JP2015183976A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2015183976A
JP2015183976A JP2014063220A JP2014063220A JP2015183976A JP 2015183976 A JP2015183976 A JP 2015183976A JP 2014063220 A JP2014063220 A JP 2014063220A JP 2014063220 A JP2014063220 A JP 2014063220A JP 2015183976 A JP2015183976 A JP 2015183976A
Authority
JP
Japan
Prior art keywords
refrigerant
outdoor heat
heat exchange
heat exchanger
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014063220A
Other languages
Japanese (ja)
Other versions
JP6102811B2 (en
Inventor
松原 恵子
Keiko Matsubara
恵子 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2014063220A priority Critical patent/JP6102811B2/en
Publication of JP2015183976A publication Critical patent/JP2015183976A/en
Application granted granted Critical
Publication of JP6102811B2 publication Critical patent/JP6102811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a defrosting operation be hardly started during a heating operation and to improve efficiency of the heating operation by operating an ejector in order to solve such the problem that in the conventional refrigeration cycle device having the ejector and a plurality of heat exchangers, the heating operation stops due to switching, at the defrosting operation, to a cycle the same as a refrigeration cycle at the cooling operation.SOLUTION: In a refrigeration cycle device of the present invention, an outdoor heat exchanger comprises three heat exchangers. During low outdoor-temperature when frosting can easily occur, a cooling medium ejected from a diffuser flows in one of the heat exchangers, and a cooling medium sucked into a suction port flows in the other two heat exchangers. One of the two heat exchangers in which the cooling medium to be sucked flows is made to function as a heat radiator, and the other of the two heat exchangers is made to function as an evaporator, and thereby frosting is restrained.

Description

本発明は、吸入口より吸入した冷媒を減圧する冷媒減圧手段の役割と吸引口より吸引した冷媒を昇圧して冷媒循環手段の役割を果たすエジェクタと、エジェクタの吸引口とディフューザに接続される複数の熱交換部を備える熱交換器とを有する冷凍サイクル装置に関するものである。   The present invention provides a role of refrigerant decompression means for decompressing the refrigerant sucked from the suction port, an ejector serving as a refrigerant circulation means by boosting the refrigerant sucked from the suction port, and a plurality connected to the suction port of the ejector and the diffuser The present invention relates to a refrigeration cycle apparatus having a heat exchanger provided with a heat exchanger.

吸入口より吸入した冷媒を減圧する冷媒減圧手段の役割と吸引口より吸引した冷媒を昇圧して冷媒循環手段の役割を果たすエジェクタと、エジェクタの吸引口とディフューザに接続される複数の熱交換部を備える熱交換器とを有する冷凍サイクル装置は、特許文献1などで知られている。特許文献1の冷凍サイクル装置は、冷房運転時および暖房運転時にすべての熱交換器を有効に活用することを目的に、室内熱交換器が二つの熱交換部(第1熱交換部、第2熱交換部)を備え、第1熱交換部はエジェクタの吸引口に接続され、第2熱交換器はエジェクタのディフューザに接続されている。   The role of the refrigerant pressure reducing means for reducing the pressure of the refrigerant sucked from the suction port, the ejector functioning as the refrigerant circulation means by boosting the pressure of the refrigerant sucked from the suction port, and a plurality of heat exchange parts connected to the suction port and the diffuser of the ejector A refrigeration cycle apparatus having a heat exchanger provided with is known from Patent Document 1 and the like. The refrigeration cycle apparatus of Patent Document 1 has two heat exchange units (first heat exchange unit, second heat exchange unit) for the purpose of effectively using all heat exchangers during cooling operation and heating operation. A first heat exchange unit is connected to the suction port of the ejector, and a second heat exchanger is connected to the diffuser of the ejector.

特許文献1の冷凍サイクル装置において、冷房運転時ではエジェクタは吸入口と吸引口の両方より冷媒が流入し、ディフューザより冷媒が噴出されることで動作している。しかし、暖房運転時ではエジェクタの吸入口は閉じられ、エジェクタのディフューザより冷媒が流入し、吸引口より冷媒が流出するようになっているため、エジェクタとしては機能していない。また、除霜運転時ではエジェクタの吸入口は閉じられ、冷媒がエジェクタの吸引口より流入し、ディフューザより流出するようになっているため、エジェクタとしては機能していない。   In the refrigeration cycle apparatus of Patent Document 1, during the cooling operation, the ejector operates by flowing in the refrigerant from both the suction port and the suction port and ejecting the refrigerant from the diffuser. However, the suction port of the ejector is closed during the heating operation, and the refrigerant flows in from the diffuser of the ejector and flows out of the suction port, so that it does not function as an ejector. Further, during the defrosting operation, the ejector suction port is closed, and the refrigerant flows from the ejector suction port and flows out from the diffuser. Therefore, the ejector does not function.

特開2007−198675号公報JP 2007-198675 A

特許文献1に係る冷凍サイクル装置では、除霜運転時は冷房運転時の冷凍サイクルと同じサイクルに切替わるため暖房運転が止まる問題があった。この問題を解決するため、特許文献1の冷凍サイクル装置とは、室外熱交換器と室内熱交換器の使い方を変えて、室外熱交換器が二つの熱交換部(第1熱交換部、第2熱交換部)を備えることで、例えば、室外熱交換器を着霜しにくくすることで、除霜運転に切替わりにくくするために、室外熱交換器の第1熱交換部を放熱器として機能させ、第2熱交換部を蒸発器として機能させることが考えられる。   In the refrigeration cycle apparatus according to Patent Document 1, there is a problem that the heating operation is stopped because the refrigeration cycle is switched to the same cycle as the refrigeration cycle during the cooling operation. In order to solve this problem, the refrigeration cycle apparatus of Patent Document 1 changes the usage of the outdoor heat exchanger and the indoor heat exchanger, and the outdoor heat exchanger has two heat exchange parts (first heat exchange part, first heat exchange part, In order to make it difficult to switch to the defrosting operation, for example, by making it difficult for the outdoor heat exchanger to be frosted, the first heat exchange portion of the outdoor heat exchanger is used as a radiator. It is conceivable to make the second heat exchange part function as an evaporator.

しかし、この方法では、エジェクタの吸引口に吸引される冷媒が、蒸発器として機能する第2熱交換部で放熱し冷却され、二相状態になる可能性がある。そのため、エジェクタを正常に動作させることができず、暖房運転時の効率を向上させることができないおそれがあった。   However, in this method, the refrigerant sucked into the suction port of the ejector may be radiated and cooled by the second heat exchange unit functioning as an evaporator, and may be in a two-phase state. Therefore, the ejector cannot be operated normally, and the efficiency during heating operation may not be improved.

そこで、本発明は、暖房運転時に除霜運転に切替わりにくくすると共に、エジェクタを動作させて暖房運転の効率を向上させることを目的とする。   Then, this invention makes it difficult to switch to a defrost operation at the time of heating operation, and it aims at operating the ejector and improving the efficiency of heating operation.

そこで、本発明の冷凍サイクル装置は、圧縮機と、室内熱交換器と、ノズル部と吸引部とディフューザ部を備えるエジェクタと、第1室外熱交換部と第2室外熱交換部と第3室外熱交換部を有する室外熱交換器とを冷媒配管によって環状に順次接続した冷凍サイクル装置であって、暖房運転時に、エジェクタのディフューザ部より流出した冷媒を吸熱させて、圧縮機に流入させる室外熱交換器の第2室外熱交換部と、室内熱交換器より流出し、エジェクタのノズル部に流入する冷媒の一部を分岐させる分岐部と、分岐部で分岐された冷媒を減圧させる第1膨張弁と、第1膨張弁で減圧された冷媒を放熱させる室外熱交換器の第1室外熱交換部と、第1室外熱交換部で放熱された冷媒を減圧させる第2膨張弁と、第2膨張弁で減圧された冷媒を吸熱させて、エジェクタの吸引口に導く室外熱交換器の第3室外熱交換部を備えた。   Therefore, the refrigeration cycle apparatus of the present invention includes a compressor, an indoor heat exchanger, an ejector including a nozzle part, a suction part, and a diffuser part, a first outdoor heat exchange part, a second outdoor heat exchange part, and a third outdoor part. A refrigeration cycle apparatus in which an outdoor heat exchanger having a heat exchanging unit is sequentially connected in an annular manner by a refrigerant pipe, and in the heating operation, the refrigerant that has flowed out from the diffuser portion of the ejector absorbs heat and flows into the compressor A second outdoor heat exchange section of the exchanger, a branch section that branches out a part of the refrigerant that flows out of the indoor heat exchanger and flows into the nozzle section of the ejector, and a first expansion that depressurizes the refrigerant branched in the branch section A valve, a first outdoor heat exchanger of the outdoor heat exchanger that radiates the refrigerant decompressed by the first expansion valve, a second expansion valve that depressurizes the refrigerant radiated by the first outdoor heat exchanger, Refrigerant decompressed by the expansion valve Heated by, including a third outdoor heat exchanger of the outdoor heat exchanger for guiding the suction port of the ejector.

また、第1膨張弁は、流入した冷媒を高圧から中間圧にまで減圧し、第2膨張弁は、流入した冷媒を中間圧から低圧にまで減圧した。   Further, the first expansion valve reduced the inflowing refrigerant from a high pressure to an intermediate pressure, and the second expansion valve reduced the inflowing refrigerant from an intermediate pressure to a low pressure.

また、第1室外熱交換部と第2室外熱交換部と第3室外熱交換部に空気を送る送風ファンが設けられ、第1室外熱交換部が、送風ファンに対向し、第2室外熱交換部と第3室外熱交換部よりも風上側に配置される。   In addition, a blower fan that sends air to the first outdoor heat exchange unit, the second outdoor heat exchange unit, and the third outdoor heat exchange unit is provided, and the first outdoor heat exchange unit faces the blower fan, and the second outdoor heat exchange unit It arrange | positions in an upwind side rather than an exchange part and a 3rd outdoor heat exchange part.

本発明に係る冷凍サイクル装置によれば、暖房運転時に除霜運転に入りにくくすると共に、エジェクタを動作させて暖房運転の効率を向上させることが出来る。   According to the refrigeration cycle apparatus according to the present invention, it is difficult to enter the defrosting operation during the heating operation, and the efficiency of the heating operation can be improved by operating the ejector.

本発明に係る暖房運転時の冷凍サイクル装置を示す図である。It is a figure which shows the refrigeration cycle apparatus at the time of the heating operation which concerns on this invention. 本発明に係る冷房運転時の冷凍サイクル装置を示す図である。It is a figure which shows the refrigerating cycle apparatus at the time of the air_conditionaing | cooling operation which concerns on this invention.

以下、本発明に係る実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

図1と図2は、本発明に係る本実施形態の冷凍サイクル装置100を示す図である。なお、本実施形態は、本発明におけるエジェクタ140を用いた蒸気圧縮式冷凍サイクル装置を、二酸化炭素(CO2)を冷媒とする空気調和装置に適用したものとして説明する。   1 and 2 are diagrams showing a refrigeration cycle apparatus 100 of the present embodiment according to the present invention. In the present embodiment, the vapor compression refrigeration cycle apparatus using the ejector 140 according to the present invention is described as being applied to an air conditioner using carbon dioxide (CO2) as a refrigerant.

冷凍サイクル装置100は、図1に示すように、吐出口110aと吸入口110bを備えた圧縮機110と、四方弁120と、室内熱交換器130と、ノズル部141と吸引部142と混合部143とディフューザ部144を備えるエジェクタ140と、第1室外熱交換部151と第2室外熱交換部152と第3室外熱交換部153を備えた室外熱交換器150と、第1膨張弁161と、第2膨張弁162とを有する。   As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a compressor 110 having a discharge port 110a and a suction port 110b, a four-way valve 120, an indoor heat exchanger 130, a nozzle unit 141, a suction unit 142, and a mixing unit. 143, an ejector 140 including a diffuser unit 144, an outdoor heat exchanger 150 including a first outdoor heat exchange unit 151, a second outdoor heat exchange unit 152, and a third outdoor heat exchange unit 153, a first expansion valve 161, And a second expansion valve 162.

以上の各構成は、以下に記載する冷媒流路によって接続される。
圧縮機110の吐出口110aと四方弁120は第1冷媒流路201で接続される。四方弁120と室内熱交換器130は第2冷媒流路202で接続される。室内熱交換器130とエジェクタ140のノズル部141は第3冷媒流路203で接続される。エジェクタ140のディフューザ部144と室外熱交換器150の第2室外熱交換部152は第4冷媒流路204で接続される。室外熱交換器150の第2室外熱交換部152と四方弁120は第5冷媒流路205で接続される。四方弁120と圧縮機110の吸入口110bは第6冷媒流路206で接続される。
Each of the above components is connected by a refrigerant flow path described below.
The discharge port 110 a of the compressor 110 and the four-way valve 120 are connected by a first refrigerant channel 201. The four-way valve 120 and the indoor heat exchanger 130 are connected by the second refrigerant flow path 202. The indoor heat exchanger 130 and the nozzle portion 141 of the ejector 140 are connected by a third refrigerant channel 203. The diffuser part 144 of the ejector 140 and the second outdoor heat exchange part 152 of the outdoor heat exchanger 150 are connected by the fourth refrigerant flow path 204. The second outdoor heat exchanger 152 of the outdoor heat exchanger 150 and the four-way valve 120 are connected by a fifth refrigerant channel 205. The four-way valve 120 and the suction port 110 b of the compressor 110 are connected by a sixth refrigerant channel 206.

第3冷媒流路203上に分岐部170が設けられ、この分岐部170によって室内熱交換器130とエジェクタ140のノズル部141との間に流れる冷媒の一部を分岐させる。
分岐部170と第1膨張弁161は第7冷媒流路207で接続される。第1膨張弁161と室外熱交換器150の第1室外熱交換部151は第8冷媒流路208で接続される。室外熱交換器150の第1室外熱交換部151と第2膨張弁162は第9冷媒流路209で接続される。第2膨張弁162と室外熱交換器150の第3室外熱交換部153は第10冷媒流路210で接続される。室外熱交換器150の第3室外熱交換部153とエジェクタ140の吸引部142は第11冷媒流路211で接続される。第1冷媒流路から第11冷媒流路までの各々の冷媒流路は冷媒配管が用いられる。
A branch part 170 is provided on the third refrigerant flow path 203, and a part of the refrigerant flowing between the indoor heat exchanger 130 and the nozzle part 141 of the ejector 140 is branched by the branch part 170.
The branch part 170 and the first expansion valve 161 are connected by a seventh refrigerant channel 207. The first expansion valve 161 and the first outdoor heat exchanger 151 of the outdoor heat exchanger 150 are connected by an eighth refrigerant channel 208. The first outdoor heat exchanger 151 and the second expansion valve 162 of the outdoor heat exchanger 150 are connected by a ninth refrigerant channel 209. The second expansion valve 162 and the third outdoor heat exchanger 153 of the outdoor heat exchanger 150 are connected by the tenth refrigerant flow path 210. The third outdoor heat exchange part 153 of the outdoor heat exchanger 150 and the suction part 142 of the ejector 140 are connected by an eleventh refrigerant channel 211. Refrigerant piping is used for each refrigerant channel from the first refrigerant channel to the eleventh refrigerant channel.

次に、本実施形態の冷凍サイクル装置100の各構成について説明する。
圧縮機110は吸入口110bから吸入した冷媒を圧縮し、高温高圧の冷媒として吐出口110aから吐出するものである。
Next, each structure of the refrigerating cycle apparatus 100 of this embodiment is demonstrated.
The compressor 110 compresses the refrigerant sucked from the suction port 110b and discharges it from the discharge port 110a as a high-temperature and high-pressure refrigerant.

四方弁120は冷房運転と暖房運転で冷凍サイクル装置100内を流れる冷媒の向きを切り替えるものである。四方弁120は、冷房運転時は図2に示すように圧縮機110から吐出される高温高圧の冷媒を室外熱交換器150の第2室外熱交換部152へ流入させ、室内熱交換器130から流出した冷媒を圧縮機110へ流入させる。また、暖房運転時は図1示すように圧縮機110から吐出される高温高圧の冷媒を室内熱交換器130へ流入させ、室外熱交換器150の第2室外熱交換部152から流出した冷媒を圧縮機110へ流入させる。   The four-way valve 120 switches the direction of the refrigerant flowing in the refrigeration cycle apparatus 100 between the cooling operation and the heating operation. The four-way valve 120 causes the high-temperature and high-pressure refrigerant discharged from the compressor 110 to flow into the second outdoor heat exchanger 152 of the outdoor heat exchanger 150 as shown in FIG. The refrigerant that has flowed out flows into the compressor 110. Further, during the heating operation, as shown in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 110 is caused to flow into the indoor heat exchanger 130, and the refrigerant flowing out from the second outdoor heat exchanger 152 of the outdoor heat exchanger 150 is allowed to flow. It flows into the compressor 110.

室内熱交換器130は図示しない室内機に設けられるもので、室内の空気と冷媒との間で熱交換させるものであり、冷房運転時は蒸発器として機能し、暖房運転時は放熱器として機能する。   The indoor heat exchanger 130 is provided in an indoor unit (not shown), and exchanges heat between indoor air and refrigerant, functions as an evaporator during cooling operation, and functions as a radiator during heating operation. To do.

室外熱交換器150は図示しない室外機に設けられるもので、室外の空気と冷媒との間で熱交換させるものである。この室外熱交換器150は第1室外熱交換部151と第2室外熱交換部152と第3室外熱交換部153を備えている。また、室外熱交換器150には、室外熱交換器150に空気を吹き付ける送風ファン180が設けられている。第1室外熱交換部151、第2室外熱交換部152、第3室外熱交換部153は送風ファン180に対して対向し、第1室外熱交換部151は、第2室外熱交換部152と第3室外熱交換部153より風上側に配置される。低外気温時の暖房運転では、第2室外熱交換部152は第3室外熱交換部153よりも高温になるため、第2室外熱交換部152は第3室外熱交換部153よりも風上側に配置される。なお、本発明はこれに限定したものでなく、第2室外熱交換部152は第3室外熱交換部153の下方に配置されても良い。   The outdoor heat exchanger 150 is provided in an outdoor unit (not shown) and exchanges heat between outdoor air and the refrigerant. The outdoor heat exchanger 150 includes a first outdoor heat exchange unit 151, a second outdoor heat exchange unit 152, and a third outdoor heat exchange unit 153. In addition, the outdoor heat exchanger 150 is provided with a blower fan 180 that blows air to the outdoor heat exchanger 150. The first outdoor heat exchange unit 151, the second outdoor heat exchange unit 152, and the third outdoor heat exchange unit 153 are opposed to the blower fan 180, and the first outdoor heat exchange unit 151 is connected to the second outdoor heat exchange unit 152. It arrange | positions from the 3rd outdoor heat exchange part 153 to the windward side. In the heating operation at the low outdoor temperature, the second outdoor heat exchange unit 152 is hotter than the third outdoor heat exchange unit 153, and therefore the second outdoor heat exchange unit 152 is located on the windward side of the third outdoor heat exchange unit 153. Placed in. In addition, this invention is not limited to this, The 2nd outdoor heat exchange part 152 may be arrange | positioned under the 3rd outdoor heat exchange part 153. FIG.

エジェクタ140は、ノズル部141と、ノズル部141の入口141aと、ノズル部141の出口部141bと、吸引部142と、混合部143と、ディフューザ部144と、ディフューザ部144の出口144aとから構成される。なお、ノズル部141の出口部141bは開度を調整できる構造となっており、この出口部141bの開度をゼロにすることでノズル部141を全閉状態にできる。   The ejector 140 includes a nozzle part 141, an inlet 141a of the nozzle part 141, an outlet part 141b of the nozzle part 141, a suction part 142, a mixing part 143, a diffuser part 144, and an outlet 144a of the diffuser part 144. Is done. In addition, the exit part 141b of the nozzle part 141 has a structure in which the opening degree can be adjusted, and the nozzle part 141 can be fully closed by setting the opening degree of the outlet part 141b to zero.

暖房運転時ではエジェクタ140はエジェクタとして機能しており、室内熱交換器130より流出した気冷媒は第3冷媒流路203を経由してノズル部141の入口141aから吸入される。また、室外熱交換器150の第3室外熱交換部153より流出した冷媒は第11冷媒流路211を経由して吸引部142から吸引される。ノズル部141から吸入された冷媒と吸引部142から吸引された冷媒とが混合部143で混合される。混合された冷媒はディフューザ部144で冷媒の速度エネルギーを圧力エネルギーに変換して冷媒の圧力が昇圧される。   During the heating operation, the ejector 140 functions as an ejector, and the gas refrigerant flowing out from the indoor heat exchanger 130 is sucked from the inlet 141a of the nozzle portion 141 via the third refrigerant flow path 203. In addition, the refrigerant that has flowed out from the third outdoor heat exchange unit 153 of the outdoor heat exchanger 150 is sucked from the suction unit 142 via the eleventh refrigerant channel 211. The refrigerant sucked from the nozzle part 141 and the refrigerant sucked from the suction part 142 are mixed by the mixing part 143. The mixed refrigerant converts the velocity energy of the refrigerant into pressure energy in the diffuser unit 144, and the pressure of the refrigerant is increased.

冷房運転時ではエジェクタのノズル部141の出口141bが閉じられるため、エジェクタ140は冷媒配管として機能する。室外熱交換器150の第2室外熱交換部152より流出した気冷媒は第4冷媒流路204を経由してディフューザ部144の出口144aから吸入される。ノズル部141に吸入された冷媒は混合部143を経由して吸引部142より流出する。   During the cooling operation, the outlet 141b of the ejector nozzle portion 141 is closed, so that the ejector 140 functions as a refrigerant pipe. The gas refrigerant that has flowed out of the second outdoor heat exchanger 152 of the outdoor heat exchanger 150 is sucked from the outlet 144a of the diffuser section 144 via the fourth refrigerant flow path 204. The refrigerant sucked into the nozzle part 141 flows out from the suction part 142 via the mixing part 143.

次に、上記構成のエジェクタ140を用いた冷凍サイクル装置100の動作について説明する。
(暖房運転)
まず初めに、冷凍サイクル装置100が通常の暖房運転をしている場合について図1を基に説明する。この場合、第1膨張弁161では冷媒が高圧から低圧に減圧するよう所定の開度に絞られ、第2膨張弁162は全開になっている。なお、点線の矢印は冷媒の流れを示している。
Next, operation | movement of the refrigerating-cycle apparatus 100 using the ejector 140 of the said structure is demonstrated.
(Heating operation)
First, the case where the refrigeration cycle apparatus 100 is performing a normal heating operation will be described with reference to FIG. In this case, the first expansion valve 161 is throttled to a predetermined opening so that the refrigerant is depressurized from high pressure to low pressure, and the second expansion valve 162 is fully opened. The dotted arrows indicate the flow of the refrigerant.

圧縮機110が起動すると、圧縮機110は吸入口110bから気相冷媒を吸入し、圧縮した後に吐出口110aより吐出する。圧縮機110から吐出された冷媒は第1冷媒流路201、四方弁120、第2冷媒流路202を経由して放熱器として機能する室内熱交換器130に流入する。室内熱交換器130に流入した冷媒は室内空気と熱交換して放熱する。放熱した冷媒は第3冷媒流路203を経由して分岐部170で、エジェクタ140のノズル部141の入口141aに流入される流入冷媒と、室外熱交換器150の第1室外熱交換部151と第3室外熱交換部153を経由して吸引部142より吸引される吸引冷媒とに分岐される。   When the compressor 110 is activated, the compressor 110 sucks the gas-phase refrigerant from the suction port 110b, compresses it, and discharges it from the discharge port 110a. The refrigerant discharged from the compressor 110 flows into the indoor heat exchanger 130 functioning as a radiator via the first refrigerant channel 201, the four-way valve 120, and the second refrigerant channel 202. The refrigerant that has flowed into the indoor heat exchanger 130 exchanges heat with the indoor air and dissipates heat. The radiated refrigerant passes through the third refrigerant flow path 203 at the branching section 170 and flows into the inlet 141a of the nozzle section 141 of the ejector 140, the first outdoor heat exchange section 151 of the outdoor heat exchanger 150, The refrigerant is branched to the suction refrigerant sucked from the suction part 142 via the third outdoor heat exchange part 153.

吸引冷媒は、分岐部170で分岐された後、第7冷媒流路207を経由して所定の開度に調整された第1膨張弁161で高圧から低圧にまで減圧される。減圧された冷媒は第8冷媒流路208を経由して室外熱交換器150の蒸発器として機能する第1室外熱交換部151に流入し、室外空気と熱交換して吸熱する。吸熱した冷媒は第9冷媒流路209を経由して第2膨張弁162を通過した後、第10冷媒流路210を経由して室外熱交換器150の蒸発器として機能する第3室外熱交換部153に流入し、再度室外空気と熱交換して吸熱し蒸発する。蒸発した冷媒は第11冷媒流路211を経由してエジェクタ140の吸引部142から吸引される。   The suction refrigerant is branched from the branching section 170 and then reduced in pressure from the high pressure to the low pressure by the first expansion valve 161 adjusted to a predetermined opening degree via the seventh refrigerant flow path 207. The decompressed refrigerant flows into the first outdoor heat exchanger 151 functioning as an evaporator of the outdoor heat exchanger 150 via the eighth refrigerant flow path 208, and absorbs heat by exchanging heat with outdoor air. The refrigerant that has absorbed heat passes through the second expansion valve 162 via the ninth refrigerant flow path 209 and then passes through the tenth refrigerant flow path 210 to function as an evaporator of the outdoor heat exchanger 150. It flows into the section 153 and again exchanges heat with outdoor air to absorb heat and evaporate. The evaporated refrigerant is sucked from the suction part 142 of the ejector 140 via the eleventh refrigerant flow path 211.

一方、ノズル部141の入口141aに流入する流入冷媒は、ノズル部141により減圧膨張して吸引部142から室外熱交換器150の第3室外熱交換部153で蒸発した冷媒を吸引する。   On the other hand, the inflowing refrigerant that flows into the inlet 141a of the nozzle portion 141 sucks the refrigerant that has been decompressed and expanded by the nozzle portion 141 and evaporated from the suction portion 142 in the third outdoor heat exchange portion 153 of the outdoor heat exchanger 150.

そして、吸引部142から吸引された吸引冷媒と、ノズル部141の出口141bから吹き出される流入冷媒とを混合部143で混合しながらディフューザ部144でその動圧が静圧に変換されて室外熱交換器150の第2室外熱交換部152に吐出される。このとき、混合部143においては、流入冷媒の運動量と吸引冷媒の運動量との和が保存されるように流入冷媒と吸引冷媒とが混合されるので、混合部143においても冷媒の圧力が上昇する。ディフューザ部144で、通路断面積を徐々に拡大することにより、冷媒の速度エネルギーを圧力エネルギーに変換するので、冷媒の圧力はさらに昇圧される。   Then, while mixing the suction refrigerant sucked from the suction part 142 and the inflow refrigerant blown from the outlet 141b of the nozzle part 141 in the mixing part 143, the dynamic pressure is converted into static pressure in the diffuser part 144, and the outdoor heat The heat is discharged to the second outdoor heat exchange unit 152 of the exchanger 150. At this time, in the mixing unit 143, since the inflowing refrigerant and the suction refrigerant are mixed so that the sum of the momentum of the inflowing refrigerant and the momentum of the suctioning refrigerant is preserved, the refrigerant pressure also increases in the mixing unit 143. . By gradually expanding the passage cross-sectional area in the diffuser part 144, the speed energy of the refrigerant is converted into pressure energy, so that the pressure of the refrigerant is further increased.

室外熱交換器150の第2室外熱交換部152に流入した冷媒は室外空気と熱交換して吸熱する。吸熱した冷媒は第5冷媒流路205、四方弁120、第6冷媒流路206を経由して圧縮機110の吸入口110bより吸入される。冷媒は以上のように説明した各構成を循環する。   The refrigerant that has flowed into the second outdoor heat exchanger 152 of the outdoor heat exchanger 150 exchanges heat with outdoor air and absorbs heat. The refrigerant that has absorbed heat is sucked from the suction port 110b of the compressor 110 via the fifth refrigerant channel 205, the four-way valve 120, and the sixth refrigerant channel 206. The refrigerant circulates through each configuration described above.

(低外気温時の暖房運転)
次に、室外熱交換器150に霜が付きやすい条件、例えば、図示しない外気温センサにより検出される外気温度が所定の温度以下になった時に冷凍サイクル装置100が暖房運転をしている場合について図1を基に説明する。この場合、第1膨張弁161では冷媒が高圧から中間圧に減圧するよう所定の開度に絞られ、第2膨張弁162では中間圧から低圧に減圧するよう所定の開度に絞られている。なお、点線の矢印は冷媒の流れを示している。
(Heating operation at low outside temperature)
Next, a condition where the outdoor heat exchanger 150 is likely to be frosted, for example, when the refrigeration cycle apparatus 100 is in a heating operation when the outside air temperature detected by an outside air temperature sensor (not shown) falls below a predetermined temperature. A description will be given based on FIG. In this case, the first expansion valve 161 is throttled to a predetermined opening degree so that the refrigerant is reduced from high pressure to intermediate pressure, and the second expansion valve 162 is throttled to a predetermined opening degree to reduce pressure from the intermediate pressure to low pressure. . The dotted arrows indicate the flow of the refrigerant.

圧縮機110が起動すると、圧縮機110は吸入口110bから気相冷媒を吸入し、圧縮した後に吐出口110aより吐出する。圧縮機110から吐出された冷媒は第1冷媒流路201、四方弁120、第2冷媒流路202を経由して放熱器として機能する室内熱交換器130に流入する。室内熱交換器130に流入した冷媒は室内空気と熱交換して放熱する。放熱した冷媒は第3冷媒流路203を経由して分岐部170で、エジェクタ140のノズル部141の入口141aに流入される流入冷媒と、室外熱交換器150の第1室外熱交換部151と第3室外熱交換部153を経由して吸引部142より吸引される吸引冷媒とに分岐される。   When the compressor 110 is activated, the compressor 110 sucks the gas-phase refrigerant from the suction port 110b, compresses it, and discharges it from the discharge port 110a. The refrigerant discharged from the compressor 110 flows into the indoor heat exchanger 130 functioning as a radiator via the first refrigerant channel 201, the four-way valve 120, and the second refrigerant channel 202. The refrigerant that has flowed into the indoor heat exchanger 130 exchanges heat with the indoor air and dissipates heat. The radiated refrigerant passes through the third refrigerant flow path 203 at the branching section 170 and flows into the inlet 141a of the nozzle section 141 of the ejector 140, the first outdoor heat exchange section 151 of the outdoor heat exchanger 150, The refrigerant is branched to the suction refrigerant sucked from the suction part 142 via the third outdoor heat exchange part 153.

吸引冷媒は、分岐部170で分岐された後、第7冷媒流路207を経由して所定の開度に調整された第1膨張弁161で高圧から中間圧にまで減圧される。減圧された冷媒は第8冷媒流路208を経由して放熱器として機能する室外熱交換器150の第1室外熱交換部151に流入し、室外空気と熱交換して放熱する。放熱した冷媒は第9冷媒流路209を経由して所定の開度に調整された第2膨張弁162で中間圧から低圧にまで減圧される。減圧された冷媒は第10冷媒流路210を経由して室外熱交換器150の蒸発器として機能する第3室外熱交換部153に流入し、室外空気と熱交換して吸熱し蒸発する。蒸発した冷媒は第11冷媒流路211を経由してエジェクタ140の吸引部142から吸引される。この第1室外熱交換部151で放熱された熱によって、第2室外熱交換部152と第3室外熱交換部153が加熱され、霜が付きにくくなる。   The suction refrigerant is branched from the branching section 170 and then reduced from a high pressure to an intermediate pressure by the first expansion valve 161 adjusted to a predetermined opening degree via the seventh refrigerant flow path 207. The decompressed refrigerant flows into the first outdoor heat exchanger 151 of the outdoor heat exchanger 150 functioning as a radiator via the eighth refrigerant channel 208, and radiates heat by exchanging heat with the outdoor air. The radiated refrigerant is decompressed from the intermediate pressure to the low pressure by the second expansion valve 162 adjusted to a predetermined opening degree via the ninth refrigerant flow path 209. The decompressed refrigerant flows into the third outdoor heat exchanger 153 that functions as the evaporator of the outdoor heat exchanger 150 via the tenth refrigerant flow path 210, and exchanges heat with outdoor air to absorb heat and evaporate. The evaporated refrigerant is sucked from the suction part 142 of the ejector 140 via the eleventh refrigerant flow path 211. The heat radiated by the first outdoor heat exchanging portion 151 heats the second outdoor heat exchanging portion 152 and the third outdoor heat exchanging portion 153, and frost is hardly formed.

一方、ノズル部141の入口141aに流入する流入冷媒は、ノズル部141により減圧膨張して吸引部142から室外熱交換器150の第3室外熱交換部153で蒸発した冷媒を吸引する。   On the other hand, the inflowing refrigerant that flows into the inlet 141a of the nozzle portion 141 sucks the refrigerant that has been decompressed and expanded by the nozzle portion 141 and evaporated from the suction portion 142 in the third outdoor heat exchange portion 153 of the outdoor heat exchanger 150.

そして、吸引部142から吸引された吸引冷媒と、ノズル部141の出口141bから吹き出される流入冷媒とを混合部143で混合しながらディフューザ部144でその動圧が静圧に変換されて室外熱交換器150の第2室外熱交換部152に吐出される。このとき、混合部143においては、流入冷媒の運動量と吸引冷媒の運動量との和が保存されるように流入冷媒と吸引冷媒とが混合されるので、混合部143においても冷媒の圧力が上昇する。ディフューザ部144で、通路断面積を徐々に拡大することにより、冷媒の速度エネルギーを圧力エネルギーに変換するので、冷媒の圧力はさらに昇圧される。   Then, while mixing the suction refrigerant sucked from the suction part 142 and the inflow refrigerant blown from the outlet 141b of the nozzle part 141 in the mixing part 143, the dynamic pressure is converted into static pressure in the diffuser part 144, and the outdoor heat The heat is discharged to the second outdoor heat exchange unit 152 of the exchanger 150. At this time, in the mixing unit 143, since the inflowing refrigerant and the suction refrigerant are mixed so that the sum of the momentum of the inflowing refrigerant and the momentum of the suctioning refrigerant is preserved, the refrigerant pressure also increases in the mixing unit 143. . By gradually expanding the passage cross-sectional area in the diffuser part 144, the speed energy of the refrigerant is converted into pressure energy, so that the pressure of the refrigerant is further increased.

室外熱交換器150の第2室外熱交換部152に流入した冷媒は室外空気と熱交換して吸熱し蒸発する。蒸発した冷媒は第5冷媒流路205、四方弁120、第6冷媒流路206を経由して圧縮機110の吸入口110bより吸引される。冷媒は以上のように説明した各構成を循環する。   The refrigerant flowing into the second outdoor heat exchanger 152 of the outdoor heat exchanger 150 exchanges heat with the outdoor air and absorbs heat to evaporate. The evaporated refrigerant is sucked from the suction port 110b of the compressor 110 via the fifth refrigerant channel 205, the four-way valve 120, and the sixth refrigerant channel 206. The refrigerant circulates through each configuration described above.

(冷房運転)
次に、冷凍サイクル装置100が冷房運転をしている場合について図2を基に説明する。この場合、エジェクタ140のノズル部141の出口141bが閉じられ、第1膨張弁161では冷媒が高圧から低圧に減圧するよう所定の開度に絞られ、第2膨張弁162は全開になっている。なお、点線の矢印は冷媒の流れを示している。
(Cooling operation)
Next, the case where the refrigeration cycle apparatus 100 is performing a cooling operation will be described with reference to FIG. In this case, the outlet 141b of the nozzle portion 141 of the ejector 140 is closed, the first expansion valve 161 is throttled to a predetermined opening degree so that the refrigerant is reduced from high pressure to low pressure, and the second expansion valve 162 is fully opened. . The dotted arrows indicate the flow of the refrigerant.

圧縮機110が起動すると、圧縮機110は吸入口110bから気相冷媒を吸入し、圧縮した後に吐出口110aより吐出する。圧縮機110から吐出された冷媒は第1冷媒流路201、四方弁120、第5冷媒流路205を経由して室外熱交換器150の放熱器として機能する第2室外熱交換部152に流入する。第2室外熱交換部152に流入した冷媒は室外空気と熱交換して放熱する。放熱した冷媒は第4冷媒流路204を経由して冷媒配管として機能するエジェクタ140のディフューザ部144の出口144aより流入され、ディフューザ部144と混合部143を経由して、吸引部142より流出する。   When the compressor 110 is activated, the compressor 110 sucks the gas-phase refrigerant from the suction port 110b, compresses it, and discharges it from the discharge port 110a. The refrigerant discharged from the compressor 110 flows into the second outdoor heat exchanger 152 functioning as a radiator of the outdoor heat exchanger 150 via the first refrigerant channel 201, the four-way valve 120, and the fifth refrigerant channel 205. To do. The refrigerant flowing into the second outdoor heat exchange unit 152 exchanges heat with the outdoor air and dissipates heat. The radiated refrigerant flows in from the outlet 144a of the diffuser section 144 of the ejector 140 functioning as a refrigerant pipe via the fourth refrigerant flow path 204, and flows out of the suction section 142 through the diffuser section 144 and the mixing section 143. .

吸引部142より流出した冷媒は第11冷媒流路211を経由して室外熱交換器150の放熱器として機能する第3室外熱交換部153に流入する。第3室外熱交換部153に流入した冷媒は室外空気と熱交換して放熱する。放熱した冷媒は第10冷媒流路210を経由して第2膨張弁162を通過した後、第9冷媒流路209を経由して放熱器として機能する第1室外熱交換部151に流入する。第1室外熱交換部151に流入した冷媒は室外空気と熱交換して放熱する。放熱した冷媒は第8冷媒流路208を経由して所定の開度に調整された第1膨張弁161で高圧から低圧にまで減圧される。減圧された冷媒は第7冷媒流路207を経由して、分岐部170で第3冷媒流路203に流入し、蒸発器として機能する室内熱交換器130に流入する。   The refrigerant that has flowed out of the suction part 142 flows into the third outdoor heat exchange part 153 that functions as a radiator of the outdoor heat exchanger 150 via the eleventh refrigerant flow path 211. The refrigerant that has flowed into the third outdoor heat exchange unit 153 exchanges heat with outdoor air to dissipate heat. The radiated refrigerant passes through the second expansion valve 162 via the tenth refrigerant flow path 210 and then flows into the first outdoor heat exchange unit 151 functioning as a heat radiator via the ninth refrigerant flow path 209. The refrigerant flowing into the first outdoor heat exchange unit 151 exchanges heat with the outdoor air and dissipates heat. The radiated refrigerant is depressurized from high pressure to low pressure by the first expansion valve 161 adjusted to a predetermined opening degree via the eighth refrigerant flow path 208. The decompressed refrigerant flows into the third refrigerant flow path 203 at the branching portion 170 via the seventh refrigerant flow path 207 and flows into the indoor heat exchanger 130 functioning as an evaporator.

室内熱交換器130に流入した冷媒は室内空気と熱交換して吸熱し蒸発する。蒸発した冷媒は第2冷媒流路202、四方弁120、第6冷媒流路206を経由して圧縮機110の吸入口110bより吸引される。冷媒は以上のように説明した各構成を循環する。   The refrigerant flowing into the indoor heat exchanger 130 exchanges heat with room air and absorbs heat to evaporate. The evaporated refrigerant is sucked from the suction port 110b of the compressor 110 via the second refrigerant channel 202, the four-way valve 120, and the sixth refrigerant channel 206. The refrigerant circulates through each configuration described above.

以上より、本発明の冷凍サイクル装置100は、室外熱交換器150が着霜し易い低外気温時に、室外熱交換器150の一部である第1室外熱交換部151を放熱器として機能させて、蒸発器として機能する他の熱交換部(第2室外熱交換部152と第3室外熱交換部153)の着霜を抑えることが出来る。これにより、除霜運転に切替わりにくくなる。   As described above, the refrigeration cycle apparatus 100 according to the present invention causes the first outdoor heat exchanger 151, which is a part of the outdoor heat exchanger 150, to function as a radiator when the outdoor heat exchanger 150 is likely to be frozen. Thus, it is possible to suppress frost formation of other heat exchange units (second outdoor heat exchange unit 152 and third outdoor heat exchange unit 153) functioning as an evaporator. Thereby, it becomes difficult to switch to the defrosting operation.

100 冷凍サイクル装置
110 圧縮機
120 四方弁
130 室内熱交換器
140 エジェクタ
150 室外熱交換器
161 第1膨張弁
162 第2膨張弁
170 分岐部
180 送風ファン
DESCRIPTION OF SYMBOLS 100 Refrigeration cycle apparatus 110 Compressor 120 Four-way valve 130 Indoor heat exchanger 140 Ejector 150 Outdoor heat exchanger 161 1st expansion valve 162 2nd expansion valve 170 Branch part 180 Blower fan

Claims (3)

圧縮機と、室内熱交換器と、ノズル部と吸引部とディフューザ部を備えるエジェクタと、第1室外熱交換部と第2室外熱交換部と第3室外熱交換部を有する室外熱交換器とを冷媒配管によって環状に接続した冷凍サイクル装置であって、
暖房運転時に、
前記エジェクタの前記ディフューザ部より流出した冷媒を吸熱させて、前記圧縮機に流入させる前記室外熱交換器の前記第2室外熱交換部と、
前記室内熱交換器より流出し、前記エジェクタの前記ノズル部に流入する冷媒の一部を分岐させる分岐部と、
前記分岐部で分岐された冷媒を減圧させる第1膨張弁と、
前記第1膨張弁で減圧された冷媒を放熱させる前記室外熱交換器の前記第1室外熱交換部と、
前記第1室外熱交換部で放熱された冷媒を減圧させる第2膨張弁と、
前記第2膨張弁で減圧された冷媒を吸熱させて、前記エジェクタの前記吸引口に導く前記室外熱交換器の前記第3室外熱交換部を備えたことを特徴とする冷凍サイクル装置。
An outdoor heat exchanger having a compressor, an indoor heat exchanger, an ejector including a nozzle part, a suction part, and a diffuser part, a first outdoor heat exchange part, a second outdoor heat exchange part, and a third outdoor heat exchange part; A refrigeration cycle apparatus connected in an annular shape by a refrigerant pipe,
During heating operation,
The second outdoor heat exchange part of the outdoor heat exchanger that absorbs heat from the diffuser part of the ejector and causes the refrigerant to flow into the compressor;
A branching part that branches out a part of the refrigerant that flows out of the indoor heat exchanger and flows into the nozzle part of the ejector;
A first expansion valve for depressurizing the refrigerant branched at the branch portion;
The first outdoor heat exchange part of the outdoor heat exchanger for radiating the refrigerant decompressed by the first expansion valve;
A second expansion valve that depressurizes the refrigerant radiated by the first outdoor heat exchange unit;
A refrigeration cycle apparatus comprising the third outdoor heat exchanger of the outdoor heat exchanger that absorbs heat of the refrigerant decompressed by the second expansion valve and guides the refrigerant to the suction port of the ejector.
請求項1に記載の冷凍サイクル装置であって、
前記第1膨張弁は、流入した冷媒を高圧から中間圧にまで減圧し、
前記第2膨張弁は、流入した冷媒を中間圧から低圧にまで減圧したことを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1,
The first expansion valve depressurizes the flowing refrigerant from a high pressure to an intermediate pressure,
The second expansion valve is a refrigeration cycle apparatus characterized in that the refrigerant flowing in is reduced from an intermediate pressure to a low pressure.
請求項1または2に記載の冷凍サイクル装置であって、
第1室外熱交換部と前記第2室外熱交換部と前記第3室外熱交換部に空気を送る送風ファンが設けられ、
前記第1室外熱交換部が、前記送風ファンに対向し、前記第2室外熱交換部と前記第3室外熱交換部よりも風上側に配置されることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1 or 2,
A blower fan is provided to send air to the first outdoor heat exchange unit, the second outdoor heat exchange unit, and the third outdoor heat exchange unit;
The refrigeration cycle apparatus, wherein the first outdoor heat exchange unit is disposed on the windward side of the second outdoor heat exchange unit and the third outdoor heat exchange unit, facing the blower fan.
JP2014063220A 2014-03-26 2014-03-26 Refrigeration cycle equipment Expired - Fee Related JP6102811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063220A JP6102811B2 (en) 2014-03-26 2014-03-26 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063220A JP6102811B2 (en) 2014-03-26 2014-03-26 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2015183976A true JP2015183976A (en) 2015-10-22
JP6102811B2 JP6102811B2 (en) 2017-03-29

Family

ID=54350713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063220A Expired - Fee Related JP6102811B2 (en) 2014-03-26 2014-03-26 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6102811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018002983A1 (en) * 2016-06-27 2018-09-27 三菱電機株式会社 Refrigeration cycle equipment
CN112594918A (en) * 2020-12-14 2021-04-02 青岛海尔空调器有限总公司 Air conditioner heat exchange system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2007003170A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector type cycle
JP2009210174A (en) * 2008-03-04 2009-09-17 Sharp Corp Air conditioner
JP2009276051A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2007003170A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector type cycle
JP2009210174A (en) * 2008-03-04 2009-09-17 Sharp Corp Air conditioner
JP2009276051A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018002983A1 (en) * 2016-06-27 2018-09-27 三菱電機株式会社 Refrigeration cycle equipment
EP3477222A4 (en) * 2016-06-27 2019-05-22 Mitsubishi Electric Corporation Refrigeration cycle device
US10883745B2 (en) 2016-06-27 2021-01-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN112594918A (en) * 2020-12-14 2021-04-02 青岛海尔空调器有限总公司 Air conditioner heat exchange system and control method thereof

Also Published As

Publication number Publication date
JP6102811B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP4771721B2 (en) Air conditioner
JP4016659B2 (en) Air conditioner
US10197325B2 (en) Air conditioner with two injection circuits and method of controlling the air conditioner
JP5137494B2 (en) Equipment and air conditioner using refrigeration cycle
KR101146460B1 (en) A refrigerant system
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
JP2009257709A (en) Air conditioner
US10465948B2 (en) Air conditioner
CN105091410A (en) Heat pump
CN107101405B (en) Compression circulation system
JP2007051841A (en) Refrigeration cycle device
JP2011133133A (en) Refrigerating device
JP6102811B2 (en) Refrigeration cycle equipment
KR101823469B1 (en) High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
US20150159922A1 (en) Heat pump system
JP2020192965A (en) Heat exchange system
US20160146477A1 (en) Hvac systems and methods for reheat operation
KR101867858B1 (en) Air conditioner
JP2015143597A (en) water heater
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
KR102007301B1 (en) Air conditioner
KR100619775B1 (en) Multi-air conditioner capable of cooling and heating simultaneously
JP5673290B2 (en) Air conditioner
JP2008224047A (en) Ejector type refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees