JP2015143597A - water heater - Google Patents

water heater Download PDF

Info

Publication number
JP2015143597A
JP2015143597A JP2014017453A JP2014017453A JP2015143597A JP 2015143597 A JP2015143597 A JP 2015143597A JP 2014017453 A JP2014017453 A JP 2014017453A JP 2014017453 A JP2014017453 A JP 2014017453A JP 2015143597 A JP2015143597 A JP 2015143597A
Authority
JP
Japan
Prior art keywords
condenser
compressor
hot water
heat exchanger
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014017453A
Other languages
Japanese (ja)
Inventor
司 高山
Tsukasa Takayama
司 高山
田中 誠
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2014017453A priority Critical patent/JP2015143597A/en
Publication of JP2015143597A publication Critical patent/JP2015143597A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater capable of switching over between a two-stage compression operation and a single-stage compression operation in response to a required boiling temperature of hot water or a heating capacity.SOLUTION: A water heater comprises: a first refrigerating cycle A forming a refrigerant channel by connecting together a first compressor 2A, a four-way valve 3A, a first condenser 4A2 disposed to be able to implement heat exchange with a first water-heat exchanger 4A, a first expansion valve 5A, and a first air-heat exchanger 6A by a first refrigerant pipe 7A; and a second refrigerating cycle B forming a refrigerant channel by connecting together a second compressor 2B, a second condenser 4B2 disposed to be able to implement heat exchange with a second water-heat exchanger 4B, a second expansion valve 5B, and a second air-heat exchanger 6B disposed in parallel to the first air-heat exchanger 6A leeward in an air blow direction by a second refrigerant pipe 7B. The water heater is configured to be able to switch over between a second-stage compression operation in which the first condenser 4A2 is connected in series to the second condenser 4B2 when the first compressor 2A and the second compressor 2B are connected to each other so as to be able to perform two-stage compression, and a single-stage compression operation in which the first condenser 4A2 and the second condenser 4B2 operate individually when the first compressor 2A and the second compressor 2B operate individually.

Description

本発明の実施形態は、ヒートポンプ式の給湯装置に関する。   Embodiments described herein relate generally to a heat pump hot water supply apparatus.

従来、この種の給湯装置の一例としては、複数、例えば2つの冷凍サイクル(ヒートポンプサイクル)を具備した2段圧縮冷凍サイクル装置が知られている(例えば特許文献1参照)。   Conventionally, as an example of this type of hot water supply apparatus, a two-stage compression refrigeration cycle apparatus including a plurality of, for example, two refrigeration cycles (heat pump cycles) is known (see, for example, Patent Document 1).

この2段圧縮冷凍サイクル装置は、2台の圧縮機を直列に接続して冷媒を2台の圧縮機で圧縮する2段圧縮運転と、2台の圧縮機を並列に接続してそれぞれ個別に運転する単段圧縮並列運転とを切換可能に構成したものであり、これら両運転時に、共通の凝縮器と蒸発器として作用する熱交換器を使用する。   This two-stage compression refrigeration cycle apparatus has two-stage compression operation in which two compressors are connected in series and refrigerant is compressed by two compressors, and two compressors are connected in parallel to each other. It is configured to be able to switch between single-stage compression and parallel operation, and a heat exchanger that acts as a common condenser and evaporator is used during both operations.

特開平04−257661号公報Japanese Patent Laid-Open No. 04-257661

しかしながら、このような従来の2段圧縮冷凍サイクル装置では、2段の圧縮機により共通の熱交換器を使用する場合、単段圧縮の低能力運転時と2段圧縮の大能力運転時の冷媒バランスの確保が困難な場合がある。   However, in such a conventional two-stage compression refrigeration cycle apparatus, when a common heat exchanger is used by a two-stage compressor, the refrigerant during low-capacity operation of single-stage compression and large-capacity operation of two-stage compression is used. It may be difficult to ensure balance.

また、暖房運転時に、蒸発器として作用する空気熱交換器に着霜が発生した場合には、除霜運転のために暖房運転を停止させている。このために暖房効果が低減するという課題がある。   Further, when frost is generated in the air heat exchanger acting as an evaporator during the heating operation, the heating operation is stopped for the defrosting operation. For this reason, there exists a subject that the heating effect reduces.

本発明が解決しようとする課題は、要求される湯の沸き上げ温度や加熱能力に応じて2段圧縮運転と単段圧縮運転の切換が可能な給湯装置を提供することにある。   The problem to be solved by the present invention is to provide a hot water supply apparatus capable of switching between a two-stage compression operation and a single-stage compression operation in accordance with required hot water boiling temperature and heating capacity.

実施形態の給湯装置は、第1圧縮機、四方弁、第1水熱交換器の給水を通水させる第1通水路と熱交換可能に配設された第1凝縮器、第1絞り機構、第1空気熱交換器を第1冷媒配管により接続して冷媒を循環させる冷媒流路を形成した第1冷凍サイクルと、第2圧縮機、第2水熱交換器の給水を通水させる第2通水路と熱交換可能に配設された第2凝縮器、第2絞り機構、前記第1空気熱交換器に対し送風方向の風下側に並設された第2空気熱交換器を第2冷媒配管により接続して冷媒を循環させる冷媒流路を形成した第2冷凍サイクルと、を具備している。   A hot water supply apparatus of an embodiment includes a first compressor, a four-way valve, a first condenser that is arranged to exchange heat with a first water passage that allows water to be supplied from a first water heat exchanger, a first throttle mechanism, A first refrigeration cycle in which a first air heat exchanger is connected by a first refrigerant pipe to form a refrigerant flow path for circulating the refrigerant, and a second compressor and a second water heat exchanger are used to feed water from the second water heat exchanger. A second condenser, a second throttle mechanism, and a second air heat exchanger arranged in parallel with the first air heat exchanger on the leeward side in the blowing direction are arranged as a second refrigerant. And a second refrigeration cycle in which a refrigerant flow path for circulating the refrigerant is formed by piping.

そして、第1圧縮機と第2圧縮機が2段圧縮可能に接続されたときに、第1凝縮器と第2凝縮器が直列に接続される2段圧縮運転と、第1圧縮機と第2圧縮機が個別に運転されるときに、第1凝縮器と第2凝縮器も個別に運転される単段圧縮運転と、を切換可能に構成した。   And when the 1st compressor and the 2nd compressor are connected so that 2 stage compression is possible, the 1st condenser and the 2nd condenser are connected in series, the 2nd stage compression operation, the 1st compressor and the 1st compressor When the two compressors are individually operated, the first condenser and the single stage compression operation in which the second condenser is also individually operated can be switched.

実施形態に係る給湯装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the hot water supply apparatus which concerns on embodiment. 図1で示す給湯装置の2段圧縮運転時の作用を示す冷凍サイクル図。The refrigerating cycle figure which shows the effect | action at the time of the two-stage compression operation of the hot water supply apparatus shown in FIG. 図1で示す給湯装置の第1,第2冷凍サイクルをそれぞれ個別(並列)に給湯運転する場合の単段圧縮運転時の作用を示す冷凍サイクル図。The refrigeration cycle figure which shows the effect | action at the time of single stage compression operation in the case of carrying out the hot water supply operation of the 1st, 2nd refrigeration cycle of the hot water supply apparatus shown in FIG. 図1で示す給湯装置の第1,第2冷凍サイクルの一方を除霜運転し、他方を給湯運転する場合の単段圧縮運転時の作用を示す冷凍サイクル図。The refrigerating cycle figure which shows the effect | action at the time of a single stage compression operation in case one side of the 1st, 2nd freezing cycle of the hot-water supply apparatus shown in FIG.

以下、実施形態を、図面を参照して説明する。なお、複数の図面中、同一又は相当部分には同一符号を付している。   Hereinafter, embodiments will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawings.

図1は、実施形態に係る給湯装置の冷凍サイクル構成図である。この図1に示すように給湯装置1は、複数、例えば第1冷凍サイクルAと第2冷凍サイクルBを具備している。   Drawing 1 is a refrigeration cycle lineblock diagram of a hot-water supply device concerning an embodiment. As shown in FIG. 1, the hot water supply device 1 includes a plurality of, for example, a first refrigeration cycle A and a second refrigeration cycle B.

第1冷凍サイクルAは、第1圧縮機2Aの吐出口2A1、四方弁3A、第1水熱交換器4Aの給水を通水させる第1通水路4A1と熱交換可能に配設された第1凝縮器4A2、第1絞り機構の一例である第1膨張弁5A、第1空気熱交換器6Aおよび第1圧縮機2A1の吸込口2A2を第1冷媒配管7Aにより接続して冷媒を循環させる冷媒流路を形成している。   The first refrigeration cycle A is disposed in a heat exchangeable manner with the first water passage 4A1 through which water is supplied from the discharge port 2A1, the four-way valve 3A, and the first water heat exchanger 4A of the first compressor 2A. A refrigerant that circulates the refrigerant by connecting the condenser 4A2, the first expansion valve 5A as an example of the first throttle mechanism, the first air heat exchanger 6A, and the suction port 2A2 of the first compressor 2A1 through the first refrigerant pipe 7A. A flow path is formed.

第2冷凍サイクルBは、第2圧縮機2Bの冷媒吐出口2B1、第2水熱交換器4Bの給水を通水させる第2通水路4B1と熱交換可能に配設された第2凝縮器4B2、第2絞り機構の一例である第2膨張弁5B、第2空気熱交換器6Bおよび上記第2圧縮機2Bの吸込口2B2を第2冷媒配管7Bにより接続して冷媒を循環させる冷媒流路を形成している。上記第1,第2空気熱交換器6A,6Bは、例えば多列タイプのフィンドアンドチューブ熱交換器により構成されている。   The second refrigeration cycle B includes a refrigerant outlet 2B1 of the second compressor 2B and a second water passage 4B1 through which water is supplied from the second water heat exchanger 4B. The second expansion valve 5B, the second air heat exchanger 6B, and the suction port 2B2 of the second compressor 2B, which are examples of the second throttle mechanism, are connected by the second refrigerant pipe 7B to circulate the refrigerant. Is forming. The first and second air heat exchangers 6A and 6B are constituted by, for example, multi-row type find-and-tube heat exchangers.

そして、上記第1水熱交換器4Aの第1通水路4A1と第2水熱交換器4Bの第2通水路4B1は、給水管8により直列に接続されている。   The first water passage 4A1 of the first water heat exchanger 4A and the second water passage 4B1 of the second water heat exchanger 4B are connected in series by a water supply pipe 8.

給水管8は、第1通水路4A1の水入口に接続された上流側配管8Aと、第2通水路4B1の出湯口に接続された下流側給水管8Bとを具備している。この下流側給水管8Bの途中には、給水循環ポンプ9が介装されている。この給水循環ポンプ9により給水が第1,第2水熱交換器4A,4Bの第1,第2通水路4A1,4B1を順次通水し、かつ繰り返し循環することにより、所要温度に沸き上げられる。   The water supply pipe 8 includes an upstream pipe 8A connected to the water inlet of the first water passage 4A1 and a downstream water supply pipe 8B connected to the outlet of the second water passage 4B1. A water supply circulation pump 9 is interposed in the middle of the downstream side water supply pipe 8B. By this feed water circulation pump 9, the feed water is heated up to a required temperature by sequentially passing through the first and second water passages 4A1, 4B1 of the first and second water heat exchangers 4A, 4B and repeatedly circulating them. .

そして、給湯装置1は、四方弁3Aと第2圧縮機2Bの吸込口2B2とを接続する第1,第2圧縮機接続管10、第2凝縮器4B2の出口と第1凝縮器4A1の入口とを直列に接続する第1,第2凝縮器接続管11と、第1,第2空気熱交換器6A,6Bの入口側同士を接続する入口側接続管12および第1,第2空気熱交換器6A,6Bの出口側同士を接続する出口側接続管13を設けている。   And the hot water supply apparatus 1 is the 1st, 2nd compressor connection pipe | tube 10 which connects 3 A of valves and the suction inlet 2B2 of the 2nd compressor 2B, the exit of 2nd condenser 4B2, and the entrance of 1st condenser 4A1. The first and second condenser connecting pipes 11 connected in series, the inlet side connecting pipe 12 connecting the inlet sides of the first and second air heat exchangers 6A and 6B, and the first and second air heats. An outlet side connecting pipe 13 for connecting the outlet sides of the exchangers 6A and 6B is provided.

このために、第1,第2空気熱交換器6A,6B同士は入口側接続管12と出口側接続管13とにより並列に接続され、並列回路が形成される。そこで、これら第1,第2空気熱交換器6A,6B同士を所要の間隔を置いて並設し、例えば吸込ファン等からなる送風機14の送風方向上流側に第1空気熱交換器6Aを配置し、この第1空気熱交換器6Aの下流側に第2空気熱交換器6Bを配置している。   For this purpose, the first and second air heat exchangers 6A and 6B are connected in parallel by the inlet side connecting pipe 12 and the outlet side connecting pipe 13 to form a parallel circuit. Therefore, the first and second air heat exchangers 6A and 6B are arranged in parallel with each other at a predetermined interval, and the first air heat exchanger 6A is arranged on the upstream side in the blowing direction of the blower 14 including, for example, a suction fan. And the 2nd air heat exchanger 6B is arrange | positioned in the downstream of this 1st air heat exchanger 6A.

また、この第1,第2圧縮機接続管10の途中には、2段圧縮開閉弁15を介装し、第1,第2凝縮器接続管11の途中には、凝縮器開閉弁16を介装している。   Further, a two-stage compression on-off valve 15 is interposed in the middle of the first and second compressor connection pipes 10, and a condenser on-off valve 16 is provided in the middle of the first and second condenser connection pipes 11. It is intervening.

さらに、入口側接続管12の途中には、入口側開閉弁17を介装し、出口側接続管13の途中には出口側開閉弁18を介装している。   Further, an inlet-side opening / closing valve 17 is interposed in the middle of the inlet-side connecting pipe 12, and an outlet-side opening / closing valve 18 is interposed in the middle of the outlet-side connecting pipe 13.

そして、給湯装置1は、第1凝縮器4A2の冷媒出口側を第2空気熱交換器6Bの冷媒入口側に接続する2相冷媒出口管19を設けている。この2相冷媒出口管19の途中には、冷媒の循環方向上流側から下流側に向けて流量調整弁20、気液分離器21および液側開閉弁22をこの順に順次介装している。   The hot water supply device 1 is provided with a two-phase refrigerant outlet pipe 19 that connects the refrigerant outlet side of the first condenser 4A2 to the refrigerant inlet side of the second air heat exchanger 6B. In the middle of the two-phase refrigerant outlet pipe 19, a flow rate adjustment valve 20, a gas-liquid separator 21, and a liquid side on-off valve 22 are sequentially inserted in this order from the upstream side to the downstream side in the refrigerant circulation direction.

気液分離器21は、そのガス冷媒出口に一端が接続されたインジェクション管23の他端を、第1冷媒配管7Aにおける四方弁3Aと第2圧縮機2Bとの中間部に接続している。このインジェクション管23の途中には注入開閉弁24を介装している。また、この第1冷媒配管7Aの途中には、インジェクション管23との接続部と第1凝縮器4A2の冷媒入口との中間部にて、第1凝縮器開閉弁25を介装している。   The gas-liquid separator 21 connects the other end of the injection pipe 23 whose one end is connected to the gas refrigerant outlet to an intermediate portion between the four-way valve 3A and the second compressor 2B in the first refrigerant pipe 7A. An injection opening / closing valve 24 is interposed in the middle of the injection pipe 23. Further, in the middle of the first refrigerant pipe 7A, a first condenser on-off valve 25 is interposed at an intermediate part between the connection part with the injection pipe 23 and the refrigerant inlet of the first condenser 4A2.

さらに、第1冷媒配管7Aは、その第1凝縮器4A2の下流側に第1空気熱交換器開閉弁28を介装している。   Further, the first refrigerant pipe 7A is provided with a first air heat exchanger on / off valve 28 on the downstream side of the first condenser 4A2.

そして、第2冷媒配管7Bは、その第2凝縮器4B2の下流側に、第2凝縮器開閉弁26を介装し、第2空気熱交換器6Bの下流側に、第2空気熱交換器開閉弁27を介装している。   The second refrigerant pipe 7B is provided with a second condenser on-off valve 26 on the downstream side of the second condenser 4B2, and on the downstream side of the second air heat exchanger 6B. An on-off valve 27 is interposed.

そして、上記各開閉弁、すなわち、2段圧縮開閉弁15、凝縮器開閉弁16、入口側開閉弁17、出口側開閉弁18、液側開閉弁22、注入開閉弁24、第1凝縮器開閉弁25、第2凝縮器開閉弁26、第2空気熱交換器開閉弁27および第1空気熱交換器開閉弁28は、例えば電磁弁により構成され、制御器29に図示省略の信号線を介して電気的に接続され、制御器29により開閉制御される。   And each said on-off valve, ie, the two-stage compression on-off valve 15, the condenser on-off valve 16, the inlet side on-off valve 17, the outlet side on-off valve 18, the liquid side on-off valve 22, the injection on-off valve 24, the first condenser on-off The valve 25, the second condenser on / off valve 26, the second air heat exchanger on / off valve 27, and the first air heat exchanger on / off valve 28 are constituted by, for example, electromagnetic valves, and are connected to the controller 29 via signal lines (not shown). Are electrically connected to each other and controlled to be opened and closed by a controller 29.

また、第1,第2膨張弁5A,5Bおよび流量調整弁20は、例えばPMV(パルスモータバルブ)等の電動弁よりなり、図示省略の信号線を介して制御器29に電気的に接続され、この制御器29により開度が制御される。また、制御器29には上記給水循環ポンプ9と送風機14の図示省略のインバータが図示省略の信号線により電気的に接続され、給水循環ポンプ9と送風機14のON−OFFや回転速度等が制御される。   The first and second expansion valves 5A and 5B and the flow rate adjusting valve 20 are electrically operated valves such as a PMV (pulse motor valve), and are electrically connected to the controller 29 via a signal line (not shown). The opening degree is controlled by the controller 29. Further, the controller 29 is electrically connected to an inverter (not shown) of the feed water circulation pump 9 and the blower 14 through a signal line (not shown) to control ON / OFF, rotation speed, etc. of the feed water circulation pump 9 and the blower 14. Is done.

制御器29は、例えばマイクロプロセッサ等から構成され、後述する各種制御プログラム等が記録されたROM、その制御プログラム等を実行するCPU、その実行時の作業領域や一時記憶を構成するRAM等を具備している。   The controller 29 includes, for example, a microprocessor and the like, and includes a ROM in which various control programs to be described later are recorded, a CPU for executing the control program, a RAM for configuring a work area and a temporary storage at the time of execution, and the like. doing.

制御器29は、図示省略の運転操作部からの操作信号と、温度センサ等の各種センサからの検出信号を読み込み、これらの読込み信号に基づいて給湯装置1全体の運転を制御する機能を具備している。   The controller 29 has a function of reading an operation signal from a driving operation unit (not shown) and detection signals from various sensors such as a temperature sensor and controlling the operation of the entire hot water supply device 1 based on these read signals. ing.

制御器29は、給湯装置1の運転を制御する種々の制御プログラムをROMに記録してあるが、少なくとも2段圧縮運転と単段圧縮運転とを切換可能に制御する制御プログラムを具備している。   The controller 29 stores various control programs for controlling the operation of the hot water supply device 1 in the ROM, and includes a control program for controlling at least a two-stage compression operation and a single-stage compression operation. .

図2に示す2段圧縮運転は、図示省略の運転操作部からの操作要求が低外気温時等において湯の沸き上げ温度を高めることにある場合に、第1,第2冷凍サイクルA,Bの2台の圧縮機2A,2Bを直列に接続して2段圧縮運転すると共に、第1水熱交換器4Aの第1凝縮器4A2と、第2水熱交換器4Bの第2凝縮器4B2とを直列に接続して、湯の沸き上げ温度を高める運転方法である。   In the two-stage compression operation shown in FIG. 2, the first and second refrigeration cycles A and B are performed when the operation request from a driving operation unit (not shown) is to increase the boiling temperature of hot water at a low outside air temperature. The two compressors 2A and 2B are connected in series to perform a two-stage compression operation, and the first condenser 4A2 of the first water heat exchanger 4A and the second condenser 4B2 of the second water heat exchanger 4B. Are connected in series to increase the boiling temperature of hot water.

単段圧縮運転は、運転操作部からの操作要求が給湯装置1の加熱能力の向上である場合に、図3に示すように第1,第2冷凍サイクルA,Bをそれぞれ個別に給湯運転して加熱能力の向上を図る運転と、図4に示すように第1冷凍サイクルAを除霜運転し、第2冷凍サイクルBを給湯運転する運転と、排除容積が第1圧縮機2Aよりも小さい第2圧縮機2Bを有する第2冷凍サイクルBのみを運転し、第1冷凍サイクルAの運転を停止させて効率的に低能力運転を図る運転とがある。   In the single-stage compression operation, when the operation request from the operation operation unit is an improvement in the heating capacity of the hot water supply device 1, the first and second refrigeration cycles A and B are separately supplied with hot water as shown in FIG. The operation for improving the heating capacity and the operation for defrosting the first refrigeration cycle A and the hot water supply operation for the second refrigeration cycle B, as shown in FIG. 4, and the displacement volume being smaller than those of the first compressor 2A There is an operation in which only the second refrigeration cycle B having the second compressor 2B is operated and the operation of the first refrigeration cycle A is stopped to efficiently perform the low capacity operation.

図2は2段圧縮運転時の冷凍サイクル図である。この2段圧縮運転時では、制御器29により第1,第2圧縮機2A,2Bが運転(ON)され、さらに、2段圧縮開閉弁15、凝縮器開閉弁16、液側開閉弁22、入口側開閉弁17、出口側開閉弁18がそれぞれ開弁される。   FIG. 2 is a refrigeration cycle diagram during the two-stage compression operation. During this two-stage compression operation, the controller 29 operates (ON) the first and second compressors 2A, 2B, and further, the two-stage compression on-off valve 15, the condenser on-off valve 16, the liquid side on-off valve 22, The inlet side opening / closing valve 17 and the outlet side opening / closing valve 18 are each opened.

一方、第1,第2空気熱交換器開閉弁28,27、第1,第2凝縮器開閉弁25,26は、制御器29によりそれぞれ閉弁される。   On the other hand, the first and second air heat exchanger on / off valves 28 and 27 and the first and second condenser on / off valves 25 and 26 are closed by the controller 29.

これにより、図2中、冷媒が実線で示す冷媒流路を実線矢印方向に循環し、破線で示す冷媒流路は閉鎖される。   Thus, in FIG. 2, the refrigerant circulates in the refrigerant flow path indicated by the solid line in the direction of the solid arrow, and the refrigerant flow path indicated by the broken line is closed.

すなわち、第1,第2圧縮機2A,2B同士が第1,第2圧縮機接続管10により直列に接続され、第1,第2凝縮器4A2,4B2同士が第1,第2凝縮器接続管11により直列に接続される。なお、図2〜図4中、白矢印は給水の通水または循環方向を示す。   That is, the first and second compressors 2A and 2B are connected in series by the first and second compressor connecting pipes 10, and the first and second condensers 4A2 and 4B2 are connected to each other by the first and second condensers. The tubes 11 are connected in series. 2 to 4, white arrows indicate the direction of water supply or circulation.

また、第1,第2空気熱交換器6A,6Bの両入口側が入口接続管12により接続されると共に、その両出口側が出口接続管13により接続される。このために、第1,第2空気熱交換器6A,6B同士が並列に接続される。   Further, both inlet sides of the first and second air heat exchangers 6A and 6B are connected by the inlet connecting pipe 12 and both outlet sides thereof are connected by the outlet connecting pipe 13. For this purpose, the first and second air heat exchangers 6A and 6B are connected in parallel.

一方、図2中、破線で示す冷媒流路、すなわち、第1,第2凝縮器4A2,4B2の各出口側から第1,第2空気熱交換器6A,6Bの各入口側までと、第2空気熱交換器6Bの出口側から第2圧縮機2Bの吸込口側までの冷媒流路の一部がそれぞれ閉鎖される。   On the other hand, in FIG. 2, the refrigerant flow paths indicated by broken lines, that is, from the outlet sides of the first and second condensers 4A2 and 4B2 to the inlet sides of the first and second air heat exchangers 6A and 6B, Part of the refrigerant flow path from the outlet side of the two-air heat exchanger 6B to the suction port side of the second compressor 2B is closed.

これにより、第1圧縮機2Aにより圧縮されて吐出口2A1から吐出された高温高圧のガス冷媒は、四方弁3Aと第1,第2圧縮機接続管10を経て第2圧縮機2B内に、その吸込口2B2から吸い込まれ、第2圧縮機2Bにより、さらに圧縮されて、さらに高温高圧のガス冷媒となって吐出口2B1から吐出され、第2,第1水熱交換器4B,4Aの直列接続の第2,第1凝縮器4B2,4A2に順次流入され、ここで凝縮潜熱が第2,第1通水路4B1,4A1を順次流れる通水に放熱される。   Thereby, the high-temperature and high-pressure gas refrigerant compressed by the first compressor 2A and discharged from the discharge port 2A1 passes through the four-way valve 3A and the first and second compressor connecting pipes 10 into the second compressor 2B. The air is sucked in from the suction port 2B2, further compressed by the second compressor 2B, becomes a high-temperature and high-pressure gas refrigerant and is discharged from the discharge port 2B1, and the second and first water heat exchangers 4B and 4A are connected in series. Sequentially flows into the connected second and first condensers 4B2 and 4A2, where the latent heat of condensation is dissipated to the water flowing sequentially through the second and first water passages 4B1 and 4A1.

これにより、直列接続の第2,第1通水路4B1,4A1を順次流れる通水が2段階で加熱される。しかも、2段圧縮された高温高圧のガス冷媒により加熱されるので、湯の沸き上げ温度を高めることができる。   Thereby, the water flowing sequentially through the second and first water passages 4B1 and 4A1 connected in series is heated in two stages. And since it heats with the high-temperature / high pressure gas refrigerant | coolant compressed by 2 steps | paragraphs, the boiling temperature of hot water can be raised.

一方、第1,第2凝縮器4A2,4B2で放熱して凝縮液化した液冷媒は2相冷媒出口管19を経て流量調整弁20で流量が制御されつつ減圧されてから、中温中圧の気液2相冷媒となって気液分離器21内に流入し、ここで気液分離される。   On the other hand, the liquid refrigerant condensed and liquefied by radiating heat in the first and second condensers 4A2 and 4B2 is reduced in pressure through the two-phase refrigerant outlet pipe 19 while the flow rate is controlled by the flow rate adjusting valve 20, and then the medium temperature and medium pressure gas is discharged. It becomes a liquid two-phase refrigerant and flows into the gas-liquid separator 21, where it is gas-liquid separated.

ここで気液分離された気相のガス冷媒はインジェクション管23を経て第1,第2圧縮機接続管10に流入され、ここで第1圧縮機2Aから吐出された高温高圧のガス冷媒と合流して第2圧縮機2B内に注入される。   Here, the gas-phase gas refrigerant separated from the gas and liquid flows into the first and second compressor connecting pipes 10 through the injection pipe 23, where they merge with the high-temperature and high-pressure gas refrigerant discharged from the first compressor 2A. Then, it is injected into the second compressor 2B.

一方、気液分離器21で気液分離された液冷媒は、並列接続の第1,第2空気熱交換器6A,6B内にそれぞれ流入して並行に流れ、ここで液冷媒の蒸発潜熱によりそれぞれ蒸発し、外気から吸熱して気化し、第1圧縮機2A内に吸い込まれる。このガス冷媒は、第1圧縮機2Aで再び圧縮され、第2圧縮機2Bでさらに圧縮されて2段圧縮され、上記作用を以下繰り返す。   On the other hand, the liquid refrigerant separated by the gas-liquid separator 21 flows into the first and second air heat exchangers 6A and 6B connected in parallel and flows in parallel, and here, due to the latent heat of evaporation of the liquid refrigerant. Each of them evaporates, absorbs heat from the outside air, vaporizes, and is sucked into the first compressor 2A. This gas refrigerant is compressed again by the first compressor 2A, further compressed by the second compressor 2B, and compressed in two stages, and the above-described operation is repeated.

したがって、この2段圧縮運転によれば、2台の第1,第2圧縮機2A,2Bによりガス冷媒を2段で圧縮するので、第2圧縮機2Bから第1,第2水熱交換器4A,4Bの第1,第2凝縮器4A2,4B2へ順次流入されるガス冷媒の温度と圧力を1段圧縮の場合よりも高めることができる。   Therefore, according to this two-stage compression operation, the gas refrigerant is compressed in two stages by the two first and second compressors 2A and 2B, so that the first and second water heat exchangers are converted from the second compressor 2B. The temperature and pressure of the gas refrigerant sequentially flowing into the first and second condensers 4A2 and 4B2 of 4A and 4B can be increased as compared with the case of one-stage compression.

また、この高温高圧のガス冷媒により、直列接続の第2通水路4B1と第1通水路4A1の通水を、第2,第1凝縮器4B2,4A2により2段階でそれぞれ加熱するので、第2通水路4B1から出湯される水(湯)の沸き上げ温度を高めることができる。すなわち、このような2段圧縮運転は、低外気温時での高温水加熱運転等の高圧縮運転を行うことができる。   Further, the high-temperature and high-pressure gas refrigerant heats the water in the second water passage 4B1 and the first water passage 4A1 connected in series by the second and first condensers 4B2 and 4A2, respectively. The boiling temperature of water (hot water) discharged from the water passage 4B1 can be increased. That is, such a two-stage compression operation can perform a high compression operation such as a high-temperature water heating operation at a low outside air temperature.

また、気液分離器21で気液分離されたガス冷媒をインジェクション管23を介して第2圧縮機2B内に注入させることにより、液冷媒のみを第1,第2空気熱交換器6A,6B内にそれぞれ流入させることができるため、第1,第2空気熱交換における吸熱量が増え、効率が向上する。その上、気液分離されたガス冷媒を第2圧縮機2Bに流入させるようにしたので、ガス冷媒の流入増加による圧力損失増加の影響を第1圧縮機2Aおよび第2圧縮機2Bの両方で受けないので、給湯装置1全体の効率低下を防ぐことがきる。   Further, by injecting the gas refrigerant separated by the gas-liquid separator 21 into the second compressor 2B through the injection pipe 23, only the liquid refrigerant is supplied to the first and second air heat exchangers 6A, 6B. Therefore, the heat absorption amount in the first and second air heat exchange increases, and the efficiency is improved. In addition, since the gas refrigerant separated into gas and liquid is caused to flow into the second compressor 2B, the influence of an increase in pressure loss due to an increase in the inflow of gas refrigerant is affected by both the first compressor 2A and the second compressor 2B. Since it does not receive, it can prevent the efficiency fall of the hot-water supply apparatus 1 whole.

図3は、第1,第2冷凍サイクルA,Bをそれぞれ個別に給湯運転する場合の給湯装置1の単段圧縮2台並列運転の作用を示す冷凍サイクル図である。   FIG. 3 is a refrigeration cycle diagram showing the operation of the single-stage compression two-unit parallel operation of the hot water supply apparatus 1 when the first and second refrigeration cycles A and B are individually operated for hot water supply.

この単段圧縮2台並列運転では、制御器29により、第1,第2圧縮機2A,2Bが運転され、第2凝縮器開閉弁26、第2空気熱交換器開閉弁27、第1凝縮器開閉弁25、第1空気熱交換器開閉弁28がそれぞれ開弁される。   In this single-stage compression two-unit parallel operation, the first and second compressors 2A and 2B are operated by the controller 29, the second condenser on-off valve 26, the second air heat exchanger on-off valve 27, the first condensation The open / close valve 25 and the first air heat exchanger open / close valve 28 are opened.

一方、凝縮器開閉弁16、液側開閉弁22、入口側開閉弁17、出口側開閉弁18および注入開閉弁24が制御器29によりそれぞれ閉弁される。   On the other hand, the condenser open / close valve 16, the liquid side open / close valve 22, the inlet side open / close valve 17, the outlet side open / close valve 18, and the injection open / close valve 24 are closed by the controller 29.

これにより、図3中、冷媒が実線で示す冷媒流路を実線矢印方向に循環し、破線で示す冷媒流路は閉鎖される。   As a result, in FIG. 3, the refrigerant circulates in the refrigerant flow path indicated by the solid line in the direction of the solid arrow, and the refrigerant flow path indicated by the broken line is closed.

このために、第1,第2冷凍サイクルA,Bはそれぞれ個別に運転され、第1,第2水熱交換器4A,4Bの第1凝縮器4A2と第2凝縮器4B2もそれぞれ個別に運転される。   For this purpose, the first and second refrigeration cycles A and B are individually operated, and the first condenser 4A2 and the second condenser 4B2 of the first and second water heat exchangers 4A and 4B are also individually operated. Is done.

このために、第1冷凍サイクルAでは、第1圧縮機2Aにより圧縮された高温高圧のガス冷媒が四方弁3Aを経て第1水熱交換器4Aの第1凝縮器4A2内に流入し、ここで凝縮潜熱を放出して第1通水路4A1の通水を加熱して湯に沸き上げる。   For this reason, in the first refrigeration cycle A, the high-temperature and high-pressure gas refrigerant compressed by the first compressor 2A flows into the first condenser 4A2 of the first water heat exchanger 4A through the four-way valve 3A. Then, the latent heat of condensation is released to heat the water in the first water passage 4A1 and boil it to hot water.

この第1凝縮器4A2で放熱して液化した液冷媒は、第1膨張弁5Aにより流量制御されつつ減圧されて第1空気熱交換器6A内へ流入し、ここで液冷媒の蒸発潜熱により蒸発して外気から吸熱し、ガス冷媒となって、第1圧縮機2A内に吸い込まれ、ここで再び圧縮され、以下、上記作用を繰り返すことにより、第1通水路4A1の通水を加熱して湯に沸き上げる。   The liquid refrigerant radiated and liquefied by the first condenser 4A2 is decompressed while being controlled in flow rate by the first expansion valve 5A and flows into the first air heat exchanger 6A, where it evaporates due to the latent heat of vaporization of the liquid refrigerant. Then, it absorbs heat from the outside air, becomes a gas refrigerant, is sucked into the first compressor 2A, is compressed again here, and thereafter the water flowing through the first water passage 4A1 is heated by repeating the above-described operation. Boil in hot water.

一方、第2冷凍サイクルBについても、上記第1冷凍サイクルAとほぼ同様に、第2圧縮機2Bで圧縮された高温高圧のガス冷媒は、第2水熱交換器4Bの第2凝縮器4B2内に流入し、ここで凝縮潜熱を放出して第2通水路4B1の通水を加熱して湯に沸き上げる。   On the other hand, in the second refrigeration cycle B, as in the first refrigeration cycle A, the high-temperature and high-pressure gas refrigerant compressed by the second compressor 2B is converted into the second condenser 4B2 of the second water heat exchanger 4B. The latent heat of condensation is discharged here, and the water in the second water passage 4B1 is heated and boiled into hot water.

この第2凝縮器4B2で放熱して液化した液冷媒は、第1冷凍サイクルAとほぼ同様に、第2膨張弁5B→第2空気熱交換器6Aを経て再び第2圧縮機2Bに吸い込まれ、ここで再び圧縮されて、以下、上記作用を繰り返すことにより、第2通水路の通水を加熱して湯に沸き上げる。   The liquid refrigerant liquefied by radiating heat in the second condenser 4B2 is sucked into the second compressor 2B again through the second expansion valve 5B → the second air heat exchanger 6A in substantially the same manner as in the first refrigeration cycle A. Here, after being compressed again, the above operation is repeated to heat the water in the second water channel and bring it to hot water.

したがって、この単段運転、すなわち、単段2台並列給湯運転によれば、第1,第2冷凍サイクルA,Bの第1,第2水熱交換器4A,4Bの第1,第2通水路4A1,4B1の水(湯)をそれぞれ個別に加熱し、湯に沸き上げるので、中温水加温運転や、出湯量の増量を図ることができる。すなわち、給湯装置1の加熱能力の向上を図ることができる。   Therefore, according to this single-stage operation, that is, the single-stage two-unit parallel hot water supply operation, the first and second water heat exchangers 4A and 4B of the first and second refrigeration cycles A and B are connected. Since the water (hot water) in the water channels 4A1 and 4B1 is individually heated and boiled up to the hot water, it is possible to increase the amount of hot water and the amount of hot water to be heated. That is, the heating capacity of the hot water supply device 1 can be improved.

図4は、第1,第2冷凍サイクルA,Bの一方、例えばAを除霜運転し、他方Bを給湯運転する場合の作用を示す冷凍サイクル図である。   FIG. 4 is a refrigeration cycle diagram showing an operation when one of the first and second refrigeration cycles A and B, for example, A is defrosted and the other B is hot water supplied.

すなわち、この単段圧縮運転は、図3で示すように第1,第2冷凍サイクルA,Bを共に給湯運転した場合に、例えば低外気温のために、第1,第2冷凍サイクルA,Bの第1,第2空気熱交換器6A,6Bに着霜が発生したときに、第1冷凍サイクルAの四方弁3Aを冷媒が図4中、破線矢印方向に循環するように制御器29により切り換えて反転除霜運転する場合の運転方法である。このために、上記各開閉弁の開閉制御は図3の運転方法の場合と同じように開閉制御される。   That is, in the single-stage compression operation, when the first and second refrigeration cycles A and B are both hot-watered as shown in FIG. When the frost is generated in the first and second air heat exchangers 6A and 6B of B, the controller 29 so that the refrigerant circulates through the four-way valve 3A of the first refrigeration cycle A in the direction of the broken line arrow in FIG. This is an operation method in the case where the reverse defrosting operation is performed by switching by the above. For this reason, the opening / closing control of each opening / closing valve is controlled in the same manner as in the operation method of FIG.

したがって、第2冷凍サイクルBは、上記図2,図3で示す実施形態と同様に給湯運転される。このために、第2圧縮機2Bにより圧縮された高温高圧のガス冷媒は、図4中実線矢印方向に循環し、第2水熱交換器4Bの第2凝縮器4B2により第2通水路4B1の通水を加熱し、湯に沸き上げる。   Therefore, the second refrigeration cycle B is operated for hot water supply in the same manner as the embodiment shown in FIGS. For this purpose, the high-temperature and high-pressure gas refrigerant compressed by the second compressor 2B circulates in the direction of the solid line arrow in FIG. 4, and the second condenser 4B2 of the second water heat exchanger 4B causes the second water passage 4B1. Heat the water and boil it in hot water.

他方、第1冷凍サイクルAでは、第1圧縮機2Aにより圧縮された高温高圧のガス冷媒が実線矢印方向で示す給湯運転とは、逆方向の破線矢印方向に循環するので、まず、第1空気熱交換器6A内に流入し、ここで凝縮潜熱を放出して第1空気熱交換器6Aを加熱する。これにより、第1空気熱交換器6Aに付着している着霜を加熱溶融して除霜することができる。   On the other hand, in the first refrigeration cycle A, the high-temperature and high-pressure gas refrigerant compressed by the first compressor 2A circulates in the direction of the dashed arrow in the direction opposite to the hot water supply operation indicated by the solid line arrow direction. It flows into the heat exchanger 6A, where the latent heat of condensation is released to heat the first air heat exchanger 6A. Thereby, the frost adhering to 6 A of 1st air heat exchangers can be defrosted by heating-melting.

また、この第1空気熱交換器6Aは、これに並設された第2空気熱交換器6Bに対して送風機14の送風方向上流側にあるので、第1空気熱交換器6Aにより加熱された温風が第2空気熱交換器6Bに吹き当てられ、これを加熱する。   Moreover, since this 1st air heat exchanger 6A exists in the ventilation direction upstream of the air blower 14 with respect to the 2nd air heat exchanger 6B arranged in parallel with this, it was heated by the 1st air heat exchanger 6A. Hot air is blown against the second air heat exchanger 6B to heat it.

このために、第2空気熱交換器6Bを加熱することができるので、この第2空気熱交換器6Bに付着した着霜も加熱して除霜することができる。   For this reason, since the 2nd air heat exchanger 6B can be heated, the frost adhering to this 2nd air heat exchanger 6B can also be heated and defrosted.

これにより、第2冷凍サイクルBでは、反転除霜運転をする必要がない。そのために四方弁3Aを省略して部品数を削減し、冷凍サイクルの構成の簡単化とコスト低減を図ることができる。   Thereby, in the 2nd freezing cycle B, it is not necessary to perform a reverse defrost operation. Therefore, the four-way valve 3A can be omitted to reduce the number of parts, and the configuration of the refrigeration cycle can be simplified and the cost can be reduced.

そして、この給湯装置1では、第1圧縮機2Aの排除容積が第2圧縮機2Bの排除容積の0.5〜0.7倍であり、圧縮能力は第1圧縮機2Aの方が第2圧縮機2Bよりも低い。   And in this hot water supply device 1, the excluded volume of the first compressor 2A is 0.5 to 0.7 times the excluded volume of the second compressor 2B, and the compression capacity of the first compressor 2A is the second. Lower than compressor 2B.

このために、この第1圧縮機2Aを備えている第1冷凍サイクルAのみを給湯運転し、第2冷凍サイクルBの運転を停止させることにより、低能力で給湯運転を容易かつ効率的に行うことができる。   For this reason, only the first refrigeration cycle A provided with the first compressor 2A is operated for hot water supply, and the operation of the second refrigeration cycle B is stopped, whereby the hot water supply operation is performed easily and efficiently with low capacity. be able to.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

1…給湯装置、A…第1冷凍サイクル、B…第2冷凍サイクル、2A…第1圧縮機、2B…第2圧縮機、3A…四方弁、4A…第1水熱交換器、4B…第2水熱交換器、4A1…第1通水路、4B1…第2通水路、4A2…第1凝縮器、4B2…第2凝縮器、5A…第1膨張弁(第1絞り機構)、5B…第2膨張弁(第2絞り機構)、6A…第1空気熱交換器、6B…第2空気熱交換器、7A…第1冷媒配管、7B…第2冷媒配管、21…気液分離器、23…インジェクション管、29…制御器。   DESCRIPTION OF SYMBOLS 1 ... Hot-water supply apparatus, A ... 1st freezing cycle, B ... 2nd freezing cycle, 2A ... 1st compressor, 2B ... 2nd compressor, 3A ... Four-way valve, 4A ... 1st water heat exchanger, 4B ... 1st 2 water heat exchangers, 4A1 ... first water passage, 4B1 ... second water passage, 4A2 ... first condenser, 4B2 ... second condenser, 5A ... first expansion valve (first throttle mechanism), 5B ... first 2 expansion valve (second throttle mechanism), 6A ... first air heat exchanger, 6B ... second air heat exchanger, 7A ... first refrigerant pipe, 7B ... second refrigerant pipe, 21 ... gas-liquid separator, 23 ... injection tube, 29 ... controller.

Claims (6)

第1圧縮機、四方弁、第1水熱交換器の給水を通水させる第1通水路と熱交換可能に配設された第1凝縮器、第1絞り機構、第1空気熱交換器を第1冷媒配管により接続して冷媒を循環させる冷媒流路を形成した第1冷凍サイクルと、
第2圧縮機、第2水熱交換器の給水を通水させる第2通水路と熱交換可能に配設された第2凝縮器、第2絞り機構、前記第1空気熱交換器に対し送風方向の風下側に並設された第2空気熱交換器を第2冷媒配管により接続して冷媒を循環させる冷媒流路を形成した第2冷凍サイクルと、を具備し、
前記第1圧縮機と第2圧縮機が2段圧縮可能に接続されたときに、前記第1凝縮器と第2凝縮器が直列に接続される2段圧縮運転と、
前記第1圧縮機と第2圧縮機が個別に運転されるときに、前記第1凝縮器と第2凝縮器も個別に運転される単段圧縮運転と、
を切換可能に構成したことを特徴とする給湯装置。
A first condenser, a four-way valve, a first water passage that feeds water from the first water heat exchanger, and a first condenser, a first throttle mechanism, and a first air heat exchanger that are arranged so as to be able to exchange heat. A first refrigeration cycle in which a refrigerant flow path for circulating the refrigerant by connecting with the first refrigerant pipe is formed;
Air is sent to the second compressor, the second water passage that allows water to be supplied from the second water heat exchanger, and the second condenser, the second throttle mechanism, and the first air heat exchanger that are arranged to exchange heat. A second refrigeration cycle in which a second air heat exchanger arranged in parallel on the leeward side of the direction is connected by a second refrigerant pipe to form a refrigerant flow path for circulating the refrigerant,
A two-stage compression operation in which the first condenser and the second condenser are connected in series when the first compressor and the second compressor are connected to be capable of two-stage compression;
A single-stage compression operation in which when the first compressor and the second compressor are individually operated, the first condenser and the second condenser are also individually operated; and
A hot water supply device that is configured to be switchable.
湯の沸き上げ温度を高める場合には、前記2段圧縮運転に切換えられることを特徴とする請求項1記載の給湯装置。 2. The hot water supply apparatus according to claim 1, wherein the hot water boiling temperature is switched to the two-stage compression operation when raising the boiling temperature of the hot water. 前記2段圧縮運転時には、前記第1、第2空気熱交換器どうしが並列に接続され、前記第2凝縮器からの冷媒の気液を分離する気液分離器がこの第2凝縮器と、前記第1、第2空気熱交換器どうしの並列回路との間に挿入され、この気液分離器で気液分離された気相冷媒が前記第1、第2圧縮機の吸込口側に注入されることを特徴とする請求項2記載の給湯装置。 During the two-stage compression operation, the first and second air heat exchangers are connected in parallel, and a gas-liquid separator that separates the gas-liquid refrigerant from the second condenser is the second condenser, The gas-phase refrigerant that is inserted between the first and second air heat exchangers and separated by the gas-liquid separator is injected into the suction port side of the first and second compressors. The hot water supply apparatus according to claim 2, wherein 加熱能力を増大させる場合には、前記前記第1、第2冷凍サイクルをそれぞれ個別に給湯運転する単段圧縮運転に切換えられることを特徴とする請求項1記載の給湯装置。 2. The hot water supply apparatus according to claim 1, wherein when the heating capacity is increased, the first and second refrigeration cycles are switched to a single-stage compression operation in which the hot water supply operation is performed individually. 前記単段圧縮運転時、前記第2冷凍サイクルが給湯運転され、第1冷凍サイクルが前記四方弁の切換操作により除霜運転されることを特徴とする請求項1記載の給湯装置。 The hot water supply apparatus according to claim 1, wherein during the single-stage compression operation, the second refrigeration cycle is operated for hot water supply, and the first refrigeration cycle is operated for defrosting by switching the four-way valve. 前記第1圧縮機と第2圧縮機の排除容積は、異なっていることを特徴とする請求項1記載の給湯装置。 The hot water supply apparatus according to claim 1, wherein excluded volumes of the first compressor and the second compressor are different.
JP2014017453A 2014-01-31 2014-01-31 water heater Pending JP2015143597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014017453A JP2015143597A (en) 2014-01-31 2014-01-31 water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017453A JP2015143597A (en) 2014-01-31 2014-01-31 water heater

Publications (1)

Publication Number Publication Date
JP2015143597A true JP2015143597A (en) 2015-08-06

Family

ID=53888756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017453A Pending JP2015143597A (en) 2014-01-31 2014-01-31 water heater

Country Status (1)

Country Link
JP (1) JP2015143597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514814A (en) * 2017-08-31 2017-12-26 郑州云宇新能源技术有限公司 Barber shop's Multifunctional heat pump water heater
CN109210849A (en) * 2018-08-14 2019-01-15 安徽康佳同创电器有限公司 A kind of adjustable refrigeration system and refrigerator
CN114110833A (en) * 2020-08-27 2022-03-01 青岛海尔空调电子有限公司 Air conditioning unit and control method thereof
WO2024204767A1 (en) * 2023-03-31 2024-10-03 ダイキン工業株式会社 Refrigeration cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514814A (en) * 2017-08-31 2017-12-26 郑州云宇新能源技术有限公司 Barber shop's Multifunctional heat pump water heater
CN109210849A (en) * 2018-08-14 2019-01-15 安徽康佳同创电器有限公司 A kind of adjustable refrigeration system and refrigerator
CN114110833A (en) * 2020-08-27 2022-03-01 青岛海尔空调电子有限公司 Air conditioning unit and control method thereof
CN114110833B (en) * 2020-08-27 2023-02-28 青岛海尔空调电子有限公司 Air conditioning unit and control method thereof
WO2024204767A1 (en) * 2023-03-31 2024-10-03 ダイキン工業株式会社 Refrigeration cycle system

Similar Documents

Publication Publication Date Title
KR101155496B1 (en) Heat pump type speed heating apparatus
KR101212698B1 (en) Heat pump type speed heating apparatus
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
US20150267957A1 (en) Air conditioner and method for controlling an air conditioner
EP1873466A2 (en) Refrigeration cycle and water heater
JP6057871B2 (en) Heat pump system and heat pump type water heater
KR101737365B1 (en) Air conditioner
CN104937352A (en) Binary refrigeration cycle device
JPWO2016017430A1 (en) Outdoor unit and refrigeration cycle equipment
JP2015143597A (en) water heater
US11592203B2 (en) Refrigeration cycle apparatus
JP2017150687A (en) Air conditioner and method for controlling air conditioner
JP6267952B2 (en) Refrigeration cycle equipment
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
WO2013014145A1 (en) A heat pump system for a laundry dryer
JP3992076B2 (en) vending machine
JP2006194537A (en) Heat pump device
US11668482B2 (en) Air conditioning system with pipe search
JP2014149103A (en) Refrigeration cycle device
JP6102811B2 (en) Refrigeration cycle equipment
KR101275580B1 (en) An air conditioner and Control method of the same
JP4155333B2 (en) vending machine
JP2016114319A (en) Heating system
JP6029569B2 (en) Heat pump system and heat pump type water heater