JP4345178B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4345178B2
JP4345178B2 JP2000059770A JP2000059770A JP4345178B2 JP 4345178 B2 JP4345178 B2 JP 4345178B2 JP 2000059770 A JP2000059770 A JP 2000059770A JP 2000059770 A JP2000059770 A JP 2000059770A JP 4345178 B2 JP4345178 B2 JP 4345178B2
Authority
JP
Japan
Prior art keywords
expansion valve
electronic expansion
path
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000059770A
Other languages
Japanese (ja)
Other versions
JP2001248931A (en
Inventor
正寛 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2000059770A priority Critical patent/JP4345178B2/en
Publication of JP2001248931A publication Critical patent/JP2001248931A/en
Application granted granted Critical
Publication of JP4345178B2 publication Critical patent/JP4345178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機に係わり、より詳細には、室外熱交換器とその周りの冷媒回路の構成に関する。
【0002】
【従来の技術】
従来の空気調和機は、図4の冷媒回路図にて示すように、1は冷媒蒸気を圧縮する圧縮機、5は同圧縮機1より吐出する冷媒の流れを運転モードに応じて切り換える四方弁、6は室内に設置され室内空気に対して冷媒の熱交換を行う室内熱交換器、7は冷媒が通過して膨張する電子膨張弁、8は室外に設置され外気に対して冷媒の熱交換を行う室外熱交換器という構成であった。
【0003】
【発明が解決しようとする課題】
しかしながら、上記構成では、暖房運転モードのとき室外温度が低く0℃以下の場合、蒸発器として機能する室外熱交換器へ流入する冷媒液の温度は室外温度以下である必要があり、外気より冷媒へ蒸発熱を伝達する室外熱交換器の表面は0℃以下の外気より更に低温となり、外気の水蒸気が室外熱交換器の表面に着霜してしまうという問題点があった。
本発明においては、上記の問題点に鑑み、0℃以下程度の低外気温度において室外熱交換器に着霜し難く、かつ効率的に暖房運転を行える空気調和機を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するため、圧縮機の吐出口から吐出される冷媒を、四方弁、室内熱交換器、電子膨張弁、室外熱交換器、前記四方弁を経て前記圧縮機の吸込口へ循環するヒートポンプ式冷凍サイクルを備えてなる空気調和機において、
前記室外熱交換器のパスをメインパスとサブパスに2分割して並列に接続し、前記メインパスの電子膨張弁側に第1補助電子膨張弁を設け、前記サブパスの四方弁側に第2補助電子膨張弁を設ける一方、前記室外熱交換器の近傍に室外温度センサを設け、前記メインパスの第1補助電子膨張弁側の入口と前記サブパスの電子膨張弁側の入口とに冷媒温度センサを設け、これら温度センサの検知温度にに応じて前記電子膨張弁、前記第1補助電子膨張弁および前記第2補助電子膨張弁を制御する制御部を設けてなり、
暖房運転モード時、前記制御部により、前記電子膨張弁を前記サブパス入口の冷媒温度が0℃以上になるように絞り、前記第1補助電子膨張弁を前記メインパス入口の冷媒温度が室外温度以下になるように絞り、前記第2補助電子膨張弁を前記メインパスと前記サブパスの両方に冷媒が流れるように絞り制御した構成となっている。
【0005】
また、冷房運転モード時、前記制御部により、前記第1補助電子膨張弁を開放する一方、前記第2補助電子膨張弁を前記メインパスと前記サブパスの両方に冷媒が流れるように絞り制御した構成となっている。
【0006】
また、冷房運転パワーセーブモード時、前記制御部により、前記第2補助電子膨張弁をパワーセーブ量に応じて絞る一方、前記第1補助電子膨張弁を前記メインパスと前記サブパスの両方に冷媒が流れるように絞り制御した構成となっている。
【0007】
更に、前記サブパスを前記メインパスの下方に配設した構成となっている。
【0008】
【発明の実施の形態】
図1乃至図3にて示す本発明の実施例により、本発明の実施の形態について説明する。
図1の冷媒回路図と制御系のブロック図とを混在させた図に示すように、1は吐出口2と吸込口3とアキュムレータ4とを備えた冷媒蒸気を圧縮する圧縮機、5は同圧縮機1の吐出口2より吐出する冷媒の流れを運転モードに応じて切り換える四方弁、6は室内に設置され室内空気に対して冷媒の熱交換を行う室内熱交換器、7は冷媒が通過して膨張する絞り開度が調整可能な電子膨張弁、8は室外に設置され外気に対して冷媒の熱交換を行いパスが上方のメインパス9とその下方のサブパス10とに分割された室外熱交換器、11は前記メインパス9の電子膨張弁7側に設けられた冷媒が通過して膨張する絞り開度が調整可能な第1補助電子膨張弁、12は前記サブパス10の四方弁5側に設けられた冷媒が通過して膨張する絞り開度が調整可能な第2補助電子膨張弁、13は前記室外熱交換器8の近傍に設けられたサーミスタからなる室外温度センサ、14と15とは前記メインパス9の第1補助電子膨張弁11側の入口と前記サブパス10の電子膨張弁7側の入口とに設けられたサーミスタからなる冷媒温度センサである。
【0009】
更に、16は前記圧縮機1と前記四方弁5と前記電子膨張弁7と前記室外熱交換器8と前記第1補助電子膨張弁11と前記第2補助電子膨張弁12と前記室外温度センサ13と前記冷媒温度センサ14、15とを収納し室外に設置された室外機、17は前記室内熱交換器6を収納し室内に設置された室内機、18と19は同室内機17の操作面(図示省略)に配設され使用者の操作により、空気調和機の暖房・冷房等の運転モードを切り換える運転モード切換スイッチと、冷房のときのパワーセーブ運転である冷房運転パワーセーブモードを選択するパワーセーブスイッチ、20は前記運転モード切換スイッチ18と前記パワーセーブスイッチ19との切換信号を受信して後記室外機制御部21へ制御信号を発信する室内機制御部、21は同室内機制御部20からの制御信号と、前記室外温度センサ13と前記冷媒温度センサ14、15とからの検知温度データとを受信し、それらの信号とデータとを基に前記圧縮機1と前記四方弁5と前記電子膨張弁7と前記第1補助電子膨張弁11と前記第2補助電子膨張弁12とを制御する室外機制御部である。
【0010】
上記構成において、次にその作用と効果について説明する。
先ず、図1と図2の説明図の項番1にて示す、暖房運転モードについて説明する。
使用者が前記運転モード切換スイッチ18を操作して暖房運転モードにすると、前記室内機制御部20はそれを検知して前記室外機制御部21に対して暖房運転モード信号を発信する。
前記室外機制御部21は前記室内機制御部20からの暖房運転モード信号を受信すると、前記四方弁5を前記圧縮機1の吐出口2側と前記室外熱交換器8とを接続し、前記圧縮機1の吸込口3側と前記室内熱交換器6とを接続するように切り換え、前記圧縮機1を作動させる。
【0011】
前記圧縮機1の吐出口2より吐出した高温高圧の冷媒蒸気は、前記四方弁5を通り、前記室内熱交換器6にて室内空気に放熱し、暖房することにより凝縮して高温高圧の冷媒液となり、同高温高圧の冷媒液は前記冷媒温度センサ15の検知温度すなわち前記サブパス10入口の冷媒温度が0℃以上となるように前記電子膨張弁7にて絞り膨張することにより低温低圧の冷媒液となり、同低温低圧の冷媒液の一部はそのまま前記サブパス10に流入し、前記低温低圧の冷媒液の残りの部分は、前記冷媒温度センサ14の検知温度すなわち前記メインパス9入口の冷媒温度が前記室外温度センサ13で検知された室外温度より低くなるように前記第1補助電子膨張弁11にて更に絞り膨張され前記メインパス9に流入する。室外温度が0℃以下の低温の場合、前記メインパス9へは氷点下の冷たい冷媒が流入することになり、前記室外熱交換器8に着霜し氷結する恐れがある。
前記サブパス10に0℃以上の冷媒を流すことにより、前記室外熱交換器8に着霜し氷結することを低減することができる。
更に、前記サブパス10を前記メインパス9の下方に配設することにより、前記サブパス10の熱の上方への対流を利用して、前記室外熱交換器8全体を有効に暖め、着霜し氷結することを有効に防止できる。
【0012】
なお、前記第2補助電子膨張弁12の絞り量を制御することにより、前記メインパス9と前記サブパス10の両方に冷媒が流れるように制御している。
また、前記冷媒温度センサ14、15の検知温度により、冷媒が前記メインパス9と前記サブパス10とに流れているか、いないかを検知している。
前記低温低圧の冷媒液は前記室外熱交換器8の前記メインパス9と前記サブパス10とへ流入して外気から吸熱することにより蒸発して低温低圧の冷媒蒸気となり、同低温低圧の冷媒蒸気は前記四方弁5を通り前記圧縮機1の吸込口3へ戻る。
【0013】
次に、図3と図2の説明図の項番2にて示す、冷房運転モードについて説明する。
使用者が前記運転モード切換スイッチ18を操作して冷房運転モードにすると、前記室内機制御部20はそれを検知して前記室外機制御部21に対して冷房運転モード信号を発信する。
前記室外機制御部21は前記室内機制御部20からの冷房運転モード信号を受信すると、前記四方弁5を前記圧縮機1の吐出口2側と前記室内熱交換器6とを接続し、前記圧縮機1の吸込口3側と前記室外熱交換器8とを接続するように切り換え、前記圧縮機1を作動させる。
【0014】
前記圧縮機1の吐出口2より吐出した高温高圧の冷媒蒸気は、前記四方弁5を通り、前記第1補助電子膨張弁11を開放し、かつ前記第2補助電子膨張弁12の絞り量を制御することにより、前記メインパス9と前記サブパス10の両方に冷媒が流れるように制御され両方のパスを通して前記室外熱交換器8により有効に外気に放熱することにより凝縮して高温高圧の冷媒液となり、同高温高圧の冷媒液は前記電子膨張弁7にて膨張することにより低温低圧の冷媒液となり、同低温低圧の冷媒液は前記室内熱交換器6へ流入して室内空気から吸熱することにより冷房し蒸発して低温低圧の冷媒蒸気となり、同低温低圧の冷媒蒸気は前記四方弁5を通り前記圧縮機1の吸込口3へ戻る。
【0015】
なお、前記メインパス9は前記サブパス10より管路長さを長く設定されていることにより流路抵抗が大きいため、前記第1補助電子膨張弁11は開放し、前記第2補助電子膨張弁12の絞り量を制御することにより、前記メインパス9と前記サブパス10の両方に冷媒を流すように制御することができる。
【0016】
次に、図3と図2の説明図の項番3にて示す、冷房運転パワーセーブモードについて説明する。
使用者が前記運転モード切換スイッチ18と前記パワーセーブスイッチ19とを操作して冷房運転パワーセーブモードにすると、前記室内機制御部20はそれを検知して前記室外機制御部21に対して冷房運転パワーセーブモード信号を発信する。
前記室外機制御部21は前記室内機制御部20からの冷房運転パワーセーブモード信号を受信すると、前記四方弁5を前記圧縮機1の吐出口2側と前記室内熱交換器6とを接続し、前記圧縮機1の吸込口3側と前記室外熱交換器8とを接続するように切り換え、前記圧縮機1をパワーセーブ運転させる。
【0017】
前記圧縮機1の吐出口2より吐出した高温高圧の冷媒蒸気は、前記四方弁5を通り、前記第2補助電子膨張弁12の絞り量をパワーセーブ量に応じて制御し、かつ前記第1補助電子膨張弁11の絞り量を制御することにより、前記メインパス9と前記サブパス10の両方に冷媒が流れるとともに、前記サブパス10への冷媒の流入を抑え、前記室外熱交換器8によりパワーセーブ量に応じた放熱を行うことにより過冷却され過ぎないように適性に凝縮して高温高圧の冷媒液となり、同高温高圧の冷媒液は前記電子膨張弁7にて膨張することにより低温低圧の冷媒液となり、同低温低圧の冷媒液は前記室内熱交換器6へ流入して室内空気から吸熱することにより冷房し蒸発して低温低圧の冷媒蒸気となり、同低温低圧の冷媒蒸気は前記四方弁5を通り前記圧縮機1の吸込口3へ戻る。
【0018】
なお、前記室外熱交換器8において冷媒が過冷却され過ぎていないかどうかは、前記冷媒温度センサ14、15の冷媒の検知温度により判断することができる。
【0019】
前記室外温度センサ13と前記冷媒温度センサ14、15とをサーミスタとすることにより、部品の種類を統一した安価な構成とすることができる。
【0020】
【発明の効果】
以上説明したように、本発明によれば、0℃以下程度の低外気温度において室外熱交換器に着霜し難く、かつ効率的に暖房運転を行える空気調和機となる。
【図面の簡単な説明】
【図1】本発明による空気調和機の一実施例の冷媒回路図と制御ブロック図を混在して示した図で、暖房運転状態を示す。
【図2】本発明による空気調和機の一実施例の制御の内容を示す説明図である。
【図3】本発明による空気調和機の一実施例の冷媒回路図と制御ブロック図を混在して示した図で、冷房運転状態を示す。
【図4】従来の空気調和機の冷媒回路図である。
【符号の説明】
1 圧縮機
2 吐出口
3 吸込口
5 四方弁
6 室内熱交換器
7 電子膨張弁
8 室外熱交換器
9 メインパス
10 サブパス
11 第1補助電子膨張弁
12 第2補助電子膨張弁
13 室外温度センサ
14、15 冷媒温度センサ
20 室内機制御部
21 室外機制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner, and more particularly to an outdoor heat exchanger and a configuration of a refrigerant circuit around the outdoor heat exchanger.
[0002]
[Prior art]
In the conventional air conditioner, as shown in the refrigerant circuit diagram of FIG. 4, 1 is a compressor that compresses refrigerant vapor, and 5 is a four-way valve that switches the flow of refrigerant discharged from the compressor 1 in accordance with the operation mode. , 6 is an indoor heat exchanger that is installed indoors and performs heat exchange of the refrigerant with the indoor air, 7 is an electronic expansion valve that expands through the passage of the refrigerant, and 8 is an outdoor installation that exchanges heat of the refrigerant with the outside air. It was the structure of the outdoor heat exchanger which performs.
[0003]
[Problems to be solved by the invention]
However, in the above configuration, when the outdoor temperature is low and 0 ° C. or lower in the heating operation mode, the temperature of the refrigerant liquid flowing into the outdoor heat exchanger functioning as an evaporator needs to be equal to or lower than the outdoor temperature. There is a problem that the surface of the outdoor heat exchanger that transmits the heat of evaporation to the outside becomes a temperature lower than the outside air of 0 ° C. or less, and the water vapor of the outside air forms frost on the surface of the outdoor heat exchanger.
In view of the above problems, an object of the present invention is to provide an air conditioner that hardly frosts on an outdoor heat exchanger at a low outside air temperature of about 0 ° C. or less and that can efficiently perform a heating operation. .
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention uses a four-way valve, an indoor heat exchanger, an electronic expansion valve, an outdoor heat exchanger, and the four-way valve to cool the refrigerant discharged from the discharge port of the compressor. In an air conditioner comprising a heat pump refrigeration cycle that circulates to the mouth,
The path of the outdoor heat exchanger is divided into a main path and a sub path and connected in parallel, a first auxiliary electronic expansion valve is provided on the electronic expansion valve side of the main path, and a second auxiliary is provided on the four-way valve side of the sub path While providing an electronic expansion valve, an outdoor temperature sensor is provided in the vicinity of the outdoor heat exchanger, and a refrigerant temperature sensor is provided at an inlet of the main path on the first auxiliary electronic expansion valve side and an inlet of the sub path on the electronic expansion valve side. Providing a control unit for controlling the electronic expansion valve, the first auxiliary electronic expansion valve, and the second auxiliary electronic expansion valve in accordance with the detected temperature of these temperature sensors,
In the heating operation mode, the control unit throttles the electronic expansion valve so that the refrigerant temperature at the sub-pass inlet is 0 ° C. or higher, and the first auxiliary electronic expansion valve is used for the refrigerant temperature at the main-pass inlet is lower than the outdoor temperature. The second auxiliary electronic expansion valve is throttled so that the refrigerant flows through both the main path and the sub path.
[0005]
In the cooling operation mode, the control unit opens the first auxiliary electronic expansion valve, and the second auxiliary electronic expansion valve is controlled to be throttled so that the refrigerant flows in both the main path and the sub path. It has become.
[0006]
In the cooling operation power save mode, the control unit throttles the second auxiliary electronic expansion valve in accordance with the amount of power saving, while the first auxiliary electronic expansion valve has refrigerant in both the main path and the sub path. The aperture is controlled to flow.
[0007]
Further, the sub path is arranged below the main path.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to the embodiment of the present invention shown in FIGS.
As shown in a diagram in which the refrigerant circuit diagram of FIG. 1 and the block diagram of the control system are mixed, 1 is a compressor that compresses refrigerant vapor including a discharge port 2, a suction port 3, and an accumulator 4. A four-way valve that switches the flow of refrigerant discharged from the discharge port 2 of the compressor 1 according to the operation mode, 6 is an indoor heat exchanger that is installed indoors and exchanges heat with the indoor air, and 7 passes through the refrigerant An electronic expansion valve 8 that can adjust the opening degree of the expansion, is installed outside the room, and heat exchange of the refrigerant with the outside air is performed, and the path is divided into an upper main path 9 and a lower sub path 10. A heat exchanger 11 is a first auxiliary electronic expansion valve capable of adjusting a throttle opening degree through which a refrigerant provided on the electronic expansion valve 7 side of the main path 9 passes and expands, and 12 a four-way valve 5 of the sub path 10. The throttle opening to which the refrigerant provided on the side passes and expands is adjusted. A possible second auxiliary electronic expansion valve, 13 is an outdoor temperature sensor comprising a thermistor provided in the vicinity of the outdoor heat exchanger 8, and 14 and 15 are inlets of the main path 9 on the first auxiliary electronic expansion valve 11 side. And a refrigerant temperature sensor comprising a thermistor provided at the inlet of the sub-pass 10 on the electronic expansion valve 7 side.
[0009]
Furthermore, 16 is the compressor 1, the four-way valve 5, the electronic expansion valve 7, the outdoor heat exchanger 8, the first auxiliary electronic expansion valve 11, the second auxiliary electronic expansion valve 12, and the outdoor temperature sensor 13. And the refrigerant temperature sensors 14 and 15 are stored in outdoor units, 17 is an indoor unit in which the indoor heat exchanger 6 is stored and installed indoors, and 18 and 19 are operating surfaces of the indoor unit 17. The operation mode selector switch that switches the operation mode such as heating / cooling of the air conditioner and the cooling operation power save mode that is the power saving operation at the time of cooling is selected by the user's operation provided in the illustration (not shown). A power save switch 20 is an indoor unit control unit that receives a switching signal between the operation mode switch 18 and the power save switch 19 and transmits a control signal to the outdoor unit control unit 21 described later. The control signal from the internal unit control unit 20 and the detected temperature data from the outdoor temperature sensor 13 and the refrigerant temperature sensors 14 and 15 are received, and the compressor 1 and the It is an outdoor unit control unit that controls the four-way valve 5, the electronic expansion valve 7, the first auxiliary electronic expansion valve 11, and the second auxiliary electronic expansion valve 12.
[0010]
Next, the operation and effect of the above configuration will be described.
First, the heating operation mode indicated by item number 1 in the explanatory diagrams of FIGS. 1 and 2 will be described.
When the user operates the operation mode changeover switch 18 to enter the heating operation mode, the indoor unit control unit 20 detects this and transmits a heating operation mode signal to the outdoor unit control unit 21.
When receiving the heating operation mode signal from the indoor unit control unit 20, the outdoor unit control unit 21 connects the four-way valve 5 to the discharge port 2 side of the compressor 1 and the outdoor heat exchanger 8, and It switches so that the suction inlet 3 side of the compressor 1 and the said indoor heat exchanger 6 may be connected, and the said compressor 1 is operated.
[0011]
The high-temperature and high-pressure refrigerant vapor discharged from the discharge port 2 of the compressor 1 passes through the four-way valve 5, dissipates heat to the indoor air in the indoor heat exchanger 6, and is condensed by heating to be high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant liquid is squeezed and expanded by the electronic expansion valve 7 so that the temperature detected by the refrigerant temperature sensor 15, that is, the refrigerant temperature at the inlet of the sub-pass 10 is 0 ° C. or higher. A part of the low-temperature and low-pressure refrigerant liquid flows into the sub-pass 10 as it is, and the remaining part of the low-temperature and low-pressure refrigerant liquid is the temperature detected by the refrigerant temperature sensor 14, that is, the refrigerant temperature at the inlet of the main path 9. Is further throttled and expanded by the first auxiliary electronic expansion valve 11 so as to be lower than the outdoor temperature detected by the outdoor temperature sensor 13 and flows into the main path 9. When the outdoor temperature is a low temperature of 0 ° C. or lower, cold refrigerant below freezing point flows into the main path 9, and there is a possibility that the outdoor heat exchanger 8 may be frozen and freeze.
By flowing a refrigerant of 0 ° C. or higher through the sub-pass 10, it is possible to reduce frost and freezing on the outdoor heat exchanger 8.
Further, by arranging the sub path 10 below the main path 9, the entire outdoor heat exchanger 8 is effectively warmed, frosted and frozen by utilizing the upward convection of the heat of the sub path 10. Can be effectively prevented.
[0012]
Note that, by controlling the throttle amount of the second auxiliary electronic expansion valve 12, the refrigerant is controlled to flow through both the main path 9 and the sub path 10.
Further, whether or not the refrigerant is flowing through the main path 9 and the sub path 10 is detected based on the detected temperatures of the refrigerant temperature sensors 14 and 15.
The low-temperature and low-pressure refrigerant liquid flows into the main path 9 and the sub-path 10 of the outdoor heat exchanger 8 and absorbs heat from the outside air to evaporate into low-temperature and low-pressure refrigerant vapor. It returns to the suction port 3 of the compressor 1 through the four-way valve 5.
[0013]
Next, the cooling operation mode indicated by item number 2 in the explanatory diagrams of FIGS. 3 and 2 will be described.
When the user operates the operation mode changeover switch 18 to enter the cooling operation mode, the indoor unit control unit 20 detects this and transmits a cooling operation mode signal to the outdoor unit control unit 21.
When the outdoor unit control unit 21 receives a cooling operation mode signal from the indoor unit control unit 20, the outdoor unit control unit 21 connects the four-way valve 5 to the discharge port 2 side of the compressor 1 and the indoor heat exchanger 6, and It switches so that the suction inlet 3 side of the compressor 1 and the said outdoor heat exchanger 8 may be connected, and the said compressor 1 is operated.
[0014]
The high-temperature and high-pressure refrigerant vapor discharged from the discharge port 2 of the compressor 1 passes through the four-way valve 5, opens the first auxiliary electronic expansion valve 11, and reduces the throttle amount of the second auxiliary electronic expansion valve 12. By controlling, the refrigerant is controlled to flow through both the main path 9 and the sub-path 10, and is condensed by effectively dissipating heat to the outside air by the outdoor heat exchanger 8 through both paths. The high-temperature and high-pressure refrigerant liquid expands at the electronic expansion valve 7 to become a low-temperature and low-pressure refrigerant liquid, and the low-temperature and low-pressure refrigerant liquid flows into the indoor heat exchanger 6 and absorbs heat from the room air. The refrigerant vapor is cooled and evaporated to become a low-temperature and low-pressure refrigerant vapor, which passes through the four-way valve 5 and returns to the suction port 3 of the compressor 1.
[0015]
Since the main path 9 has a larger flow path resistance than the sub path 10, the first auxiliary electronic expansion valve 12 is opened and the second auxiliary electronic expansion valve 12 is opened. By controlling the throttle amount, the refrigerant can be controlled to flow through both the main path 9 and the sub path 10.
[0016]
Next, the cooling operation power save mode indicated by item number 3 in the explanatory diagrams of FIGS. 3 and 2 will be described.
When the user operates the operation mode changeover switch 18 and the power save switch 19 to enter the cooling operation power save mode, the indoor unit control unit 20 detects this and performs cooling to the outdoor unit control unit 21. Sends driving power save mode signal.
When the outdoor unit control unit 21 receives a cooling operation power save mode signal from the indoor unit control unit 20, the outdoor unit control unit 21 connects the four-way valve 5 to the discharge port 2 side of the compressor 1 and the indoor heat exchanger 6. Then, the compressor 1 is switched so as to be connected to the inlet 3 side of the compressor 1 and the outdoor heat exchanger 8 to cause the compressor 1 to perform a power saving operation.
[0017]
The high-temperature and high-pressure refrigerant vapor discharged from the discharge port 2 of the compressor 1 passes through the four-way valve 5, controls the throttle amount of the second auxiliary electronic expansion valve 12 according to the power saving amount, and the first By controlling the throttle amount of the auxiliary electronic expansion valve 11, the refrigerant flows in both the main path 9 and the sub path 10, and the inflow of the refrigerant to the sub path 10 is suppressed, and the outdoor heat exchanger 8 saves power. By appropriately radiating heat in accordance with the amount, it is appropriately condensed so as not to be overcooled and becomes a high-temperature and high-pressure refrigerant liquid, and the high-temperature and high-pressure refrigerant liquid is expanded by the electronic expansion valve 7 to thereby produce a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant liquid flows into the indoor heat exchanger 6 and absorbs heat from the indoor air to cool and evaporate into low-temperature and low-pressure refrigerant vapor. As Back said to the suction port 3 of the compressor 1.
[0018]
Whether or not the refrigerant is excessively cooled in the outdoor heat exchanger 8 can be determined based on the detected temperature of the refrigerant by the refrigerant temperature sensors 14 and 15.
[0019]
By using the outdoor temperature sensor 13 and the refrigerant temperature sensors 14 and 15 as thermistors, it is possible to provide an inexpensive configuration in which the types of components are unified.
[0020]
【The invention's effect】
As described above, according to the present invention, the outdoor heat exchanger is less likely to be frosted at a low outside air temperature of about 0 ° C. or less, and the air conditioner can efficiently perform a heating operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a refrigerant circuit diagram and a control block diagram of an embodiment of an air conditioner according to the present invention in a mixed state, and shows a heating operation state.
FIG. 2 is an explanatory diagram showing the contents of control of an embodiment of an air conditioner according to the present invention.
FIG. 3 is a diagram in which a refrigerant circuit diagram and a control block diagram of an embodiment of an air conditioner according to the present invention are mixedly shown, showing a cooling operation state.
FIG. 4 is a refrigerant circuit diagram of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge port 3 Suction port 5 Four-way valve 6 Indoor heat exchanger 7 Electronic expansion valve 8 Outdoor heat exchanger 9 Main path 10 Subpass 11 1st auxiliary electronic expansion valve 12 2nd auxiliary electronic expansion valve 13 Outdoor temperature sensor 14 15 Refrigerant temperature sensor 20 Indoor unit control unit 21 Outdoor unit control unit

Claims (4)

圧縮機の吐出口から吐出される冷媒を、四方弁、室内熱交換器、電子膨張弁、室外熱交換器、前記四方弁を経て前記圧縮機の吸込口へ循環するヒートポンプ式冷凍サイクルを備えてなる空気調和機において、
前記室外熱交換器のパスをメインパスとサブパスに2分割して並列に接続し、前記メインパスの電子膨張弁側に第1補助電子膨張弁を設け、前記サブパスの四方弁側に第2補助電子膨張弁を設ける一方、前記室外熱交換器の近傍に室外温度センサを設け、前記メインパスの第1補助電子膨張弁側の入口と前記サブパスの電子膨張弁側の入口とに冷媒温度センサを設け、これら温度センサの検知温度にに応じて前記電子膨張弁、前記第1補助電子膨張弁および前記第2補助電子膨張弁を制御する制御部を設けてなり、
暖房運転モード時、前記制御部により、前記電子膨張弁を前記サブパス入口の冷媒温度が0℃以上になるように絞り、前記第1補助電子膨張弁を前記メインパス入口の冷媒温度が室外温度以下になるように絞り、前記第2補助電子膨張弁を前記メインパスと前記サブパスの両方に冷媒が流れるように絞り制御してなることを特徴とする空気調和機。
It has a heat pump refrigeration cycle that circulates refrigerant discharged from the discharge port of the compressor to the suction port of the compressor via the four-way valve, indoor heat exchanger, electronic expansion valve, outdoor heat exchanger, and the four-way valve. In the air conditioner
The path of the outdoor heat exchanger is divided into a main path and a sub path and connected in parallel, a first auxiliary electronic expansion valve is provided on the electronic expansion valve side of the main path, and a second auxiliary is provided on the four-way valve side of the sub path While providing an electronic expansion valve, an outdoor temperature sensor is provided in the vicinity of the outdoor heat exchanger, and a refrigerant temperature sensor is provided at an inlet of the main path on the first auxiliary electronic expansion valve side and an inlet of the sub path on the electronic expansion valve side. Providing a control unit for controlling the electronic expansion valve, the first auxiliary electronic expansion valve, and the second auxiliary electronic expansion valve in accordance with the detected temperature of these temperature sensors,
In the heating operation mode, the control unit throttles the electronic expansion valve so that the refrigerant temperature at the sub-pass inlet is 0 ° C. or higher, and the first auxiliary electronic expansion valve is used for the refrigerant temperature at the main-pass inlet is lower than the outdoor temperature. The air conditioner is characterized in that the second auxiliary electronic expansion valve is controlled so that the refrigerant flows in both the main path and the sub path.
冷房運転モード時、前記制御部により、前記第1補助電子膨張弁を開放する一方、前記第2補助電子膨張弁を前記メインパスと前記サブパスの両方に冷媒が流れるように絞り制御してなることを特徴とする請求項1記載の空気調和機。In the cooling operation mode, the control unit opens the first auxiliary electronic expansion valve, and controls the second auxiliary electronic expansion valve so that the refrigerant flows through both the main path and the sub path. The air conditioner according to claim 1. 冷房運転パワーセーブモード時、前記制御部により、前記第2補助電子膨張弁をパワーセーブ量に応じて絞る一方、前記第1補助電子膨張弁を前記メインパスと前記サブパスの両方に冷媒が流れるように絞り制御してなることを特徴とする請求項1記載の空気調和機。In the cooling operation power save mode, the control unit throttles the second auxiliary electronic expansion valve in accordance with the amount of power saving, while the first auxiliary electronic expansion valve flows through both the main path and the sub path. 2. The air conditioner according to claim 1, wherein the air conditioner is controlled to be throttled. 前記サブパスを前記メインパスの下方に配設してなることを特徴とする請求項1記載の空気調和機。The air conditioner according to claim 1, wherein the sub path is disposed below the main path.
JP2000059770A 2000-03-06 2000-03-06 Air conditioner Expired - Fee Related JP4345178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059770A JP4345178B2 (en) 2000-03-06 2000-03-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059770A JP4345178B2 (en) 2000-03-06 2000-03-06 Air conditioner

Publications (2)

Publication Number Publication Date
JP2001248931A JP2001248931A (en) 2001-09-14
JP4345178B2 true JP4345178B2 (en) 2009-10-14

Family

ID=18580179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059770A Expired - Fee Related JP4345178B2 (en) 2000-03-06 2000-03-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP4345178B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620463A (en) * 2012-03-27 2012-08-01 美的集团有限公司 Novel low-temperature strong-heat multi-split air conditioning system
CN103307804A (en) * 2013-06-14 2013-09-18 上海海立睿能环境技术有限公司 Defrosting system for heat pump
CN103486681A (en) * 2013-09-24 2014-01-01 陈万仁 Wind source heat pump system capable of conducting radiant cooling and heating by using phase transformation energy of compressed steam

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2752042C (en) 2009-03-13 2017-01-17 Carrier Corporation Heat pump and method of operation
CN104515319B (en) * 2013-09-30 2017-04-12 珠海格力电器股份有限公司 Air conditioning system
CN103983038B (en) * 2014-05-06 2016-06-22 广东美的暖通设备有限公司 Air conditioning system and control method thereof
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
CN104534738A (en) * 2014-12-18 2015-04-22 南京协众汽车空调集团有限公司 Electromobile heat pump air-conditioner circulating system and method
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
CN109114793A (en) * 2018-08-23 2019-01-01 珠海格力电器股份有限公司 Air-conditioning system and its refrigerant throttling denoising device
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
CA3081986A1 (en) 2019-07-15 2021-01-15 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620463A (en) * 2012-03-27 2012-08-01 美的集团有限公司 Novel low-temperature strong-heat multi-split air conditioning system
CN103307804A (en) * 2013-06-14 2013-09-18 上海海立睿能环境技术有限公司 Defrosting system for heat pump
CN103486681A (en) * 2013-09-24 2014-01-01 陈万仁 Wind source heat pump system capable of conducting radiant cooling and heating by using phase transformation energy of compressed steam

Also Published As

Publication number Publication date
JP2001248931A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP4345178B2 (en) Air conditioner
EP1275913A2 (en) Multiform gas heat pump type air conditioning system
US11629899B2 (en) Heat pump system and control method therefor
JP2002228258A (en) Heat pump water heater
CN213841111U (en) Air conditioner
JP3882056B2 (en) Refrigeration air conditioner
JP4650086B2 (en) Thermal storage heat recovery device
JPH10300321A (en) Cooler for freezer refrigerator and its defrosting method
JP2001263848A (en) Air conditioner
JP2018080899A (en) Refrigeration unit
JP3418891B2 (en) Refrigeration equipment
JP2000304397A (en) Cold and warm storage cabinet
JP2017161159A (en) Outdoor uni of air conditioner
CN211876411U (en) Air conditioning unit capable of continuously heating
JP3814877B2 (en) Thermal storage air conditioner
CN113669844A (en) Air conditioner and control method thereof
CN112444002A (en) Air conditioner
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2002061978A (en) Air conditioner
JP2001201217A (en) Air conditioner
JP2000009369A (en) Air conditioner
JP2000240980A (en) Refrigerator/air conditioner
KR100627879B1 (en) Heat pump air-conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees