JPH10300321A - Cooler for freezer refrigerator and its defrosting method - Google Patents

Cooler for freezer refrigerator and its defrosting method

Info

Publication number
JPH10300321A
JPH10300321A JP11061097A JP11061097A JPH10300321A JP H10300321 A JPH10300321 A JP H10300321A JP 11061097 A JP11061097 A JP 11061097A JP 11061097 A JP11061097 A JP 11061097A JP H10300321 A JPH10300321 A JP H10300321A
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
refrigerator
pressure
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11061097A
Other languages
Japanese (ja)
Inventor
Junya Ogura
潤也 小倉
Junichi Morita
淳一 森田
Minoru Kinoshita
実 木下
Masashi Yokoyama
誠志 横山
Fumio Matsuoka
文雄 松岡
Satoru Hirakuni
悟 平國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11061097A priority Critical patent/JPH10300321A/en
Publication of JPH10300321A publication Critical patent/JPH10300321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cooler for a large-sized freezer refrigerator featuring a low equipment cost and capable of effecting a sufficient defrosting operation simultaneously with continuation of cooling operation. SOLUTION: Each circulation circuit for circulating refrigerant through a refrigerant compressor 10, an air cooled condenser 11, a liquid receiver 3, a cooler 12 and a liquid separator 19 in this order is provided with a defrosting high pressure refrigerant circuit 16 connecting the refrigerant compressor 10 and the cooler 12 with each other and a valve kit 2 for switching cooling operation of the cooler 12 and defrosting operation by hot gas bypass method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大型の冷凍冷蔵
倉庫等で使用する冷却装置、およびその除霜方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device used in a large-sized refrigerated warehouse and the like, and a method for defrosting the same.

【0002】[0002]

【従来の技術】図5〜図7は従来の冷凍冷蔵庫用冷却装
置を示すものであり、図5はクーラの配置図、図6はク
ーラの冷媒回路図、図7はクーラの部分詳細図である。
図において、31は大型冷凍倉庫の隔壁された複数の冷
凍室、32は各冷凍室31に配設された冷却装置で、圧
縮機33、凝縮器34、膨張弁35およびクーラ36を
連通して冷媒を循環させる冷媒管37、液用電磁弁3
8、サーモバンク39、吸入圧力調整装置40、ホット
ガス用電磁弁41から構成されている。34aは凝縮器
34の外気ファン、36aはクーラ36で蛇行状に設け
られた伝熱管37の外周に微小間隔で装着された伝熱フ
ィン、36bはクーラである。
2. Description of the Related Art FIGS. 5 to 7 show a conventional refrigerator for refrigerators and refrigerators. FIG. 5 is a layout diagram of a cooler, FIG. 6 is a refrigerant circuit diagram of the cooler, and FIG. is there.
In the figure, 31 is a plurality of partitioned freezing compartments of a large freezing warehouse, 32 is a cooling device arranged in each freezing compartment 31, and communicates with a compressor 33, a condenser 34, an expansion valve 35 and a cooler 36. Refrigerant pipe 37 for circulating refrigerant, solenoid valve 3 for liquid
8, a thermobank 39, a suction pressure adjusting device 40, and a hot gas solenoid valve 41. 34a is an outside air fan of the condenser 34, 36a is a heat transfer fin mounted at a small interval on the outer periphery of a heat transfer tube 37 provided in a meandering shape by a cooler 36, and 36b is a cooler.

【0003】上記のように構成された従来の冷凍冷蔵庫
用冷却装置においては、圧縮機3で圧縮された冷媒は高
温高圧の冷媒ガスとなり、凝縮器34においてファン3
4aで送風された外気と熱交換して液化する。この高圧
の冷媒液は膨張弁35で供給量制御を行うと共に低圧に
減圧されてクーラ36に供給される。クーラ36におい
て、上記減圧された冷媒液はファン36bによって送風
された冷凍室31内の空気と熱交換してガス化し、上記
空気を冷風として冷凍室31内に送風して貯蔵されてい
る冷却対象物を冷却する。上記ガス化した低圧冷媒ガス
は圧縮機33に吸入されて再び上記サイクルを繰り返
す。このとき、圧縮機33より吐出された冷媒ガスはサ
ーモバンク39を連通して凝縮器34に流れ、サーモバ
ンク内に排熱を蓄える。
In the conventional refrigerator for refrigerators and refrigerators configured as described above, the refrigerant compressed by the compressor 3 becomes high-temperature and high-pressure refrigerant gas.
It liquefies by exchanging heat with the outside air blown in 4a. The high-pressure refrigerant liquid is supplied to the cooler 36 after the supply amount is controlled by the expansion valve 35 and reduced to a low pressure. In the cooler 36, the decompressed refrigerant liquid exchanges heat with the air in the freezing chamber 31 blown by the fan 36b to be gasified, and the air to be cooled is blown into the freezing chamber 31 as the cool air and stored therein. Cool things. The gasified low-pressure refrigerant gas is sucked into the compressor 33 and the cycle is repeated again. At this time, the refrigerant gas discharged from the compressor 33 communicates with the thermobank 39, flows into the condenser 34, and stores exhaust heat in the thermobank.

【0004】また、図示しない温度センサーにより検知
されている冷凍室31内の温度が所定温度に達すると図
示しない冷却装置の自動制御装置の指令により圧縮機3
3の運転動作が停止し、液用電磁弁38が閉止する。さ
らに、上記冷却運転を長時間続行すると伝熱フィン36
aの隙間を塞ぐように霜付きが生じクーラ36の熱交換
量が低下するので、定期的に液用電磁弁38を閉じ、ホ
ットガス電磁弁41を開き、圧縮機33からの高温高圧
の冷媒ガスをクーラ36へ供給し、霜を溶かす。そし
て、この高温高圧の冷媒ガスはクーラ36で冷却液化さ
れるが、サーモバンク39に蓄えられた熱により完全ガ
ス化して圧縮機33へ吸入される。
When the temperature in the freezing chamber 31 detected by a temperature sensor (not shown) reaches a predetermined temperature, the compressor 3 is controlled by a command from an automatic control device of a cooling device (not shown).
The operation of Step 3 is stopped, and the liquid solenoid valve 38 is closed. Further, if the cooling operation is continued for a long time,
Since the frost is formed so as to close the gap a, the amount of heat exchange of the cooler 36 decreases, and the liquid electromagnetic valve 38 is periodically closed, the hot gas electromagnetic valve 41 is opened, and the high-temperature and high-pressure refrigerant from the compressor 33 is released. The gas is supplied to the cooler 36 to melt the frost. The high-temperature and high-pressure refrigerant gas is cooled and liquefied by the cooler 36, but is completely gasified by the heat stored in the thermobank 39 and is sucked into the compressor 33.

【0005】[0005]

【発明が解決しようとする課題】従来の冷凍冷蔵庫用冷
却装置は以上のように構成されており、各冷凍室31に
おいて圧縮機33とクーラ36の配置は1:1となるの
で、冷却装置23が多数必要となり、設備費が増大して
いた。また、クーラ36の除霜用として排熱を蓄えるた
めのサーモバンク39の熱容量には限界があるなどの問
題点があった。
The conventional refrigerator for refrigerators and refrigerators is constructed as described above, and the arrangement of the compressor 33 and the cooler 36 in each freezer compartment 31 is 1: 1. Are required, and the equipment cost is increasing. Further, there is a problem that the heat capacity of the thermobank 39 for storing exhaust heat for defrosting the cooler 36 is limited.

【0006】この発明は、上記のような問題点を解消す
るべくなされたもので、多数の冷却装置を必要とせず、
設備費が安価で除霜効率のよい冷凍冷蔵庫用冷却装置お
よびその除霜方法を提供することを目的とする。
The present invention has been made to solve the above problems, and does not require a large number of cooling devices.
It is an object of the present invention to provide a refrigerator for a refrigerator having a low equipment cost and a high defrosting efficiency, and a defrosting method thereof.

【0007】[0007]

【課題を解決するための手段】この発明に係る冷凍冷蔵
庫用冷却装置の第1の発明は、冷媒が冷媒圧縮機、空冷
凝縮器、受液器、液分離器、クーラの順に巡回する循環
回路毎に、冷媒圧縮機とクーラを結ぶ除霜用高圧冷媒回
路が設けられ、クーラの冷却運転と除霜運転を切り替え
るバルブキットを備えたものである。
According to a first aspect of the present invention, there is provided a refrigerating / refrigerating cooling apparatus comprising: a circulation circuit in which a refrigerant circulates in the order of a refrigerant compressor, an air-cooled condenser, a liquid receiver, a liquid separator, and a cooler. Each time, a high-pressure defrosting refrigerant circuit for connecting the refrigerant compressor and the cooler is provided, and a valve kit for switching between a cooling operation and a defrosting operation of the cooler is provided.

【0008】また第2の発明は、前記バルブキットが膨
張弁と、クーラの除霜に伴い高温高圧の冷媒ガスをクー
ラへ導入する回路を開閉する電磁弁と、クーラから冷媒
を排出する低圧側冷媒回路の毛細管に並列接続した電磁
弁と、前記各機器の動作を制御する自動制御装置とを搭
載したものである。
According to a second aspect of the present invention, the valve kit includes an expansion valve, an electromagnetic valve for opening and closing a circuit for introducing a high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and a low-pressure side for discharging the refrigerant from the cooler. It is equipped with an electromagnetic valve connected in parallel to the capillary of the refrigerant circuit and an automatic control device for controlling the operation of each device.

【0009】また第3の発明は、前記バルブキットが膨
張弁と、クーラの除霜に伴い高温高圧の冷媒ガスをクー
ラへ導入する回路を開閉する電磁弁と、クーラから冷媒
を排出する低圧側冷媒回路に接続した圧力調整装置と、
前記各機器の動作を制御する自動制御装置とを搭載した
ものである。
In a third aspect of the present invention, the valve kit includes an expansion valve, an electromagnetic valve for opening and closing a circuit for introducing high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and a low-pressure side for discharging the refrigerant from the cooler. A pressure regulator connected to the refrigerant circuit;
An automatic control device for controlling the operation of each of the devices.

【0010】また第4の発明は、前記液分離器が除霜に
より発生した低圧の冷媒凝縮液と、高温高圧の冷媒凝縮
液とを熱交換させる機能を備えたものである。
[0010] In a fourth aspect of the present invention, the liquid separator has a function of exchanging heat between the low-pressure refrigerant condensate generated by defrosting and the high-temperature and high-pressure refrigerant condensate.

【0011】また第5の発明は、高圧側冷媒回路から高
圧冷媒液をクーラへ導入する膨張弁を閉鎖し、除霜用高
圧冷媒回路から高温高圧の冷媒ガスをクーラへ導入する
電磁弁を開放するとともに、クーラ内の凝縮冷媒液を気
化させるように絞りながらクーラから排出する毛細管と
並列接続した低圧側冷媒回路の電磁弁を閉鎖するように
している。
According to a fifth aspect of the present invention, an expansion valve for introducing high-pressure refrigerant liquid from a high-pressure side refrigerant circuit to a cooler is closed, and an electromagnetic valve for introducing high-temperature and high-pressure refrigerant gas from a high-pressure refrigerant circuit for defrosting to a cooler is opened. At the same time, the solenoid valve of the low-pressure side refrigerant circuit connected in parallel with the capillary tube discharged from the cooler is throttled so as to evaporate the condensed refrigerant liquid in the cooler.

【0012】また第6の発明は、高圧側冷媒回路から高
圧冷媒液をクーラへ導入する膨張弁を閉鎖し、除霜用高
圧冷媒回路から高温高圧の冷媒ガスをクーラへ導入する
電磁弁を開放するとともに、クーラ内の凝縮冷媒液を気
化させるように低圧側冷媒回路の圧力調整装置を調整し
てクーラから排出する冷媒量を調節するようにしてい
る。
According to a sixth aspect of the present invention, an expansion valve for introducing high-pressure refrigerant liquid from a high-pressure side refrigerant circuit to a cooler is closed, and an electromagnetic valve for introducing high-temperature and high-pressure refrigerant gas from a high-pressure refrigerant circuit for defrosting to a cooler is opened. In addition, the amount of refrigerant discharged from the cooler is adjusted by adjusting the pressure adjusting device of the low-pressure side refrigerant circuit so as to vaporize the condensed refrigerant liquid in the cooler.

【0013】また第7の発明は、冷媒が冷媒圧縮機、空
冷凝縮器、受液器、クーラ、液分離器の順に巡回する循
環回路毎に、冷媒圧縮機とクーラを結ぶ除霜用高圧冷媒
回路が設けられ、クーラの冷却運転と除霜運転を切り替
えるバルブキットを備えた冷凍冷蔵庫用冷却装置の少な
くとも1台のクーラで除霜動作を行いながら、他の少な
くとも1台のクーラでは冷却動作を行う冷却動作と除霜
動作が混在するようにしている。
A seventh aspect of the present invention is a high-pressure defrosting refrigerant for connecting a refrigerant compressor and a cooler for each circulation circuit in which the refrigerant circulates in the order of a refrigerant compressor, an air-cooled condenser, a liquid receiver, a cooler, and a liquid separator. A circuit is provided, and a cooling operation is performed by at least one other cooler while performing a defrosting operation by at least one cooler of a refrigerator for a refrigerator including a valve kit for switching a cooling operation and a defrosting operation of the cooler. The cooling operation to be performed and the defrosting operation are mixed.

【0014】また第8の発明は、周辺の空気を送風する
ファンを備えた凝縮器を有し、クーラの除霜を実施する
とき、前記ファンの回転数、または稼働台数を減少させ
て送風量を減少させるようにしている。
According to an eighth aspect of the present invention, there is provided a condenser having a fan for blowing ambient air, and when performing defrosting of a cooler, the number of rotations or the number of operating fans is reduced to reduce the amount of air to be blown. Is to be reduced.

【0015】また第9の発明は、除霜により発生した低
圧の冷媒凝縮液と、高温高圧の冷媒凝縮液を熱交換させ
る液分離器が、伝熱管の内面と外面の表面積の比が大き
な伝熱管を有するものである。
According to a ninth aspect of the present invention, there is provided a liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate, wherein the liquid separator has a large ratio of the surface area of the inner surface to the outer surface of the heat transfer tube. It has a heat tube.

【0016】また第10の発明は、除霜により発生した
低圧の冷媒凝縮液と、高温高圧の冷媒凝縮液を熱交換さ
せる液分離器が、低圧の冷媒側と高圧の冷媒側の流路体
積の比が大きな冷媒流路を有するものである。
According to a tenth aspect of the present invention, there is provided a liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate. Has a large refrigerant flow path.

【0017】また第11の発明は、除霜により発生した
低圧の冷媒凝縮液と、高温高圧の冷媒凝縮液を熱交換さ
せる液分離器が、前記低圧の冷媒凝縮液と前記高圧の冷
媒凝縮液を流路に通す方向を同一方向、または逆方向に
とることが可能な構造を有するものである。
According to an eleventh aspect of the present invention, there is provided a liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate, wherein the low-pressure refrigerant condensate and the high-pressure refrigerant condensate In the same direction or the opposite direction.

【0018】また第12の発明は、冷媒が冷媒圧縮機、
空冷凝縮器、受液器、クーラ、液分離器の順に巡回する
循環回路毎に、冷媒圧縮機とクーラを結ぶ除霜用高圧冷
媒回路が設けられ、クーラの冷却運転と除霜運転を切り
替えるバルブキットが膨張弁と、クーラの除霜に伴い高
温高圧の冷媒ガスをクーラへ導入する回路を開閉する電
磁弁と、クーラから冷媒を排出する低圧側冷媒回路の毛
細管に平行して接続した電磁弁と、前記各機器の動作を
制御する自動制御装置とを搭載し、さらに前記低圧側冷
媒回路の毛細管に平行して接続した電磁弁に圧力調整装
置を設けたものである。
According to a twelfth aspect, the refrigerant is a refrigerant compressor,
A high-pressure refrigerant circuit for defrosting that connects the refrigerant compressor and the cooler is provided for each circulation circuit that circulates in the order of the air-cooled condenser, the liquid receiver, the cooler, and the liquid separator, and a valve that switches between cooler cooling operation and defrost operation. The kit includes an expansion valve, an electromagnetic valve that opens and closes a circuit that introduces high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and an electromagnetic valve connected in parallel to the capillary of the low-pressure refrigerant circuit that discharges refrigerant from the cooler. And an automatic control device for controlling the operation of each device, and a pressure regulating device is provided on a solenoid valve connected in parallel with the capillary of the low-pressure side refrigerant circuit.

【0019】また第13の発明は、冷凍冷蔵庫用冷却装
置の少なくとも1台のクーラで除霜動作を行いながら、
他の少なくとも1台のクーラでは冷却動作を行う冷却動
作と除霜動作が混在する際に、クーラの除霜開始直後に
同時に冷却を行っているクーラの膨張弁開度を一時的に
固定するようにしている。
According to a thirteenth aspect, the defrosting operation is performed by at least one cooler of the refrigerator for a refrigerator.
When the cooling operation for performing the cooling operation and the defrosting operation are mixed in at least one other cooler, the opening degree of the expansion valve of the cooler that is simultaneously cooling immediately after the start of the defrosting of the cooler is temporarily fixed. I have to.

【0020】また第14の発明は、冷凍冷蔵庫用冷却装
置の少なくとも1台のクーラで除霜動作を行いながら、
他の少なくとも1台のクーラでは冷却動作を行う冷却動
作と除霜動作が混在する際に、クーラの除霜開始直後に
同時に冷却、並びに除霜を行っていない停止中のクーラ
を強制的に冷却に入れるようにしている。
According to a fourteenth aspect of the present invention, the defrosting operation is performed by at least one cooler of the refrigerator for a refrigerator and a refrigerator.
In at least one other cooler, when the cooling operation for performing the cooling operation and the defrosting operation are mixed, cooling is performed immediately after the start of the defrosting of the cooler, and the stopped cooler that is not performing the defrosting is forcibly cooled. I try to put in.

【0021】[0021]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1の冷凍冷
蔵庫用冷却装置の冷媒回路図である。図において、従来
と同等の機能を有する構成要素の説明は省略する。冷凍
冷蔵庫1は、冷媒圧縮機10、空冷凝縮器11、受液器
3、クーラ12、液分離器19の順に冷媒が流れる循環
回路において、空冷凝縮器11、受液器3、および液分
離器19内を通る高圧冷媒側伝熱管19cを経た高圧冷
媒が、膨張弁13aで低圧になってクーラ12に導入さ
れる低圧冷媒導入回路14aへ、冷媒圧縮機10で圧縮
された高圧冷媒が直接クーラ12に流入するように除霜
用高圧冷媒回路16を連結している。前記除霜用高圧冷
媒回路16は、空冷凝縮器11に至る冷媒回路13から
分岐され、元バルブとして電磁弁16aが設けられてい
る。前記クーラ12は冷凍冷蔵庫1の規模に応じて所望
能力のものが複数台設置され、それぞれが高圧側冷媒回
路14、低圧側冷媒回路15および除霜用高圧冷媒回路
16に独立した状態に接続されているので、その内の少
なくとも1台を冷却動作、または除霜動作とすることが
できる。
Embodiment 1 FIG. FIG. 1 is a refrigerant circuit diagram of a refrigerator for a refrigerator according to a first embodiment of the present invention. In the drawings, description of components having functions equivalent to those of the related art will be omitted. The refrigerator 1 includes an air-cooled condenser 11, a liquid receiver 3, and a liquid separator in a circulation circuit in which the refrigerant flows in the order of the refrigerant compressor 10, the air-cooled condenser 11, the liquid receiver 3, the cooler 12, and the liquid separator 19. The high-pressure refrigerant, which has passed through the high-pressure refrigerant-side heat transfer tube 19c passing through the inside 19, is reduced in pressure by the expansion valve 13a and introduced into the cooler 12 into the low-pressure refrigerant introduction circuit 14a. The high-pressure refrigerant circuit 16 for defrost is connected so as to flow into the refrigerant circuit 12. The defrosting high-pressure refrigerant circuit 16 is branched from a refrigerant circuit 13 that reaches the air-cooled condenser 11, and is provided with an electromagnetic valve 16a as a main valve. The cooler 12 is provided with a plurality of coolers 12 each having a desired capacity according to the scale of the refrigerator 1, and each is connected to the high-pressure side refrigerant circuit 14, the low-pressure side refrigerant circuit 15, and the defrosting high-pressure refrigerant circuit 16 independently. Therefore, at least one of them can be operated for cooling or defrosting.

【0022】2はバルブキットで、クーラ12の1台に
対して1セットの割合で設置し、高圧側冷媒回路14の
冷媒供給分岐点14bから冷媒を前記クーラ12へ導入
する冷却動作を制御するための膨張弁13aと、除霜用
高圧冷媒回路16から冷媒をクーラ12へ導入する除霜
動作を制御するための電磁弁16bと、前記クーラ12
から冷媒を低圧側冷媒回路15への排出を制御する電磁
弁15aと、前記電磁弁15aと並列に接続された毛細
管15bとを組み込んだもので、前記各機器の動作を制
御する自動制御装置が搭載されている。また、除霜用高
圧冷媒回路16は冷媒回路13から分岐した直後に電磁
弁16aが設けてある。
Reference numeral 2 denotes a valve kit, which is installed at a ratio of one set to one cooler 12 and controls a cooling operation for introducing a refrigerant into the cooler 12 from a refrigerant supply branch point 14b of the high-pressure side refrigerant circuit 14. Valve 13a for controlling the defrosting operation for introducing the refrigerant from the high-pressure refrigerant circuit 16 for defrost to the cooler 12, and the cooler 12
An electromagnetic valve 15a for controlling the discharge of refrigerant from the low-pressure side refrigerant circuit 15 to the low-pressure side refrigerant circuit 15, and a capillary tube 15b connected in parallel with the electromagnetic valve 15a. It is installed. The defrosting high-pressure refrigerant circuit 16 is provided with an electromagnetic valve 16a immediately after branching off from the refrigerant circuit 13.

【0023】上記のように構成された冷凍冷蔵庫用冷却
装置の冷却動作は、膨張弁13a、電磁弁15aを開状
態とし、16aおよび16bを閉状態としている。この
際に、毛細管15bは常時開状態としているが、毛細管
15bの流路抵抗が大きいため、冷媒は15b側にはほ
とんど流れない。圧縮機10で圧縮された冷媒は、高温
高圧の冷媒ガスの状態となり、冷媒回路13によって空
冷凝縮器11に送られる。空冷凝縮器11では凝縮器フ
ァン11aにより送風されて、前記高温高圧の冷媒と外
気とが互いに熱交換して冷媒ガスは凝縮して高圧の冷媒
液になる。空冷凝縮器11で発生した高圧の冷媒液は、
高圧側冷媒回路14を通り、液分離器19内の高圧冷媒
側伝熱管19cを通るとき低圧側冷媒回路15から戻る
冷媒と熱交換した後、冷媒供給分岐点14bを経てバル
ブキット2へ送られる。さらに、前記高圧の冷媒液は膨
張弁13aを介して低圧の冷媒液と冷媒ガスとの混合状
態になり、低圧冷媒導入回路14aを経てクーラ12へ
導入される。
In the cooling operation of the refrigerator for a refrigerator having the above-described structure, the expansion valve 13a and the solenoid valve 15a are opened, and 16a and 16b are closed. At this time, the capillary tube 15b is always in an open state. However, since the flow passage resistance of the capillary tube 15b is large, the refrigerant hardly flows to the 15b side. The refrigerant compressed by the compressor 10 becomes a high-temperature and high-pressure refrigerant gas, and is sent to the air-cooled condenser 11 by the refrigerant circuit 13. In the air-cooled condenser 11, air is blown by the condenser fan 11a, and the high-temperature and high-pressure refrigerant and the outside air exchange heat with each other, and the refrigerant gas is condensed into a high-pressure refrigerant liquid. The high-pressure refrigerant liquid generated in the air-cooled condenser 11 is
After passing through the high-pressure refrigerant circuit 14 and passing through the high-pressure refrigerant heat transfer tube 19c in the liquid separator 19, heat exchange is performed with the refrigerant returning from the low-pressure refrigerant circuit 15, and then sent to the valve kit 2 via the refrigerant supply branch point 14b. . Further, the high-pressure refrigerant liquid enters a mixed state of the low-pressure refrigerant liquid and the refrigerant gas through the expansion valve 13a, and is introduced into the cooler 12 through the low-pressure refrigerant introduction circuit 14a.

【0024】クーラ12では、クーラファン12aによ
り送風されて、前記冷媒液と冷媒ガスとの混合状態の冷
媒と冷凍冷蔵庫1内の空気とが互いに熱交換して冷媒は
気化し、低圧の冷媒ガスになる。そして、前記冷媒ガス
は電磁弁15a、液分離器19を通り、圧縮機10へ戻
される。この際、クーラ12を通過する冷凍冷蔵庫1内
の空気は冷却され、それによって冷凍冷蔵庫1内に置か
れている冷却対象物を冷却することができる。前記冷凍
冷蔵庫1内の空気温度は、温度センサ等の測定器具によ
って常時管理され、予め決められた設定温度に対して、
前記空気温度が高くなった場合は、膨張弁13aを機能
させてクーラ12に冷媒を供給することによって冷却運
転を行い、一方、前記空気温度が低くなった場合は、膨
張弁13aの機能を停止させてクーラ12への冷媒の供
給を停止して冷却運転を停止させる。
In the cooler 12, the refrigerant in the mixed state of the refrigerant liquid and the refrigerant gas and the air in the refrigerator 1 exchange heat with each other by being blown by the cooler fan 12a, the refrigerant is vaporized, and the low-pressure refrigerant gas become. Then, the refrigerant gas is returned to the compressor 10 through the solenoid valve 15a and the liquid separator 19. At this time, the air in the refrigerator 1 passing through the cooler 12 is cooled, so that the object to be cooled placed in the refrigerator 1 can be cooled. The air temperature in the refrigerator 1 is constantly managed by a measuring instrument such as a temperature sensor, and is set to a predetermined set temperature.
When the air temperature becomes high, the cooling operation is performed by causing the expansion valve 13a to function and supply the refrigerant to the cooler 12. On the other hand, when the air temperature becomes low, the function of the expansion valve 13a is stopped. Then, the supply of the refrigerant to the cooler 12 is stopped to stop the cooling operation.

【0025】次に除霜動作について説明する。前記冷却
動作を長時間続行すると、クーラ12内の伝熱管、およ
びフィンに霜状の氷が生成付着する。この霜の付着の状
態は、冷凍冷蔵庫1内の空気温度と低圧冷媒導入回路1
4aを通過する冷媒の温度の差異、クーラ12の冷却運
転時間、ユーザが定めた時刻、およびこれらの各条件の
組合せ条件等によって推定、または判断される。前記判
断の結果、除霜を実施する必要ありと判断された場合、
除霜動作を開始する。除霜動作は、クーラファン12a
を停止させ、膨張弁13a、電磁弁15aを全閉状態に
して、高圧側冷媒回路14からクーラ12に冷媒が流れ
ないようにして、電磁弁16a,16bを開き、圧縮機
10によって高温高圧になった冷媒ガスを直接的にクー
ラ12へ導入する。クーラ12へ導入された高温高圧の
冷媒ガスは、霜が付着した状態のクーラ12の熱容量に
より急激に冷却されて凝縮し、液とガスの混合状態にな
る。この高温高圧の冷媒の凝縮潜熱により、クーラ12
に付着した霜を融解させることが可能である。この混合
状態の冷媒は、低圧側冷媒回路15から毛細管15bを
経て液分離器19へ戻され、冷媒ガスは圧縮機10に戻
され、冷媒液は高圧冷媒側伝熱管19cを流れる高温の
冷媒液と熱交換することにより蒸発させられ冷媒ガスと
なったものが圧縮機10に戻される。
Next, the defrosting operation will be described. When the cooling operation is continued for a long time, frost-like ice is generated and adheres to the heat transfer tubes and the fins in the cooler 12. The state of the frost adhesion depends on the air temperature in the refrigerator 1 and the low-pressure refrigerant introduction circuit 1.
Estimation or determination is made based on the difference in the temperature of the refrigerant passing through 4a, the cooling operation time of the cooler 12, the time set by the user, the combination of these conditions, and the like. As a result of the determination, when it is determined that it is necessary to perform defrost,
Start the defrosting operation. The defrosting operation is performed by the cooler fan 12a.
Is stopped, the expansion valve 13a and the solenoid valve 15a are fully closed, the refrigerant does not flow from the high-pressure side refrigerant circuit 14 to the cooler 12, the solenoid valves 16a and 16b are opened, and the compressor 10 sets the high temperature and high pressure. The changed refrigerant gas is directly introduced into the cooler 12. The high-temperature and high-pressure refrigerant gas introduced into the cooler 12 is rapidly cooled and condensed by the heat capacity of the cooler 12 to which frost is attached, and becomes a mixed state of liquid and gas. Due to the condensation latent heat of the high-temperature and high-pressure refrigerant, the cooler 12
It is possible to melt the frost adhering to the surface. The refrigerant in the mixed state is returned from the low-pressure side refrigerant circuit 15 to the liquid separator 19 via the capillary tube 15b, the refrigerant gas is returned to the compressor 10, and the refrigerant liquid is a high-temperature refrigerant liquid flowing through the high-pressure refrigerant side heat transfer tube 19c. The refrigerant gas evaporated by heat exchange with the refrigerant gas is returned to the compressor 10.

【0026】なお、除霜動作は、冷却装置を構成する少
なくとも1台のクーラで実施し、同時に他の少なくとも
1台のクーラでは冷却動作を行う。但し、庫内温度上昇
の抑制や冷却装置全体の運転をより安定させる等の理由
により、同時に除霜動作を行うクーラの台数に制限を設
ける場合もある。この場合、除霜を行う必要の生じたク
ーラ台数が、前記制限の台数より多い場合は、制限に収
まる台数のクーラの除霜動作をまず実施し、それらのク
ーラの除霜動作が終了した後、順次残りのクーラを除霜
動作に入れる。この間、他の少なくとも1台のクーラは
冷却動作を続行させる。
The defrosting operation is performed by at least one cooler constituting the cooling device, and at the same time, the cooling operation is performed by at least one other cooler. However, there may be a case where the number of coolers that simultaneously perform the defrosting operation is limited in order to suppress a rise in the internal temperature of the refrigerator or stabilize the operation of the entire cooling device. In this case, if the number of coolers that need to be defrosted is larger than the limit number, the defrosting operation of the coolers of the number of units falling within the limit is first performed, and after the defrosting operation of those coolers is completed. Then, the remaining coolers are sequentially put into the defrosting operation. During this time, at least one other cooler continues the cooling operation.

【0027】ここで、冷凍冷蔵庫用冷却装置の動作状態
と冷媒の圧力バランスの関係について説明する。図5お
よび図6において、41は圧縮機の吸入ガス、42は圧
縮機の吐出ガス、43は高圧の凝縮液、44は高圧過冷
却液、45は除霜動作による凝縮液、46は毛細管15
b等の圧力調整装置により減圧された冷媒、47は高圧
過冷却液44が膨張弁13aにより絞られた低圧絞り冷
媒、48は冷却動作を行っているクーラを通過した低圧
過熱ガス、49は除霜減圧冷媒46と低圧過熱ガス48
が低圧側冷媒回路15内で合流した後の低圧合流後冷媒
をそれぞれ表している。除霜動作を行っているクーラで
は、毛細管15bにより、除霜用高圧冷媒回路16、並
びにクーラ12を通過した除霜凝縮液45が、低圧側冷
媒回路15を流れる除霜減圧冷媒46の状態まで減圧さ
れるため、同時に冷却動作を行っているクーラの低圧側
冷媒回路15を流れる低圧過熱ガス48の圧力とバラン
スすることで、冷却動作を続行しながら除霜動作を続行
することが可能である。
Here, the relationship between the operation state of the refrigerator for the refrigerator and the pressure balance of the refrigerant will be described. 5 and 6, reference numeral 41 denotes a suction gas of the compressor, 42 denotes a discharge gas of the compressor, 43 denotes a high-pressure condensate, 44 denotes a high-pressure supercooled liquid, 45 denotes a condensate by a defrosting operation, and 46 denotes a capillary tube 15.
b, a low-pressure throttle refrigerant in which the high-pressure supercooled liquid 44 is throttled by the expansion valve 13a; 48, a low-pressure superheated gas that has passed through a cooler performing a cooling operation; Frost decompressed refrigerant 46 and low pressure superheated gas 48
Represents the low-pressure combined refrigerant after being combined in the low-pressure side refrigerant circuit 15. In the cooler performing the defrosting operation, the defrosting high-pressure refrigerant circuit 16 and the defrosting condensate 45 that has passed through the cooler 12 are reduced to the state of the defrosting low-pressure refrigerant 46 flowing through the low-pressure side refrigerant circuit 15 by the capillary tube 15b. Since the pressure is reduced, it is possible to continue the defrosting operation while continuing the cooling operation by balancing the pressure with the low-pressure superheated gas 48 flowing through the low-pressure side refrigerant circuit 15 of the cooler performing the cooling operation at the same time. .

【0028】上記のような実施形態1の冷凍冷蔵庫用冷
却装置によれば、 少なくとも1台のクーラで除霜動作を行いながら、他
の少なくとも1台のクーラでは冷却動作を行う、冷却動
作と除霜動作を混在させることができるので、除霜時の
庫内温度上昇の抑制が図れる。 除霜動作により凝縮した気液二相状態の冷媒と高圧側
凝縮冷媒液とを熱交換させることにより除霜動作に伴う
エネルギ利用効率の向上、すなわち省エネルギが図れ
る。 除霜動作開始時に圧縮機の起動発停をわざわざ行う必
要がなく、冷却装置全体の安定した運転ができる。 除霜動作に伴って生じる冷媒凝縮液を毛細管(15
b)による絞りや高圧側凝縮液と熱交換させることによ
って、充分気化させて圧縮機に戻すことによる圧縮機の
液圧縮に起因する損傷の防止に関する冷却装置全体の信
頼性が向上する。
According to the cooling device for a refrigerator-freezer of the first embodiment as described above, the defrosting operation is performed by at least one cooler, while the cooling operation is performed by at least one other cooler. Since the frost operation can be mixed, it is possible to suppress an increase in the internal temperature during defrosting. By exchanging heat between the refrigerant in the gas-liquid two-phase state condensed by the defrosting operation and the high-pressure side condensed refrigerant liquid, the energy use efficiency accompanying the defrosting operation can be improved, that is, energy can be saved. There is no need to bother starting and stopping the compressor at the start of the defrosting operation, and the stable operation of the entire cooling device can be performed. The refrigerant condensate generated by the defrosting operation is transferred to a capillary tube (15).
By performing heat exchange with the throttle and the high-pressure side condensate according to b), the reliability of the entire cooling device with respect to prevention of damage due to liquid compression of the compressor by sufficiently vaporizing and returning to the compressor is improved.

【0029】実施の形態2.前記実施の形態1において
は、除霜動作中に凝縮器11の送風量の調節をしていな
い。除霜動作を行っている間、凝縮器ファン11aの回
転数を減少、または複数台ある凝縮器ファン11aのう
ち、一部の台数を停止させて空冷凝縮器11の送風量を
減少させることによって、空冷凝縮器11での高温高圧
の冷媒ガスの凝縮量が減少し、その結果、除霜用高圧冷
媒回路16を介してクーラ12へ送られる高温高圧の冷
媒ガスの量が相対的に増加するため、クーラ12を除霜
するための供給熱量がその分増大する。この結果、実施
の形態1と同様な効果を奏しながら、なおかつ除霜動作
の所要時間をより短縮することができる。
Embodiment 2 In the first embodiment, the flow rate of the condenser 11 is not adjusted during the defrosting operation. During the defrosting operation, the number of rotations of the condenser fan 11a is reduced, or a part of the plurality of condenser fans 11a is stopped to reduce the air flow of the air-cooled condenser 11. Accordingly, the amount of the high-temperature and high-pressure refrigerant gas condensed in the air-cooled condenser 11 decreases, and as a result, the amount of the high-temperature and high-pressure refrigerant gas sent to the cooler 12 via the defrosting high-pressure refrigerant circuit 16 relatively increases. Therefore, the amount of heat supplied for defrosting the cooler 12 increases accordingly. As a result, the same effect as in the first embodiment can be obtained, and the required time for the defrosting operation can be further reduced.

【0030】実施の形態3.前記実施の形態1〜2で
は、低圧側冷媒回路15に電磁弁15aと毛細管15b
を並列接続した冷媒回路について示した。この実施の形
態4においては、図2に示すように、前記電磁弁15a
と毛細管15bの並列接続に替えて、例えば、温度式膨
張弁、手動式膨張弁、電子式膨張弁等の圧力調整装置1
5cを接続したものである。上記のように構成した冷凍
冷蔵庫用冷却装置で、冷却動作を行っている間はバルブ
キット2の低圧側冷媒回路15の流路が全開状態になる
ようにして、除霜動作を行っている間は前記低圧側冷媒
回路15の流路が一部開となる状態になるようにして冷
媒液を絞りながら圧縮機の吸込側へ排出する。この結
果、実施の形態1と同様な方法で冷却動作、および除霜
動作を行うことによって、実施の形態1の場合と同様な
作用、効果が得られる。なお、冷却動作を行っているク
ーラと除霜動作を行っているクーラの各々の低圧側冷媒
回路15を流れる図5に基づいた冷媒圧力がバランスす
る方法についても、実施の形態1での毛細管15bを用
いた場合と同様である。
Embodiment 3 In the first and second embodiments, the low pressure side refrigerant circuit 15 includes the solenoid valve 15a and the capillary tube 15b.
Are shown for the refrigerant circuit connected in parallel. In the fourth embodiment, as shown in FIG.
Pressure adjusting device 1 such as a thermal expansion valve, a manual expansion valve, an electronic expansion valve, etc.
5c. In the refrigerator for a refrigerator-refrigerator configured as described above, while the cooling operation is being performed, the flow path of the low-pressure side refrigerant circuit 15 of the valve kit 2 is fully opened to perform the defrosting operation. The refrigerant is discharged to the suction side of the compressor while restricting the refrigerant liquid so that the flow path of the low-pressure side refrigerant circuit 15 is partially opened. As a result, by performing the cooling operation and the defrosting operation in the same manner as in the first embodiment, the same operation and effect as those in the first embodiment can be obtained. The method of balancing the refrigerant pressure based on FIG. 5 flowing through the low-pressure side refrigerant circuit 15 of each of the cooler performing the cooling operation and the cooler performing the defrosting operation is also described in the capillary 15b in the first embodiment. This is the same as the case where.

【0031】実施の形態4.前記実施の形態1では、低
圧側冷媒回路15の圧縮機10の吸込側の手前に液分離
器19を使用した冷媒回路について示したが、図3に示
すように、前記液分離器19に替えて低圧側補助熱交換
器19dを使用して、低圧冷媒側流路19eを流れる低
圧の気液混合状態の冷媒と、高圧冷媒側流路19fを流
れる高圧の液状態の冷媒とを互いに熱交換させるもので
ある。上記のように構成した実施の形態5の冷凍冷蔵庫
用冷却装置においては、実施の形態1と同様な方法で冷
却動作、および除霜動作を行うことによって、実施の形
態1の場合と同様な効果を奏する。
Embodiment 4 FIG. In the first embodiment, the refrigerant circuit using the liquid separator 19 in front of the suction side of the compressor 10 of the low-pressure side refrigerant circuit 15 is shown. However, as shown in FIG. The low pressure side auxiliary heat exchanger 19d is used to exchange heat between the low pressure refrigerant in the gas-liquid mixed state flowing through the low pressure refrigerant side flow path 19e and the high pressure liquid state refrigerant flowing through the high pressure refrigerant side flow path 19f. It is to let. In the refrigerator for a refrigerator according to the fifth embodiment configured as described above, by performing the cooling operation and the defrosting operation in the same manner as in the first embodiment, the same effect as in the first embodiment is obtained. To play.

【0032】実施の形態5.前記実施の形態4では低圧
側補助熱交換器19dを使用する回路について述べた
が、低圧冷媒側流路19e、および高圧冷媒側流路19
fの流路形状について、前記低圧冷媒側流路19e、高
圧冷媒側流路19fの伝熱面積比や流路体積比を様々な
状態に変化させたような低圧側補助熱交換器19dを使
用して冷媒回路を構成した場合においても、実施の形態
1と同様な方法で冷却動作、および除霜動作を行うこと
によって、実施の形態5の場合と同様な作用効果を奏す
るものとすることができる。
Embodiment 5 In the fourth embodiment, the circuit using the low-pressure side auxiliary heat exchanger 19d has been described, but the low-pressure refrigerant side flow path 19e and the high-pressure refrigerant side flow path 19d are described.
For the flow path shape of f, a low pressure side auxiliary heat exchanger 19d is used in which the heat transfer area ratio and flow path volume ratio of the low pressure refrigerant side flow path 19e and the high pressure refrigerant side flow path 19f are changed to various states. Even when the refrigerant circuit is configured as described above, by performing the cooling operation and the defrosting operation in the same manner as in the first embodiment, the same operation and effect as in the fifth embodiment can be obtained. it can.

【0033】実施の形態6.前記実施の形態4で述べた
低圧側補助熱交換器19dを使用する回路において、低
圧冷媒側流路19e、および高圧冷媒側流路19fを流
れる冷媒の向きを同一方向、もしくは逆方向にとった低
圧側補助熱交換器19dを使用して冷媒回路を構成した
場合においても、実施の形態1と同様な方法で冷却動
作、および除霜動作を行うことによって、実施の形態5
の場合と同様な作用効果を奏することができる。
Embodiment 6 FIG. In the circuit using the low-pressure side auxiliary heat exchanger 19d described in the fourth embodiment, the directions of the refrigerant flowing through the low-pressure refrigerant side flow path 19e and the high-pressure refrigerant side flow path 19f are set to the same direction or the opposite directions. In the case where the refrigerant circuit is configured using the low-pressure side auxiliary heat exchanger 19d, the cooling operation and the defrosting operation are performed in the same manner as in the first embodiment.
The same operation and effect as in the case of can be obtained.

【0034】実施の形態7.前記実施の形態1では、低
圧側冷媒回路15に電磁弁15aと毛細管15bを並列
接続し、冷却動作時のクーラから排出した低圧冷媒ガ
ス、ならびに除霜動作時のクーラから排出した凝縮冷媒
は、ともに共通の低圧側冷媒回路15へ戻している。こ
の実施の形態7においては、図4に示すように、毛細管
15bから例えば、毛細管、湿式膨張弁、手動式膨張
弁、電子式膨張弁等の圧力調整装置4を介して、共通の
低圧側冷媒回路15へ戻すようにしている。上記のよう
に構成した冷凍冷蔵庫用冷却装置においては、冷凍冷蔵
庫1内の冷却動作を行っている全てのクーラ12は、開
状態の電磁弁15aを介して直接低圧側冷媒回路15に
戻す。除霜動作を行っているクーラ12は電磁弁15a
を閉状態にして凝縮冷媒を毛細管15bに通した後に低
圧側冷媒回路15に戻し、ここでさらに、低圧側冷媒回
路15上の圧力調整装置4を通す。この結果、除霜動作
により発生した凝縮冷媒の圧力と、冷却動作により発生
した低圧冷媒ガスの圧力のバランスをとりながら、液分
離器19へ戻すことができるので、実施の形態1と同様
な方法で冷却動作、および除霜動作を行うことによっ
て、実施の形態2の場合と同様な効果を奏する。なお、
液分離器19に替えて、図3に示す低圧側補助熱交換器
19dを用いた場合でも同様な作用効果を奏する。
Embodiment 7 In the first embodiment, the solenoid valve 15a and the capillary tube 15b are connected in parallel to the low-pressure side refrigerant circuit 15, and the low-pressure refrigerant gas discharged from the cooler during the cooling operation, and the condensed refrigerant discharged from the cooler during the defrosting operation, Both are returned to the common low-pressure side refrigerant circuit 15. In the seventh embodiment, as shown in FIG. 4, a common low-pressure side refrigerant is supplied from a capillary tube 15b via a pressure adjusting device 4 such as a capillary tube, a wet expansion valve, a manual expansion valve, and an electronic expansion valve. It returns to the circuit 15. In the refrigerator for a refrigerator-freezer configured as described above, all the coolers 12 performing the cooling operation in the refrigerator-freezer 1 return directly to the low-pressure side refrigerant circuit 15 via the electromagnetic valve 15a in the open state. The cooler 12 performing the defrosting operation is a solenoid valve 15a.
Is closed, the condensed refrigerant is passed through the capillary tube 15b, and then returned to the low-pressure side refrigerant circuit 15, where it is further passed through the pressure regulator 4 on the low-pressure side refrigerant circuit 15. As a result, the pressure of the condensed refrigerant generated by the defrosting operation and the pressure of the low-pressure refrigerant gas generated by the cooling operation can be balanced and returned to the liquid separator 19, so that the same method as in the first embodiment is used. By performing the cooling operation and the defrosting operation in the embodiment, the same effects as in the case of the second embodiment can be obtained. In addition,
The same operation and effect can be obtained even when the low pressure side auxiliary heat exchanger 19d shown in FIG. 3 is used instead of the liquid separator 19.

【0035】この場合の装置上を流れる冷媒の圧力バラ
ンスの関係について説明する。図5及び図6に示すよう
に、本実施の形態では、除霜動作を行っているクーラの
低圧側冷媒回路を流れる冷媒は、まず、除霜凝縮液45
が毛細管15bにより一旦減圧され、その冷媒がさらに
圧力調整装置4により除霜減圧冷媒46の状態まで減圧
される。この除霜減圧冷媒46は、冷却動作を行ってい
るクーラの低圧側冷媒回路を流れる冷媒圧力とバランス
する。これによって、実施の形態1と同様な効果が得ら
れる。
The relationship between the pressure balance of the refrigerant flowing on the apparatus in this case will be described. As shown in FIGS. 5 and 6, in the present embodiment, the refrigerant flowing through the low-pressure side refrigerant circuit of the cooler performing the defrosting operation firstly receives the defrosted condensate 45.
Is once depressurized by the capillary tube 15b, and the refrigerant is further depressurized by the pressure adjusting device 4 to the state of the defrost depressurized refrigerant 46. This defrost reduced-pressure refrigerant 46 balances the pressure of the refrigerant flowing through the low-pressure side refrigerant circuit of the cooler performing the cooling operation. Thereby, an effect similar to that of the first embodiment can be obtained.

【0036】実施の形態8.前記各実施の形態の冷凍冷
蔵庫用冷却装置の少なくとも1台のクーラで除霜動作を
行いながら、他の少なくとも1台のクーラでは冷却動作
を行う冷却動作と除霜動作が混在する際に、除霜動作を
開始した直後に、他の冷却動作を行っているクーラの膨
張弁開度を一定時間固定し、その後自由な開度をとるよ
うに解放する工程を組み込むことによって、実施の形態
1と同様な効果を奏しながら、なおかつ除霜動作を行っ
ているクーラと、冷却動作を行っているクーラの各々を
流れる冷媒状態のバランスがとれるまでの時間をより短
縮することが可能であるという効果を奏する。
Embodiment 8 FIG. While performing a defrosting operation with at least one cooler of the refrigerator for a refrigerator and a refrigerator of each of the above embodiments, a cooling operation and a defrosting operation of performing a cooling operation with at least one other cooler coexist. Immediately after the frost operation is started, the process of fixing the expansion valve opening of the cooler performing another cooling operation for a certain period of time, and then releasing the opening so as to take a free opening is incorporated. While having the same effect, it is possible to further reduce the time required to balance the state of the refrigerant flowing through each of the cooler performing the defrosting operation and the cooler performing the cooling operation. Play.

【0037】実施の形態9.前記各実施の形態の冷凍冷
蔵庫用冷却装置の少なくとも1台のクーラで除霜動作を
行いながら、他の少なくとも1台のクーラでは冷却動作
を行う冷却動作と除霜動作が混在する際に、除霜動作を
開始した直後に、他のクーラで冷却動作も除霜動作も行
っていない停止中のクーラを強制的に冷却動作させる工
程を組み込むことによって、実施の形態1と同様な効果
を奏しながら、なおかつ圧縮機をより定格に近い状態で
運転させることができることから、除霜動作を行ってい
るクーラへのホットガスの供給量が増大することに伴う
除霜動作の所要時間をより短縮することが可能であると
いう効果を奏する。
Embodiment 9 While performing a defrosting operation with at least one cooler of the refrigerator for a refrigerator and a refrigerator of each of the above embodiments, a cooling operation and a defrosting operation of performing a cooling operation with at least one other cooler coexist. Immediately after the start of the frost operation, by incorporating a step of forcibly cooling the stopped cooler that is not performing the cooling operation or the defrosting operation with another cooler, the same effect as in the first embodiment can be obtained. In addition, since the compressor can be operated in a state closer to the rating, the time required for the defrosting operation due to an increase in the amount of hot gas supplied to the cooler performing the defrosting operation is further reduced. This has the effect that it is possible.

【0038】[0038]

【発明の効果】上記のように第1の発明は、冷媒が冷媒
圧縮機、空冷凝縮器、受液器、液分離器、クーラの順に
巡回する循環回路毎に、冷媒圧縮機とクーラを結ぶ除霜
用高圧冷媒回路が設けられ、クーラの冷却運転と除霜運
転を切り替えるバルブキットを備えたので、循環回路毎
に冷却動作または除霜動作の何れかを選択し、除霜動作
を混在させた状態で冷却動作を続行できるので、除霜動
作開始時に圧縮機の起動発停をわざわざ行う必要がない
ので安定した運転ができ、庫内温度上昇の抑制が図れ、
効率よく冷却動作および除霜動作を行うことが可能であ
り、冷凍冷蔵庫の効果的な運用が図れる。
As described above, the first aspect of the present invention connects a refrigerant compressor and a cooler for each circulation circuit in which the refrigerant circulates in the order of a refrigerant compressor, an air-cooled condenser, a liquid receiver, a liquid separator, and a cooler. A high-pressure refrigerant circuit for defrosting is provided, and a valve kit for switching between a cooling operation and a defrosting operation of a cooler is provided, so that either a cooling operation or a defrosting operation is selected for each circulation circuit, and a defrosting operation is mixed. Since the cooling operation can be continued in the defrosted state, it is not necessary to start and stop the compressor at the start of the defrosting operation, so that a stable operation can be performed, and a rise in the internal temperature of the refrigerator can be suppressed,
The cooling operation and the defrosting operation can be performed efficiently, and the freezer-refrigerator can be operated effectively.

【0039】また第2の発明は、前記バルブキットが膨
張弁と、クーラの除霜に伴い高温高圧の冷媒ガスをクー
ラへ導入する回路を開閉する電磁弁と、クーラから冷媒
を排出する低圧側冷媒回路の毛細管に並列接続した電磁
弁と、前記各機器の動作を制御する自動制御装置とを搭
載したので、効率よく冷却動作および除霜動作を行うこ
とが可能であり、低圧側冷媒回路を流れる冷媒を充分気
化させて圧縮機の吸込側に戻すことができ、圧縮機の液
圧縮による損傷を防止できる。
According to a second aspect of the present invention, the valve kit includes an expansion valve, an electromagnetic valve for opening and closing a circuit for introducing a high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and a low-pressure side for discharging the refrigerant from the cooler. Since an electromagnetic valve connected in parallel to the capillary of the refrigerant circuit and an automatic control device for controlling the operation of each device are mounted, it is possible to efficiently perform a cooling operation and a defrosting operation, and a low-pressure side refrigerant circuit. The flowing refrigerant can be sufficiently vaporized and returned to the suction side of the compressor, and damage due to liquid compression of the compressor can be prevented.

【0040】また第3の発明は、前記バルブキットが膨
張弁と、クーラの除霜に伴い高温高圧の冷媒ガスをクー
ラへ導入する回路を開閉する電磁弁と、クーラから冷媒
を排出する低圧側冷媒回路に接続した圧力調整装置と、
前記各機器の動作を制御する自動制御装置とを搭載した
ので、前記第2の発明と同様に効率よく冷却動作および
除霜動作を行うことが可能であり、低圧側冷媒回路を流
れる冷媒を充分気化させて圧縮機の吸込側に戻すことが
でき、圧縮機の液圧縮による損傷の防止に関する信頼性
が向上する。
According to a third aspect of the present invention, the valve kit includes an expansion valve, an electromagnetic valve for opening and closing a circuit for introducing a high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and a low-pressure side for discharging the refrigerant from the cooler. A pressure regulator connected to the refrigerant circuit;
Since the automatic control device for controlling the operation of each device is mounted, the cooling operation and the defrosting operation can be performed efficiently as in the second invention, and the refrigerant flowing through the low-pressure side refrigerant circuit can be sufficiently supplied. It can be vaporized and returned to the suction side of the compressor, and the reliability of the compressor in preventing damage due to liquid compression is improved.

【0041】また第4の発明は、前記液分離器が除霜に
より発生した低圧の冷媒凝縮液と、高温高圧の冷媒凝縮
液とを熱交換させる機能を備えたので、上記各発明と同
様な効果を奏しながら、なおかつ、高圧冷媒側の冷媒液
の過冷却度の増大に伴って冷却効果が増大することによ
る除霜動作に伴うエネルギ利用効率の向上、延いては省
エネが図れ、冷却装置にかかる動力費が低減できる。
Further, in the fourth invention, the liquid separator has a function of exchanging heat between the low-pressure refrigerant condensate generated by defrosting and the high-temperature and high-pressure refrigerant condensate. While achieving the effect, the cooling effect increases as the degree of supercooling of the refrigerant liquid on the high-pressure refrigerant side increases, thereby improving the energy use efficiency associated with the defrosting operation, and consequently energy saving. Such power costs can be reduced.

【0042】また第5の発明は、高圧側冷媒回路から高
圧冷媒液をクーラへ導入する膨張弁を閉鎖し、除霜用高
圧冷媒回路から高温高圧の冷媒ガスをクーラへ導入する
電磁弁を開放するとともに、クーラ内の凝縮冷媒液を気
化させるように絞りながらクーラから排出する毛細管と
並列接続した低圧側冷媒回路の電磁弁を閉鎖するように
しているので、効率よく冷却動作および除霜動作を行う
ことが可能であり、加えて、一度に大量の冷媒凝縮液が
圧縮機側へ戻されることが回避できることに伴う圧縮機
の液圧縮による損傷の防止に関する信頼性がより向上す
る。
According to a fifth aspect of the present invention, an expansion valve for introducing high-pressure refrigerant liquid from a high-pressure side refrigerant circuit to a cooler is closed, and an electromagnetic valve for introducing high-temperature and high-pressure refrigerant gas from a high-pressure refrigerant circuit for defrosting to a cooler is opened. In addition, the solenoid valve of the low-pressure side refrigerant circuit connected in parallel with the capillary discharged from the cooler while restricting so as to vaporize the condensed refrigerant liquid in the cooler is closed, so that the cooling operation and the defrosting operation can be performed efficiently. In addition, it is possible to further prevent the large amount of refrigerant condensate from being returned to the compressor at a time, thereby improving the reliability of preventing damage due to liquid compression of the compressor.

【0043】また第6の発明は、高圧側冷媒回路から高
圧冷媒液をクーラへ導入する膨張弁を閉鎖し、除霜用高
圧冷媒回路から高温高圧の冷媒ガスをクーラへ導入する
電磁弁を開放するとともに、クーラ内の凝縮冷媒液を気
化させるように低圧側冷媒回路の圧力調整装置を調整し
てクーラから排出する冷媒量を調節するようにしている
ので、効率よく冷却動作および除霜動作を行うことが可
能であり、加えて、一度に大量の冷媒凝縮液が圧縮機側
へ戻されることが回避できることに伴う圧縮機の液圧縮
による損傷の防止に関する信頼性がより向上する。
According to a sixth aspect of the present invention, an expansion valve for introducing high-pressure refrigerant liquid from the high-pressure side refrigerant circuit to the cooler is closed, and an electromagnetic valve for introducing high-temperature and high-pressure refrigerant gas from the high-pressure refrigerant circuit for defrosting to the cooler is opened. In addition, since the amount of refrigerant discharged from the cooler is adjusted by adjusting the pressure regulator of the low pressure side refrigerant circuit so as to vaporize the condensed refrigerant liquid in the cooler, the cooling operation and the defrosting operation can be performed efficiently. In addition, it is possible to further prevent the large amount of refrigerant condensate from being returned to the compressor at a time, thereby improving the reliability of preventing damage due to liquid compression of the compressor.

【0044】また第7の発明は、冷媒が冷媒圧縮機、空
冷凝縮器、受液器、液分離器、クーラの順に巡回する循
環回路毎に、冷媒圧縮機とクーラを結ぶ除霜用高圧冷媒
回路が設けられ、クーラの冷却運転と除霜運転を切り替
えるバルブキットを備えた冷凍冷蔵庫用冷却装置の少な
くとも1台のクーラで除霜動作を行いながら、他の少な
くとも1台のクーラでは冷却動作を行う冷却動作と除霜
動作が混在するようにしているので、上記各発明と同様
な効果を奏しながら、除霜時の庫内温度上昇を効果的に
抑制でき、常に良好な冷蔵状態を維持できる。
A seventh aspect of the present invention is a high-pressure defrosting refrigerant for connecting a refrigerant compressor and a cooler for each circulation circuit in which the refrigerant circulates in the order of a refrigerant compressor, an air-cooled condenser, a liquid receiver, a liquid separator, and a cooler. A circuit is provided, and a cooling operation is performed by at least one other cooler while performing a defrosting operation by at least one cooler of a refrigerator for a refrigerator including a valve kit for switching a cooling operation and a defrosting operation of the cooler. Since the cooling operation and the defrosting operation to be performed are mixed, it is possible to effectively suppress the rise in the internal temperature during defrosting while maintaining the same effects as the above inventions, and to always maintain a good refrigerated state. .

【0045】また第8の発明は、周辺の空気を送風する
ファン有する凝縮器を備えたクーラの除霜を実施すると
き、前記ファンの回転数、または稼働台数を減少させて
送風量を減少させるようにしているので、上記各発明と
同様な効果を奏しながら、なおかつ除霜動作の所要時間
をより短縮することができる。
According to an eighth aspect of the present invention, when defrosting a cooler provided with a condenser having a fan for blowing ambient air, the number of rotations or the number of operating fans is reduced to reduce the amount of air blown. As a result, the same effects as those of the above-described inventions can be obtained, and the time required for the defrosting operation can be further reduced.

【0046】また第9の発明は、除霜により発生した低
圧の冷媒凝縮液と、高温高圧の冷媒凝縮液を熱交換させ
る液分離器が、伝熱管の内面と外面の表面積の比が大き
な伝熱管を有するので、上記各発明と同様の効果を奏
し、除霜動作に伴うエネルギ利用効率の向上、すなわち
省エネが図れ、冷却装置に係る動力費が低減できる。
According to a ninth aspect of the present invention, a liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate is provided by a liquid separator having a large surface area ratio between the inner surface and the outer surface of the heat transfer tube. Since the heat pipe is provided, the same effects as those of the inventions described above can be obtained, the energy use efficiency accompanying the defrosting operation can be improved, that is, energy can be saved, and the power cost of the cooling device can be reduced.

【0047】また第10の発明は、除霜により発生した
低圧の冷媒凝縮液と、高温高圧の冷媒凝縮液を熱交換さ
せる液分離器が、低圧の冷媒側と高圧の冷媒側の流路体
積の比が大きな冷媒流路を有するので、上記各発明と同
様の効果を奏し、除霜動作に伴うエネルギ利用効率の向
上、すなわち省エネが図れ、冷却装置に係る動力費が低
減できる。
According to a tenth aspect of the present invention, there is provided a liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate. Has a large refrigerant flow ratio, the same effects as those of the above inventions are exhibited, the energy use efficiency associated with the defrosting operation can be improved, that is, energy saving can be achieved, and the power cost of the cooling device can be reduced.

【0048】また第11の発明は、除霜により発生した
低圧の冷媒凝縮液と、高温高圧の冷媒凝縮液を熱交換さ
せる液分離器が、前記低圧の冷媒凝縮液と前記高圧の冷
媒凝縮液を流路に通す方向を同一方向、または逆方向に
とることが可能な構造を有するので、上記各発明と同様
の効果を奏し、除霜動作に伴うエネルギ利用効率の向
上、すなわち省エネが図れ、冷却装置に係る動力費が低
減できる。
According to an eleventh aspect of the present invention, the liquid separator for exchanging heat between the low-pressure refrigerant condensate generated by defrosting and the high-temperature and high-pressure refrigerant condensate includes the low-pressure refrigerant condensate and the high-pressure refrigerant condensate. Through the flow path in the same direction, or in the opposite direction, has the same effect as the above inventions, the improvement of energy utilization efficiency associated with the defrosting operation, that is, energy saving, The power cost related to the cooling device can be reduced.

【0049】また第12の発明は、冷媒が冷媒圧縮機、
空冷凝縮器、受液器、液分離器、クーラの順に巡回する
循環回路毎に、冷媒圧縮機とクーラを結ぶ除霜用高圧冷
媒回路が設けられ、クーラの冷却運転と除霜運転を切り
替えるバルブキットが膨張弁と、クーラの除霜に伴い高
温高圧の冷媒ガスをクーラへ導入する回路を開閉する電
磁弁と、クーラから冷媒を排出する低圧側冷媒回路の毛
細管に平行して接続した電磁弁と、前記各機器の動作を
制御する自動制御装置とを搭載し、さらに前記低圧側冷
媒回路の毛細管に平行して接続した電磁弁に圧力調整装
置を設けたので、上記各発明と同様な効果を奏し、圧縮
機の液圧縮による損傷の防止に関する信頼性が向上、並
びに除霜動作に伴うエネルギ利用効率の向上、延いては
省エネが図れて冷却装置に係る動力費が低減することが
できる。
According to a twelfth aspect, the refrigerant is a refrigerant compressor,
A high-pressure refrigerant circuit for defrosting that connects the refrigerant compressor and the cooler is provided for each circulation circuit that circulates in the order of the air-cooled condenser, the liquid receiver, the liquid separator, and the cooler, and a valve that switches between cooler cooling operation and defrost operation. The kit includes an expansion valve, an electromagnetic valve that opens and closes a circuit that introduces high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and an electromagnetic valve connected in parallel to the capillary of the low-pressure refrigerant circuit that discharges refrigerant from the cooler. And an automatic control device for controlling the operation of each of the above devices, and a pressure adjusting device is provided on a solenoid valve connected in parallel to the capillary of the low-pressure side refrigerant circuit. Therefore, the reliability of preventing damage due to liquid compression of the compressor is improved, the energy use efficiency associated with the defrosting operation is improved, and furthermore, energy saving can be achieved and the power cost related to the cooling device can be reduced.

【0050】また第13の発明は、冷凍冷蔵庫用冷却装
置の少なくとも1台のクーラで除霜動作を行いながら、
他の少なくとも1台のクーラでは冷却動作を行う冷却動
作と除霜動作が混在する際に、クーラの除霜開始直後に
同時に冷却を行っているクーラの膨張弁開度を一時的に
固定するようにしているので、除霜運転に伴う冷却装置
全体の運転状態をより短い時間で安定させることができ
る。
According to a thirteenth aspect, a defrosting operation is performed by at least one cooler of a refrigerator for a refrigerator.
When the cooling operation for performing the cooling operation and the defrosting operation are mixed in at least one other cooler, the opening degree of the expansion valve of the cooler that is simultaneously cooling immediately after the start of the defrosting of the cooler is temporarily fixed. Therefore, the operation state of the entire cooling device associated with the defrosting operation can be stabilized in a shorter time.

【0051】また第14の発明は、冷凍冷蔵庫用冷却装
置の少なくとも1台のクーラで除霜動作を行いながら、
他の少なくとも1台のクーラでは冷却動作を行う冷却動
作と除霜動作が混在する際に、クーラの除霜開始直後に
同時に冷却、並びに除霜を行っていない停止中のクーラ
を強制的に冷却に入れるようにしているので、上記各発
明と同様な効果を奏し、圧縮機の液圧縮による損傷の防
止に関する信頼性が向上、並びに除霜動作に伴うエネル
ギ利用効率の向上、延いては省エネが図れて冷却装置に
係る動力費が低減することができる。
According to a fourteenth aspect, a defrosting operation is performed by at least one cooler of a refrigerator for a refrigerator.
In at least one other cooler, when the cooling operation for performing the cooling operation and the defrosting operation are mixed, cooling is performed immediately after the start of the defrosting of the cooler, and the stopped cooler that is not performing the defrosting is forcibly cooled. Therefore, the same effects as those of the above inventions can be obtained, the reliability of prevention of damage due to liquid compression of the compressor can be improved, and the energy use efficiency associated with the defrosting operation can be improved. As a result, the power cost of the cooling device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1〜3の冷凍冷蔵庫用
冷却装置を示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing a refrigerator for a refrigerator according to first to third embodiments of the present invention.

【図2】 この発明の実施の形態4の冷凍冷蔵庫用冷却
装置を示す冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram showing a refrigerator for a refrigerator according to a fourth embodiment of the present invention.

【図3】 この発明の実施の形態5〜7の冷凍冷蔵庫用
冷却装置を示す冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram showing a refrigerator for a refrigerator according to embodiments 5 to 7 of the present invention.

【図4】 この発明の実施の形態8の冷凍冷蔵庫用冷却
装置を示す冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram showing a refrigerator for a refrigerator according to an eighth embodiment of the present invention.

【図5】 この発明の実施の形態1および3の冷凍冷蔵
庫用冷却装置の1動作状態と回路を流れる冷媒状態の対
応関係を示す冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram showing a correspondence relationship between one operation state of the refrigerator for a refrigerator and a refrigerator according to the first and third embodiments of the present invention and a state of the refrigerant flowing through the circuit.

【図6】 この発明の実施の形態1および3の冷凍冷蔵
庫用冷却装置の1動作状態と回路を流れる冷媒の圧力バ
ランスの関係をモリエル線図上に対応させて示した説明
図である。
FIG. 6 is an explanatory diagram showing the relationship between one operating state of the refrigerator for refrigerators and refrigerators according to the first and third embodiments of the present invention and the pressure balance of the refrigerant flowing through the circuit in correspondence with a Mollier diagram.

【図7】 従来の冷却装置の配置の一例を示す説明図で
ある。
FIG. 7 is an explanatory view showing an example of an arrangement of a conventional cooling device.

【図8】 従来の冷却装置の冷媒回路図である。FIG. 8 is a refrigerant circuit diagram of a conventional cooling device.

【図9】 クーラの伝熱管と伝熱フィンを模式的に示し
た説明図である。
FIG. 9 is an explanatory view schematically showing a heat transfer tube and a heat transfer fin of a cooler.

【符号の説明】[Explanation of symbols]

1 冷凍冷蔵庫、2 バルブキット、3 受液器、4
圧力調整装置、10冷媒圧縮機、11 空冷凝縮器、1
1a 凝縮器ファン、12 クーラ、12aクーラファ
ン、13 冷媒回路、13a 膨張弁、14 高圧側冷
媒回路、14a 低圧冷媒導入回路、14b 冷媒供給
分岐点、15 低圧側冷媒回路、15a 電磁弁、15
b 毛細管、15c 圧力調整装置、16 除霜用高圧
冷媒回路、16a,16b 電磁弁、19 液分離器、
19a 低圧冷媒ガス吸入口、19b 低圧冷媒ガス排
出口、19c 高圧冷媒側伝熱管、19d 低圧側補助
熱交換器、19e 低圧冷媒側流路、19f 高圧冷媒
側流路、41 圧縮機吸入ガス、42 圧縮機吐出ガ
ス、43 高圧凝縮液、44 高圧過冷却液、45 除
霜凝縮液、46 除霜減圧冷媒、47 低圧絞り冷媒、
48 低圧過熱ガス、49 低圧合流後冷媒。
1 refrigerator-freezer, 2 valve kit, 3 receiver, 4
Pressure regulator, 10 refrigerant compressor, 11 air-cooled condenser, 1
1a condenser fan, 12 cooler, 12a cooler fan, 13 refrigerant circuit, 13a expansion valve, 14 high pressure side refrigerant circuit, 14a low pressure refrigerant introduction circuit, 14b refrigerant supply branch point, 15 low pressure side refrigerant circuit, 15a solenoid valve, 15
b capillary, 15c pressure regulator, 16 high-pressure refrigerant circuit for defrost, 16a, 16b solenoid valve, 19 liquid separator,
19a low-pressure refrigerant gas suction port, 19b low-pressure refrigerant gas outlet, 19c high-pressure refrigerant side heat transfer tube, 19d low-pressure side auxiliary heat exchanger, 19e low-pressure refrigerant side flow path, 19f high-pressure refrigerant side flow path, 41 compressor suction gas, 42 Compressor discharge gas, 43 high-pressure condensate, 44 high-pressure subcoolant, 45 defrost condensate, 46 defrost reduced-pressure refrigerant, 47 low-pressure throttle refrigerant,
48 Low pressure superheated gas, 49 Low pressure combined refrigerant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 誠志 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 (72)発明者 松岡 文雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 平國 悟 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Seishi Yokoyama 2-6-1 Otemachi, Chiyoda-ku, Tokyo Mitsui Electric Engineering Co., Ltd. (72) Inventor Fumio Matsuoka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo No. Mitsubishi Electric Corporation (72) Inventor Satoru Hirakuni 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 冷媒が冷媒圧縮機、空冷凝縮器、受液
器、クーラ、液分離器の順に巡回する循環回路毎に、冷
媒圧縮機とクーラを結ぶ除霜用高圧冷媒回路が設けら
れ、クーラの冷却運転と除霜運転を切り替えるバルブキ
ットを備えたことを特徴とする冷凍冷蔵庫用冷却装置。
1. A high-pressure defrosting refrigerant circuit for connecting a refrigerant compressor and a cooler is provided for each circulation circuit in which the refrigerant circulates in the order of a refrigerant compressor, an air-cooled condenser, a liquid receiver, a cooler, and a liquid separator; A refrigerator for a refrigerator comprising a valve kit for switching a cooling operation and a defrosting operation of a cooler.
【請求項2】 前記バルブキットが膨張弁と、クーラの
除霜に伴い高温高圧の冷媒ガスをクーラへ導入する回路
を開閉する電磁弁と、クーラから冷媒を排出する低圧側
冷媒回路の毛細管に並列接続した電磁弁と、前記各機器
の動作を制御する自動制御装置とを搭載したことを特徴
とする請求項1記載の冷凍冷蔵庫用冷却装置。
2. The valve kit includes an expansion valve, an electromagnetic valve for opening and closing a circuit for introducing a high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and a capillary for a low-pressure side refrigerant circuit for discharging the refrigerant from the cooler. 2. The refrigerator according to claim 1, further comprising an electromagnetic valve connected in parallel, and an automatic control device for controlling an operation of each of the devices.
【請求項3】 前記バルブキットが膨張弁と、クーラの
除霜に伴い高温高圧の冷媒ガスをクーラへ導入する回路
を開閉する電磁弁と、クーラから冷媒を排出する低圧側
冷媒回路に接続した圧力調整装置と、前記各機器の動作
を制御する自動制御装置とを搭載したことを特徴とする
請求項1記載の冷凍冷蔵庫用冷却装置。
3. The valve kit is connected to an expansion valve, an electromagnetic valve for opening and closing a circuit for introducing a high-temperature and high-pressure refrigerant gas to the cooler as the cooler is defrosted, and a low-pressure side refrigerant circuit for discharging the refrigerant from the cooler. 2. The refrigerator according to claim 1, further comprising a pressure adjusting device and an automatic control device for controlling an operation of each device.
【請求項4】 前記液分離器が除霜により発生した低圧
の冷媒凝縮液と、高温高圧の冷媒凝縮液とを熱交換させ
る機能を備えたことを特徴とする請求項1記載の冷凍冷
蔵庫用冷却装置。
4. The refrigerator for a refrigerator according to claim 1, wherein the liquid separator has a function of exchanging heat between the low-pressure refrigerant condensate generated by defrosting and the high-temperature and high-pressure refrigerant condensate. Cooling system.
【請求項5】 高圧側冷媒回路から高圧冷媒液をクーラ
へ導入する膨張弁を閉鎖し、除霜用高圧冷媒回路から高
温高圧の冷媒ガスをクーラへ導入する電磁弁を開放する
とともに、クーラ内の凝縮冷媒液を気化させるように絞
りながらクーラから排出する毛細管と並列接続した低圧
側冷媒回路の電磁弁を閉鎖することを特徴とする冷凍冷
蔵庫用冷却装置の除霜方法。
5. An expansion valve for introducing high-pressure refrigerant liquid from the high-pressure side refrigerant circuit to the cooler is closed, and an electromagnetic valve for introducing high-temperature and high-pressure refrigerant gas from the high-pressure refrigerant circuit for defrost to the cooler is opened. A defrosting method for a refrigerator for a freezer-refrigerator, comprising closing an electromagnetic valve of a low-pressure side refrigerant circuit connected in parallel with a capillary tube discharged from a cooler while constricting so as to vaporize the condensed refrigerant liquid.
【請求項6】 高圧側冷媒回路から高圧冷媒液をクーラ
へ導入する膨張弁を閉鎖し、除霜用高圧冷媒回路から高
温高圧の冷媒ガスをクーラへ導入する電磁弁を開放する
とともに、クーラ内の凝縮冷媒液を気化させるように低
圧側冷媒回路の圧力調整装置を調整してクーラから排出
する冷媒量を調節することを特徴とする冷凍冷蔵庫用冷
却装置の除霜方法。
6. An expansion valve for introducing high-pressure refrigerant liquid from the high-pressure side refrigerant circuit to the cooler is closed, and an electromagnetic valve for introducing high-temperature and high-pressure refrigerant gas from the high-pressure refrigerant circuit for defrost to the cooler is opened. A method for defrosting a cooling device for a freezer-refrigerator, comprising: adjusting a pressure adjusting device of a low-pressure side refrigerant circuit so as to vaporize the condensed refrigerant liquid to adjust a refrigerant amount discharged from a cooler.
【請求項7】 冷媒が冷媒圧縮機、空冷凝縮器、受液
器、クーラ、液分離器の順に巡回する循環回路毎に、冷
媒圧縮機とクーラを結ぶ除霜用高圧冷媒回路が設けら
れ、クーラの冷却運転と除霜運転を切り替えるバルブキ
ットを備えた冷凍冷蔵庫用冷却装置の少なくとも1台の
クーラで除霜動作を行いながら、他の少なくとも1台の
クーラでは冷却動作を行う冷却動作と除霜動作が混在す
ることを特徴とする冷凍冷蔵庫用冷却装置の除霜方法。
7. A high-pressure defrosting refrigerant circuit connecting the refrigerant compressor and the cooler is provided for each circulation circuit in which the refrigerant circulates in the order of the refrigerant compressor, the air-cooled condenser, the liquid receiver, the cooler, and the liquid separator; While at least one cooler of a refrigerator for a refrigerator including a valve kit for switching between a cooling operation and a defrosting operation of a cooler performs a defrosting operation, at least one other cooler performs a cooling operation. A defrosting method for a refrigerator for a refrigerator comprising a mixture of frosting operations.
【請求項8】 周辺の空気を送風するファンを備えた凝
縮器を有し、クーラの除霜を実施するとき、前記ファン
の回転数、または稼働台数を減少させて凝縮器の送風量
を減少させることを特徴とする冷凍冷蔵庫用冷却装置の
除霜方法。
8. A condenser equipped with a fan for blowing ambient air, and when performing defrosting of a cooler, reducing the number of rotations or the number of operating fans to reduce the amount of air blown from the condenser. A method for defrosting a cooling device for a refrigerator-freezer, comprising:
【請求項9】 除霜により発生した低圧の冷媒凝縮液
と、高温高圧の冷媒凝縮液を熱交換させる液分離器が、
伝熱管の内面と外面の表面積の比が大きな伝熱管を有す
ることを特徴とする冷凍冷蔵庫用冷却装置。
9. A liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate,
A refrigerator for a refrigerator, comprising a heat transfer tube having a large ratio of the surface area of the inner surface to the outer surface of the heat transfer tube.
【請求項10】 除霜により発生した低圧の冷媒凝縮液
と、高温高圧の冷媒凝縮液を熱交換させる液分離器が、
低圧の冷媒側と高圧の冷媒側の流路体積の比が大きな冷
媒流路を有することを特徴とする冷凍冷蔵庫用冷却装
置。
10. A liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate,
A refrigerator for a freezer-refrigerator, comprising: a refrigerant passage having a large ratio of a passage volume between a low-pressure refrigerant side and a high-pressure refrigerant side.
【請求項11】 除霜により発生した低圧の冷媒凝縮液
と、高温高圧の冷媒凝縮液を熱交換させる液分離器が、
前記低圧の冷媒凝縮液と前記高圧の冷媒凝縮液を流路に
通す方向を同一方向、または逆方向にとることが可能な
構造を有することを特徴とする冷凍冷蔵庫用冷却装置。
11. A liquid separator for exchanging heat between a low-pressure refrigerant condensate generated by defrosting and a high-temperature and high-pressure refrigerant condensate,
A refrigerator for a refrigerator-freezer having a structure capable of passing the low-pressure refrigerant condensate and the high-pressure refrigerant condensate through a flow path in the same direction or in opposite directions.
【請求項12】 冷媒が冷媒圧縮機、空冷凝縮器、受液
器、クーラ、液分離器の順に巡回する循環回路毎に、冷
媒圧縮機とクーラを結ぶ除霜用高圧冷媒回路が設けら
れ、クーラの冷却運転と除霜運転を切り替えるバルブキ
ットが膨張弁と、クーラの除霜に伴い高温高圧の冷媒ガ
スをクーラへ導入する回路を開閉する電磁弁と、クーラ
から冷媒を排出する低圧側冷媒回路の毛細管に平行して
接続した電磁弁と、前記各機器の動作を制御する自動制
御装置とを搭載し、さらに前記低圧側冷媒回路の毛細管
に平行して接続した電磁弁に圧力調整装置を設けたこと
を特徴とする冷凍冷蔵庫用冷却装置。
12. A high-pressure defrosting refrigerant circuit connecting the refrigerant compressor and the cooler is provided for each circulation circuit in which the refrigerant circulates in the order of the refrigerant compressor, the air-cooled condenser, the liquid receiver, the cooler, and the liquid separator, A valve kit that switches between cooler cooling operation and defrosting operation is an expansion valve, an electromagnetic valve that opens and closes a circuit that introduces high-temperature and high-pressure refrigerant gas to the cooler as the cooler defrosts, and a low-pressure side refrigerant that discharges refrigerant from the cooler. An electromagnetic valve connected in parallel with the capillary of the circuit, and an automatic control device for controlling the operation of each device are mounted, and further, a pressure regulator is connected to the electromagnetic valve connected in parallel with the capillary of the low-pressure side refrigerant circuit. A refrigerator for a refrigerator, comprising:
【請求項13】 冷凍冷蔵庫用冷却装置の少なくとも1
台のクーラで除霜動作を行いながら、他の少なくとも1
台のクーラでは冷却動作を行う冷却動作と除霜動作が混
在する際に、クーラの除霜開始直後に同時に冷却を行っ
ているクーラの膨張弁開度を一時的に固定することを特
徴とする冷凍冷蔵庫用冷却装置の除霜方法。
13. At least one of a refrigerator for a refrigerator and a refrigerator.
While performing defrosting operation with one cooler, at least one other
When the cooling operation and the defrosting operation that perform the cooling operation are mixed in the one cooler, the opening degree of the expansion valve of the cooler that is simultaneously cooling immediately after the start of the defrosting of the cooler is temporarily fixed. Defrosting method for refrigerator for refrigerator.
【請求項14】 冷凍冷蔵庫用冷却装置の少なくとも1
台のクーラで除霜動作を行いながら、他の少なくとも1
台のクーラでは冷却動作を行う冷却動作と除霜動作が混
在する際に、クーラの除霜開始直後に同時に冷却、並び
に除霜を行っていない停止中のクーラを強制的に冷却に
入れることを特徴とする冷凍冷蔵庫用冷却装置の除霜方
法。
14. At least one of a refrigerator for a refrigerator and a refrigerator.
While performing defrosting operation with one cooler, at least one other
When the cooling operation and the defrosting operation that perform the cooling operation are mixed in the one cooler, it is necessary to simultaneously cool immediately after the start of the defrosting of the cooler and to forcibly enter the stopped cooler that is not performing the defrosting. A method for defrosting a refrigerator for a refrigerator.
JP11061097A 1997-04-28 1997-04-28 Cooler for freezer refrigerator and its defrosting method Pending JPH10300321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11061097A JPH10300321A (en) 1997-04-28 1997-04-28 Cooler for freezer refrigerator and its defrosting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11061097A JPH10300321A (en) 1997-04-28 1997-04-28 Cooler for freezer refrigerator and its defrosting method

Publications (1)

Publication Number Publication Date
JPH10300321A true JPH10300321A (en) 1998-11-13

Family

ID=14540199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11061097A Pending JPH10300321A (en) 1997-04-28 1997-04-28 Cooler for freezer refrigerator and its defrosting method

Country Status (1)

Country Link
JP (1) JPH10300321A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249236A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner
WO2009052369A3 (en) * 2007-10-17 2009-07-16 Carrier Corp Integrated refrigerating/freezing system and defrost method
JP2010249493A (en) * 1999-01-12 2010-11-04 Xdx Inc Vapor compression device and method
CN102506528A (en) * 2011-11-09 2012-06-20 上海海洋大学 Novel defrosting system for refrigeration house
JP2019095177A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Cooling device
CN111536723A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for secondary condensation and supercooling of main path refrigerant
CN111536724A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling main pipeline refrigerant by using defrosting medium
CN111536722A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling refrigerant of main path of refrigeration cycle
CN112013559A (en) * 2020-09-18 2020-12-01 珠海格力电器股份有限公司 Refrigeration system and refrigeration system control method
KR102201311B1 (en) * 2019-11-19 2021-01-08 박병남 Combined cooling and heating system for defrost-free heat pump and hot gas defrosting and control method thereof
CN112880219A (en) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 Refrigerator defrosting system, refrigerator and refrigerator defrosting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249493A (en) * 1999-01-12 2010-11-04 Xdx Inc Vapor compression device and method
JP2008249236A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner
WO2009052369A3 (en) * 2007-10-17 2009-07-16 Carrier Corp Integrated refrigerating/freezing system and defrost method
CN102506528A (en) * 2011-11-09 2012-06-20 上海海洋大学 Novel defrosting system for refrigeration house
JP2019095177A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Cooling device
KR102201311B1 (en) * 2019-11-19 2021-01-08 박병남 Combined cooling and heating system for defrost-free heat pump and hot gas defrosting and control method thereof
CN111536723A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for secondary condensation and supercooling of main path refrigerant
CN111536724A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling main pipeline refrigerant by using defrosting medium
CN111536722A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling refrigerant of main path of refrigeration cycle
CN112013559A (en) * 2020-09-18 2020-12-01 珠海格力电器股份有限公司 Refrigeration system and refrigeration system control method
CN112880219A (en) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 Refrigerator defrosting system, refrigerator and refrigerator defrosting method

Similar Documents

Publication Publication Date Title
KR920000452B1 (en) Refrigerating cycle utilizing cold accumulation material
US6935127B2 (en) Refrigerator
US6327871B1 (en) Refrigerator with thermal storage
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
KR20130050700A (en) Refrigerator using non-azeotropic refrigerant mixtures, and control method thereof
KR20000014024A (en) Freezing cycle device for refrigerator
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JPH10300321A (en) Cooler for freezer refrigerator and its defrosting method
US5916254A (en) Method of circulating refridgerant for defrosting and refrigerator employing the same
JP3484131B2 (en) Freezer refrigerator
JP2006098044A (en) Refrigeration device
JP4654539B2 (en) refrigerator
CN210374250U (en) Refrigerating and freezing device
JP2001108345A (en) Two stage compression freezer/refrigerator
KR100293700B1 (en) Refrigeration system of refrigerator and its control method
KR0182726B1 (en) Defrosting apparatus for independent refrigerating type refrigerator
WO2018147113A1 (en) Refrigerator
KR19990080338A (en) Refrigerator
KR100394008B1 (en) Refrigerating cycle for refrigerator and method for controlling the same
JP2709890B2 (en) Cooling system
CN219624276U (en) Heat exchange assembly and refrigeration equipment
JPH09280668A (en) Composite refrigerant circuit equipment
JP4286106B2 (en) Freezer refrigerator
KR100606706B1 (en) refrigerator and method for controlling the same
JP2008175528A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A02 Decision of refusal

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A02