999-06-01 Sanyo Electric Co., Ltd. Air conditioning system
KR100208017B1 (en) * 1997-06-27 1999-07-15 윤종용 Multiple hear exchanger and stirring refrigerator
KR19990047048A (en) * 1997-12-02 1999-07-05 구자홍 Refrigerator with STIRLING CYCLE
US5921092A (en) * 1998-03-16 1999-07-13 Hussmann Corporation Fluid defrost system and method for secondary refrigeration systems
JP2000205682A (en) 1999-01-08 2000-07-28 Sharp Corp Cooler
US6272867B1 (en) * 1999-09-22 2001-08-14 The Coca-Cola Company Apparatus using stirling cooler system and methods of use
US6301913B1 (en) * 2000-05-08 2001-10-16 Edward R. Schulak Anti-sweat heater improvement for commercial refrigeration
WO2002016842A1 (en) * 2000-08-22 2002-02-28 Sharp Kabushiki Kaisha Stirling refrigerator
JP2002071237A (en) * 2000-08-25 2002-03-08 Sharp Corp Stirling cooling system and cooling compartment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017022A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Refrigerator
WO2007080708A1 (en) * 2006-01-10 2007-07-19 Sharp Kabushiki Kaisha Cooling chamber
JP2012154576A (en) * 2011-01-27 2012-08-16 Panasonic Corp Refrigerator
JP2014070837A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Device for generating cold water and drying cold air

Also Published As

Publication number Publication date
WO2005057102A1 (en) 2005-06-23
EP1707907A1 (en) 2006-10-04
KR100759655B1 (en) 2007-09-17
KR20060089752A (en) 2006-08-09
AU2003289495A1 (en) 2005-06-29
CN1878995A (en) 2006-12-13
US20070101730A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
US10302343B2 (en) Defrost system for refrigeration apparatus, and cooling unit
JP2005172329A (en) Cooling storage
TW571064B (en) Stirling refrigerator
JP5261066B2 (en) Refrigerator and refrigerator
US20070214823A1 (en) Heat exchanging device for refrigerator
US20110167847A1 (en) Free cooling cascade arrangement for refrigeration system
CA2559001A1 (en) Dual refrigerant refrigeration system and method
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JP2005188924A (en) Heat pump device
CN104823010A (en) Refrigerator
JP2004324902A (en) Freezing refrigerator
CA2420028A1 (en) Stirling cooling apparatus, cooler and refrigerator
US10443913B2 (en) Refrigerator and method for controlling the same
JP2004020056A (en) Cooling chamber
JPH10267508A (en) Electric refrigerator
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
KR100862673B1 (en) Refrigerating device for storehouse having reverse circulating thawing structure
JP2003302117A (en) Heat radiation system for stirling engine and cooling chamber having the same
JP6511710B2 (en) Refrigeration system
KR200282298Y1 (en) Heating-exchange type refrigerating device
JP2003207253A (en) Refrigerator
JP6318457B2 (en) Refrigeration apparatus and defrost method for load cooler
KR20030087151A (en) Device for prevention dewing of refrigerator
JP6229955B2 (en) Refrigeration apparatus and defrost method for load cooler
CN115540463A (en) Refrigerator with defrosting function

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070910

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071225