JP2009210174A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009210174A
JP2009210174A JP2008052839A JP2008052839A JP2009210174A JP 2009210174 A JP2009210174 A JP 2009210174A JP 2008052839 A JP2008052839 A JP 2008052839A JP 2008052839 A JP2008052839 A JP 2008052839A JP 2009210174 A JP2009210174 A JP 2009210174A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
air conditioner
pump cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008052839A
Other languages
Japanese (ja)
Inventor
Tatsu Nagata
達 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008052839A priority Critical patent/JP2009210174A/en
Publication of JP2009210174A publication Critical patent/JP2009210174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a wasteful flow of a refrigerant caused in an antifreezing pipe in defrosting operation, and to surely achieve an antifreezing object by making the best use of heat of a high-temperature refrigerant staying in the antifreezing pipe in heating operation. <P>SOLUTION: A heat pump cycle 1 includes a compressor 2, an outdoor heat exchanger 4, a pressure reduced expansion device 5 and an indoor heat exchanger 6. An antifreezing pipe 7 for transferring the heat of the refrigerant in the heat pump cycle 1 to drain water is installed in a drain pan placed under the outdoor heat exchanger 4. The antifreezing pipe 7 is put in a connected state as a bypass passage at a portion where the refrigerant flows from the indoor heat exchanger 6 to the outdoor heat exchanger 4 during heating in the heat pump cycle 1. The antifreezing pipe 7 is provided with an opening and closing device 8 for cutting off the entering and leaving of the refrigerant in a space up to the heat pump cycle 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートポンプサイクルを用いて暖房を行う空気調和機に関する。   The present invention relates to an air conditioner that performs heating using a heat pump cycle.

ヒートポンプサイクルを用いて暖房を行う空気調和機の場合、暖房運転時は室外熱交換器が蒸発器となって表面温度が下がり、フィンに室外空気中の水分が結露する。外気温が低いとき(特に寒冷地において)は、結露水が凍り付いたり、あるいは水分が霜の形で付着(着霜)したりする。氷や霜がフィンの表面を覆うと熱交換が妨げられるので、適当なタイミングで除霜運転が行われる。   In the case of an air conditioner that performs heating using a heat pump cycle, during the heating operation, the outdoor heat exchanger becomes an evaporator, the surface temperature decreases, and moisture in the outdoor air is condensed on the fins. When the outside air temperature is low (especially in a cold region), condensed water freezes or moisture adheres (frosts) in the form of frost. Since heat exchange is hindered when ice or frost covers the surface of the fin, the defrosting operation is performed at an appropriate timing.

除霜運転では室外熱交換器を一時的に凝縮器とし、高温の冷媒を流してフィンに付着した氷や霜を溶かす。氷や霜が溶けたドレン水はドレンパンで受けられ、排水されるが、外気温が特に低い場合など、排水されるまでの間にドレンパン中で結氷することがある。氷の層がドレン排水口を塞ぎ、排水が行われなくなると、ドレンパン中のドレン水位が上昇し、氷の層も上昇する。さらに事態が進行すると、氷が室外熱交換器やファンに接触してそれらが破壊される可能性も生じる。   In the defrosting operation, the outdoor heat exchanger is temporarily used as a condenser, and a high-temperature refrigerant is flowed to melt ice and frost attached to the fins. Drain water in which ice or frost has melted is received and drained by the drain pan, but may freeze in the drain pan before being drained, such as when the outside air temperature is particularly low. When the ice layer closes the drain outlet and drainage stops, the drain water level in the drain pan rises and the ice layer rises. As the situation further progresses, ice may come into contact with the outdoor heat exchangers and fans, causing them to break.

上記問題に対処するため、ヒートポンプサイクルから熱を取り出して凍結防止を行う仕組みが提案されている。その例を特許文献1、2に見ることができる。   In order to cope with the above problem, a mechanism for taking out heat from a heat pump cycle and preventing freezing has been proposed. Examples thereof can be seen in Patent Documents 1 and 2.

特許文献1に記載された空気調和機の回路構成を図10に示す。この空気調和機は、圧縮機101、室内熱交換器102、減圧膨張手段103、及び室外熱交換器104でヒートポンプサイクルを構成している。室内熱交換器102と減圧膨張手段103の間には逆止弁105が設けられ、逆止弁105の前後をバイパスする形で、二方弁106と凍結防止パイプ107が設けられている。   The circuit configuration of the air conditioner described in Patent Literature 1 is shown in FIG. In this air conditioner, a compressor 101, an indoor heat exchanger 102, a decompression / expansion means 103, and an outdoor heat exchanger 104 constitute a heat pump cycle. A check valve 105 is provided between the indoor heat exchanger 102 and the decompression and expansion means 103, and a two-way valve 106 and an antifreeze pipe 107 are provided so as to bypass the front and rear of the check valve 105.

図10において、実線矢印は冷房運転時の冷媒流れ方向を示し、破線矢印は暖房運転時の冷媒流れ方向を示す。冷房運転時には、圧縮機101から吐出された冷媒は室外熱交換器104で凝縮し、減圧膨張手段103から逆止弁105を経て室内熱交換器102に入り、そこで蒸発して室内空気から熱を取り込んだ後、圧縮機101に戻る。この時二方弁106は閉じており、凍結防止パイプ107には冷媒は流れない。暖房運転時には、圧縮機101から吐出された冷媒は室内熱交換器102で凝縮し、逆止弁105には流れず、凍結防止パイプ107から二方弁106、さらに減圧膨張手段103を経て室外熱交換器104に入り、そこで蒸発して室外空気から熱を取り込んだ後、圧縮機101に戻る。凍結防止パイプ107を流れる冷媒の凝縮熱が水受皿の凍結を防止する。   In FIG. 10, a solid line arrow indicates the refrigerant flow direction during the cooling operation, and a broken line arrow indicates the refrigerant flow direction during the heating operation. During the cooling operation, the refrigerant discharged from the compressor 101 condenses in the outdoor heat exchanger 104, enters the indoor heat exchanger 102 from the decompression / expansion means 103 through the check valve 105, and evaporates there to heat from the indoor air. After taking in, it returns to the compressor 101. At this time, the two-way valve 106 is closed, and the refrigerant does not flow through the freeze prevention pipe 107. During the heating operation, the refrigerant discharged from the compressor 101 condenses in the indoor heat exchanger 102, does not flow to the check valve 105, and passes through the anti-freezing pipe 107, the two-way valve 106, and further the decompression expansion means 103, and the outdoor heat. After entering the exchanger 104, it evaporates and takes heat from the outdoor air, and then returns to the compressor 101. The condensation heat of the refrigerant flowing through the antifreezing pipe 107 prevents the water tray from freezing.

特許文献2に記載された空気調和機では、冷房運転時に室外熱交換器から室内熱交換器へと冷媒を流す回路の途中に外側膨張弁と内側膨張弁を直列接続し、この外側膨張弁と内側膨張弁の間の回路部分を底板加熱器としている。そして底板加熱器をバイパスするバイパス管を設け、そこに調整弁を配置している。   In the air conditioner described in Patent Literature 2, an outer expansion valve and an inner expansion valve are connected in series in the middle of a circuit for flowing refrigerant from the outdoor heat exchanger to the indoor heat exchanger during cooling operation. The circuit portion between the inner expansion valves is a bottom plate heater. And the bypass pipe which bypasses a baseplate heater is provided, and the adjustment valve is arrange | positioned there.

暖房運転時は、圧縮機から吐出された高温高圧の冷媒は室内熱交換器で放熱し凝縮した後、内側膨張弁を経て、凍結の可能性の有無に応じ、所定の流量比率で底板加熱器及び調整弁とバイパス管を通り、外側膨張弁に至る。そして室外熱交換器で室外空気から熱を取り込み、圧縮機に戻る。   During heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor radiates and condenses in the indoor heat exchanger, then passes through the inner expansion valve, and then the bottom plate heater at a predetermined flow rate ratio depending on the possibility of freezing. And through the regulating valve and bypass pipe to the outer expansion valve. And it takes in heat from outdoor air with an outdoor heat exchanger, and returns to a compressor.

デアイス運転時は冷媒の流れが逆転し、圧縮機から吐出された高温高圧の冷媒は室外熱交換器で放熱して除霜を行う。調整弁は閉じ、底板加熱器に冷媒が流れて排水の凍結を防止する。
実開昭62−102924 特開2005−49002
During the de-ice operation, the refrigerant flow reverses, and the high-temperature and high-pressure refrigerant discharged from the compressor dissipates heat in the outdoor heat exchanger to perform defrosting. The regulating valve is closed and the refrigerant flows into the bottom plate heater to prevent the drainage from freezing.
Shokai 62-102924 JP2005-49002

特許文献1記載の空気調和機では凍結防止パイプに、特許文献2記載の空気調和機では底板加熱器に、それぞれ高温高圧の冷媒を流して凍結防止を行うのであるが、いずれの構成例でも、除霜運転時に室内熱交換器側が低圧になると凍結防止パイプあるいは底板加熱器に溜められた高温高圧の冷媒が室内熱交換器側に引き出されてしまう。そのため凍結防止パイプあるいは底板加熱器の温度が低下し、除霜された暖かいドレン水が冷えて結氷を招く可能性がある。また暖房運転時に室内熱交換器を出た高温高圧の冷媒を全て凍結防止パイプあるいは底板加熱器に通してしまうと、暖房能力が低下する。   In the air conditioner described in Patent Document 1, the anti-freezing pipe is used, and in the air conditioner described in Patent Document 2, the anti-freezing is performed by flowing a high-temperature and high-pressure refrigerant through the bottom plate heater. If the pressure on the indoor heat exchanger side becomes low during the defrosting operation, the high-temperature and high-pressure refrigerant stored in the antifreezing pipe or the bottom plate heater is drawn out to the indoor heat exchanger side. For this reason, the temperature of the antifreezing pipe or the bottom plate heater is lowered, and the defrosted warm drain water may be cooled to cause freezing. In addition, if all the high-temperature and high-pressure refrigerant that has exited the indoor heat exchanger during the heating operation is passed through the antifreeze pipe or the bottom plate heater, the heating capacity is reduced.

本発明は上記の点に鑑みなされたものであり、除霜運転時、凍結防止パイプに無駄な冷媒の流れが生じることを防ぎ、暖房運転時に凍結防止パイプに溜めておいた高温冷媒の熱を生かして、凍結防止の目的が確実に達成されるようにすることを目的とする。   The present invention has been made in view of the above points, and prevents the flow of useless refrigerant from occurring in the anti-freezing pipe during the defrosting operation, and the heat of the high-temperature refrigerant stored in the anti-freezing pipe during the heating operation. The purpose is to ensure that the purpose of freezing prevention is achieved.

上記目的を達成するために本発明は、圧縮機、室外熱交換器、減圧膨張装置、及び室内熱交換器を含むヒートポンプサイクルを構成するとともに、前記室外熱交換器の下に置かれるドレンパンに、前記ヒートポンプサイクル中の冷媒の熱をドレン水に伝える凍結防止パイプを設置する空気調和機において、前記ヒートポンプサイクルの中で、暖房運転時に前記室内熱交換器から前記室外熱交換器へと冷媒が流れる箇所に、前記凍結防止パイプがバイパス路として接続されるとともに、前記凍結防止パイプに、前記ヒートポンプサイクルとの間の冷媒の出入りを遮断できる開閉装置が設けられていることを特徴としている。   To achieve the above object, the present invention constitutes a heat pump cycle including a compressor, an outdoor heat exchanger, a decompression expansion device, and an indoor heat exchanger, and a drain pan placed under the outdoor heat exchanger, In the air conditioner having an anti-freezing pipe that transmits the heat of the refrigerant in the heat pump cycle to the drain water, the refrigerant flows from the indoor heat exchanger to the outdoor heat exchanger during the heating operation in the heat pump cycle. The anti-freezing pipe is connected to the location as a bypass path, and the anti-freezing pipe is provided with an opening / closing device capable of blocking the refrigerant in and out of the heat pump cycle.

この構成によると、暖房運転時には開閉装置を開いて凍結防止パイプに高温高圧の冷媒を流し、ドレン水の凍結を防ぐことができる。除霜運転時には開閉装置を閉じ、凍結防止パイプに溜まった高温冷媒が室内熱交換器側に引き出されて凍結防止パイプの温度が低下するのを防ぐことができる。   According to this configuration, at the time of heating operation, the open / close device can be opened to flow the high-temperature and high-pressure refrigerant through the anti-freezing pipe, thereby preventing the drain water from freezing. During the defrosting operation, the switchgear can be closed to prevent the high-temperature refrigerant accumulated in the antifreezing pipe from being drawn out to the indoor heat exchanger side and the temperature of the antifreezing pipe from being lowered.

また凍結防止パイプはバイパス路なので、暖房運転時、必ずしも冷媒の全量を凍結防止パイプに通す必要はなく、暖房能力の低下を抑えることができる。   In addition, since the anti-freezing pipe is a bypass, it is not always necessary to pass the entire amount of the refrigerant through the anti-freezing pipe during heating operation, and a decrease in heating capacity can be suppressed.

上記構成の空気調和機において、前記開閉装置が、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室内熱交換器側の接続箇所近くに設けられた電磁開閉弁と、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室外熱交換器側の接続箇所近くに設けられ、凍結防止パイプから出て行く方向の冷媒流れのみを許す逆止弁により構成されることが好ましい。   In the air conditioner having the above-described configuration, the opening / closing device includes an electromagnetic on-off valve provided near a connection portion of the heat pump cycle and the freeze prevention pipe on the indoor heat exchanger side, the heat pump cycle, and the freeze prevention pipe. And a check valve that allows only the refrigerant flow in the direction of exiting from the antifreezing pipe.

この構成によると、凍結防止パイプへの冷媒の出入りを遮断できる開閉装置を簡単に構成することができる。   According to this configuration, it is possible to easily configure an opening / closing device that can block the refrigerant from entering and exiting the freeze prevention pipe.

上記構成の空気調和機において、前記開閉装置が、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室内熱交換器側の接続箇所近くに設けられた電磁開閉弁と、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室外熱交換器側の接続箇所近くに設けられた電磁開閉弁により構成されることが好ましい。   In the air conditioner having the above-described configuration, the opening / closing device includes an electromagnetic on-off valve provided near a connection portion of the heat pump cycle and the freeze prevention pipe on the indoor heat exchanger side, the heat pump cycle, and the freeze prevention pipe. It is preferable that it is comprised by the electromagnetic on-off valve provided near the connection location by the side of the said outdoor heat exchanger.

この構成によると、両方の電磁開閉弁を閉じ、暖房運転時に溜まった高温高圧の冷媒を凍結防止パイプに閉じ込めてから除霜運転に移行することができる。閉じ込められる冷媒量が多いことから、凍結防止パイプはより多くの熱量を保持しており、凍結防止を一層確実なものとすることができる。   According to this configuration, both of the electromagnetic on-off valves can be closed, and the high-temperature and high-pressure refrigerant accumulated during the heating operation can be confined in the anti-freezing pipe and then the defrosting operation can be performed. Since the refrigerant amount to be confined is large, the antifreezing pipe holds a larger amount of heat, and the antifreezing can be further ensured.

上記構成の空気調和機において、暖房運転時に前記電磁開閉弁が少なくとも所定期間は開かれており、除霜運転開始時には前記電磁開閉弁は閉じられていることが好ましい。   In the air conditioner having the above configuration, it is preferable that the electromagnetic on-off valve is open for at least a predetermined period during heating operation, and the electromagnetic on-off valve is closed at the start of defrosting operation.

この構成によると、暖房運転時に高温高圧の冷媒を凍結防止パイプに取り込み、取り込んだ高温高圧の冷媒を、除霜運転開始時にそのまま凍結防止パイプ内に保持しておくことができる。   According to this configuration, the high-temperature and high-pressure refrigerant can be taken into the anti-freezing pipe during the heating operation, and the taken-in high-temperature and high-pressure refrigerant can be held in the anti-freezing pipe as it is when the defrosting operation is started.

上記構成の空気調和機において、当該空気調和機の制御部は、暖房運転から除霜運転に移るとき、冷媒凝縮温度を上げる運転制御を行うことが好ましい。   In the air conditioner having the above-described configuration, it is preferable that the control unit of the air conditioner performs operation control for increasing the refrigerant condensing temperature when moving from the heating operation to the defrosting operation.

この構成によると、除霜運転中の凍結防止パイプの温度低下を遅らせることができる。   According to this configuration, it is possible to delay the temperature decrease of the anti-freezing pipe during the defrosting operation.

また本発明は、上記構成の空気調和機において、前記凍結防止パイプには、前記ドレンパン中のドレン水に浸る突起が形成されていることが好ましい。   According to the present invention, in the air conditioner having the above-described configuration, it is preferable that a protrusion that is immersed in the drain water in the drain pan is formed on the freeze prevention pipe.

この構成によると、凍結防止パイプの熱を効率良くドレン水に伝えることができる。   According to this configuration, the heat of the freeze prevention pipe can be efficiently transmitted to the drain water.

本発明によると、暖房運転時に凍結防止パイプに溜めておいた高温冷媒の熱を生かして除霜運転時にドレン水の凍結防止を行うことができ、熱エネルギーの効率的利用が可能である。このように熱エネルギーを効率的に利用してドレン水の凍結を防ぐことにより、常時ドレン水の排水経路が確保され、寒冷地で長期にわたり連続して暖房運転することが可能な、信頼性の高い空気調和機を得ることができる。   According to the present invention, it is possible to prevent the drain water from freezing during the defrosting operation by utilizing the heat of the high-temperature refrigerant stored in the antifreezing pipe during the heating operation, and it is possible to efficiently use the heat energy. In this way, by efficiently using thermal energy to prevent drain water from freezing, a drain water drainage route is always secured, and it is possible to carry out heating operation continuously for a long time in a cold region. A high air conditioner can be obtained.

本発明の第1実施形態を図1〜図5に示す。図1及び図2は空気調和機の冷凍サイクル図であり、図1は暖房運転時の状態を示し、図2は除霜運転時の状態を示す。図3〜図5は一部の構成要素の斜視図である。   A first embodiment of the present invention is shown in FIGS. 1 and 2 are refrigeration cycle diagrams of the air conditioner, FIG. 1 shows a state during a heating operation, and FIG. 2 shows a state during a defrosting operation. 3 to 5 are perspective views of some components.

本発明に係る空気調和機は、冷凍サイクルとして、図1に示すヒートポンプサイクル1を用いている。ヒートポンプサイクル1は、圧縮機2、四方弁3、室外熱交換器4、減圧膨張装置5、及び室内熱交換器6をループ状に接続したものである。   The air conditioner according to the present invention uses a heat pump cycle 1 shown in FIG. 1 as a refrigeration cycle. The heat pump cycle 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, a decompression expansion device 5, and an indoor heat exchanger 6 connected in a loop.

ヒートポンプサイクル1の中で、暖房運転時に、室内熱交換器6側から室外熱交換器4側へと冷媒が流れる箇所に、凍結防止パイプ7をバイパス路として2箇所で接続する。すなわち、室内熱交換器6寄りに一方の接続箇所を設定し、室外熱交換器4寄りに他方の接続箇所を設定する。いずれの接続箇所も減圧膨張装置5の上流側である。   In the heat pump cycle 1, at the time of heating operation, the freeze prevention pipe 7 is connected at two places as a bypass path to the place where the refrigerant flows from the indoor heat exchanger 6 side to the outdoor heat exchanger 4 side. That is, one connection location is set near the indoor heat exchanger 6 and the other connection location is set near the outdoor heat exchanger 4. Any connection location is upstream of the decompression and expansion device 5.

凍結防止パイプ7には、ヒートポンプサイクル1との間の冷媒の出入りを遮断できる開閉装置8を設ける。開閉装置8は、室内熱交換器6側の接続箇所近くに設けられた電磁開閉弁9と、室外熱交換器4側の接続箇所近くに設けられた逆止弁10により構成される。逆止弁10は、凍結防止パイプ7からヒートポンプサイクル1に冷媒が流出するのは許すが、ヒートポンプサイクル1から凍結防止パイプ7に冷媒が流入するのは許さない。なお電磁開閉弁9は、開閉制御のみ行えるものであってもよく、開閉制御に加えて開度調節も可能なものであってもよいが、ここでは開閉制御のみ行えるタイプとして説明を進める。   The antifreezing pipe 7 is provided with an opening / closing device 8 that can block the refrigerant from entering and exiting the heat pump cycle 1. The opening / closing device 8 includes an electromagnetic opening / closing valve 9 provided near the connection location on the indoor heat exchanger 6 side and a check valve 10 provided near the connection location on the outdoor heat exchanger 4 side. The check valve 10 allows the refrigerant to flow from the antifreeze pipe 7 to the heat pump cycle 1, but does not allow the refrigerant to flow from the heat pump cycle 1 to the antifreeze pipe 7. The electromagnetic on-off valve 9 may be one that can perform only opening / closing control, or may be capable of adjusting the opening degree in addition to the opening / closing control.

図3〜図5には、平面形状L字形の室外熱交換器4と、凍結防止パイプ7の他、室外熱交換器4の下に置かれて室外熱交換器4から垂れるドレン水を受けるドレンパン11が図示されている。凍結防止パイプ7は室外熱交換器4とドレンパン11の間に置かれるものであり、室外熱交換器4の平面形状に合わせる形で屈曲している。ドレンパン11には、凍結防止パイプ7に沿って、複数のドレン排水口12が形成されている。室外機の組み立てに際しては、まず図4に示すようにドレンパン11の中の図示しないドレン水に浸る位置に凍結防止パイプ7を固定し、次いで図5に示すように、凍結防止パイプ7の上方に室外熱交換器4を固定する。   3 to 5, a drain pan for receiving drain water that is placed under the outdoor heat exchanger 4 and droops from the outdoor heat exchanger 4 in addition to the L-shaped outdoor heat exchanger 4 and the antifreezing pipe 7. 11 is shown. The antifreezing pipe 7 is placed between the outdoor heat exchanger 4 and the drain pan 11, and is bent so as to match the planar shape of the outdoor heat exchanger 4. A plurality of drain discharge ports 12 are formed in the drain pan 11 along the antifreezing pipe 7. When assembling the outdoor unit, first, as shown in FIG. 4, the freeze prevention pipe 7 is fixed at a position of the drain pan 11 soaked in drain water (not shown), and then, as shown in FIG. The outdoor heat exchanger 4 is fixed.

第1実施形態の空気調和機の動作は次の通りである。図1は暖房運転時の状態を示す。この時は、圧縮機2から吐出された高温高圧の冷媒は室内熱交換器6に入ってそこで放熱し、凝縮する。室内熱交換器6を出た冷媒は未だ高温を保っており、その一部は、電磁開閉弁9が開いているため凍結防止パイプ7に流れる。電磁開閉弁9は、暖房運転時に少なくとも所定期間は開かれているものとする。凍結防止パイプ7を流れる冷媒の熱はドレンパン11の中のドレン水に伝えられ、ドレン水は凍結を防止される。凍結防止パイプ7を抜けた冷媒は逆止弁10を通ってヒートポンプサイクル1に戻り、減圧膨張装置5から室外熱交換器4に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機2に戻る。   The operation of the air conditioner of the first embodiment is as follows. FIG. 1 shows a state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 2 enters the indoor heat exchanger 6 where it dissipates heat and condenses. The refrigerant leaving the indoor heat exchanger 6 is still kept at a high temperature, and a part of the refrigerant flows into the antifreezing pipe 7 because the electromagnetic on-off valve 9 is open. The electromagnetic on-off valve 9 is assumed to be open for at least a predetermined period during heating operation. The heat of the refrigerant flowing through the antifreezing pipe 7 is transmitted to the drain water in the drain pan 11, and the drain water is prevented from freezing. The refrigerant that has passed through the antifreezing pipe 7 returns to the heat pump cycle 1 through the check valve 10, enters the outdoor heat exchanger 4 from the decompression expansion device 5, expands there, takes heat from the outdoor air, and then compresses the compressor. Return to 2.

図2は冷房運転時あるいは除霜運転時の状態を示す。この時は暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機2から吐出された高温高圧の冷媒は室外熱交換器4に入ってそこで放熱し、凝縮する。室外熱交換器4を出た冷媒は減圧膨張装置5から室内熱交換器6に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機2に戻る。逆止弁10が存在することにより、凍結防止パイプ7に、室外熱交換器4側の接続箇所から冷媒が流入することはない。また電磁開閉弁9はこの時閉じており、凍結防止パイプ7に、室内熱交換器6側の接続箇所から冷媒が流入することもない。   FIG. 2 shows a state during cooling operation or defrosting operation. At this time, the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 2 enters the outdoor heat exchanger 4 where it dissipates heat and condenses. The refrigerant exiting the outdoor heat exchanger 4 enters the indoor heat exchanger 6 from the decompression / expansion device 5 and expands there, takes heat from the indoor air, and returns to the compressor 2. Due to the presence of the check valve 10, the refrigerant does not flow into the antifreezing pipe 7 from the connection location on the outdoor heat exchanger 4 side. In addition, the electromagnetic on-off valve 9 is closed at this time, and the refrigerant does not flow into the antifreezing pipe 7 from the connection portion on the indoor heat exchanger 6 side.

凍結防止パイプ7の内圧が高いと、逆止弁10を通ってヒートポンプサイクル1に冷媒が流出することがあり得る。しかしながらヒートポンプサイクル1と凍結防止パイプ7の圧力がバランスすればその時点で冷媒の流出は止まり、電磁開閉弁9と逆止弁10の間の冷媒は凍結防止パイプ7の中に滞留することになる。   When the internal pressure of the freeze prevention pipe 7 is high, the refrigerant may flow out to the heat pump cycle 1 through the check valve 10. However, if the pressures of the heat pump cycle 1 and the freeze prevention pipe 7 are balanced, the refrigerant stops flowing out at that time, and the refrigerant between the electromagnetic on-off valve 9 and the check valve 10 stays in the freeze prevention pipe 7. .

除霜運転は暖房運転の途中で行われるものであり、その時に開閉装置8が閉じると、凍結防止パイプ7の中に高温の冷媒が閉じ込められる。この冷媒は室内熱交換器6の側に引き出されないので、温度を比較的長く保ち、ドレン水の凍結を防止する。なお、開閉装置8の電磁開閉弁9を閉じるタイミングとしては、除霜運転開始より所定時間だけ前であって、暖房運転のため圧縮機2が稼働しているときを選択するのが好ましい。このようにすれば、高温の冷媒をより確実に凍結防止パイプ7に閉じ込めることができる。   The defrosting operation is performed during the heating operation. When the opening / closing device 8 is closed at that time, a high-temperature refrigerant is trapped in the antifreezing pipe 7. Since this refrigerant is not drawn to the indoor heat exchanger 6 side, the temperature is kept relatively long and the drain water is prevented from freezing. In addition, as a timing which closes the electromagnetic on-off valve 9 of the opening / closing device 8, it is preferable to select a time when the compressor 2 is operating for a heating operation that is a predetermined time before the start of the defrosting operation. In this way, the high-temperature refrigerant can be more reliably confined in the freeze prevention pipe 7.

例えば、除霜のため、暖房運転中に圧縮機2を一旦停止(暖房運転を中断)させ、四方弁3を切り替えてから圧縮機2を再稼動して冷媒の流れを逆転させるという制御を行う場合、圧縮機停止より所定時間(例えば「1分」「3分」)だけ前に電磁開閉弁9を閉じればよい。「所定時間」については、適宜実験等を行い、適切な時間を設定すればよい。   For example, for defrosting, the compressor 2 is temporarily stopped during the heating operation (heating operation is interrupted), the four-way valve 3 is switched, and then the compressor 2 is restarted to reverse the refrigerant flow. In this case, the electromagnetic on-off valve 9 may be closed a predetermined time (for example, “1 minute” or “3 minutes”) before the compressor is stopped. For the “predetermined time”, an appropriate experiment may be performed to set an appropriate time.

凍結防止パイプ7はバイパス路なので、暖房運転時、必ずしも冷媒の全量を凍結防止パイプ7に通す必要はなく、暖房能力の低下を抑えることができる。   Since the anti-freezing pipe 7 is a bypass, it is not always necessary to pass the entire amount of the refrigerant through the anti-freezing pipe 7 during the heating operation, and a decrease in heating capacity can be suppressed.

空気調和機の制御部(図示せず)は、暖房運転から除霜運転に移るとき、冷媒凝縮温度を上げる運転制御を行う。具体的には、室内熱交換器6のファン(図示せず)を止める、圧縮機2の回転数を上げる、減圧膨張装置5を絞るなどの制御を行う。これにより、凍結防止パイプ7に流入する冷媒の温度を高め、除霜運転中の凍結防止パイプ7の温度低下を遅らせることができる。   A control unit (not shown) of the air conditioner performs operation control for increasing the refrigerant condensing temperature when moving from the heating operation to the defrosting operation. Specifically, control is performed such as stopping a fan (not shown) of the indoor heat exchanger 6, increasing the number of rotations of the compressor 2, and restricting the decompression / expansion device 5. Thereby, the temperature of the refrigerant | coolant which flows in into the antifreezing pipe 7 can be raised, and the temperature fall of the antifreezing pipe 7 during a defrost operation can be delayed.

本発明の第2実施形態を図6及び図7に示す。図6及び図7は空気調和機の冷凍サイクル図であり、図6は暖房運転時の状態を示し、図7は除霜運転時の状態を示す。   A second embodiment of the present invention is shown in FIGS. 6 and 7 are refrigeration cycle diagrams of the air conditioner, FIG. 6 shows a state during the heating operation, and FIG. 7 shows a state during the defrosting operation.

第2実施形態が第1実施形態と異なる点は、逆止弁10に代えて電磁開閉弁13を配置したことである。つまり凍結防止パイプ7の両端がいずれも電磁開閉弁で開閉されることになる。なお電磁開閉弁13も、電磁開閉弁9と同様、開閉制御のみ行えるタイプとして説明を進める。   The second embodiment differs from the first embodiment in that an electromagnetic on-off valve 13 is arranged instead of the check valve 10. That is, both ends of the freeze prevention pipe 7 are opened and closed by the electromagnetic on-off valves. The electromagnetic on-off valve 13 will be described as a type that can perform only on-off control, similarly to the electromagnetic on-off valve 9.

電磁開閉弁9、13は、暖房運転時に少なくとも所定期間は開かれているものとする。暖房運転から除霜運転に移るときは、電磁開閉弁9、13を閉じた後に圧縮機2を停止する。これにより凍結防止パイプ7の中に高温高圧の冷媒を閉じ込めることができる。その後四方弁3を切り替えて除霜サイクルとし、圧縮機2を駆動して除霜運転を行う。   The electromagnetic on-off valves 9 and 13 are assumed to be open for at least a predetermined period during the heating operation. When moving from the heating operation to the defrosting operation, the compressor 2 is stopped after the electromagnetic on-off valves 9 and 13 are closed. As a result, the high-temperature and high-pressure refrigerant can be confined in the anti-freezing pipe 7. Thereafter, the four-way valve 3 is switched to form a defrost cycle, and the compressor 2 is driven to perform a defrost operation.

除霜終了後、圧縮機2を停止し、四方弁3を切り替えて暖房サイクルとする。次いで電磁開閉弁9、13を開き、凍結防止パイプ7内への冷媒の出入りを自由にしてから、圧縮機2の駆動を再開する。   After the defrosting is completed, the compressor 2 is stopped and the four-way valve 3 is switched to form a heating cycle. Next, the electromagnetic on-off valves 9 and 13 are opened to allow the refrigerant to freely enter and exit from the freeze prevention pipe 7 and then the drive of the compressor 2 is resumed.

第2実施形態の構成によれば、除霜運転時、凍結防止パイプ7の内圧が高くても、第1実施形態のようにヒートポンプサイクル1に冷媒を流出させることがない。従って凍結防止パイプ7に閉じ込められる冷媒量が多く、凍結防止パイプ7はより多くの熱量を保持する。このため、凍結防止を一層確実なものとすることができる。   According to the structure of 2nd Embodiment, even if the internal pressure of the freeze prevention pipe 7 is high at the time of a defrost operation, a refrigerant | coolant does not flow into the heat pump cycle 1 like 1st Embodiment. Therefore, the amount of refrigerant confined in the antifreeze pipe 7 is large, and the antifreeze pipe 7 retains a larger amount of heat. For this reason, freeze prevention can be made more reliable.

開閉装置8の電磁開閉弁9、13を閉じるタイミングは、除霜運転開始より所定時間だけ前であって、暖房運転のため圧縮機2が稼働しているときを選択するのが好ましい。このようにすれば、高温の冷媒をより確実に凍結防止パイプ7に閉じ込めることができる。   The timing for closing the electromagnetic on-off valves 9 and 13 of the opening / closing device 8 is preferably selected when the compressor 2 is operating for heating operation, which is a predetermined time before the start of the defrosting operation. In this way, the high-temperature refrigerant can be more reliably confined in the freeze prevention pipe 7.

例えば、除霜のため、暖房運転中に圧縮機2を一旦停止(暖房運転を中断)させ、四方弁3を切り替えてから圧縮機2を再稼動して冷媒の流れを逆転させるという制御を行う場合、圧縮機停止より所定時間(例えば「1分」「3分」)だけ前に電磁開閉弁9、13を閉じればよい。「所定時間」については、適宜実験等を行い、適切な時間を設定すればよい。なお、電磁開閉弁9、13を閉じるにあたっては、両方同時に閉じてもよいが、どちらか一方を先に閉じ、少しタイミングを遅らせて他方を閉じることとしてもよい。   For example, for defrosting, the compressor 2 is temporarily stopped during the heating operation (heating operation is interrupted), the four-way valve 3 is switched, and then the compressor 2 is restarted to reverse the refrigerant flow. In this case, the electromagnetic on-off valves 9 and 13 may be closed a predetermined time (for example, “1 minute” or “3 minutes”) before the compressor stops. For the “predetermined time”, an appropriate experiment may be performed to set an appropriate time. In closing the electromagnetic on-off valves 9 and 13, both may be closed at the same time, but either one may be closed first, and the other may be closed with a little delay.

第2実施形態においても、第1実施形態と同様、暖房運転から除霜運転に移るときに冷媒凝縮温度を上げる運転制御を行うこととすることができる。   In the second embodiment, as in the first embodiment, the operation control for increasing the refrigerant condensing temperature can be performed when the heating operation is shifted to the defrosting operation.

本発明の第3実施形態を図8及び図9に示す。図8は一部の構成要素の斜視図、図9は凍結防止パイプの部分拡大断面図である。   A third embodiment of the present invention is shown in FIGS. FIG. 8 is a perspective view of some components, and FIG. 9 is a partially enlarged cross-sectional view of the freeze prevention pipe.

第3実施形態は凍結防止パイプ7の構造に係るものであり、第1実施形態と第2実施形態のいずれにも重複実施が可能である。第3実施形態では、凍結防止パイプ7の所々に、ドレンパン11の中のドレン水に浸る突起14を設けた。突起14を設けるのは、突起形状を有する別部材を嵌合やロウ付けで凍結防止パイプ7に固定することにより実現できる。突起14は凍結防止パイプ7から下向きに突き出してドレン排水口12を貫通する形であるのがよい。また図9に示すように、突起14は中空で、内部に冷媒が入り込む構造であるのがよい。   The third embodiment relates to the structure of the anti-freezing pipe 7 and can be duplicated in both the first embodiment and the second embodiment. In the third embodiment, the protrusions 14 that are immersed in the drain water in the drain pan 11 are provided in the freeze prevention pipe 7. Providing the protrusion 14 can be realized by fixing another member having a protrusion shape to the antifreezing pipe 7 by fitting or brazing. It is preferable that the protrusion 14 protrudes downward from the antifreeze pipe 7 and penetrates the drain outlet 12. Moreover, as shown in FIG. 9, it is preferable that the protrusion 14 is hollow and has a structure in which a refrigerant enters.

上記のような突起14を設けることにより、凍結防止パイプ7の熱を効率良くドレン水に伝えることができる。また突起14がドレン排水口12を貫通するか、貫通しないまでもドレン排水口12すれすれまで接近していれば、ドレン水は突起14に誘導されてスムーズにドレン排水口12から排水される。これにより、ドレンパン11内のドレン水滞留量が少なくなり、結果として結氷の危険を低減することができる。また突起14がドレン排水口12の周辺に集中的に熱を伝えるから、ドレン排水口12が氷で閉ざされるという事態を回避することができる。   By providing the projections 14 as described above, the heat of the freeze prevention pipe 7 can be efficiently transmitted to the drain water. Further, if the projection 14 passes through the drain drain port 12 or does not penetrate through the drain drain port 12, the drain water is guided to the projection 14 and smoothly drained from the drain drain port 12. Thereby, the drain water retention amount in the drain pan 11 decreases, and as a result, the risk of icing can be reduced. Moreover, since the protrusion 14 conducts heat intensively around the drain outlet 12, the situation where the drain outlet 12 is closed with ice can be avoided.

以上本発明の各実施形態につき説明したが、発明の主旨を逸脱しない範囲でさらに種々の変更を加えて実施することができる。   Each embodiment of the present invention has been described above, but various modifications can be made without departing from the spirit of the present invention.

本発明はヒートポンプサイクルを用いて暖房を行う空気調和機に広く利用可能である。   The present invention is widely applicable to an air conditioner that performs heating using a heat pump cycle.

第1実施形態に係る空気調和機の冷凍サイクル図で、暖房運転時の状態を示すものIt is a refrigeration cycle diagram of the air conditioner according to the first embodiment, and shows a state during heating operation. 第1実施形態に係る空気調和機の冷凍サイクル図で、除霜運転時の状態を示すものIt is a refrigerating cycle figure of the air conditioner concerning a 1st embodiment, and shows the state at the time of defrosting operation. 第1実施形態に係る空気調和機の一部の構成要素の斜視図The perspective view of the one part component of the air conditioner which concerns on 1st Embodiment. 図3と同様の斜視図にして、構成要素同士の組み合わせを進行させたものThe same perspective view as in FIG. 3, with the combination of components advanced 図4と同様の斜視図にして、構成要素同士の組み合わせをさらに進行させたものThe same perspective view as in FIG. 4, with the combination of components further advanced 第2実施形態に係る空気調和機の冷凍サイクル図で、暖房運転時の状態を示すものThe refrigeration cycle diagram of the air conditioner according to the second embodiment, showing the state during heating operation 第2実施形態に係る空気調和機の冷凍サイクル図で、除霜運転時の状態を示すものIt is a refrigeration cycle diagram of the air conditioner according to the second embodiment, and shows the state during the defrosting operation. 第3実施形態に係る空気調和機の一部の構成要素の斜視図The perspective view of the one part component of the air conditioner which concerns on 3rd Embodiment. 第3実施形態に係る空気調和機の凍結防止パイプの部分拡大断面図The partial expanded sectional view of the freeze prevention pipe of the air conditioner concerning a 3rd embodiment 従来の空気調和機の冷凍サイクル図Refrigeration cycle diagram of a conventional air conditioner

符号の説明Explanation of symbols

1 ヒートポンプサイクル
2 圧縮機
3 四方弁
4 室外熱交換器
5 減圧膨張装置
6 室内熱交換器
7 凍結防止パイプ
8 開閉装置
9 電磁開閉弁
10 逆止弁
11 ドレンパン
12 ドレン排水口
13 電磁開閉弁
14 突起
DESCRIPTION OF SYMBOLS 1 Heat pump cycle 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Decompression expansion device 6 Indoor heat exchanger 7 Freezing prevention pipe 8 Opening and closing device 9 Electromagnetic on-off valve 10 Check valve 11 Drain pan 12 Drain drain port 13 Electromagnetic on-off valve 14 Protrusion

Claims (6)

圧縮機、室外熱交換器、減圧膨張装置、及び室内熱交換器を含むヒートポンプサイクルを構成するとともに、前記室外熱交換器の下に置かれるドレンパンに、前記ヒートポンプサイクル中の冷媒の熱をドレン水に伝える凍結防止パイプを設置する空気調和機において、
前記ヒートポンプサイクルの中で、暖房運転時に前記室内熱交換器から前記室外熱交換器へと冷媒が流れる箇所に、前記凍結防止パイプがバイパス路として接続されるとともに、前記凍結防止パイプに、前記ヒートポンプサイクルとの間の冷媒の出入りを遮断できる開閉装置が設けられていることを特徴とする空気調和機。
A heat pump cycle including a compressor, an outdoor heat exchanger, a decompression and expansion device, and an indoor heat exchanger is configured, and the heat of the refrigerant in the heat pump cycle is drained to a drain pan placed under the outdoor heat exchanger. In an air conditioner that installs anti-freezing pipes that communicate with
In the heat pump cycle, the antifreeze pipe is connected as a bypass path to a location where the refrigerant flows from the indoor heat exchanger to the outdoor heat exchanger during heating operation, and the antifreeze pipe is connected to the heat pump. An air conditioner characterized in that an open / close device capable of interrupting refrigerant in and out of the cycle is provided.
前記開閉装置が、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室内熱交換器側の接続箇所近くに設けられた電磁開閉弁と、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室外熱交換器側の接続箇所近くに設けられ、凍結防止パイプから出て行く方向の冷媒流れのみを許す逆止弁により構成されることを特徴とする請求項1に記載の空気調和機。   The open / close device is an electromagnetic on-off valve provided near the connection point on the indoor heat exchanger side of the heat pump cycle and the freeze prevention pipe, and the outdoor heat exchanger side of the heat pump cycle and the freeze prevention pipe 2. The air conditioner according to claim 1, wherein the air conditioner is configured by a check valve that is provided in the vicinity of the connection point and permits only the refrigerant flow in the direction of exiting from the antifreezing pipe. 前記開閉装置が、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室内熱交換器側の接続箇所近くに設けられた電磁開閉弁と、前記ヒートポンプサイクルと前記凍結防止パイプとの前記室外熱交換器側の接続箇所近くに設けられた電磁開閉弁により構成されることを特徴とする請求項1に記載の空気調和機。   The open / close device is an electromagnetic on-off valve provided near the connection point on the indoor heat exchanger side of the heat pump cycle and the freeze prevention pipe, and the outdoor heat exchanger side of the heat pump cycle and the freeze prevention pipe The air conditioner according to claim 1, wherein the air conditioner is configured by an electromagnetic on-off valve provided near the connection point. 暖房運転時に前記電磁開閉弁が少なくとも所定期間は開かれており、除霜運転開始時には前記電磁開閉弁は閉じられていることを特徴とする請求項2または3に記載の空気調和機。   The air conditioner according to claim 2 or 3, wherein the electromagnetic on-off valve is open at least for a predetermined period during heating operation, and the electromagnetic on-off valve is closed at the start of defrosting operation. 当該空気調和機の制御部は、暖房運転から除霜運転に移るとき、冷媒凝縮温度を上げる運転制御を行うことを特徴とする請求項2から4のいずれか1項に記載の空気調和機。   The air conditioner according to any one of claims 2 to 4, wherein the control unit of the air conditioner performs operation control for increasing a refrigerant condensing temperature when the heating operation is shifted to the defrosting operation. 前記凍結防止パイプには、前記ドレンパン中のドレン水に浸る突起が形成されていることを特徴とする請求項2から5のいずれか1項に記載の空気調和機。   6. The air conditioner according to claim 2, wherein the anti-freezing pipe is formed with a protrusion that is immersed in the drain water in the drain pan.
JP2008052839A 2008-03-04 2008-03-04 Air conditioner Pending JP2009210174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052839A JP2009210174A (en) 2008-03-04 2008-03-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052839A JP2009210174A (en) 2008-03-04 2008-03-04 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009210174A true JP2009210174A (en) 2009-09-17

Family

ID=41183513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052839A Pending JP2009210174A (en) 2008-03-04 2008-03-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009210174A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217557A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd Refrigeration system, and method of sprinkling in refrigeration system
CN103597291A (en) * 2011-06-08 2014-02-19 三菱电机株式会社 Refrigeration air-conditioning device
JP2014115007A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Air conditioner
JP2015183976A (en) * 2014-03-26 2015-10-22 株式会社富士通ゼネラル Refrigeration cycle device
CN108344209A (en) * 2018-03-13 2018-07-31 松下冷机系统(大连)有限公司 A kind of cryogenic vaporizer defrosts anti-freeze device
CN113825961A (en) * 2019-03-08 2021-12-21 大金工业株式会社 Outdoor unit for heat pump
CN115200099A (en) * 2022-07-11 2022-10-18 珠海格力电器股份有限公司 Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597291A (en) * 2011-06-08 2014-02-19 三菱电机株式会社 Refrigeration air-conditioning device
JPWO2012168971A1 (en) * 2011-06-08 2015-02-23 三菱電機株式会社 Refrigeration air conditioner
US9726420B2 (en) 2011-06-08 2017-08-08 Mitsubishi Electric Corporation Apparatus for defrosting a plurality of heat exchangers having a common outdoor fan
JP2013217557A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd Refrigeration system, and method of sprinkling in refrigeration system
JP2014115007A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Air conditioner
JP2015183976A (en) * 2014-03-26 2015-10-22 株式会社富士通ゼネラル Refrigeration cycle device
CN108344209A (en) * 2018-03-13 2018-07-31 松下冷机系统(大连)有限公司 A kind of cryogenic vaporizer defrosts anti-freeze device
CN113825961A (en) * 2019-03-08 2021-12-21 大金工业株式会社 Outdoor unit for heat pump
CN113825961B (en) * 2019-03-08 2024-02-23 大金工业株式会社 Outdoor unit for heat pump
CN115200099A (en) * 2022-07-11 2022-10-18 珠海格力电器股份有限公司 Air conditioner
CN115200099B (en) * 2022-07-11 2023-11-10 珠海格力电器股份有限公司 Air conditioner

Similar Documents

Publication Publication Date Title
JP4892713B2 (en) Air conditioner
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
JP5357418B2 (en) Heat pump air conditioner
KR101598624B1 (en) Air conditioning system
JP2009210174A (en) Air conditioner
JP5619295B2 (en) Refrigeration cycle equipment
JP5178771B2 (en) Freezer refrigerator
JP2005249254A (en) Refrigerator-freezer
JP5744219B2 (en) Outdoor unit
JP2008224088A (en) Hot water system
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
WO2010143373A1 (en) Heat pump system
JP2005049002A (en) Air conditioner
JP4345178B2 (en) Air conditioner
JP6771302B2 (en) Air conditioner
JP5769684B2 (en) Heat pump equipment
KR101330936B1 (en) Refrigerator
KR100547669B1 (en) Heat pump system preventing refrigerants from freezing
JP2007127302A (en) Refrigeration unit
JP2005030606A (en) Refrigerator
JP2004361019A (en) Air conditioner
WO2018037452A1 (en) Air conditioning device
KR100310535B1 (en) Air Cooled Heat Pump
JPH1163709A (en) Air conditioner
JP2006097992A (en) Air conditioner