WO2007080708A1 - Cooling chamber - Google Patents

Cooling chamber Download PDF

Info

Publication number
WO2007080708A1
WO2007080708A1 PCT/JP2006/323193 JP2006323193W WO2007080708A1 WO 2007080708 A1 WO2007080708 A1 WO 2007080708A1 JP 2006323193 W JP2006323193 W JP 2006323193W WO 2007080708 A1 WO2007080708 A1 WO 2007080708A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature side
circulation circuit
refrigerator
circulation
Prior art date
Application number
PCT/JP2006/323193
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Fujiwara
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006002316A external-priority patent/JP4020930B2/en
Priority claimed from JP2006155683A external-priority patent/JP4020941B1/en
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007080708A1 publication Critical patent/WO2007080708A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a refrigerator equipped with a Stirling refrigerator.
  • “Refrigerator” is a concept that refers to all devices that lower the temperature of food and other items, regardless of its name as “refrigerator”, “freezer”, “freezer refrigerator”, “showcase” t ,.
  • CFC chlorofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • HFC hydrofluorocarbon
  • a Stirling refrigerator that does not use an ozone depleting substance as a refrigerant is in the spotlight.
  • an inert gas such as helium is used as a working medium, and the piston and displacer are operated by external power to repeatedly compress and expand the working medium. This raises the temperature of the worm head (heat dissipating part) and lowers the temperature of the cold head (heat absorbing part). The warm head dissipates heat to the surrounding environment, and the cold head absorbs heat from the interior.
  • thermosiphon using brine liquid used as a heat transport medium
  • a thermosiphon using brine liquid used as a heat transport medium
  • a high-temperature side evaporator is attached to the worm head, and the secondary refrigerant in it is evaporated with warm heat.
  • the evaporated secondary refrigerant is sent to the high temperature side condenser, where it is restored to a liquid and returned to the high temperature side evaporator.
  • a cold side condenser is attached to the cold head, and the secondary refrigerant in it is condensed with cold heat.
  • the condensed secondary refrigerant is sent to the low temperature side evaporator, where it is restored to gas and returned to the low temperature side condenser.
  • Patent Document 1 shows an example of a refrigerator that uses a thermosyphon to transmit the heat and cold of a Stirling refrigerator.
  • Refrigerant power The refrigerant that has received the heat is led to the dew-proofing part of the cooling wall (opening part of the cooling chamber) by piping so that the temperature of the dew-proofing part does not drop below the dew point.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-20056
  • Frost adheres to the low-temperature side evaporator that cools the inside of the power chamber, which is the same as in general refrigerators. Frost increases in thickness over time and reduces cooling capacity. Therefore, it is necessary to stop the refrigerator regularly and defrost.
  • the present invention has been made to address the above problems, and in a refrigerator having a configuration in which a part of the heat of the warm head of the Stirling refrigerator is transmitted to the dew-proof portion of the refrigerator wall.
  • the object is to provide a structure that can prevent dew condensation even during the period when one ring refrigerator is stopped.
  • a refrigerator that can effectively prevent freezing even if it is necessary to use brine with a high freezing point. The purpose is to provide.
  • the present invention provides a low-temperature side circulation circuit for transmitting the cold heat of the cold head of the Stirling refrigerator to the cooling space via the low-temperature evaporator, and the heat of the warm head of the Stirling refrigerator.
  • a high-temperature side first circulation circuit that radiates heat to the outside of the cabinet, and a high-temperature side second circulation circuit that transmits a part of the heat to the dew-proof portion of the refrigerator wall, wherein the high-temperature side second circulation circuit
  • a circulation pump is provided for circulating the refrigerant enclosed in the heat exchange section exposed to the outside, and the circulation pump is operated during defrosting of the low-temperature side evaporator.
  • the present invention is characterized in that, in the cooler configured as described above, in the high temperature side second circulation circuit, the heat exchange part is formed on the downstream side of the dew prevention part.
  • the refrigerant in the high-temperature side second circulation circuit first transmits the heat to the dew proof part and passes through the heat exchange part. It is possible to heat it.
  • the present invention is characterized in that, in the cooler configured as described above, the heat exchanging portion exchanges heat with the drain in the drain pan.
  • the present invention is characterized in that in the cooler configured as described above, a blower that blows air through the heat exchange unit is provided, and the blower is operated together with the circulation pump during a defrost period.
  • the present invention is characterized in that, in the cooler configured as described above, the blower is provided for heat dissipation of the high temperature side first circulation circuit.
  • the blower provided for heat dissipation of the high temperature side first circulation circuit is also used for heat reception of the high temperature side second circulation circuit, the cost of additionally installing the blower becomes unnecessary. Further, during operation of the Stirling refrigerator, the heat from the high temperature side first circulation circuit is received by the high temperature side second circulation circuit, and the refrigerant in the high temperature side second circulation circuit can be sufficiently heated.
  • the present invention provides a low temperature side circulation circuit that transmits cold heat of a cold head of a Stirling refrigerator to a cooling space by brine circulation, and a high temperature side circulation circuit that dissipates heat of the warm head of the Stirling refrigerator by brine circulation.
  • a circulation pump is provided in the high temperature side circulation circuit
  • an environmental temperature sensor is provided in a passage path of the high temperature side circulation circuit
  • the control unit The circulating pump is operated even when the Stirling refrigerator is stopped when the temperature detected by the environmental temperature sensor becomes a predetermined value or less.
  • the present invention is characterized in that, in the cooler configured as described above, the operation of the circulating pump while the Stirling refrigerator is stopped is an intermittent operation.
  • the brine can be flowed to such an extent that the brine does not freeze, and less power is consumed than when the circulating pump is operated continuously. Also, since the operation time of the circulation pump is not prolonged, the pump life can be extended.
  • a circuit temperature sensor is provided in the high temperature side circulation circuit, and the temperature is lower than the freezing point of the brine enclosed in the high temperature side circulation circuit! ⁇
  • the temperature is the environmental temperature
  • the circulating pump is started at the timing when the circuit temperature sensor detects a temperature rise due to the start of freezing of the brine.
  • Brine that is not flowing becomes supercooled when exposed to low temperatures below the freezing point.
  • the brine begins to freeze, releasing latent heat as the phase transitions from the liquid phase to the solid phase. Therefore, the temperature of the high-temperature side circulation circuit rises temporarily. Since the circulation pump is started at the timing when the circuit temperature sensor detects this temperature rise, the circulation is started at the last minute timing when the brine freezes and the circulation becomes impossible if it is delayed further, and the operation rate of the circulation pump is reduced. Energy loss can be minimized.
  • the present invention is characterized in that, in the cooler configured as described above, the environmental temperature sensor is provided at a location where cold heat is transmitted from within the cooler.
  • the circulating pump is operated when the environmental temperature sensor detects that the temperature of the location has become a predetermined value or less due to the cold heat transmitted from the inside of the refrigerator, so that the brine is generated by the cold heat in the refrigerator. The situation of freezing can be avoided.
  • the high temperature side circulation circuit includes a high temperature side first circulation circuit that radiates the heat of the warm head of the Stirling refrigerator to the outside of the refrigerator, and the one of the heat.
  • a high-temperature side second circulation circuit that conveys the heat to the dew-proof part of the refrigerator, and the circulation pump and the environmental temperature sensor are provided for the high-temperature side second circulation circuit
  • the dew-proof portion of the refrigerator includes the vicinity of the freezer compartment. Needless to say, the freezer compartment is cold, so the dew-proof part is often quite cold. Since the circulation pump and the environmental temperature sensor are provided for the high-temperature side second circulation circuit passing through the dew protection section, it is possible to avoid brine freezing in the high-temperature side second circulation circuit due to the low temperature of the freezer compartment.
  • the present invention is characterized in that, in the cooler configured as described above, an exposed heat radiating portion is provided in a part of the second high-temperature side circulation circuit.
  • the present invention is characterized in that, in the cooler configured as described above, the environmental temperature sensor is provided in the exposed heat radiating portion.
  • the circulation pump when the temperature of the outside air falls below a predetermined value, the circulation pump can be operated to cause the brine to flow, so that the brine does not freeze.
  • the present invention is characterized in that, in the cooler having the above-described configuration, a blower is provided in the exposed heat radiating portion, and the blower operates in conjunction with the operation of the circulation pump.
  • the circulation pump when the temperature of the environment surrounding the high-temperature side circulation circuit is detected by the environmental temperature sensor and shows a value equal to or lower than a predetermined value, the circulation pump is operated even when the Stirling refrigerator is stopped. Then, since the brine in the high-temperature side circulation circuit is circulated, even if the high-temperature side circulation circuit is exposed to a low temperature below the brine freezing point, the brine can be prevented from freezing.
  • FIG. 4 is a perspective view illustrating the piping path of the high-temperature side second circulation circuit.
  • FIG. 6 is a schematic configuration diagram of a cooling cycle according to a second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of a cooling cycle according to a third embodiment of the present invention.
  • FIG. 8 is a perspective view of a cooling cycle according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram of a cooling cycle according to a fourth embodiment of the present invention.
  • FIG. 10 Graph of temperature change due to circulation pump operation ⁇ 11] Explanation of symbols in experimental data on surface temperature of dew-proof pipe
  • the refrigerator 1 is for food preservation, and a heat insulating housing 10 supported on the floor by a base 12 constitutes the main body.
  • the cooling space inside the heat insulating housing 10 is divided into two stages, upper and lower, by a horizontal partition wall 11, and the upper stage is set as a refrigerator compartment 20 and the lower stage is set as a freezer compartment 30.
  • the front surface (left side in FIG. 1) is an opening for putting food in and out, and the heat insulating doors 21 and 31 are closed.
  • a machine room 40 is formed on the back surface of the heat insulating housing 10.
  • the machine room 40 is a rectangular parallelepiped structure configured by combining sheet metal parts, and the back side is open.
  • a Stirling refrigerator 50 is installed in the machine room 40.
  • the machine room 40 is located at a height between the refrigerator room 20 and the freezer room 30.
  • the rear side opening of the machine room 40 is closed with the lid 44.
  • the lid 44 is formed with a vent 45 for taking in air for cooling the high-temperature side condenser, which will be described later, and an opening 47 for discharging air deprived of heat from the high-temperature side condenser.
  • the Stirling refrigerator 50 generates heat and cold by a reverse Stirling cycle.
  • the heat is dissipated mainly from the warm head 51 (see FIG. 2) as waste heat, and the cold is taken out from the cold head 52.
  • the high-temperature side first circulation circuit 60 that extracts the heat from the worm head 51 and dissipates it.
  • the high temperature side first circulation circuit 60 is obtained by enclosing a secondary refrigerant 63 (see FIG. 5) in a closed system in which a high temperature side evaporator 61 and a high temperature side evaporator 62 are connected by a refrigerant pipe.
  • the secondary refrigerant 63 is water (including an aqueous solution) or a hydrocarbon-based brine.
  • “Secondary refrigerant” is defined by defining the working medium inside Stirling refrigerator 50 as “primary refrigerant” and the working medium used for heat transfer outside Stirling refrigerator 50 as “secondary refrigerant”. .
  • the “tertiary refrigerant” described later is a refrigerant that exchanges heat with the secondary refrigerant.
  • the high temperature side evaporator 61 is made of a metal having good thermal conductivity such as copper, copper alloy, and aluminum in a hollow ring shape.
  • the worm head 51 is molded, fitted to the outer peripheral surface of the worm head 51, and thermally connected to the worm head 51.
  • Two refrigerant pipes connected to the high temperature side condenser 62 are drawn out from the upper surface of the high temperature side evaporator 61.
  • One refrigerant pipe is a gas-phase refrigerant pipe 64G that sends the secondary refrigerant 63 evaporated to gas to the high-temperature side condenser 62.
  • the other refrigerant pipe is a liquid-phase refrigerant pipe 64L that returns the secondary refrigerant 63 condensed into a liquid by the high-temperature side condenser 62 to the high-temperature side evaporator 61.
  • the high-temperature side condenser 62 bends a pipe 62a having good heat conduction and metal power, such as copper, copper alloy, and aluminum, and is attached with a number of heat radiation fins 62b having metal power also having good heat conduction. Structure.
  • a gas phase refrigerant pipe 64G is connected to one end of the high temperature side condenser 62, and a liquid phase refrigerant pipe 64L is connected to the other end.
  • a cold side condenser 71 is attached to the cold head 52.
  • the cold head 52 and the low-temperature side condenser 71 are in a state of transferring heat between them, that is, in a state of being thermally connected.
  • a low-temperature evaporator 72 that functions as an internal cooler for cooling the interior of the refrigerator 30 is installed in the back of the freezer compartment 30.
  • the low temperature side condenser 71 and the low temperature side evaporator 72 are connected by a pipe 73 to constitute a low temperature side circulation circuit 70.
  • the low-temperature side circulation circuit 70 is filled with natural refrigerant such as C02 as brine.
  • the low-temperature side evaporator 72 also has a large number of endotherms that also have a metal power with a good heat conductivity after bending a pipe 72a with a metal power with a good heat conductivity such as copper, copper alloy, and aluminum.
  • a defrost heater 74 is attached to the low temperature side evaporator 72.
  • an air inlet 82 for sucking and taking in the internal air from the freezer compartment 30.
  • a low-temperature side evaporator 72 is installed above the intake port 82, and a blower 83 that blows out air to the cooling duct 81 is further provided above the low-temperature side evaporator 72.
  • the worm head 51 becomes high temperature and the cold head 52 becomes low temperature.
  • the heat of the worm head 51 is the waste heat that should be dissipated to the outside. This is because the secondary refrigerant 63 in the high-temperature side first circulation circuit 60 evaporates and resides in the gas of the secondary refrigerant 63 as latent heat, When the secondary refrigerant 63 condenses in the side condenser 62, it is released as sensible heat and dissipated into the environment.
  • the cold heat of the cold head 52 is transmitted to the low temperature side evaporator 72 via the low temperature side circulation circuit 70.
  • the cold air is blown into the cooling duct 81 by the blower 83, and enters the refrigerating chamber 20 through the air outlet 84 provided in the upper part of the cooling duct 81 (the part above the horizontal partition wall 11) and the cooling duct 81.
  • Each is sent into the freezer compartment 30 through the outlet 85 provided in the lower part (the part below the horizontal partition wall 11).
  • the control unit 13 installed at the upper back of the heat insulating housing 10 controls the above operation control.
  • the hot heat taken out from the worm head 51 by the high temperature side first circulation circuit 60 is also used to prevent dew condensation in the dew proof part. This is realized by the high-temperature side second circulation circuit 100.
  • the high temperature side second circulation circuit 100 is thermally connected to the gas phase refrigerant pipe 64G of the high temperature side first circulation circuit 60 via the heat exchanger 101.
  • the jacket 102 is provided in a part of the gas-phase refrigerant pipe 64G, and the heat exchanger 101 is configured by passing the pipe 106 of the high-temperature side second circulation circuit 100 therein.
  • the pipe 106 meanders inside the jacket portion 102 so as to receive a lot of heat from the vaporized secondary refrigerant 63.
  • the high temperature side second circulation circuit 100 is filled with brine as a tertiary refrigerant in a non-depressurized state.
  • brine for example, a mixed solution of 85% water and 15% ethyl alcohol is used.
  • the second high-temperature side circulation circuit 100 exits the heat exchanger 101 and then follows the path shown in FIG. That is, the high-temperature side second circulation circuit 100 passes through the bottom surface of the machine room 40, changes the rearward direction toward the bottom of the heat insulating housing 10, and reaches the lower left edge of the opening of the freezing room 30.
  • the left side of the observer facing the front surface of the thermal insulation case 10 is defined as the left side of the heat insulation case 10
  • the right side of the observer is defined as the right side of the heat insulation case 10.
  • the second circulation circuit 100 on the high temperature side also follows the opening at the left edge of the freezing chamber 30 from the left edge to the upper edge of the freezing chamber 30 and then the opening of the refrigerator compartment 20 from the lower edge to the left edge ⁇ Go round from the top edge to the right edge. Then, the high-temperature side second circulation circuit 100 goes from the right edge to the lower edge of the freezer compartment 30 and then comes out under the bottom wall of the heat insulating casing 10. High temperature here The second side circulation circuit 100 meanders and constitutes the heat exchange unit 103 exposed to the outside. Thereafter, the high-temperature side second circulation circuit 100 returns to the heat insulating casing 10, and returns to the heat exchanger 101 through the circulation pump 110.
  • the dew proof part is the opening of the refrigerator compartment 20 and the freezer compartment 30.
  • the dew protection part 120 is symbolized by a broken rectangle.
  • the control unit 13 stops the operation of the Stirling refrigerator 50 at an appropriate timing and energizes the defrost heater 74 to perform defrosting. Drain generated by melting frost is received by the drain receiver 130 at the bottom of the cooling duct 80, and is drained outside the chamber through the drainage pipe 131.
  • a drain pan 132 for storing drain dripping from the drain pipe 131 is installed under the bottom wall of the heat insulating casing 10.
  • the drain pan 132 can be pulled out from the front side of the refrigerator 1 in order to discard the drain accumulated in the drain pan 132.
  • the lower surface of the drain pan 132 is in contact with the heat exchange unit 103.
  • the drain pan 132 and the drain therein are heated by the warm heat carried by the tertiary refrigerant in the high-temperature side second circulation circuit 100, and the temperature rises. For this reason, the evaporation of the drain is promoted, and the time and effort for discarding the drain can be reduced.
  • the controller 13 stops the operation of the Stirling refrigerator 50 during the defrosting of the low-temperature side evaporator 72 that is a component of the low-temperature side circulation circuit 70. Therefore, the dew-proof part 120 that has been heated until then gradually cools.
  • the control unit 13 continues the operation of the circulation pump 110.
  • the tertiary refrigerant in the high temperature side second circulation circuit 100 flows and exchanges heat with the outside at the heat exchange unit 103.
  • the atmosphere outside the machine and the drain in the drain pan 132 are heat exchange targets of the heat exchange unit 103.
  • Atmosphere and drain force The obtained heat is provided to the dew proof part 120, so that the time when the temperature of the dew proof part 120 falls below the dew point can be delayed. Thereby, the dew condensation of the dew proof part 120 is suppressed and prevented.
  • the heat exchange unit 103 is formed on the downstream side of the dew proof unit 120. Therefore, during the operation of the Stirling refrigerator 50, the tertiary refrigerant in the high-temperature side second circulation circuit 100 is first transferred to the dew protection section 120. The heat is transmitted and the force passes through the heat exchanging unit 103, so that the dew proof unit 120 is reliably heated.
  • the heat exchanging unit 103 exchanges heat with the drain in the drain pan 132, the heat held by the drain can be effectively utilized.
  • the drainage of frost and ice that has melted on the low-temperature evaporator 72 rises to a level equivalent to the outside air temperature while accumulating in the drain pan 132 over a long period of time, so it can be used as a heat source. It becomes possible.
  • Heat exchange efficiency is also good because heat is exchanged with liquid drain.
  • a configuration in which the heat exchanging portion 103 is immersed in a force drain that makes heat exchange with the drain by bringing the heat exchanging portion 103 into contact with the lower surface of the drain pan 132 is also possible.
  • FIG. A second embodiment of the present invention is shown in FIG.
  • a feature of the second embodiment is that a blower 104 that blows air through the heat exchange unit 103 is provided for the heat exchange unit 103, and the blower 104 is operated together with the circulation pump 110 during the defrosting period. is there.
  • the heat exchanging unit 103 that merely exposes the heat exchanging unit 103 to the outside, the heat of the outside air is positively received by the second circulation circuit 100 on the high temperature side, and the dew preventing unit The heat transmitted to 120 can be secured.
  • fins may be provided in the heat exchange unit 103.
  • FIG. 1 A third embodiment of the present invention is shown in FIG.
  • the second heat exchange unit 105 is formed in the high temperature side second circulation circuit 100.
  • the heat exchanging unit 105 is further downstream of the heat exchanging unit 103 and is arranged on the blowout side of the blower 91 for forced air cooling of the high temperature side condenser 62.
  • the blower 91 is operated together with the circulation pump 110 during the defrosting period.
  • the heat of the outside air can be positively received by the high-temperature side second circulation circuit 100, and the heat transferred to the dew protection unit 120 can be secured.
  • a fin may be provided in the heat exchanging section 105.
  • the fan 91 provided for heat dissipation of the high temperature side first circulation circuit 60 is also used for heat reception of the high temperature side second circulation circuit 100, the high temperature side second circuit is used. Costs can be reduced by eliminating the need for a dedicated blower for the circulation circuit.
  • the heat from the high-temperature side condenser 62 is received by the high-temperature side second circulation circuit 100, and the tertiary refrigerant in the high-temperature side second circulation circuit 100 can be sufficiently heated. it can.
  • FIGS. 8-11 A fourth embodiment of the present invention is shown in FIGS. 8-11.
  • the feature of the fourth embodiment is high
  • the temperature of the environment surrounding the second circulating circuit 100 on the warm side is detected by an environmental temperature sensor, and operation control is performed such that the brine in the second circulating circuit 100 on the high temperature side is not frozen.
  • FIG. 8 shows a state where the cooling cycle is viewed from the back side of the refrigerator 1.
  • the heat-insulating housing 10 is represented by a virtual line, but only the machine room 40 at the upper back is drawn by a solid line.
  • Brine is sealed in the high temperature side second circulation circuit 100 in a non-depressurized state.
  • This brain is a mixture of water and antifreeze, and it is necessary to make the viscosity low to secure the circulation rate, so the mix ratio of antifreeze is low. Therefore, the freezing point of brine is relatively high.
  • the pipe 106 of the high temperature side second circulation circuit 100 follows the path shown in FIG. That is, the pipe 106 enters the circulation pump 110 through the gas-liquid separator 107.
  • the pipe 106 exiting the circulation pump 110 passes through the bottom surface of the machine room 40 to become a down pipe 106D, and descends in the rear wall of the heat insulating housing 10.
  • the pipe 106 that reaches the lower part of the rear wall enters the lower part of the right side wall of the heat insulating casing 10, passes forward, and reaches the lower front part of the insulating casing 10.
  • the pipe 106 then folds to the center side of the heat insulating housing 10 and reaches the vertical partition wall (not shown) including the one described later before the front edge of the vertical partition wall.
  • the vertical partition wall (not shown) including the one described later before the front edge of the vertical partition wall.
  • the pipe 106 meanders at the heat exchanging portion 103 while directly contacting the outside air, and dissipates heat to the outside air. If the drain pan 132 is placed on the heat exchange unit 103, the drain pan 132 and the drain therein are heated, and the evaporation of the drain is promoted.
  • the blower 104 blows wind against the pipe 106 in the heat exchange unit 103.
  • the pipe 106 that has passed through the heat exchanging section 103 enters the back wall of the heat insulating casing 10, rises into the back wall as an up pipe 106U, and returns to the machine room 40. Then return to heat exchange 101.
  • the pipe 106 passes through a portion close to the surface of the heat insulating casing 10 on the front and left and right side walls of the heat insulating casing 10. These places become the dew proof part 120 shown in FIG. Carried by pipe 106
  • the waste heat of the Stirling refrigerator 50 can be used not only to prevent condensation in the dew proofing unit 120 but also to promote drain evaporation as described above.
  • the control unit 13 is in charge of overall control of the refrigerator 1. Signals are transmitted from the environmental temperature sensors 141 and 142 and the circuit temperature sensor 143 to the control unit 13.
  • the environmental temperature sensor 141 is arranged in the dew proof part 120 where the cold heat in the freezer compartment is easily transmitted. Then, a circuit temperature sensor 143 is provided at a position where the surface temperature of the pipe 106 passing through the location can be measured.
  • the environmental temperature sensor 142 is disposed in the heat exchange unit 103 so as to be exposed to the outside air.
  • Circulation pump 110 is operated in conjunction with operation of Stirling refrigerator 50. Even when the Stirling refrigerator 50 is stopped, the control unit 13 operates the circulation pump 110 if predetermined conditions are met. The conditions will be described below.
  • the first condition is “environmental temperature sensor 141 detects a temperature equal to or lower than a predetermined value”.
  • the “predetermined value” is set at or near the freezing point of the brine. As a result, it is detected that the brine in the high temperature side second circulation circuit 100 is nearing the risk of freezing, and the circulation pump 110 is activated.
  • the second condition is “environmental temperature sensor 142 detects a temperature equal to or lower than a predetermined value”.
  • the “predetermined value” is set at or near the freezing point of the brine. As a result, it is detected that the brine in the high temperature side second circulation circuit 100 is nearing the risk of freezing, and the circulation pump 110 is activated.
  • the third condition is “when the environmental temperature sensor 141 or the environmental temperature sensor 142 detects a temperature lower than the freezing point of the brine, the circuit temperature sensor 143 detects the temperature increase of the pipe 106”. It is. Non-flowing brine will be supercooled before freezing when exposed to low temperatures below the freezing point. The brine begins to freeze when the supercooling progresses to some extent, but the brine containing the antifreeze component is in the form of a slurry in the vicinity of the freezing point and has sufficient fluidity to circulate. During this freezing, the brine releases latent heat as the liquid phase transforms into the solid phase. Therefore, the temperature of the pipe 106 of the high-temperature side second circulation circuit 100 temporarily rises.
  • the circulation pump 110 When the circuit temperature sensor 143 detects this temperature rise, the circulation pump 110 is activated to circulate the brine, and the brine is completely melted by the circulation. In this way, if it is delayed further, the brine will freeze and become impossible to circulate. Circulation can be started, the operation rate of the circulation pump 110 can be suppressed, and the energy loss can be minimized.
  • the operation is an intermittent operation.
  • the brine can be flowed to such an extent that the brine does not freeze, and less power is consumed than when the circulation pump 110 is operated continuously.
  • the pump life can be extended.
  • the circulation pump 110 is temporarily stopped when the Stirling refrigerator 50 is stopped, and then intermittent operation is started.
  • FIG. 10 shows an actual example of the temperature change in the dew proof portion when the circulation pump is intermittently operated. If the Stirling refrigerator is stopped and left as it is, the surface temperature of the dew protection pipe (pipe 106 in Fig. 9) that is cooled by the cold heat in the freezer compartment will continue to drop, but the circulation pump will If intermittent operation is performed, the surface temperature of the dew protection pipe (solid line) rises intermittently, and the surface temperature of the dew prevention part (broken line) also rises intermittently.
  • the surface temperature of the dew protection pipe solid line
  • the surface temperature of the dew prevention part broken line
  • Fig. 11 shows an example of the correlation between the measured temperature and the regression equation.
  • the temperature unit is “de”.
  • the following regression equation was used.
  • the circulation pump 110 is operated under the condition that the brine in the high-temperature side second circulation circuit 100 that the heat exchanging unit 103 passes only through the location where it receives cold from the freezer compartment, the power of the brine continues to be deprived of heat. Becomes stable at a low temperature and the circulation pump 110 cannot be stopped. This is because if the circulation pump 110 is stopped in such a state, the brine immediately freezes. Even if the circulation pump 110 is successfully stopped without freezing the brine, the brine will be shocked and frozen this time when the circulation pump 110 is started. If the heat exchanging section 103 is provided, the temperature of the brine can be raised by the heat of the outside air, so that it is not necessary to lower the temperature of the brine until the above situation is reached. That is, the circulating pump 110 can be intermittently operated.
  • the present invention can be widely used in a refrigerator in which a Stirling refrigerator is mounted and a part of waste heat of the Stirling refrigerator is used for preventing condensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Cold energy of a cold head of a Sterling refrigerating machine is transmitted to a cooling space in a heat insulation housing by a low temperature-side circulation circuit. Hot energy of a warm head of the Sterling refrigerating machine is discharged to the outside of a cooling chamber by a high-temperature-side first circulation circuit. A portion of the hot energy is transmitted to a condensation prevention section of a cooling chamber wall via a high-temperature-side second circulation circuit. In the high-temperature-side second circulation circuit are provided a circulation pump for circulating a secondary refrigerant sealed in the circuit and a heat exchanger exposed to the outside. At the time of defrosting of the low-temperature-side circulation circuit, a control section stops operation of the Sterling refrigerating machine while continuing operation of the circulation pump.

Description

明 細 書  Specification
冷却庫  Refrigerator
技術分野  Technical field
[0001] 本発明はスターリング冷凍機を搭載した冷却庫に関する。「冷却庫」とは、食品その 他の物品の温度を下げる装置全般を指す概念であり、「冷蔵庫」「冷凍庫」「冷凍冷 蔵庫」「ショーケース」 t 、つた商品としての名称を問わな 、。  [0001] The present invention relates to a refrigerator equipped with a Stirling refrigerator. “Refrigerator” is a concept that refers to all devices that lower the temperature of food and other items, regardless of its name as “refrigerator”, “freezer”, “freezer refrigerator”, “showcase” t ,.
背景技術  Background art
[0002] 冷却庫の冷凍サイクルには特定フロン(CFC:chlorofluorocarbon)や代替フロン(HC FC: hydrochlorofluorocarbon, HFC:hydrofluorocarbon)が冷媒として使用されている 。これらの冷媒のうち CFCと HCFCは、大気中に放出されると程度の差こそあれォゾ ン層の破壊につながるので、その生産及び使用は国際的な規制の対象となっている 。また、オゾン層を破壊しない HFCにも地球温暖化を促進するという問題がある。  [0002] In the refrigeration cycle of the refrigerator, specific chlorofluorocarbon (CFC: chlorofluorocarbon) or alternative chlorofluorocarbon (HCFC: hydrochlorofluorocarbon, HFC: hydrofluorocarbon) is used as a refrigerant. Among these refrigerants, CFCs and HCFCs are subject to international regulations for their production and use because they, when released to the atmosphere, cause the destruction of the ozone layer to some extent. Another problem is that HFCs that do not destroy the ozone layer also promote global warming.
[0003] そこで、冷媒としてオゾン破壊物質を使用しないスターリング冷凍機が脚光を浴び ている。スターリング冷凍機ではヘリウム等の不活性ガスを作動媒体として使用し、外 部動力によりピストンとディスプレーサを動作させて作動媒体の圧縮'膨張を繰り返す 。これによりウォームヘッド (放熱部)の温度を高めるとともにコールドヘッド(吸熱部) の温度を下げる。そしてウォームヘッドで周囲環境に放熱を行い、コールドヘッドで 庫内から吸熱を行うものである。  [0003] Therefore, a Stirling refrigerator that does not use an ozone depleting substance as a refrigerant is in the spotlight. In a Stirling refrigerator, an inert gas such as helium is used as a working medium, and the piston and displacer are operated by external power to repeatedly compress and expand the working medium. This raises the temperature of the worm head (heat dissipating part) and lowers the temperature of the cold head (heat absorbing part). The warm head dissipates heat to the surrounding environment, and the cold head absorbs heat from the interior.
[0004] スターリング冷凍機で放熱と吸熱を行うにあたっては、ブライン (熱輸送媒体に用い る液体)を二次冷媒とするサーモサイフォンを用いることが多 、。すなわちウォームへ ッドには高温側蒸発器を取付け、その中の二次冷媒を温熱で蒸発させる。蒸発した 二次冷媒は高温側凝縮器に送られ、そこで液体に復元して高温側蒸発器に戻る。コ 一ルドヘッドには低温側凝縮器を取付け、その中の二次冷媒を冷熱で凝縮させる。 凝縮した二次冷媒は低温側蒸発器に送られ、そこで気体に復元して低温側凝縮器 に戻る。  [0004] When performing heat dissipation and heat absorption in a Stirling refrigerator, a thermosiphon using brine (liquid used as a heat transport medium) as a secondary refrigerant is often used. In other words, a high-temperature side evaporator is attached to the worm head, and the secondary refrigerant in it is evaporated with warm heat. The evaporated secondary refrigerant is sent to the high temperature side condenser, where it is restored to a liquid and returned to the high temperature side evaporator. A cold side condenser is attached to the cold head, and the secondary refrigerant in it is condensed with cold heat. The condensed secondary refrigerant is sent to the low temperature side evaporator, where it is restored to gas and returned to the low temperature side condenser.
[0005] 上記のようにサーモサイフォンを利用してスターリング冷凍機の温熱と冷熱を伝達 する冷却庫の例を特許文献 1に見ることができる。特許文献 1の冷却庫では、スターリ ング冷凍機力 温熱を受け取った冷媒を配管により冷却庫壁の防露部 (冷却室の開 口部)に導き、防露部の温度が結露点以下に下がらないようにしている。 [0005] As described above, Patent Document 1 shows an example of a refrigerator that uses a thermosyphon to transmit the heat and cold of a Stirling refrigerator. In the refrigerator of Patent Document 1, Refrigerant power The refrigerant that has received the heat is led to the dew-proofing part of the cooling wall (opening part of the cooling chamber) by piping so that the temperature of the dew-proofing part does not drop below the dew point.
特許文献 1:特開 2004— 20056号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-20056
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 冷却庫一般について言えることである力 庫内を冷却する低温側蒸発器には霜が 付着する。霜は時間の経過と共に厚みを増し、冷却能力を低下させる。そのため、定 期的に冷凍機の運転を止めて除霜しなければならない。  [0006] Frost adheres to the low-temperature side evaporator that cools the inside of the power chamber, which is the same as in general refrigerators. Frost increases in thickness over time and reduces cooling capacity. Therefore, it is necessary to stop the refrigerator regularly and defrost.
[0007] 冷凍機としてスターリング冷凍機を用いている場合、運転停止中は温熱も冷熱も産 出しない。従って、特許文献 1記載の冷却庫のように温熱で防露部を温めているもの では、除霜期間(60〜90分を費やす)の間に防露部が次第に冷えて行く。特に、冷 凍室のような温度の低い冷却空間の開口部だと簡単に結露点を下回ってしまう。除 霜の度毎に結露が生じていたのでは冷却庫壁の発鲭が早くなり、商品価値が損なわ れる。  [0007] When a Stirling refrigerator is used as the refrigerator, neither hot nor cold is produced during operation stop. Therefore, in the case where the dew proof part is heated with heat like the refrigerator described in Patent Document 1, the dew proof part gradually cools during the defrost period (60 to 90 minutes are consumed). In particular, an opening in a cooling space with a low temperature such as a freezing room easily falls below the dew point. If dew condensation occurs at every defrosting, the wall of the refrigerator is generated earlier and the commercial value is impaired.
[0008] またブラインについて考えた場合、マイナス 40°Cといった低温を発生するのに用い られる冷熱輸送用のブラインについては凍結を懸念する必要は殆どない。し力しなが ら温熱輸送用のブラインについては凍結の懸念がつきまとう。というのは、ブライン循 環によって伝達される熱量を増やすためには、ブライン循環量を多くする必要がある 力 冷却庫内のブライン配管は内径力 S小さぐ曲げ箇所も多いため、ブラインの粘度 が高いと循環量が低下するので、ブラインの粘度を低く抑えねばならない。ブライン が水と不凍液の混合液である場合、一般的に不凍液は水よりも粘度が高いので、循 環量を確保するためにブラインを低粘度にしょうと思えば、不凍液の混合比を落とさ ざるを得ない。その結果、ブラインは比較的高い温度で凍結するようになる。庫内温 度が低い、外気温が低い、スターリング冷凍機が停止していて熱源がなぐまたブライ ンも停留して 、るなどの条件の 、くつかが満たされるとブラインは容易に凍結してしま  [0008] When considering the brine, there is almost no need to worry about freezing of the cold transport brine used to generate a low temperature of minus 40 ° C. However, there is concern about freezing of brine for thermal transport. This is because in order to increase the amount of heat transferred by the brine circulation, it is necessary to increase the circulation amount of the brine. If it is high, the circulation rate decreases, so the viscosity of the brine must be kept low. If the brine is a mixture of water and antifreeze, the antifreeze is generally more viscous than water, so if you want to reduce the viscosity of the brine to ensure circulation, you should reduce the antifreeze mix ratio. I do not get. As a result, the brine freezes at a relatively high temperature. The brine easily freezes when some of the conditions are met, such as the inside temperature is low, the outside temperature is low, the Stirling refrigerator is stopped and the heat source is turned off, or the brine is also stopped. Striped
[0009] 本発明は上記の問題に対処するためになされたもので、スターリング冷凍機のゥォ ームヘッドの温熱の一部を冷却庫壁の防露部に伝える構成の冷却庫において、スタ 一リング冷凍機の停止期間中も結露防止が可能となる構造を提供することを目的と する。また、スターリング冷凍機を用い、ブライン循環で熱を伝達する冷却庫におい て、凍結点の高いブラインを使用せざるを得な力つたとしてもその凍結を効果的に防 ぐことのできる冷却庫を提供することを目的とする。 [0009] The present invention has been made to address the above problems, and in a refrigerator having a configuration in which a part of the heat of the warm head of the Stirling refrigerator is transmitted to the dew-proof portion of the refrigerator wall. The object is to provide a structure that can prevent dew condensation even during the period when one ring refrigerator is stopped. In addition, in a refrigerator that uses a Stirling refrigerator to transfer heat through brine circulation, a refrigerator that can effectively prevent freezing even if it is necessary to use brine with a high freezing point. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0010] 上記目的を達成するために本発明は、スターリング冷凍機のコールドヘッドの冷熱 を低温側蒸発器を介して冷却空間に伝える低温側循環回路と、前記スターリング冷 凍機のウォームヘッドの温熱を庫外に放熱する高温側第 1循環回路と、前記温熱の 一部を冷却庫壁の防露部に伝える高温側第 2循環回路とを備えた冷却庫において、 前記高温側第 2循環回路内に封入された冷媒を、外部に露出した熱交換部を通して 循環させる循環ポンプを設け、前記低温側蒸発器の除霜時に前記循環ポンプを運 転することを特徴としている。  [0010] In order to achieve the above object, the present invention provides a low-temperature side circulation circuit for transmitting the cold heat of the cold head of the Stirling refrigerator to the cooling space via the low-temperature evaporator, and the heat of the warm head of the Stirling refrigerator. A high-temperature side first circulation circuit that radiates heat to the outside of the cabinet, and a high-temperature side second circulation circuit that transmits a part of the heat to the dew-proof portion of the refrigerator wall, wherein the high-temperature side second circulation circuit A circulation pump is provided for circulating the refrigerant enclosed in the heat exchange section exposed to the outside, and the circulation pump is operated during defrosting of the low-temperature side evaporator.
[0011] この構成によると、スターリング冷凍機のウォームヘッドの温熱を放熱していない状 況であっても、循環ポンプを運転することにより高温側第 2循環回路内の冷媒が流動 し、熱交換部で外気の熱を取り込む。その熱が防露部に伝わるので、防露部の温度 が結露点以下に下がる時点が遅れる。あるいは結露点以下に下がることが防止され る。 [0011] According to this configuration, even when the heat of the worm head of the Stirling refrigerator is not dissipated, operating the circulation pump causes the refrigerant in the high-temperature side second circulation circuit to flow and exchange heat. The outside heat is taken in at the section. Since the heat is transferred to the dew condensation part, the time when the temperature of the dew condensation part falls below the condensation point is delayed. Or it can be prevented from dropping below the dew point.
[0012] 本発明は、上記構成の冷却庫において、前記高温側第 2循環回路の中で、前記防 露部の下流側に前記熱交換部が形成されていることを特徴としている。  [0012] The present invention is characterized in that, in the cooler configured as described above, in the high temperature side second circulation circuit, the heat exchange part is formed on the downstream side of the dew prevention part.
[0013] この構成によると、スターリング冷凍機の運転中、高温側第 2循環回路内の冷媒は 最初に防露部に温熱を伝えて力ゝら熱交換部を通るので、防露部を確実に加熱するこ とがでさる。  [0013] According to this configuration, during operation of the Stirling refrigerator, the refrigerant in the high-temperature side second circulation circuit first transmits the heat to the dew proof part and passes through the heat exchange part. It is possible to heat it.
[0014] 本発明は、上記構成の冷却庫において、前記熱交換部はドレンパン内のドレンと 熱交換するものであることを特徴として 、る。  [0014] The present invention is characterized in that, in the cooler configured as described above, the heat exchanging portion exchanges heat with the drain in the drain pan.
[0015] この構成によると、ドレンの保有する熱を防露部に伝えて結露防止を行うことができ る。液体であるドレンと熱交換を行うので熱交換効率が良 、。 [0015] According to this configuration, it is possible to prevent condensation by transmitting the heat held by the drain to the dew proofing unit. Heat exchange efficiency is good because heat is exchanged with liquid drain.
[0016] 本発明は、上記構成の冷却庫において、前記熱交換部を通じて送風する送風機を 設け、除霜期間中、前記循環ポンプと共に前記送風機を運転することを特徴としてい る。 [0016] The present invention is characterized in that in the cooler configured as described above, a blower that blows air through the heat exchange unit is provided, and the blower is operated together with the circulation pump during a defrost period. The
[0017] この構成によると、熱交換部を単に露出させるだけでなぐ熱交換部を通じて送風 を行うことにより、外気の持つ熱を積極的に高温側第 2循環回路に受熱させ、防露部 に伝える温熱を確保することができる。  [0017] According to this configuration, by blowing air through the heat exchanging unit that merely exposes the heat exchanging unit, the heat of the outside air is positively received by the high-temperature side second circulation circuit, and the dew preventing unit We can secure the heat to convey.
[0018] 本発明は、上記構成の冷却庫において、前記送風機が、前記高温側第 1循環回路 の放熱用に設けられたものであることを特徴として 、る。  [0018] The present invention is characterized in that, in the cooler configured as described above, the blower is provided for heat dissipation of the high temperature side first circulation circuit.
[0019] この構成〖こよると、高温側第 1循環回路の放熱用に設けられた送風機を高温側第 2 循環回路の受熱用に兼用するから、送風機を追加配備するコストが不要となる。また 、スターリング冷凍機の運転中は高温側第 1循環回路からの放熱を高温側第 2循環 回路に受熱させ、高温側第 2循環回路内の冷媒を十分に加温することができる。  According to this configuration, since the blower provided for heat dissipation of the high temperature side first circulation circuit is also used for heat reception of the high temperature side second circulation circuit, the cost of additionally installing the blower becomes unnecessary. Further, during operation of the Stirling refrigerator, the heat from the high temperature side first circulation circuit is received by the high temperature side second circulation circuit, and the refrigerant in the high temperature side second circulation circuit can be sufficiently heated.
[0020] 本発明は、スターリング冷凍機のコールドヘッドの冷熱をブライン循環で冷却空間 に伝える低温側循環回路と、前記スターリング冷凍機のウォームヘッドの温熱をブラ イン循環で放熱する高温側循環回路と、全体制御を司る制御部を備えた冷却庫に おいて、前記高温側循環回路に循環ポンプを設け、この高温側循環回路の通過経 路には環境温度センサを設け、前記制御部は、前記環境温度センサの検知する温 度が所定値以下になったときは前記スターリング冷凍機が停止していても前記循環 ポンプを運転することを特徴として!/、る。  [0020] The present invention provides a low temperature side circulation circuit that transmits cold heat of a cold head of a Stirling refrigerator to a cooling space by brine circulation, and a high temperature side circulation circuit that dissipates heat of the warm head of the Stirling refrigerator by brine circulation. In a refrigerator equipped with a control unit that performs overall control, a circulation pump is provided in the high temperature side circulation circuit, an environmental temperature sensor is provided in a passage path of the high temperature side circulation circuit, and the control unit The circulating pump is operated even when the Stirling refrigerator is stopped when the temperature detected by the environmental temperature sensor becomes a predetermined value or less.
[0021] この構成によると、環境温度センサの検知する温度が所定値以下になったときはス ターリング冷凍機が停止中でも循環ポンプが運転され、高温側循環回路内のブライ ンが循環せしめられるから、高温側循環回路がブライン凍結点以下の低温にさらされ ることになつたとしても、ブラインの流動によりブラインの凍結を防ぐことができる。  [0021] According to this configuration, when the temperature detected by the environmental temperature sensor falls below a predetermined value, the circulation pump is operated even when the staring refrigerator is stopped, and the brine in the high-temperature side circulation circuit is circulated. Therefore, even if the high-temperature side circulation circuit is exposed to a low temperature below the freezing point of the brine, the freezing of the brine can be prevented by the flow of the brine.
[0022] 本発明は、上記構成の冷却庫において、前記スターリング冷凍機停止中の前記循 環ポンプの運転は間欠運転であることを特徴としている。  [0022] The present invention is characterized in that, in the cooler configured as described above, the operation of the circulating pump while the Stirling refrigerator is stopped is an intermittent operation.
[0023] この構成によると、ブラインが凍結しない程度にブラインを流動させることができ、循 環ポンプを連続運転させる場合に比べ消費電力が少なくて済む。また循環ポンプの 運転時間を徒に長くしないのでポンプ寿命も引き延ばすことができる。  [0023] According to this configuration, the brine can be flowed to such an extent that the brine does not freeze, and less power is consumed than when the circulating pump is operated continuously. Also, since the operation time of the circulation pump is not prolonged, the pump life can be extended.
[0024] 本発明は、上記構成の冷却庫において、前記高温側循環回路に回路温度センサ を設け、高温側循環回路に封入されたブラインの凍結点より低!ヽ温度を前記環境温 度センサが検知して 1、るとき、前記ブラインの凍結開始による温度上昇を前記回路温 度センサが検知したタイミングで前記循環ポンプを起動することを特徴としている。 [0024] According to the present invention, in the cooler configured as described above, a circuit temperature sensor is provided in the high temperature side circulation circuit, and the temperature is lower than the freezing point of the brine enclosed in the high temperature side circulation circuit!ヽ The temperature is the environmental temperature When the temperature sensor detects 1, the circulating pump is started at the timing when the circuit temperature sensor detects a temperature rise due to the start of freezing of the brine.
[0025] 流動していないブラインは、凍結点以下の低温にさらされるとー且過冷却状態にな る。過冷却がある程度進むとブラインは凍結し始める力 その際、液相から固相への 相変換に伴って潜熱を放出する。そのため高温側循環回路の温度が一時的に上昇 する。この温度上昇を回路温度センサが検知したタイミングで循環ポンプを起動する から、それ以上遅れるとブラインが凍結して循環不能になるというぎりぎりのタイミング で循環を開始し、循環ポンプの運転率を抑え、エネルギーロスを最小にすることがで きる。 [0025] Brine that is not flowing becomes supercooled when exposed to low temperatures below the freezing point. When subcooling progresses to some extent, the brine begins to freeze, releasing latent heat as the phase transitions from the liquid phase to the solid phase. Therefore, the temperature of the high-temperature side circulation circuit rises temporarily. Since the circulation pump is started at the timing when the circuit temperature sensor detects this temperature rise, the circulation is started at the last minute timing when the brine freezes and the circulation becomes impossible if it is delayed further, and the operation rate of the circulation pump is reduced. Energy loss can be minimized.
[0026] 本発明は、上記構成の冷却庫において、前記環境温度センサが、冷却庫内より冷 熱が伝わる箇所に設けられて 、ることを特徴として 、る。  [0026] The present invention is characterized in that, in the cooler configured as described above, the environmental temperature sensor is provided at a location where cold heat is transmitted from within the cooler.
[0027] この構成によると、冷却庫内より伝わる冷熱でその箇所の温度が所定値以下になつ たことを環境温度センサが検知すると循環ポンプが運転されるから、冷却庫内の冷熱 によりブラインが凍結するという事態を回避することができる。  [0027] According to this configuration, the circulating pump is operated when the environmental temperature sensor detects that the temperature of the location has become a predetermined value or less due to the cold heat transmitted from the inside of the refrigerator, so that the brine is generated by the cold heat in the refrigerator. The situation of freezing can be avoided.
[0028] 本発明は、上記構成の冷却庫において、前記高温側循環回路は、前記スターリン グ冷凍機のウォームヘッドの温熱を庫外に放熱する高温側第 1循環回路と、前記温 熱の一部を冷却庫の防露部に伝える高温側第 2循環回路からなり、前記高温側第 2 循環回路に対し前記循環ポンプ及び環境温度センサを設けたことを特徴としている  [0028] In the refrigerator having the above configuration, the high temperature side circulation circuit includes a high temperature side first circulation circuit that radiates the heat of the warm head of the Stirling refrigerator to the outside of the refrigerator, and the one of the heat. A high-temperature side second circulation circuit that conveys the heat to the dew-proof part of the refrigerator, and the circulation pump and the environmental temperature sensor are provided for the high-temperature side second circulation circuit
[0029] 冷却庫の防露部の中には冷凍室近辺が含まれる。言うまでもなく冷凍室は低温な ので、防露部がかなりの低温になることも多い。この防露部を通る高温側第 2循環回 路に対し循環ポンプ及び環境温度センサを設けたから、冷凍室の低温による高温側 第 2循環回路内のブライン凍結を回避することができる。 [0029] The dew-proof portion of the refrigerator includes the vicinity of the freezer compartment. Needless to say, the freezer compartment is cold, so the dew-proof part is often quite cold. Since the circulation pump and the environmental temperature sensor are provided for the high-temperature side second circulation circuit passing through the dew protection section, it is possible to avoid brine freezing in the high-temperature side second circulation circuit due to the low temperature of the freezer compartment.
[0030] 本発明は、上記構成の冷却庫において、前記高温側第 2循環回路の一部に露出 放熱部が設けられて 、ることを特徴として 、る。  [0030] The present invention is characterized in that, in the cooler configured as described above, an exposed heat radiating portion is provided in a part of the second high-temperature side circulation circuit.
[0031] この構成〖こよると、高温側第 2循環回路に露出放熱部で外気の熱を与え、高温側 第 2循環回路内のブラインが凍結点以下の温度に下がらないようにすることができる [0032] 本発明は、上記構成の冷却庫において、前記環境温度センサが前記露出放熱部 に設けられて 、ることを特徴として 、る。 [0031] According to this configuration, it is possible to apply the heat of the outside air to the high temperature side second circulation circuit at the exposed heat radiating portion so that the brine in the high temperature side second circulation circuit does not fall to a temperature below the freezing point. it can [0032] The present invention is characterized in that, in the cooler configured as described above, the environmental temperature sensor is provided in the exposed heat radiating portion.
[0033] この構成によると、外気の温度が所定値以下に下がったときは循環ポンプを運転し てブラインに流動を起こさせ、ブラインが凍結しな 、ようにすることができる。 [0033] According to this configuration, when the temperature of the outside air falls below a predetermined value, the circulation pump can be operated to cause the brine to flow, so that the brine does not freeze.
[0034] 本発明は、上記構成の冷却庫において、前記露出放熱部に送風機が設けられ、こ の送風機は前記循環ポンプの運転に連動して運転を行うことを特徴としている。 The present invention is characterized in that, in the cooler having the above-described configuration, a blower is provided in the exposed heat radiating portion, and the blower operates in conjunction with the operation of the circulation pump.
[0035] この構成によると、循環ポンプが運転されるときには送風機で露出放熱部に外気を 吹き付けるから、積極的に高温側第 2循環回路に外気の熱を与え、高温側第 2循環 回路内のブラインが凍結点以下の温度に下がらないようにすることができる。 According to this configuration, when the circulation pump is operated, the outside air is blown to the exposed heat radiating portion by the blower. Therefore, the outside air is positively given to the high temperature side second circulation circuit, and the inside of the high temperature side second circulation circuit is activated. It can be ensured that the brine does not drop below the freezing point.
発明の効果  The invention's effect
[0036] 本発明によると、スターリング冷凍機のウォームヘッドの温熱を放熱していない状況 であっても、それ以外の熱源から高温側第 2循環回路に温熱を取り込み、防露部の 結露を抑制な!/、し防止できる。  [0036] According to the present invention, even in a situation where the heat of the worm head of the Stirling refrigerator is not dissipated, heat is taken into the second circulation circuit on the high temperature side from other heat sources to suppress dew condensation in the dew proof part. You can prevent it!
[0037] また本発明によると、高温側循環回路を取り囲む環境の温度を環境温度センサで 検知して、それが所定値以下の値を示したときはスターリング冷凍機が停止中でも循 環ポンプが運転され、高温側循環回路内のブラインが循環せしめられるから、高温 側循環回路がブライン凍結点以下の低温にさらされることになつたとしても、ブライン の流動によりブラインの凍結を防ぐことができる。  [0037] Further, according to the present invention, when the temperature of the environment surrounding the high-temperature side circulation circuit is detected by the environmental temperature sensor and shows a value equal to or lower than a predetermined value, the circulation pump is operated even when the Stirling refrigerator is stopped. Then, since the brine in the high-temperature side circulation circuit is circulated, even if the high-temperature side circulation circuit is exposed to a low temperature below the brine freezing point, the brine can be prevented from freezing.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]冷却庫の垂直断面図 [0038] [Fig.1] Vertical section of the refrigerator
[図 2]冷却サイクルの概略構成図  [Figure 2] Schematic configuration diagram of cooling cycle
[図 3]熱交換器の概略断面図  [Fig.3] Schematic cross section of heat exchanger
[図 4]高温側第 2循環回路の配管経路を説明する斜視図  FIG. 4 is a perspective view illustrating the piping path of the high-temperature side second circulation circuit.
[図 5]高温側第 1循環回路の蒸発器の断面図  [Fig.5] Cross section of the evaporator in the first circulation circuit on the high temperature side
[図 6]本発明の第 2実施形態に係る冷却サイクルの概略構成図  FIG. 6 is a schematic configuration diagram of a cooling cycle according to a second embodiment of the present invention.
[図 7]本発明の第 3実施形態に係る冷却サイクルの概略構成図  FIG. 7 is a schematic configuration diagram of a cooling cycle according to a third embodiment of the present invention.
[図 8]本発明の第 4実施形態に係る冷却サイクルの斜視図  FIG. 8 is a perspective view of a cooling cycle according to a fourth embodiment of the present invention.
[図 9]本発明の第 4実施形態に係る冷却サイクルの概略構成図 [図 10]循環ポンプの運転による温度変化のグラフ 圆 11]防露配管表面温度に関する実験データの表 符号の説明 FIG. 9 is a schematic configuration diagram of a cooling cycle according to a fourth embodiment of the present invention. [Fig. 10] Graph of temperature change due to circulation pump operation 圆 11] Explanation of symbols in experimental data on surface temperature of dew-proof pipe
1 冷却庫  1 Refrigerator
10 断熱筐体  10 Insulated housing
13 制御部  13 Control unit
20 冷蔵室  20 Cold room
30 冷凍室  30 Freezer
40 機械室  40 Machine room
50 スターリング冷凍機  50 Stirling refrigerator
51 ウォームヘッド  51 Worm head
52 =3—ノレド、ヘッド、  52 = 3—Nored, head,
60 高温側第 1循環回路  60 High-temperature side first circulation circuit
61 高温側蒸発器  61 Hot side evaporator
62 高温側凝縮器  62 Hot side condenser
64G 気相冷媒配管  64G gas phase refrigerant piping
64L 液相冷媒配管  64L liquid refrigerant piping
70 低温側循環回路  70 Low-temperature side circulation circuit
71 低温側凝縮器  71 Low temperature side condenser
72 低温側蒸発器  72 Low temperature evaporator
74 除霜ヒータ  74 Defrost heater
91 送風機  91 Blower
100 高温側第 2循環回路  100 High temperature side second circulation circuit
101 熱交換器  101 heat exchanger
103、 105 熱交換部  103, 105 Heat exchanger
104 送風機  104 Blower
110 循環ポンプ  110 Circulation pump
120 防露部 132 ドレンノ ン 120 Dew protection section 132 Drain non
141、 142 環境温度センサ  141, 142 Ambient temperature sensor
143 回路温度センサ  143 Circuit temperature sensor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下本発明の第 1実施形態を図 1 5に基づき説明する。冷却庫 1は食品保存用 であり、ベース 12によって床上に支えられる断熱筐体 10が本体を構成する。断熱筐 体 10の内部の冷却空間は水平仕切壁 11により上下 2段に仕切られ、上段は冷蔵室 20、下段は冷凍室 30という設定である。冷蔵室 20と、冷凍室 30とは、共に前面(図 1 において左側)が食品を出し入れするための開口部となっていて、この開口部を断熱 扉 21、 31が閉ざす。 Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The refrigerator 1 is for food preservation, and a heat insulating housing 10 supported on the floor by a base 12 constitutes the main body. The cooling space inside the heat insulating housing 10 is divided into two stages, upper and lower, by a horizontal partition wall 11, and the upper stage is set as a refrigerator compartment 20 and the lower stage is set as a freezer compartment 30. In both the refrigerator compartment 20 and the freezer compartment 30, the front surface (left side in FIG. 1) is an opening for putting food in and out, and the heat insulating doors 21 and 31 are closed.
[0041] 断熱筐体 10の背面部には機械室 40が形成される。機械室 40は板金製の部品を 組み合わせて構成された直方体形状の構造物であり、背面側が開口している。この 機械室 40の中にスターリング冷凍機 50が設置される。機械室 40は冷蔵室 20と冷凍 室 30の間の高さに置かれている。  A machine room 40 is formed on the back surface of the heat insulating housing 10. The machine room 40 is a rectangular parallelepiped structure configured by combining sheet metal parts, and the back side is open. A Stirling refrigerator 50 is installed in the machine room 40. The machine room 40 is located at a height between the refrigerator room 20 and the freezer room 30.
[0042] スターリング冷凍機 50を設置した後、機械室 40の背面側開口を蓋 44で閉ざす。蓋 44には、後述する高温側凝縮器を冷却する空気を取り入れるための通風口 45と、高 温側凝縮器力ゝら熱を奪った空気を排出するための開口 47が形成されている。  [0042] After the Stirling refrigerator 50 is installed, the rear side opening of the machine room 40 is closed with the lid 44. The lid 44 is formed with a vent 45 for taking in air for cooling the high-temperature side condenser, which will be described later, and an opening 47 for discharging air deprived of heat from the high-temperature side condenser.
[0043] スターリング冷凍機 50は逆スターリングサイクルにより温熱と冷熱を生成するもので あり、温熱は廃熱として主としてウォームヘッド 51 (図 2参照)から放熱され、冷熱はコ 一ルドヘッド 52から取り出される。  [0043] The Stirling refrigerator 50 generates heat and cold by a reverse Stirling cycle. The heat is dissipated mainly from the warm head 51 (see FIG. 2) as waste heat, and the cold is taken out from the cold head 52.
[0044] ウォームヘッド 51から温熱を取り出して放熱するのは高温側第 1循環回路 60である 。高温側第 1循環回路 60は高温側蒸発器 61と高温側蒸発器 62を冷媒配管で接続 した密閉系の中に二次冷媒 63 (図 5参照)を封入したものである。二次冷媒 63は水( 水溶液を含む)あるいは炭化水素系のブラインカもなる。「二次冷媒」とは、スターリン グ冷凍機 50の内部の作動媒体を「一次冷媒」、スターリング冷凍機 50の外部で熱輸 送に用いられる作動媒体を「二次冷媒」と定義することによる。ちなみに後述の「三次 冷媒」は、二次冷媒との間で熱交換を行う冷媒の意である。  [0044] It is the high-temperature side first circulation circuit 60 that extracts the heat from the worm head 51 and dissipates it. The high temperature side first circulation circuit 60 is obtained by enclosing a secondary refrigerant 63 (see FIG. 5) in a closed system in which a high temperature side evaporator 61 and a high temperature side evaporator 62 are connected by a refrigerant pipe. The secondary refrigerant 63 is water (including an aqueous solution) or a hydrocarbon-based brine. “Secondary refrigerant” is defined by defining the working medium inside Stirling refrigerator 50 as “primary refrigerant” and the working medium used for heat transfer outside Stirling refrigerator 50 as “secondary refrigerant”. . Incidentally, the “tertiary refrigerant” described later is a refrigerant that exchanges heat with the secondary refrigerant.
[0045] 高温側蒸発器 61は銅や銅合金、アルミなど熱伝導の良い金属を中空のリング状に 成形したものであり、ウォームヘッド 51の外周面に嵌合し、ウォームヘッド 51に熱接 続される。高温側蒸発器 61の上面からは高温側凝縮器 62に接続する 2本の冷媒配 管が引き出される。一方の冷媒配管は蒸発して気体となった二次冷媒 63を高温側 凝縮器 62に送る気相冷媒配管 64Gである。他方の冷媒配管は高温側凝縮器 62で 凝縮して液体となった二次冷媒 63を高温側蒸発器 61に戻す液相冷媒配管 64Lで ある。 [0045] The high temperature side evaporator 61 is made of a metal having good thermal conductivity such as copper, copper alloy, and aluminum in a hollow ring shape. The worm head 51 is molded, fitted to the outer peripheral surface of the worm head 51, and thermally connected to the worm head 51. Two refrigerant pipes connected to the high temperature side condenser 62 are drawn out from the upper surface of the high temperature side evaporator 61. One refrigerant pipe is a gas-phase refrigerant pipe 64G that sends the secondary refrigerant 63 evaporated to gas to the high-temperature side condenser 62. The other refrigerant pipe is a liquid-phase refrigerant pipe 64L that returns the secondary refrigerant 63 condensed into a liquid by the high-temperature side condenser 62 to the high-temperature side evaporator 61.
[0046] 高温側凝縮器 62は、銅や銅合金、アルミなど熱伝導の良 、金属力もなるパイプ 62 aを折り曲げ、これに、同じく熱伝導の良い金属力もなる多数の放熱フィン 62bを取り 付けた構造である。高温側凝縮器 62の一端には気相冷媒配管 64Gが接続され、他 端には液相冷媒配管 64Lが接続される。  [0046] The high-temperature side condenser 62 bends a pipe 62a having good heat conduction and metal power, such as copper, copper alloy, and aluminum, and is attached with a number of heat radiation fins 62b having metal power also having good heat conduction. Structure. A gas phase refrigerant pipe 64G is connected to one end of the high temperature side condenser 62, and a liquid phase refrigerant pipe 64L is connected to the other end.
[0047] コールドヘッド 52には低温側凝縮器 71が取り付けられる。コールドヘッド 52と低温 側凝縮器 71は互 ヽの間で熱を授受する状態、すなわち熱接続された状態にある。  A cold side condenser 71 is attached to the cold head 52. The cold head 52 and the low-temperature side condenser 71 are in a state of transferring heat between them, that is, in a state of being thermally connected.
[0048] 冷凍室 30の奥には庫内を冷却する庫内冷却器としての役割を果たす低温側蒸発 器 72が設置される。低温側凝縮器 71と低温側蒸発器 72とは配管 73で接続され、低 温側循環回路 70を構成する。低温側循環回路 70にはブラインとして C02などの自 然冷媒を封入する。  [0048] A low-temperature evaporator 72 that functions as an internal cooler for cooling the interior of the refrigerator 30 is installed in the back of the freezer compartment 30. The low temperature side condenser 71 and the low temperature side evaporator 72 are connected by a pipe 73 to constitute a low temperature side circulation circuit 70. The low-temperature side circulation circuit 70 is filled with natural refrigerant such as C02 as brine.
[0049] 低温側蒸発器 72も、高温側凝縮器 62と同様、銅や銅合金、アルミなど熱伝導の良 い金属力もなるパイプ 72aを折り曲げたうえで熱伝導の良い金属力もなる多数の吸熱 フィン 72bを取り付けた構造である。低温側蒸発器 72には除霜ヒータ 74が付設され る。  [0049] Similarly to the high-temperature side condenser 62, the low-temperature side evaporator 72 also has a large number of endotherms that also have a metal power with a good heat conductivity after bending a pipe 72a with a metal power with a good heat conductivity such as copper, copper alloy, and aluminum. A structure with fins 72b attached. A defrost heater 74 is attached to the low temperature side evaporator 72.
[0050] 冷却ダクト 80の下端には冷凍室 30から庫内空気を吸 、込む吸気口 82が設けられ る。吸気口 82の上方には低温側蒸発器 72が設置され、さらにその上方には、冷却 ダクト 81に空気を吹き出す送風機 83が設けられる。  [0050] At the lower end of the cooling duct 80, there is provided an air inlet 82 for sucking and taking in the internal air from the freezer compartment 30. A low-temperature side evaporator 72 is installed above the intake port 82, and a blower 83 that blows out air to the cooling duct 81 is further provided above the low-temperature side evaporator 72.
[0051] スターリング冷凍機 50を運転すると、ウォームヘッド 51は高温となり、コールドヘッド 52は低温となる。ウォームヘッド 51の熱は外部に放熱すべき廃熱である力 これは 高温側第 1循環回路 60の二次冷媒 63を蒸発させて二次冷媒 63の気体の中に潜熱 として内在した後、高温側凝縮器 62の中で二次冷媒 63が凝縮することにより顕熱と して解放され、環境中に放熱される。 [0052] コールドヘッド 52の冷熱は低温側循環回路 70を介して低温側蒸発器 72に伝えら れる。送風機 83を運転すると、冷却ダクト 80の下端の吸気口 82から冷凍室 30の中 の空気が吸い込まれ、低温側蒸発器 72を通過する。また図示しない戻りダクトを通じ 、冷蔵室 20の中の空気が冷却ダクト 80に吸い込まれ、同じく低温側蒸発器 72を通 過する。低温側蒸発器 72を通過する際に空気は冷却されて冷気となる。 When the Stirling refrigerator 50 is operated, the worm head 51 becomes high temperature and the cold head 52 becomes low temperature. The heat of the worm head 51 is the waste heat that should be dissipated to the outside. This is because the secondary refrigerant 63 in the high-temperature side first circulation circuit 60 evaporates and resides in the gas of the secondary refrigerant 63 as latent heat, When the secondary refrigerant 63 condenses in the side condenser 62, it is released as sensible heat and dissipated into the environment. The cold heat of the cold head 52 is transmitted to the low temperature side evaporator 72 via the low temperature side circulation circuit 70. When the blower 83 is operated, air in the freezer compartment 30 is sucked from the inlet 82 at the lower end of the cooling duct 80 and passes through the low-temperature side evaporator 72. Further, through the return duct (not shown), the air in the refrigerator compartment 20 is sucked into the cooling duct 80 and also passes through the low temperature side evaporator 72. When passing through the low temperature side evaporator 72, the air is cooled and becomes cold.
[0053] 冷気は送風機 83により冷却ダクト 81に吹き込まれ、冷却ダクト 81の上方部分 (水平 仕切壁 11より上の部分)に設けられた吹出口 84を通じて冷蔵室 20に、また冷却ダク ト 81の下方部分 (水平仕切壁 11より下の部分)に設けられた吹出口 85を通じて冷凍 室 30に、それぞれ送り込まれる。このようにして冷蔵室 20及び冷凍室 30にはそれぞ れ所定量の冷気が送り込まれ、所定の温度に冷却される。断熱筐体 10の背面上部 に設置された制御部 13が上記の運転制御を司る。  [0053] The cold air is blown into the cooling duct 81 by the blower 83, and enters the refrigerating chamber 20 through the air outlet 84 provided in the upper part of the cooling duct 81 (the part above the horizontal partition wall 11) and the cooling duct 81. Each is sent into the freezer compartment 30 through the outlet 85 provided in the lower part (the part below the horizontal partition wall 11). In this manner, a predetermined amount of cold air is fed into the refrigerator compartment 20 and the freezer compartment 30 and cooled to a predetermined temperature. The control unit 13 installed at the upper back of the heat insulating housing 10 controls the above operation control.
[0054] 高温側第 1循環回路 60がウォームヘッド 51から取り出した温熱は防露部の結露防 止にも利用される。これを実現するのが高温側第 2循環回路 100である。  [0054] The hot heat taken out from the worm head 51 by the high temperature side first circulation circuit 60 is also used to prevent dew condensation in the dew proof part. This is realized by the high-temperature side second circulation circuit 100.
[0055] 高温側第 2循環回路 100は高温側第 1循環回路 60の気相冷媒配管 64Gに熱交換 器 101を介して熱接続されている。図 3に見られるように、気相冷媒配管 64Gの一部 にジャケット部 102を設け、その中に高温側第 2循環回路 100の配管 106を通すこと により熱交換器 101が構成される。気化した二次冷媒 63から多くの熱を受け取るよう 、配管 106はジャケット部 102の内部で蛇行している。  The high temperature side second circulation circuit 100 is thermally connected to the gas phase refrigerant pipe 64G of the high temperature side first circulation circuit 60 via the heat exchanger 101. As shown in FIG. 3, the jacket 102 is provided in a part of the gas-phase refrigerant pipe 64G, and the heat exchanger 101 is configured by passing the pipe 106 of the high-temperature side second circulation circuit 100 therein. The pipe 106 meanders inside the jacket portion 102 so as to receive a lot of heat from the vaporized secondary refrigerant 63.
[0056] 高温側第 2循環回路 100内には三次冷媒としてブラインが非減圧状態で封入され ている。ブラインとしては例えば水 85%、エチルアルコール 15%の混合液を用いる。  [0056] The high temperature side second circulation circuit 100 is filled with brine as a tertiary refrigerant in a non-depressurized state. As the brine, for example, a mixed solution of 85% water and 15% ethyl alcohol is used.
[0057] 高温側第 2循環回路 100は、熱交換器 101を出た後、図 4に示す経路をたどる。す なわち高温側第 2循環回路 100は機械室 40の底面を抜け、断熱筐体 10の底部へと 向かった後方向を変え、冷凍室 30の開口部左縁下端に至る。なお本明細書では断 熱筐体 10の前面に正対した観察者の左側を断熱筐体 10の左側、観察者の右側を 断熱筐体 10の右側と定義する。高温側第 2循環回路 100は冷凍室 30の開口部左 縁下端力も冷凍室 30の開口部を左縁→上縁とたどり、それに続いて冷蔵室 20の開 口部を下縁→左縁→上縁→右縁と一巡する。それから高温側第 2循環回路 100は 冷凍室 30の右縁→下縁とたどった後、断熱筐体 10の底壁の下に出る。ここで高温 側第 2循環回路 100は蛇行し、外部に露出した熱交換部 103を構成する。その後高 温側第 2循環回路 100は断熱筐体 10の中に戻り、循環ポンプ 110を経て熱交換器 1 01に戻る。 The second high-temperature side circulation circuit 100 exits the heat exchanger 101 and then follows the path shown in FIG. That is, the high-temperature side second circulation circuit 100 passes through the bottom surface of the machine room 40, changes the rearward direction toward the bottom of the heat insulating housing 10, and reaches the lower left edge of the opening of the freezing room 30. In this specification, the left side of the observer facing the front surface of the thermal insulation case 10 is defined as the left side of the heat insulation case 10, and the right side of the observer is defined as the right side of the heat insulation case 10. The second circulation circuit 100 on the high temperature side also follows the opening at the left edge of the freezing chamber 30 from the left edge to the upper edge of the freezing chamber 30 and then the opening of the refrigerator compartment 20 from the lower edge to the left edge → Go round from the top edge to the right edge. Then, the high-temperature side second circulation circuit 100 goes from the right edge to the lower edge of the freezer compartment 30 and then comes out under the bottom wall of the heat insulating casing 10. High temperature here The second side circulation circuit 100 meanders and constitutes the heat exchange unit 103 exposed to the outside. Thereafter, the high-temperature side second circulation circuit 100 returns to the heat insulating casing 10, and returns to the heat exchanger 101 through the circulation pump 110.
[0058] この実施形態における防露部は冷蔵室 20と冷凍室 30の開口部である。図 2では破 線の矩形により防露部 120を象徴する。  In this embodiment, the dew proof part is the opening of the refrigerator compartment 20 and the freezer compartment 30. In Fig. 2, the dew protection part 120 is symbolized by a broken rectangle.
[0059] 冷却庫 1の運転を続けていると、庫内の空気中の水分が霜となって低温側蒸発器 7 2に付着する。霜は低温側蒸発器 72の熱交換効率を低下させる。そこで、制御部 13 は適宜のタイミングでスターリング冷凍機 50の運転を停止し、除霜ヒータ 74に通電し て除霜を行う。霜が溶けて生じたドレンは冷却ダクト 80の底部のドレン受け 130に受 けられ、そこ力 排水管 131を通じて庫外に排水される。  When the operation of the refrigerator 1 is continued, the moisture in the air in the refrigerator becomes frost and adheres to the low temperature side evaporator 72. The frost reduces the heat exchange efficiency of the low-temperature evaporator 72. Therefore, the control unit 13 stops the operation of the Stirling refrigerator 50 at an appropriate timing and energizes the defrost heater 74 to perform defrosting. Drain generated by melting frost is received by the drain receiver 130 at the bottom of the cooling duct 80, and is drained outside the chamber through the drainage pipe 131.
[0060] 断熱筐体 10の底壁の下には排水管 131から滴下するドレンを貯留するドレンパン 132が設置される。ドレンパン 132は、中に溜まったドレンを捨てるため、冷却庫 1の 前面側から引き出せるようになつている。  A drain pan 132 for storing drain dripping from the drain pipe 131 is installed under the bottom wall of the heat insulating casing 10. The drain pan 132 can be pulled out from the front side of the refrigerator 1 in order to discard the drain accumulated in the drain pan 132.
[0061] ドレンパン 132の下面は熱交換部 103に接する。スターリング冷凍機 50の運転中 は、高温側第 2循環回路 100内の三次冷媒が運んでくる温熱によりドレンパン 132及 びその中のドレンは加熱され、温度上昇する。このため、ドレンの蒸発が促進され、ド レンを捨てる手間を減らすことができる。  [0061] The lower surface of the drain pan 132 is in contact with the heat exchange unit 103. During the operation of the Stirling refrigerator 50, the drain pan 132 and the drain therein are heated by the warm heat carried by the tertiary refrigerant in the high-temperature side second circulation circuit 100, and the temperature rises. For this reason, the evaporation of the drain is promoted, and the time and effort for discarding the drain can be reduced.
[0062] 前述の通り、低温側循環回路 70の構成要素である低温側蒸発器 72の除霜時には 制御部 13はスターリング冷凍機 50の運転を停止する。そのため、それまで加熱され ていた防露部 120は次第に冷えてくる。一方で制御部 13は、循環ポンプ 110の運転 は続行する。これにより高温側第 2循環回路 100内の三次冷媒が流動し、熱交換部 103で外部と熱交換する。第 1実施形態の場合、機外の大気と、ドレンパン 132内の ドレンが熱交換部 103の熱交換対象となる。  [0062] As described above, the controller 13 stops the operation of the Stirling refrigerator 50 during the defrosting of the low-temperature side evaporator 72 that is a component of the low-temperature side circulation circuit 70. Therefore, the dew-proof part 120 that has been heated until then gradually cools. On the other hand, the control unit 13 continues the operation of the circulation pump 110. As a result, the tertiary refrigerant in the high temperature side second circulation circuit 100 flows and exchanges heat with the outside at the heat exchange unit 103. In the case of the first embodiment, the atmosphere outside the machine and the drain in the drain pan 132 are heat exchange targets of the heat exchange unit 103.
[0063] 大気とドレン力 得られる温熱が防露部 120にもたらされるため、防露部 120の温 度が結露点以下に低下する時点を遅らせることができる。これにより、防露部 120の 結露は抑制な 、し防止される。  [0063] Atmosphere and drain force The obtained heat is provided to the dew proof part 120, so that the time when the temperature of the dew proof part 120 falls below the dew point can be delayed. Thereby, the dew condensation of the dew proof part 120 is suppressed and prevented.
[0064] 熱交換部 103は防露部 120の下流側に形成されている。そのため、スターリング冷 凍機 50の運転中、高温側第 2循環回路 100内の三次冷媒は最初に防露部 120に 温熱を伝えて力も熱交換部 103を通ることになり、防露部 120は確実に加熱される。 [0064] The heat exchange unit 103 is formed on the downstream side of the dew proof unit 120. Therefore, during the operation of the Stirling refrigerator 50, the tertiary refrigerant in the high-temperature side second circulation circuit 100 is first transferred to the dew protection section 120. The heat is transmitted and the force passes through the heat exchanging unit 103, so that the dew proof unit 120 is reliably heated.
[0065] また熱交換部 103はドレンパン 132内のドレンと熱交換するものであるから、ドレン の保有する熱を有効活用できる。低温側蒸発器 72に付着した霜や氷が融けたばか りのドレンは低温である力 時間をかけてドレンパン 132に溜まって行く間に外気温 に準ずる程度に温度が上昇するので、熱源として十分利用可能となる。液体であるド レンと熱交換を行うので熱交換効率も良い。なお第 1実施形態ではドレンパン 132の 下面に熱交換部 103を接触させてドレンと熱交換を行っている力 ドレンの中に熱交 換部 103を浸漬する構成も可能である。  [0065] Further, since the heat exchanging unit 103 exchanges heat with the drain in the drain pan 132, the heat held by the drain can be effectively utilized. The drainage of frost and ice that has melted on the low-temperature evaporator 72 rises to a level equivalent to the outside air temperature while accumulating in the drain pan 132 over a long period of time, so it can be used as a heat source. It becomes possible. Heat exchange efficiency is also good because heat is exchanged with liquid drain. In the first embodiment, a configuration in which the heat exchanging portion 103 is immersed in a force drain that makes heat exchange with the drain by bringing the heat exchanging portion 103 into contact with the lower surface of the drain pan 132 is also possible.
[0066] 本発明の第 2実施形態を図 6に示す。第 2実施形態の特徴とするところは、熱交換 部 103に対し、熱交換部 103を通じて送風する送風機 104を設け、除霜期間中、循 環ポンプ 110と共に送風機 104を運転するようにした点にある。このように熱交換部 1 03を単に外部に露出させるだけでなぐ熱交換部 103を通じて送風を行うことにより、 外気の持つ熱を積極的に高温側第 2循環回路 100に受熱させ、防露部 120に伝え る温熱を確保することができる。高温側凝縮器 62や低温側蒸発器 72と同様、熱交換 部 103にフィンを設けておいてもよい。  A second embodiment of the present invention is shown in FIG. A feature of the second embodiment is that a blower 104 that blows air through the heat exchange unit 103 is provided for the heat exchange unit 103, and the blower 104 is operated together with the circulation pump 110 during the defrosting period. is there. In this way, by blowing air through the heat exchanging unit 103 that merely exposes the heat exchanging unit 103 to the outside, the heat of the outside air is positively received by the second circulation circuit 100 on the high temperature side, and the dew preventing unit The heat transmitted to 120 can be secured. As with the high temperature side condenser 62 and the low temperature side evaporator 72, fins may be provided in the heat exchange unit 103.
[0067] 本発明の第 3実施形態を図 7に示す。第 3実施形態では、高温側第 2循環回路 10 0に第 2の熱交換部 105を形成した。熱交換部 105は熱交換部 103のさらに下流側 にあり、高温側凝縮器 62を強制空冷する送風機 91の吹き出し側に配置されて 、る。 送風機 91は除霜期間中循環ポンプ 110と共に運転される。これにより、外気の持つ 熱を積極的に高温側第 2循環回路 100に受熱させ、防露部 120に伝える温熱を確 保することができる。高温側凝縮器 62や低温側蒸発器 72と同様、熱交換部 105にフ インを設けてぉ 、てもよ 、。  A third embodiment of the present invention is shown in FIG. In the third embodiment, the second heat exchange unit 105 is formed in the high temperature side second circulation circuit 100. The heat exchanging unit 105 is further downstream of the heat exchanging unit 103 and is arranged on the blowout side of the blower 91 for forced air cooling of the high temperature side condenser 62. The blower 91 is operated together with the circulation pump 110 during the defrosting period. As a result, the heat of the outside air can be positively received by the high-temperature side second circulation circuit 100, and the heat transferred to the dew protection unit 120 can be secured. As with the high temperature side condenser 62 and the low temperature side evaporator 72, a fin may be provided in the heat exchanging section 105.
[0068] 第 3実施形態の構成では、高温側第 1循環回路 60の放熱用に設けられた送風機 9 1を高温側第 2循環回路 100の受熱用に兼用しているから、高温側第 2循環回路専 用の送風機を設けずに済み、コストを削減できる。また、スターリング冷凍機 50の運 転中は高温側凝縮器 62からの放熱を高温側第 2循環回路 100に受熱させ、高温側 第 2循環回路 100内の三次冷媒を十分に加温することができる。  [0068] In the configuration of the third embodiment, since the fan 91 provided for heat dissipation of the high temperature side first circulation circuit 60 is also used for heat reception of the high temperature side second circulation circuit 100, the high temperature side second circuit is used. Costs can be reduced by eliminating the need for a dedicated blower for the circulation circuit. In addition, during operation of the Stirling refrigerator 50, the heat from the high-temperature side condenser 62 is received by the high-temperature side second circulation circuit 100, and the tertiary refrigerant in the high-temperature side second circulation circuit 100 can be sufficiently heated. it can.
[0069] 本発明の第 4実施形態を図 8— 11に示す。第 4実施形態の特徴とするところは、高 温側第 2循環回路 100を取り囲む環境の温度を環境温度センサで検知して高温側 第 2循環回路 100内のブラインが凍結しな 、ような運転制御を行う点にある。 [0069] A fourth embodiment of the present invention is shown in FIGS. 8-11. The feature of the fourth embodiment is high The temperature of the environment surrounding the second circulating circuit 100 on the warm side is detected by an environmental temperature sensor, and operation control is performed such that the brine in the second circulating circuit 100 on the high temperature side is not frozen.
[0070] 図 8は冷却サイクルを冷却庫 1の背面側から見た状況を示す。断熱筐体 10は仮想 線で表されて 、るが、その背面上部の機械室 40だけは実線で描かれて 、る。  FIG. 8 shows a state where the cooling cycle is viewed from the back side of the refrigerator 1. The heat-insulating housing 10 is represented by a virtual line, but only the machine room 40 at the upper back is drawn by a solid line.
[0071] 高温側第 2循環回路 100内にはブラインが非減圧状態で封入されている。このブラ インは水と不凍液の混合液であり、循環量確保のため低粘度にすることが必要なの で不凍液の混合比は低 、。従ってブラインの凍結点は比較的高 、。  [0071] Brine is sealed in the high temperature side second circulation circuit 100 in a non-depressurized state. This brain is a mixture of water and antifreeze, and it is necessary to make the viscosity low to secure the circulation rate, so the mix ratio of antifreeze is low. Therefore, the freezing point of brine is relatively high.
[0072] 高温側第 2循環回路 100の配管 106は、熱交換器 101を出た後、図 1に示す経路 をたどる。すなわち配管 106は気液分離器 107を経て循環ポンプ 110に入る。循環 ポンプ 110を出た配管 106は機械室 40の底面を抜けて下り管 106Dとなり、断熱筐 体 10の背面壁の中を下降する。背面壁の下部に達した配管 106は断熱筐体 10の 右側壁の下部に入り、前方に抜けて断熱筐体 10の正面下部に達する。配管 106は そこで断熱筐体 10の中央側へと折れ、断熱筐体 10の中央の垂直仕切壁 (後述のも のも含め、仕切壁は図示しない)に達した後、垂直仕切壁の前縁のほぼ下半分と、断 熱筐体 10の左半分に冷凍室を区画する 2段の水平仕切壁の前縁、及び断熱筐体 1 0の左側壁の下部を蛇行した後、左側壁の前縁を上昇し、そこ力 天井壁の前縁を 左から右に抜け、さらに右側壁の前縁を下降する。右側壁の前縁を下降する途中で 配管 106は、断熱筐体 10の右半分に冷凍室を区画する水平仕切壁に入り込んで蛇 行する。  [0072] After exiting the heat exchanger 101, the pipe 106 of the high temperature side second circulation circuit 100 follows the path shown in FIG. That is, the pipe 106 enters the circulation pump 110 through the gas-liquid separator 107. The pipe 106 exiting the circulation pump 110 passes through the bottom surface of the machine room 40 to become a down pipe 106D, and descends in the rear wall of the heat insulating housing 10. The pipe 106 that reaches the lower part of the rear wall enters the lower part of the right side wall of the heat insulating casing 10, passes forward, and reaches the lower front part of the insulating casing 10. The pipe 106 then folds to the center side of the heat insulating housing 10 and reaches the vertical partition wall (not shown) including the one described later before the front edge of the vertical partition wall. After the meandering of the front edge of the two-stage horizontal partition wall that divides the freezer compartment into the left half of the heat insulation case 10 and the left half of the heat insulation case 10, and the lower part of the left side wall of the heat insulation case 10 Ascend the edge and force it through the front edge of the ceiling wall from left to right, and then descend the front edge of the right wall. On the way down the front edge of the right side wall, the pipe 106 snakes into the horizontal partition wall that partitions the freezer compartment in the right half of the heat insulating casing 10.
[0073] 右側壁の下部に達した配管 106は、断熱筐体 10の底部の下に設定された熱交換 部 103に出る。配管 106は外気に直接接触しつつ熱交換部 103で蛇行し、外気に 熱を放熱する。熱交換部 103の上にドレンパン 132を置いておけば、ドレンパン 132 及びその中のドレンが加熱され、ドレンの蒸発が促進される。熱交換部 103中の配管 106に対し、送風機 104が風を吹き付ける。  [0073] The pipe 106 reaching the lower part of the right side wall exits to the heat exchanging part 103 set below the bottom of the heat insulating casing 10. The pipe 106 meanders at the heat exchanging portion 103 while directly contacting the outside air, and dissipates heat to the outside air. If the drain pan 132 is placed on the heat exchange unit 103, the drain pan 132 and the drain therein are heated, and the evaporation of the drain is promoted. The blower 104 blows wind against the pipe 106 in the heat exchange unit 103.
[0074] 熱交換部 103を抜けた配管 106は断熱筐体 10の背面壁に入り、上り管 106Uとな つて背面壁の中を上昇し、機械室 40に戻る。そして熱交翻101に帰還する。  [0074] The pipe 106 that has passed through the heat exchanging section 103 enters the back wall of the heat insulating casing 10, rises into the back wall as an up pipe 106U, and returns to the machine room 40. Then return to heat exchange 101.
[0075] 配管 106は、断熱筐体 10の正面及び左右側壁では断熱筐体 10の表面に近い箇 所を通る。これらの箇所が図 9に示す防露部 120となる。配管 106によって運ばれる スターリング冷凍機 50の廃熱は、防露部 120の結露防止だけでなぐ前述のようにド レンの蒸発促進に利用できる。 [0075] The pipe 106 passes through a portion close to the surface of the heat insulating casing 10 on the front and left and right side walls of the heat insulating casing 10. These places become the dew proof part 120 shown in FIG. Carried by pipe 106 The waste heat of the Stirling refrigerator 50 can be used not only to prevent condensation in the dew proofing unit 120 but also to promote drain evaporation as described above.
[0076] 冷却庫 1の全体制御を司るのは制御部 13である。制御部 13に対し、環境温度セン サ 141、 142及び回路温度センサ 143から信号が伝えられる。環境温度センサ 141 は、防露部 120の中でも特に冷凍室の冷熱が伝わりやすい箇所に配置する。そして その箇所を通る配管 106の表面温度を測定できる位置に回路温度センサ 143を設 ける。環境温度センサ 142は熱交換部 103に外気に露出する形で配置する。  The control unit 13 is in charge of overall control of the refrigerator 1. Signals are transmitted from the environmental temperature sensors 141 and 142 and the circuit temperature sensor 143 to the control unit 13. The environmental temperature sensor 141 is arranged in the dew proof part 120 where the cold heat in the freezer compartment is easily transmitted. Then, a circuit temperature sensor 143 is provided at a position where the surface temperature of the pipe 106 passing through the location can be measured. The environmental temperature sensor 142 is disposed in the heat exchange unit 103 so as to be exposed to the outside air.
[0077] 循環ポンプ 110はスターリング冷凍機 50の運転に連動して運転される。制御部 13 は、スターリング冷凍機 50が停止しているときも、所定の条件が整えば循環ポンプ 11 0を運転する。以下、その条件について説明する。  [0077] Circulation pump 110 is operated in conjunction with operation of Stirling refrigerator 50. Even when the Stirling refrigerator 50 is stopped, the control unit 13 operates the circulation pump 110 if predetermined conditions are met. The conditions will be described below.
[0078] 第 1の条件は「環境温度センサ 141が所定値以下の温度を検知すること」である。「 所定値」はブラインの凍結点あるいはそれに近い値にしておく。これにより、高温側第 2循環回路 100内のブラインに凍結の危険が迫っていることを察知し、循環ポンプ 11 0を起動する。  The first condition is “environmental temperature sensor 141 detects a temperature equal to or lower than a predetermined value”. The “predetermined value” is set at or near the freezing point of the brine. As a result, it is detected that the brine in the high temperature side second circulation circuit 100 is nearing the risk of freezing, and the circulation pump 110 is activated.
[0079] 第 2の条件は「環境温度センサ 142が所定値以下の温度を検知すること」である。「 所定値」はブラインの凍結点あるいはそれに近い値にしておく。これにより、高温側第 2循環回路 100内のブラインに凍結の危険が迫っていることを察知し、循環ポンプ 11 0を起動する。  The second condition is “environmental temperature sensor 142 detects a temperature equal to or lower than a predetermined value”. The “predetermined value” is set at or near the freezing point of the brine. As a result, it is detected that the brine in the high temperature side second circulation circuit 100 is nearing the risk of freezing, and the circulation pump 110 is activated.
[0080] 第 3の条件は「ブラインの凍結点より低い温度を環境温度センサ 141または環境温 度センサ 142が検知しているとき、配管 106の温度上昇を回路温度センサ 143が検 知すること」である。流動していないブラインは、凍結点以下の低温にさらされると凍 結するまでにー且過冷却状態になる。過冷却がある程度進むとブラインは凍結し始 めるが、不凍液成分を含んだブラインは、凍結点近辺ではスラリー状であり、循環可 能な程度の流動性を備える。この凍結時、液相から固相への相変換に伴ってブライ ンが潜熱を放出する。そのため高温側第 2循環回路 100の配管 106の温度が一時 的に上昇する。この温度上昇を回路温度センサ 143が検知したタイミングで循環ボン プ 110を起動し、ブラインを循環させ、循環によってブラインを完全に融解させる。こ のように、それ以上遅れるとブラインが凍結して循環不能になるというぎりぎりのタイミ ングで循環を開始し、循環ポンプ 110の運転率を抑え、エネルギーロスを最小にする ことができる。 [0080] The third condition is “when the environmental temperature sensor 141 or the environmental temperature sensor 142 detects a temperature lower than the freezing point of the brine, the circuit temperature sensor 143 detects the temperature increase of the pipe 106”. It is. Non-flowing brine will be supercooled before freezing when exposed to low temperatures below the freezing point. The brine begins to freeze when the supercooling progresses to some extent, but the brine containing the antifreeze component is in the form of a slurry in the vicinity of the freezing point and has sufficient fluidity to circulate. During this freezing, the brine releases latent heat as the liquid phase transforms into the solid phase. Therefore, the temperature of the pipe 106 of the high-temperature side second circulation circuit 100 temporarily rises. When the circuit temperature sensor 143 detects this temperature rise, the circulation pump 110 is activated to circulate the brine, and the brine is completely melted by the circulation. In this way, if it is delayed further, the brine will freeze and become impossible to circulate. Circulation can be started, the operation rate of the circulation pump 110 can be suppressed, and the energy loss can be minimized.
[0081] スターリング冷凍機 50が停止している間に循環ポンプ 110を運転するときは、その 運転は間欠運転とする。こうすることによって、ブラインが凍結しない程度にブライン を流動させることができ、循環ポンプ 110を連続運転させる場合に比べ消費電力が 少なくて済む。また循環ポンプ 110の運転時間を徒に長くしな 、のでポンプ寿命も引 き延ばすことができる。なお循環ポンプ 110はスターリング冷凍機 50の運転停止に合 わせて一旦運転を停止し、その後間欠運転を開始するものとする。  [0081] When the circulation pump 110 is operated while the Stirling refrigerator 50 is stopped, the operation is an intermittent operation. By doing so, the brine can be flowed to such an extent that the brine does not freeze, and less power is consumed than when the circulation pump 110 is operated continuously. In addition, since the operation time of the circulation pump 110 is not prolonged, the pump life can be extended. The circulation pump 110 is temporarily stopped when the Stirling refrigerator 50 is stopped, and then intermittent operation is started.
[0082] 循環ポンプを間欠運転したときの防露部の温度変化の実例を図 10に示す。スター リング冷凍機の運転を停止してそのままにしておけば、冷凍室の冷熱で冷やされる 防露管(図 9の配管 106)の表面温度 (一点鎖線)はどんどん低下するが、循環ボン プを間欠運転すれば、防露管の表面温度 (実線)は間欠的に上昇し、それに伴って 防露部の表面温度 (破線)も間欠的に上昇する。図 10の例では外気温 5°Cで冷凍室 をマイナス 40°Cに設定し、スターリング冷凍機停止後 15分して力も 5分周期で循環 ポンプを間欠運転した場合、防露管(図 9で言えば、防露部 120中の配管 106)の表 面温度をマイナス 5〜6°C以上に保つことに成功している。  FIG. 10 shows an actual example of the temperature change in the dew proof portion when the circulation pump is intermittently operated. If the Stirling refrigerator is stopped and left as it is, the surface temperature of the dew protection pipe (pipe 106 in Fig. 9) that is cooled by the cold heat in the freezer compartment will continue to drop, but the circulation pump will If intermittent operation is performed, the surface temperature of the dew protection pipe (solid line) rises intermittently, and the surface temperature of the dew prevention part (broken line) also rises intermittently. In the example of Fig. 10, when the freezer is set to minus 40 ° C at an outside air temperature of 5 ° C, and the circulation pump is intermittently operated at a cycle of 5 minutes for 15 minutes after the Stirling refrigerator is stopped, In other words, the surface temperature of the pipe 106) in the dew proof part 120 has been successfully maintained at minus 5-6 ° C or higher.
[0083] 回路温度センサ 143によらずとも、環境温度センサ 141の検知する冷凍室温度と環 境温度センサ 142の検知する外気温とを回帰式にかけ、配管 106の表面温度をある 程度の精度をもって求めることが可能である。図 11に実測温度と回帰式による温度 の相関例を示す。温度単位は「で」である。ここでは次の回帰式を用いた。  [0083] Regardless of the circuit temperature sensor 143, the freezing room temperature detected by the environmental temperature sensor 141 and the outside air temperature detected by the environmental temperature sensor 142 are multiplied by a regression equation so that the surface temperature of the pipe 106 is obtained with a certain degree of accuracy. It is possible to ask. Fig. 11 shows an example of the correlation between the measured temperature and the regression equation. The temperature unit is “de”. Here, the following regression equation was used.
0. 23 X (外気温) +0. 39 X (冷凍室温度) -5. 7  0. 23 X (outside temperature) +0. 39 X (freezer temperature) -5. 7
図 11に見られる通り、実測値と回帰計算値の相関度は高い。  As seen in Fig. 11, the correlation between the measured value and the regression calculation value is high.
[0084] 外気温がブラインの凍結点より相当程度高い場合(図 11もそれに該当する)、循環 ポンプ 110を運転すると、熱交換部 103で高温側第 2循環回路 100に外気の熱が与 えられる。この熱は高温側第 2循環回路 100内のブラインが凍結点以下の温度に下 力 Sらないようにするのに役立つ。なおこの時、循環ポンプ 110の運転に連動して送風 機 104を運転すれば、外気の熱を一層良く高温側第 2循環回路 100に伝えることが できる。 [0085] 熱交換部 103の存在は、循環ポンプ 110の間欠運転を可能にするという点でも有 用である。すなわち熱交換部 103がなぐ高温側第 2循環回路 100のブラインは冷凍 室からの冷熱を受ける箇所を通るのみという条件で循環ポンプ 110を運転すると、ブ ライン力も熱が奪われ続けるためブラインの温度が低温で安定し、循環ポンプ 110を 停止させることができなくなってしまう。というのは、このような状態で循環ポンプ 110 を止めると、ブラインが直ちに凍結してしまうからである。仮にブラインを凍結させるこ となく循環ポンプ 110を停止させることに成功したとしても、今度は循環ポンプ 110の 起動時にブラインが衝撃を受け、凍結してしまう。熱交換部 103があれば、外気の熱 でブラインの温度を上昇させることができるので、上記のような事態に至るまでブライ ンの温度を低下させずに済む。すなわち循環ポンプ 110の間欠運転が可能となる。 [0084] When the outside air temperature is considerably higher than the freezing point of the brine (FIG. 11 also corresponds to this), when the circulation pump 110 is operated, heat from the outside air is given to the high-temperature side second circulation circuit 100 by the heat exchange unit 103. It is done. This heat helps to prevent the brine in the second circulating circuit 100 on the high temperature side from dropping below the freezing point. At this time, if the blower 104 is operated in conjunction with the operation of the circulation pump 110, the heat of the outside air can be transmitted to the high-temperature side second circulation circuit 100 better. [0085] The presence of the heat exchange unit 103 is also useful in that it enables intermittent operation of the circulation pump 110. In other words, if the circulation pump 110 is operated under the condition that the brine in the high-temperature side second circulation circuit 100 that the heat exchanging unit 103 passes only through the location where it receives cold from the freezer compartment, the power of the brine continues to be deprived of heat. Becomes stable at a low temperature and the circulation pump 110 cannot be stopped. This is because if the circulation pump 110 is stopped in such a state, the brine immediately freezes. Even if the circulation pump 110 is successfully stopped without freezing the brine, the brine will be shocked and frozen this time when the circulation pump 110 is started. If the heat exchanging section 103 is provided, the temperature of the brine can be raised by the heat of the outside air, so that it is not necessary to lower the temperature of the brine until the above situation is reached. That is, the circulating pump 110 can be intermittently operated.
[0086] 以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定される ものではなぐ発明の主旨を逸脱しない範囲で種々の変更をカ卩えて実施することがで きる。  As described above, each embodiment of the present invention has been described, but the scope of the present invention is not limited to this, and various modifications can be implemented without departing from the spirit of the invention. .
産業上の利用可能性  Industrial applicability
[0087] 本発明は、スターリング冷凍機を搭載し、そのスターリング冷凍機の廃熱の一部を 結露防止に利用する冷却庫に広く利用可能である。 [0087] The present invention can be widely used in a refrigerator in which a Stirling refrigerator is mounted and a part of waste heat of the Stirling refrigerator is used for preventing condensation.

Claims

請求の範囲 The scope of the claims
[1] スターリング冷凍機のコールドヘッドの冷熱を低温側蒸発器を介して冷却空間に伝 える低温側循環回路と、前記スターリング冷凍機のウォームヘッドの温熱を庫外に放 熱する高温側第 1循環回路と、前記温熱の一部を冷却庫壁の防露部に伝える高温 側第 2循環回路とを備えた冷却庫において、  [1] A low-temperature side circulation circuit that transmits the cold heat of the Stirling refrigerator cold head to the cooling space via the low-temperature evaporator, and the high-temperature side No. 1 that releases the warm heat of the Stirling refrigerator warm head to the outside. In a refrigerator having a circulation circuit and a high-temperature side second circulation circuit that transfers a part of the heat to a dew-proof portion of the refrigerator wall,
前記高温側第 2循環回路内に封入された冷媒を、外部に露出した熱交換部を通し て循環させる循環ポンプを設け、前記低温側蒸発器の除霜時に前記循環ポンプを 運転することを特徴とする冷却庫。  A circulation pump that circulates the refrigerant sealed in the high-temperature side second circulation circuit through a heat exchange section exposed to the outside is provided, and the circulation pump is operated during defrosting of the low-temperature side evaporator. And a refrigerator.
[2] 前記高温側第 2循環回路の中で、前記防露部の下流側に前記熱交換部が形成さ れて!ヽることを特徴とする請求項 1に記載の冷却庫。 [2] The refrigerator according to claim 1, wherein in the high temperature side second circulation circuit, the heat exchange part is formed downstream of the dew prevention part.
[3] 前記熱交換部はドレンパン内のドレンと熱交換するものであることを特徴とする請求 項 1に記載の冷却庫。 [3] The refrigerator according to claim 1, wherein the heat exchanging section exchanges heat with the drain in the drain pan.
[4] 前記熱交換部を通じて送風する送風機を設け、除霜期間中、前記循環ポンプと共 に前記送風機を運転することを特徴とする請求項 1に記載の冷却庫。  [4] The refrigerator according to claim 1, wherein a blower that blows air through the heat exchange unit is provided, and the blower is operated together with the circulation pump during a defrosting period.
[5] 前記送風機が、前記高温側第 1循環回路の放熱用に設けられたものであることを 特徴とする請求項 4に記載の冷却庫。  5. The refrigerator according to claim 4, wherein the blower is provided for heat dissipation of the high temperature side first circulation circuit.
[6] スターリング冷凍機のコールドヘッドの冷熱をブライン循環で冷却空間に伝える低 温側循環回路と、前記スターリング冷凍機のウォームヘッドの温熱をブライン循環で 放熱する高温側循環回路と、全体制御を司る制御部を備えた冷却庫において、 前記高温側循環回路に循環ポンプを設け、この高温側循環回路の通過経路には 環境温度センサを設け、前記制御部は、前記環境温度センサの検知する温度が所 定値以下になったときは前記スターリング冷凍機が停止していても前記循環ポンプを 運転することを特徴とする冷却庫。  [6] A low temperature side circulation circuit that transmits the cold heat of the Stirling refrigerator cold head to the cooling space through brine circulation, a high temperature side circulation circuit that dissipates the heat of the warm head of the Stirling refrigerator through brine circulation, and overall control. In a refrigerator having a control unit that manages, a circulation pump is provided in the high temperature side circulation circuit, an environmental temperature sensor is provided in a passage path of the high temperature side circulation circuit, and the control unit detects a temperature detected by the environmental temperature sensor. When the temperature becomes below a predetermined value, the circulating pump is operated even if the Stirling refrigerator is stopped.
[7] 前記スターリング冷凍機停止中の前記循環ポンプの運転は間欠運転であることを 特徴とする請求項 6に記載の冷却庫。  7. The refrigerator according to claim 6, wherein the operation of the circulating pump while the Stirling refrigerator is stopped is an intermittent operation.
[8] 前記高温側循環回路に回路温度センサを設け、高温側循環回路に封入されたブ ラインの凍結点より低 、温度を前記環境温度センサが検知して!/、るとき、前記ブライ ンの凍結開始による温度上昇を前記回路温度センサが検知したタイミングで前記循 環ポンプを起動することを特徴とする請求項 6または 7に記載の冷却庫。 [8] A circuit temperature sensor is provided in the high temperature side circulation circuit, and when the ambient temperature sensor detects a temperature lower than the freezing point of the brine enclosed in the high temperature side circulation circuit, the At the timing when the circuit temperature sensor detects a temperature rise due to the start of freezing. The refrigerator according to claim 6 or 7, wherein a ring pump is activated.
[9] 前記環境温度センサが、冷却庫内より冷熱が伝わる箇所に設けられて 、ることを特 徴とする請求項 6から 8のいずれか 1項に記載の冷却庫。 [9] The refrigerator according to any one of claims 6 to 8, wherein the environmental temperature sensor is provided at a location where cold heat is transmitted from the inside of the refrigerator.
[10] 前記高温側循環回路は、前記スターリング冷凍機のウォームヘッドの温熱を庫外に 放熱する高温側第 1循環回路と、前記温熱の一部を冷却庫の防露部に伝える高温 側第 2循環回路からなり、前記高温側第 2循環回路に対し前記循環ポンプ及び環境 温度センサを設けたことを特徴とする請求項 6から 9のいずれか 1項に記載の冷却庫 [10] The high temperature side circulation circuit includes a high temperature side first circulation circuit that dissipates the heat of the worm head of the Stirling refrigerator to the outside of the chamber, and a high temperature side first circuit that transmits a part of the heat to the dewproof part of the refrigerator. The refrigerator according to any one of claims 6 to 9, comprising a circulation circuit, wherein the circulation pump and an environmental temperature sensor are provided for the second high-temperature side circulation circuit.
[11] 前記高温側第 2循環回路の一部に露出放熱部が設けられていることを特徴とする 請求項 10に記載の冷却庫。 11. The refrigerator according to claim 10, wherein an exposed heat radiating portion is provided in a part of the high temperature side second circulation circuit.
[12] 前記環境温度センサが前記露出放熱部に設けられていることを特徴とする請求項12. The environmental temperature sensor is provided in the exposed heat radiation part.
11に記載の冷却庫。 The refrigerator according to 11.
[13] 前記露出放熱部に送風機が設けられ、この送風機は前記循環ポンプの運転に連 動して運転を行うことを特徴とする請求項 11に記載の冷却庫。  13. The refrigerator according to claim 11, wherein a fan is provided in the exposed heat radiating section, and the fan operates in conjunction with the operation of the circulation pump.
PCT/JP2006/323193 2006-01-10 2006-11-21 Cooling chamber WO2007080708A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-002316 2006-01-10
JP2006002316A JP4020930B2 (en) 2006-01-10 2006-01-10 Refrigerator
JP2006-155683 2006-06-05
JP2006155683A JP4020941B1 (en) 2006-06-05 2006-06-05 Refrigerator

Publications (1)

Publication Number Publication Date
WO2007080708A1 true WO2007080708A1 (en) 2007-07-19

Family

ID=38256121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323193 WO2007080708A1 (en) 2006-01-10 2006-11-21 Cooling chamber

Country Status (1)

Country Link
WO (1) WO2007080708A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020056A (en) * 2002-06-17 2004-01-22 Sharp Corp Cooling chamber
JP2004101050A (en) * 2002-09-09 2004-04-02 Sharp Corp Cooling warehouse
JP2005172329A (en) * 2003-12-10 2005-06-30 Sharp Corp Cooling storage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020056A (en) * 2002-06-17 2004-01-22 Sharp Corp Cooling chamber
JP2004101050A (en) * 2002-09-09 2004-04-02 Sharp Corp Cooling warehouse
JP2005172329A (en) * 2003-12-10 2005-06-30 Sharp Corp Cooling storage

Similar Documents

Publication Publication Date Title
JP6046821B2 (en) Refrigeration system defrost system and cooling unit
JP2004069294A (en) Refrigerator and defrosting device
US6318107B1 (en) Advanced defrost system
JP2009092371A (en) Chiller
JP6872689B2 (en) refrigerator
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
TW514716B (en) Stirling cooling apparatus, cooler, and refrigerator
RU2505756C2 (en) Refrigerating unit
JP2006189209A (en) Cooling storage
JPH10267508A (en) Electric refrigerator
JP5056026B2 (en) vending machine
WO2007080708A1 (en) Cooling chamber
JP4020941B1 (en) Refrigerator
JP4020930B2 (en) Refrigerator
WO2007083441A1 (en) Cooling room and thermosyphon
JP2001133128A (en) Refrigerator
JP2007178103A (en) Cooling storage
JP3926377B1 (en) Refrigerator
KR20170034997A (en) Refrigerator
KR20200001250A (en) heating and cooling system of building using an electric apparatus
JP2004020056A (en) Cooling chamber
JP2006138552A (en) Cooling storage
JP2003279228A (en) Refrigerator
GB2488827A (en) Refrigeration System with Liquid Cooled Condenser
JP3482405B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833043

Country of ref document: EP

Kind code of ref document: A1