JP2020079681A - Heat exchanger and heat exchanger defrosting method - Google Patents

Heat exchanger and heat exchanger defrosting method Download PDF

Info

Publication number
JP2020079681A
JP2020079681A JP2018213342A JP2018213342A JP2020079681A JP 2020079681 A JP2020079681 A JP 2020079681A JP 2018213342 A JP2018213342 A JP 2018213342A JP 2018213342 A JP2018213342 A JP 2018213342A JP 2020079681 A JP2020079681 A JP 2020079681A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
upstream
heat
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018213342A
Other languages
Japanese (ja)
Other versions
JP7208770B2 (en
Inventor
雅士 加藤
Masashi Kato
雅士 加藤
耕作 西田
Kosaku Nishida
耕作 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2018213342A priority Critical patent/JP7208770B2/en
Priority to PCT/JP2019/043988 priority patent/WO2020100768A1/en
Publication of JP2020079681A publication Critical patent/JP2020079681A/en
Application granted granted Critical
Publication of JP7208770B2 publication Critical patent/JP7208770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Abstract

To prevent frost adhering to an upstream side heat transfer pipe and a fin tip from growing and closing a cooling gas flow channel, and inhibiting thermal efficiency of a heat exchanger in operation from being deteriorated due to the heat required for defrosting by executing an efficient defrosting operation.SOLUTION: A heat exchanger includes: a gas flow channel in which cooled gas flows; a plurality of heat transfer pipes provided in the gas flow channel; and an upstream side heating part for keeping frost layer adhesion surface temperature at lower than 0°C and higher than the temperature of the cooled gas for at least one of one or more upstream side heat transfer pipes located in an upstream side area in a flow direction of the cooled gas of the plurality of heat transfer pipes, and a heat radiation member provided in the outer periphery of the upstream side heat transfer pipes.SELECTED DRAWING: Figure 1

Description

本開示は、熱交換器及び熱交換器のデフロスト方法に関する。   The present disclosure relates to a heat exchanger and a heat exchanger defrosting method.

冷凍庫やフリーザに設けられるエアクーラなどの熱交換器にフィンチューブ式熱交換器が用いられる。フィンチューブ式熱交換器は放熱フィンなどに霜が付きやすく、フィン間に形成された霜層によって空気流が閉塞されるため、頻繁にデフロスト運転が必要になる。そこで、本発明者等は、フィンや伝熱管に付着した霜を昇華して除去するデフロスト方法を提案している(特許文献1)。このデフロスト方法は、着霜を昇華させ空気流に乗って飛散させるため、融解水が発生しない。従って、融解水を熱交換器から取り除く作業が不要になると共に、エアクーラの運転を継続しながらデフロストできる利点がある。   A fin-tube heat exchanger is used as a heat exchanger such as an air cooler provided in a freezer or a freezer. In the fin tube type heat exchanger, radiating fins are likely to be covered with frost, and the frost layer formed between the fins blocks the air flow, so that frequent defrost operation is required. Therefore, the present inventors have proposed a defrosting method of sublimating and removing frost attached to the fins and heat transfer tubes (Patent Document 1). In this defrost method, frost is sublimated and scattered on the air flow, so that no melt water is generated. Therefore, there is an advantage that the work of removing the melted water from the heat exchanger becomes unnecessary and defrosting can be performed while the air cooler continues to operate.

国際公開第2017/175411号International Publication No. 2017/175411

流れ方向最上流側伝熱管の伝熱面は熱伝達率が高く、かつ被冷却気体に含まれるミスト(液体及び固体)が慣性力により最上流側伝熱管やフィンの先端部分に衝突するために、集中して着霜が生じ、かつ着霜の成長が早くなる現象が起こる。従って、他の部位に比べこれらの部位で霜層の成長により早く冷却空気流路が閉塞するため、被冷却空気と伝熱管を流れる冷却媒体との熱交換が阻害されるという問題がある。   In the flow direction, the heat transfer surface of the most upstream heat transfer tube has a high heat transfer coefficient, and the mist (liquid and solid) contained in the gas to be cooled collides with the most upstream heat transfer tube and the tips of the fins due to inertial force. The phenomenon occurs in which frost is concentrated and frost grows faster. Therefore, since the cooling air flow passage is closed earlier in these portions due to the growth of the frost layer than in other portions, there is a problem that the heat exchange between the cooled air and the cooling medium flowing through the heat transfer tube is hindered.

一実施形態は、上流側伝熱管やフィンの上流側先端部分に付着した霜が成長して冷却気体流路が閉塞するのを防止すると共に、効率的なデフロスト運転を行うことで、デフロスト運転により伝熱管やフィンに加えられた熱により稼働中の熱交換器の熱効率が低下するのを抑制することを目的とする。   One embodiment prevents the frost attached to the upstream end portions of the upstream heat transfer tubes and the fins from growing and blocking the cooling gas flow path, and by performing an efficient defrost operation, the defrost operation An object of the present invention is to suppress a decrease in thermal efficiency of a heat exchanger in operation due to heat applied to a heat transfer tube or fins.

(1)一実施形態に係る熱交換器は、
被冷却気体が流れる気体流路と、
前記気体流路内に設けられる複数の伝熱管と、
前記複数の伝熱管のうち、前記被冷却気体の流れ方向の上流側領域に位置する1以上の上流側伝熱管又は前記上流側伝熱管の外周に設けられた放熱部材のうち少なくとも一方の霜層付着面温度を0℃未満でかつ前記被冷却気体よりも高温に維持するための上流側加熱部と、
を備える。
(1) The heat exchanger according to one embodiment is
A gas flow path through which the cooled gas flows,
A plurality of heat transfer tubes provided in the gas flow path,
Of the plurality of heat transfer tubes, at least one frost layer of at least one upstream heat transfer tube located in an upstream region in the flow direction of the gas to be cooled or a heat radiation member provided on the outer periphery of the upstream heat transfer tube. An upstream heating unit for maintaining the temperature of the adhering surface below 0° C. and higher than the gas to be cooled;
Equipped with.

上記(1)の構成によれば、上記上流側加熱部によって、上流側伝熱管又は上流側伝熱管の外周に設けられた放熱部材(以下「上流側放熱部材」とも言う。)の表面温度を上記温度範囲に調節することで(上流側加熱)、上流側伝熱管又は上流側放熱部材に付着した霜を昇華させ飛散させることができる。これによって、上流側伝熱管及び上流側放熱部材によって形成される伝熱面(以下「上流側伝熱面」とも言う。)において霜層の成長を抑制し、霜層による伝熱面周囲の気体流路の閉塞を抑制できる。上流側加熱を常時又はかなりの頻度で行うことで、上流側伝熱面の霜層付着面温度を被冷却気体よりわずかに高い温度にするだけで霜層の成長を抑制し、霜層による伝熱面周囲の気体流路の閉塞を抑制でき、省エネが可能になる。
なお、上流側伝熱管及び上流側放熱部材のうち、上記温度範囲に維持されない部位があるとしても、その部位は0℃以上にならないように温度維持されることを前提とする。0℃以上になる部位があると、その部位で融解水が発生するからである。
According to the above configuration (1), the surface temperature of the heat radiating member (hereinafter, also referred to as “upstream heat radiating member”) provided on the upstream heat transfer tube or the outer circumference of the upstream heat transfer tube by the upstream heating unit. By adjusting the temperature range (upstream heating), the frost attached to the upstream heat transfer tube or the upstream heat dissipation member can be sublimated and scattered. This suppresses the growth of the frost layer on the heat transfer surface formed by the upstream heat transfer tube and the upstream heat dissipation member (hereinafter also referred to as the "upstream heat transfer surface"), and the gas around the heat transfer surface due to the frost layer. The blockage of the flow path can be suppressed. By performing the heating on the upstream side constantly or at a fairly high frequency, the growth of the frost layer is suppressed and the transfer by the frost layer is suppressed only by making the temperature of the frost layer adhering surface on the upstream heat transfer surface slightly higher than the gas to be cooled. It is possible to suppress clogging of the gas flow path around the hot surface and save energy.
Even if there is a part of the upstream heat transfer tube and the upstream heat radiating member that is not maintained in the above temperature range, it is premised that the part is maintained at a temperature not to exceed 0°C. This is because if there is a portion where the temperature is 0° C. or higher, molten water will be generated at that portion.

(2)一実施形態では、前記(1)の構成において、
前記複数の伝熱管は、前記気体流路内において、前記気体流路における前記流れ方向と直交する第1方向に沿って延在し、かつ、前記流れ方向及び前記第1方向に直交する第2方向に沿って配列された複数の前記伝熱管により形成される伝熱管列が、前記流れ方向に複数並ぶように配列され、
前記上流側伝熱管は、少なくとも前記流れ方向の最上流側の前記伝熱管列に属する1以上の前記伝熱管を含む。
ここで、「最上流側伝熱管列」とは、最上流側に設けられた1列又は複数の伝熱管列を含むことを意味する。
上記(2)の構成によれば、被冷却気体の流れ方向(以下単に「流れ方向」とも言う。)の最上流側伝熱管列を重点的に上記温度範囲に加熱できる。これによって、霜が急成長しやすい最上流側伝熱管列の霜層の成長を抑制し、上流側伝熱面周囲の気体流路の閉塞を抑制できる。
(2) In one embodiment, in the configuration of (1) above,
The plurality of heat transfer tubes extend in the gas flow path along a first direction orthogonal to the flow direction in the gas flow path, and a second direction orthogonal to the flow direction and the first direction. A heat transfer tube row formed by the plurality of heat transfer tubes arranged along the direction is arranged so as to be lined up in the flow direction,
The upstream heat transfer tubes include at least one or more heat transfer tubes belonging to the heat transfer tube row on the most upstream side in the flow direction.
Here, the "most upstream heat transfer tube row" is meant to include one row or a plurality of heat transfer tube rows provided on the most upstream side.
According to the configuration of (2), the most upstream side heat transfer tube array in the flow direction of the gas to be cooled (hereinafter also simply referred to as “flow direction”) can be heated to the above temperature range. As a result, it is possible to suppress the growth of the frost layer in the uppermost stream side heat transfer tube row where frost is likely to grow rapidly and to prevent the gas flow passage around the upstream heat transfer surface from being blocked.

(3)一実施形態では、前記(2)の構成において、
前記複数の伝熱管のうちデフロスト対象管をデフロストするためのデフロストユニット
を備え、
前記気体流路は、前記第2方向に並ぶ複数の流路領域を含み、
前記複数の伝熱管は、前記複数の流路領域に夫々対応し、かつ、同一の前記流路領域内において前記流れ方向にて互いに隣接する2以上の前記伝熱管列に属する複数の前記伝熱管により形成される複数の伝熱管グループを含み、
前記デフロストユニットは、前記複数の伝熱管グループのうち1以上の前記伝熱管グループの前記伝熱管を前記デフロスト対象管として選択的にデフロストを行うように構成される。
(3) In one embodiment, in the configuration of (2) above,
A defrost unit for defrosting a defrost target tube among the plurality of heat transfer tubes,
The gas flow path includes a plurality of flow path regions arranged in the second direction,
The plurality of heat transfer tubes respectively correspond to the plurality of flow path areas and belong to two or more heat transfer tube rows adjacent to each other in the same flow path area in the flow direction. Including a plurality of heat transfer tube groups formed by
The defrost unit is configured to selectively defrost the heat transfer tubes of one or more heat transfer tube groups of the plurality of heat transfer tube groups as the defrosting target tubes.

上記(3)の構成によれば、各伝熱管グループの霜の成長の違いに応じてデフロストを行う順序を適宜選択することで、各伝熱管グループにおける気体流路の閉塞を防止しながら、効率的なデフロストを行うことができると共に、上流側の霜付着面から剥離した霜が流れ方向下流側の伝熱面に再付着するのを抑制できる。このデフロスト運転と上流側加熱とを併用することで、伝熱面周囲の気体流路の閉塞を効果的に防止できる。   According to the configuration of (3) above, by appropriately selecting the order of performing defrosting according to the difference in frost growth of each heat transfer tube group, it is possible to prevent blockage of the gas flow path in each heat transfer tube group and to improve efficiency. Defrosting can be performed, and frost separated from the upstream frost-attached surface can be prevented from reattaching to the heat-transfer surface downstream in the flow direction. By using the defrosting operation and the upstream heating together, it is possible to effectively prevent the gas passage around the heat transfer surface from being blocked.

(4)一実施形態では、前記(3)の構成において、
前記デフロストユニットは、複数の前記伝熱管列のうち前記流れ方向の最上流側の前記伝熱管列のみを前記デフロスト対象管として選択的にデフロストするように構成される。
上記(4)の構成によれば、流れ方向最上流側の伝熱管列のみをデフロスト対象管として選択的にデフロストすることで、霜が急成長しやすい最上流側伝熱管列を優先してデフロストでき、これによって、最上流側伝熱管列の気体流路の閉塞を抑制できる。
(4) In one embodiment, in the configuration of (3) above,
The defrost unit is configured to selectively defrost only the heat transfer tube row on the most upstream side in the flow direction of the plurality of heat transfer tube rows as the defrosting target tube.
According to the configuration of (4) above, by selectively defrosting only the heat transfer tube row on the most upstream side in the flow direction as a target tube for defrosting, the heat transfer tube row on the most upstream side where frost tends to rapidly grow is preferentially defrosted. It is possible to suppress the blockage of the gas flow path of the most upstream heat transfer tube array.

(5)一実施形態では、前記(1)〜(4)の何れかの構成において、
前記上流側伝熱管はデフロスト流体のみを供給可能に構成される。
上記(5)の構成によれば、上流側伝熱管はデフロスト流体の供給のみ行われ、通常の冷却運転は行われない。この上流側伝熱管に昇華デフロストが可能な温度のデフロスト流体を供給することで、霜の急成長を抑制できる上流側加熱を行うことができる。また、上流側伝熱管は冷却運転を行わないので、常時上流側加熱を行うことができ、これによって、常時霜層の成長を抑制できる。
(5) In one embodiment, in any one of the configurations (1) to (4),
The upstream heat transfer tube is configured to be able to supply only the defrost fluid.
According to the above configuration (5), the upstream heat transfer tube only supplies the defrost fluid and does not perform the normal cooling operation. By supplying a defrosting fluid having a temperature at which sublimation defrosting is possible to the upstream heat transfer tube, it is possible to perform upstream heating capable of suppressing rapid growth of frost. Moreover, since the upstream heat transfer tube does not perform the cooling operation, it is possible to constantly perform the upstream heating, and thus it is possible to constantly suppress the growth of the frost layer.

(6)一実施形態では、前記(1)〜(5)の何れかの構成において、
前記上流側加熱部は、前記上流側伝熱管又は前記放熱部材を加熱するように構成される。
上記(6)の構成によれば、上流側加熱部によって上流側伝熱管又は上流側放熱部材を着霜の昇華が可能な温度に加熱することで、上流側伝熱面に付着した霜を昇華させ飛散除去できる。この実施形態では、デフロスト流体の供給とは別な手段で上流側加熱が可能になる。
(6) In one embodiment, in any of the configurations of (1) to (5) above,
The upstream heating unit is configured to heat the upstream heat transfer tube or the heat dissipation member.
According to the configuration of (6), the upstream heating unit heats the upstream heat transfer tube or the upstream heat dissipation member to a temperature at which sublimation of frost is possible, thereby sublimating the frost adhering to the upstream heat transfer surface. It can be scattered and removed. In this embodiment, upstream heating is enabled by means other than the supply of defrost fluid.

(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記上流側加熱部は、前記上流側伝熱管に霜の付着面温度を0℃未満でかつ前記被冷却気体の温度より高い温度に維持可能なデフロスト流体を供給可能なデフロスト流体供給部を含む。
上記(7)の構成によれば、上記デフロスト流体供給部から上流側伝熱管に供給されるデフロスト流体によって、上流側伝熱面の加熱が可能になる。なお、デフロスト流体による上流側加熱と上流側加熱部による上流側加熱との併用が可能である。
(7) In one embodiment, in the configuration according to any one of (1) to (6) above,
The upstream heating unit includes a defrost fluid supply unit capable of supplying a defrost fluid capable of maintaining the temperature of the frost attachment surface to a temperature lower than 0° C. and higher than the temperature of the gas to be cooled to the upstream heat transfer tube.
With configuration (7) above, the upstream heat transfer surface can be heated by the defrost fluid supplied from the defrost fluid supply unit to the upstream heat transfer tube. The upstream heating by the defrost fluid and the upstream heating by the upstream heating unit can be used together.

(8)一実施形態では、前記(1)〜(7)の何れかの構成において、
前記上流側加熱部は、前記上流側伝熱管又は上流側放熱部材の少なくとも一方の霜層付着面温度と前記被冷却気体との温度差を0℃を超え10℃以下に維持するように構成される。
上記(8)の構成によれば、上流側霜層付着面温度と被冷却気体との温度差を0℃を超え10℃以下に維持するため(微温加熱)、上流側加熱に要する熱量を低減できる。
(8) In one embodiment, in any one of the configurations (1) to (7) above,
The upstream heating unit is configured to maintain the temperature difference between the frost layer adhering surface temperature of at least one of the upstream heat transfer tube or the upstream heat dissipation member and the gas to be cooled to more than 0°C and 10°C or less. It
According to the configuration of (8) above, the temperature difference between the upstream frost layer adhesion surface temperature and the gas to be cooled is maintained at more than 0° C. and 10° C. or less (low temperature heating), so the amount of heat required for upstream heating is reduced. it can.

(9)一実施形態では、前記(1)〜(8)の何れかの構成において、
前記放熱部材は、前記複数の伝熱管が貫通又は接触するように前記気体流路内にて前記流れ方向に沿って設けられる板状放熱部材で構成される。
上記(9)の構成によれば、上記板状放熱部材を備えることで伝熱面積が増加し、熱交換器の伝熱性能を向上できる。また、上記板状放熱部材は被冷却気体の流れ方向に沿って設けられるので、被冷却気体の乱れを抑制できる。被冷却気体の乱れが抑制された板状放熱部材の表面には、板状放熱部材の表面に近づくほど温度が徐々に低くなる温度境界層が形成される。この温度境界層の形成によって伝熱面の熱伝達率が減少するため、板状放熱部材の表面に形成される霜層の成長を抑制できる。逆に温度境界層を乱すような構成(例えばルーバーフィン等)とすると、熱伝達率が上昇し霜の成長が促進される。これを利用して、霜を成長させたい場所、させたくない場所、つまり各所の霜の成長量を熱交換量やデフロスト間隔と関連させて最適に設計することができる.
(9) In one embodiment, in any one of the configurations (1) to (8),
The heat dissipation member is a plate-shaped heat dissipation member provided along the flow direction in the gas flow path so that the plurality of heat transfer tubes penetrate or come into contact with each other.
According to the configuration of (9) above, the heat transfer area of the heat exchanger is increased by including the plate-shaped heat dissipation member, and the heat transfer performance of the heat exchanger can be improved. Moreover, since the plate-shaped heat dissipation member is provided along the flow direction of the gas to be cooled, it is possible to suppress the turbulence of the gas to be cooled. A temperature boundary layer is formed on the surface of the plate-shaped heat dissipation member in which the turbulence of the gas to be cooled is suppressed, and the temperature gradually decreases toward the surface of the plate-shaped heat dissipation member. The formation of the temperature boundary layer reduces the heat transfer coefficient of the heat transfer surface, so that the growth of the frost layer formed on the surface of the plate-shaped heat dissipation member can be suppressed. On the contrary, if the temperature boundary layer is disturbed (for example, a louver fin or the like), the heat transfer coefficient is increased and the growth of frost is promoted. By utilizing this, it is possible to optimally design the place where frost is to be grown and the place where frost is not desired, that is, the growth amount of frost in each place in relation to the heat exchange amount and the defrost interval.

(10)一実施形態では、前記(1)〜(9)の何れかの構成において、
前記放熱部材は、前記放熱部材の前記流れ方向先端部分と下流側部位との間に、前記流れ方向先端部分と前記下流側部位との間の伝熱を抑制する断熱域を有する。
上記(10)の構成によれば、上記断熱域を有するため、上流側加熱部によって該先端部分に加えられる熱が放熱部材の下流側部位に伝わって下流側部位で行っている冷却運転の冷却効率を低下させるのを抑制できる。
(10) In one embodiment, in any one of the configurations (1) to (9),
The heat radiating member has a heat insulating region that suppresses heat transfer between the flow direction tip portion and the downstream side portion between the flow direction tip portion and the downstream side portion of the heat radiating member.
According to the configuration of (10) above, since the heat insulating region is provided, the heat applied to the tip portion by the upstream heating unit is transmitted to the downstream portion of the heat dissipation member, and the cooling operation is performed in the downstream portion. It is possible to suppress a decrease in efficiency.

(11)一実施形態では、前記(3)又は(4)の構成において、
前記放熱部材は、
前記複数の伝熱管グループのうち前記流れ方向上流側に配置された上流側伝熱管グループと前記上流側伝熱管グループより前記流れ方向下流側に配置された下流側伝熱管グループとを跨るように配置されると共に、
前記放熱部材の前記上流側伝熱管グループと前記下流側伝熱管グループとの間の部位に、前記上流側伝熱管グループと前記下流側伝熱管グループとの間の伝熱を抑制する断熱域を有する。
(11) In one embodiment, in the configuration of (3) or (4) above,
The heat dissipation member is
Of the plurality of heat transfer tube groups, it is arranged so as to straddle an upstream heat transfer tube group arranged on the upstream side in the flow direction and a downstream heat transfer tube group arranged on the downstream side in the flow direction from the upstream heat transfer tube group. As well as
A heat insulating region that suppresses heat transfer between the upstream heat transfer tube group and the downstream heat transfer tube group is provided at a portion of the heat dissipation member between the upstream heat transfer tube group and the downstream heat transfer tube group. .

上記(11)の構成によれば、板状放熱部材は、上流側伝熱管グループと下流側伝熱管グループとに跨るように配置されるため、流れ方向先端部分を除き温度境界層を連続的に延在できる。これによって、流れ方向先端部分以外の領域全体で着霜の成長を抑制できる。また、上流側伝熱管グループと下流側伝熱管グループとの間に上記断熱域を有するので、上流側加熱を行うとき、又は上流側伝熱管グループ又は下流側伝熱管グループの一方でデフロストを行うとき、上流側加熱又はデフロスト運転により伝熱管や放熱部材に加えられた熱が冷却運転中の他方の伝熱管グループに伝わって冷却効率を低下させるのを抑制できる。   According to the configuration of (11) above, the plate-shaped heat dissipation member is arranged so as to straddle the upstream heat transfer tube group and the downstream heat transfer tube group, so that the temperature boundary layer is continuously formed except for the tip portion in the flow direction. Can be extended. As a result, it is possible to suppress the growth of frost in the entire region other than the tip portion in the flow direction. Further, since the heat insulating zone is provided between the upstream heat transfer tube group and the downstream heat transfer tube group, when performing upstream heating, or when performing defrosting on either the upstream heat transfer tube group or the downstream heat transfer tube group. The heat applied to the heat transfer tubes or the heat radiating member by the upstream heating or the defrosting operation can be prevented from being transferred to the other heat transfer tube group in the cooling operation and lowering the cooling efficiency.

(12)一実施形態に係る熱交換器のデフロスト方法は、
被冷却気体が流れる気体流路と、前記気体流路内に設けられる複数の伝熱管と、前記複数の伝熱管のうち、前記被冷却気体の流れ方向の上流側領域に位置する1以上の上流側伝熱管又は前記上流側伝熱管の外周に設けられた放熱部材のうち少なくとも一方の霜層付着面温度を0℃未満かつ前記被冷却気体よりも高温に維持するための上流側加熱部と、を備える熱交換器のデフロスト方法であって、
前記熱交換器の稼働中において、前記上流側加熱部によって前記上流側伝熱管又は前記放熱部材のうち少なくとも一方の霜層付着面温度を常時0℃未満かつ前記被冷却気体よりも高温に維持する上流側加熱ステップを備える。
ここで、「常時」とは、冷却運転時間の50〜100%の時間上記上流側加熱ステップを行うことを言う。
(12) A defrosting method for a heat exchanger according to one embodiment is
A gas flow path through which the gas to be cooled flows, a plurality of heat transfer tubes provided in the gas flow path, and one or more upstreams of the plurality of heat transfer tubes located in an upstream region in the flow direction of the gas to be cooled. An upstream heating unit for maintaining the frost layer adhesion surface temperature of at least one of the heat dissipation members provided on the outer periphery of the side heat transfer tube or the upstream heat transfer tube at a temperature lower than 0° C. and higher than the gas to be cooled; A method of defrosting a heat exchanger comprising:
During operation of the heat exchanger, the temperature of the frost layer attachment surface of at least one of the upstream heat transfer tube or the heat dissipation member is constantly kept below 0° C. and higher than the gas to be cooled by the upstream heating unit. An upstream heating step is provided.
Here, "always" means that the upstream heating step is performed for 50 to 100% of the cooling operation time.

上記(12)の方法によれば、上記上流側加熱ステップを常時行い、上流側伝熱面の温度を昇華デフロストが可能な温度に調節することで(上流側加熱)、上流側伝熱面に付着した霜を昇華させ飛散させることができる。これによって、上流側伝熱面において霜層の成長を抑制し、霜層による伝熱面周囲の気体流路の閉塞を抑制できる。   According to the above method (12), the upstream heating step is always performed, and the temperature of the upstream heat transfer surface is adjusted to a temperature at which sublimation defrost can be performed (upstream heating), so that the upstream heat transfer surface is Frost that adheres can be sublimated and scattered. As a result, it is possible to suppress the growth of the frost layer on the upstream heat transfer surface and prevent the gas flow passage around the heat transfer surface from being blocked by the frost layer.

(13)一実施形態では、前記(12)の方法において、
前記複数の伝熱管は、前記気体流路内において、前記気体流路における前記被冷却気体の流れ方向と直交する第1方向に沿って延在し、かつ、前記流れ方向及び前記第1方向に直交する第2方向に沿って配列された複数の前記伝熱管により形成される伝熱管列が、前記流れ方向に複数並ぶように配列され、
前記熱交換器は、前記複数の伝熱管のうちデフロスト対象管をデフロストするためのデフロストユニットを備え、
前記気体流路は、前記第2方向に並ぶ複数の流路領域を含み、
前記複数の伝熱管は、前記複数の流路領域に夫々対応し、かつ、同一の前記流路領域内において前記流れ方向にて互いに隣接する2以上の前記伝熱管列に属する複数の前記伝熱管により形成される複数の伝熱管グループを含み、
前記デフロストユニットは、前記複数の伝熱管グループのうち1以上の前記伝熱管グループの前記伝熱管を前記デフロスト対象管として選択的にデフロストを行うように構成され、
前記複数の伝熱管グループのうち1以上の前記伝熱管グループ毎にデフロストするデフロストステップを備える。
(13) In one embodiment, in the method (12) above,
The plurality of heat transfer tubes extend in the gas flow path along a first direction orthogonal to the flow direction of the gas to be cooled in the gas flow path, and in the flow direction and the first direction. A heat transfer tube array formed by a plurality of the heat transfer tubes arranged along a second direction orthogonal to each other is arranged so as to be lined up in the flow direction,
The heat exchanger includes a defrost unit for defrosting a defrost target pipe among the plurality of heat transfer pipes,
The gas flow path includes a plurality of flow path regions arranged in the second direction,
The plurality of heat transfer tubes respectively correspond to the plurality of flow path areas and belong to two or more heat transfer tube rows adjacent to each other in the same flow path area in the flow direction. Including a plurality of heat transfer tube groups formed by
The defrost unit is configured to selectively defrost the heat transfer tubes of one or more heat transfer tube groups of the plurality of heat transfer tube groups as the defrost target tubes,
A defrosting step of defrosting each of the one or more heat transfer tube groups among the plurality of heat transfer tube groups is provided.

上記(13)の方法によれば、各伝熱管グループの霜の成長の違いに応じてデフロストを行う順序を適宜選択することで、各伝熱面における気体流路の閉塞を防止しながら、効率的なデフロストを行うことができると共に、付着面から剥離した霜が流れ方向下流側の伝熱面に再付着するのを抑制できる。このデフロスト運転と上流側加熱とを併用することで、伝熱面周囲の気体流路の閉塞を効果的に防止できる。   According to the method of (13) above, by appropriately selecting the order of performing defrosting according to the difference in frost growth of each heat transfer tube group, it is possible to prevent the gas flow passages from being blocked on each heat transfer surface and to improve the efficiency. Defrosting can be performed, and frost separated from the adhering surface can be suppressed from re-adhering to the heat transfer surface on the downstream side in the flow direction. By using the defrosting operation and the upstream heating together, it is possible to effectively prevent the gas passage around the heat transfer surface from being blocked.

(14)一実施形態では、前記(13)の方法において、
前記デフロストユニットは、複数の前記伝熱管列のうち前記流れ方向最上流側の前記伝熱管列のみを前記デフロスト対象管として選択的にデフロストするように構成され、
前記デフロストステップは、前記流れ方向最上流側の前記伝熱管列のみを前記デフロスト対象管として選択的にデフロストするステップを含む。
上記(13)の方法によれば、デフロストステップにおいて、最上流側伝熱管列のみを選択的に加熱できるので、上流側伝熱面を重点的にデフロストできる。これによって、霜が急成長しやすい最上流側伝熱管列の霜層の成長を抑制し、上流側伝熱面周囲の気体流路の閉塞を抑制できる。
(14) In one embodiment, in the method of (13) above,
The defrost unit is configured to selectively defrost only the heat transfer tube row on the most upstream side in the flow direction among the plurality of heat transfer tube rows as the defrosting target tube,
The defrosting step includes a step of selectively defrosting only the heat transfer tube row on the most upstream side in the flow direction as the defrosting target tube.
According to the above method (13), in the defrosting step, only the most upstream heat transfer tube row can be selectively heated, so that the upstream heat transfer surface can be defrosted predominantly. As a result, it is possible to suppress the growth of the frost layer in the uppermost stream side heat transfer tube row where frost is likely to grow rapidly and to prevent the gas flow passage around the upstream heat transfer surface from being blocked.

一実施形態では、前記(13)又は(14)の方法において、
前記デフロストステップにおいて、
すべての前記伝熱管グループを1回デフロストするに要する1デフロスト時間を前記伝熱管の少なくとも一部に付着する着霜量が許容上限値に達する限界時間以内とし、該1デフロスト時間から前記伝熱管グループの各々のデフロスト実施時間間隔を割り振る。
上記方法によれば、上記限界時間を少なくとも一部の伝熱面で被冷却気体の流れが閉塞しない上限値に設定することで、各伝熱管グループにおいて被冷却気体の閉塞が生じないようにかつ効率的にデフロストを実施できる。
In one embodiment, in the method of (13) or (14) above,
In the defrosting step,
One defrost time required to defrost all the heat transfer tube groups once is set to be within a limit time at which the amount of frost adhering to at least a part of the heat transfer tubes reaches an allowable upper limit value, and from the one defrost time to the heat transfer tube group. Allocate a defrosting time interval for each.
According to the above method, by setting the limit time to an upper limit value at which the flow of the gas to be cooled is not blocked on at least a part of the heat transfer surface, the block of the gas to be cooled does not occur in each heat transfer tube group, and Defrost can be carried out efficiently.

(15)一実施形態では、前記(13)又は(14)の方法において、
前記デフロストステップにおいて、
前記流れ方向上流側に配置された前記伝熱管グループがデフロスト対象となったとき、前記流れ方向を逆向きにする。
上記(15)の方法によれば、流れ方向上流側に配置された伝熱管グループをデフロストするとき、被冷却気体の流れ方向を逆向きにすることで、付着面から剥離した霜が下流側の伝熱管に再付着するのを抑制できると共に、上流側で処理することを可能とする。また、先端部分に付着した霜を効率的に除去できる。さらに、デフロスト時に加えられる熱によって昇温した被冷却気体が一度上流側に戻って混合され、他の伝熱管グループに流入するため、熱交換器後流の温度むらを抑制できる。
(15) In one embodiment, in the method according to (13) or (14) above,
In the defrosting step,
When the heat transfer tube group arranged on the upstream side in the flow direction is subjected to defrosting, the flow direction is reversed.
According to the above method (15), when defrosting the heat transfer tube group arranged on the upstream side in the flow direction, the flow direction of the gas to be cooled is reversed so that the frost separated from the adhering surface is on the downstream side. It is possible to suppress re-adhesion to the heat transfer tube, and it is possible to perform processing on the upstream side. Moreover, the frost adhering to the tip portion can be efficiently removed. Furthermore, the gas to be cooled, which has been heated by the heat applied during defrosting, once returns to the upstream side and is mixed and flows into another heat transfer tube group, so that temperature unevenness in the downstream of the heat exchanger can be suppressed.

幾つかの実施形態によれば、上流側伝熱面に付着した霜により気体流路が閉塞するのを防止できると共に、効率的なデフロスト運転が可能になるため、デフロスト運転により伝熱管やフィンに加えられた熱が熱交換器の熱効率に及ぼす影響を軽減することができる。   According to some embodiments, it is possible to prevent the gas flow passage from being blocked by frost adhering to the upstream heat transfer surface, and to enable efficient defrost operation. The influence of the applied heat on the thermal efficiency of the heat exchanger can be reduced.

一実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on one Embodiment. 一実施形態に係る熱交換器の平面図である。It is a top view of the heat exchanger which concerns on one Embodiment. 熱交換器に冷却媒体を送るための一実施形態に係る冷凍機の系統図である。It is a systematic diagram of the refrigerator concerning one embodiment for sending a cooling medium to a heat exchanger. 一実施形態に係る上流側加熱部のブロック線図である。It is a block diagram of the upstream side heating part concerning one embodiment. 一実施形態に係る上流側加熱部のブロック線図である。It is a block diagram of the upstream side heating part concerning one embodiment. 一実施形態に係る上流側放熱部材の平面図である。It is a top view of an upstream side heat dissipation member concerning one embodiment. 一実施形態に係る上流側放熱部材の平面図である。It is a top view of an upstream side heat dissipation member concerning one embodiment. 一実施形態に係る上流側伝熱面の平面図である。It is a top view of the upstream side heat transfer surface concerning one embodiment. 一実施形態に係る上流側伝熱面の平面図である。It is a top view of an upstream side heat transfer surface concerning one embodiment. 一実施形態に係る熱交換器の模式的平面図である。It is a schematic plan view of the heat exchanger which concerns on one Embodiment. 一実施形態に係る熱交換器の模式的平面図である。It is a schematic plan view of the heat exchanger which concerns on one Embodiment. 一実施形態に係る熱交換器のデフロスト方法の工程図である。It is process drawing of the defrosting method of the heat exchanger which concerns on one Embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.
For example, the expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric", or "coaxial" are strict. In addition to representing such an arrangement, it also represents a state of relative displacement, or a state of relative displacement with an angle or distance such that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous" that indicate that they are in the same state are not limited to a state in which they are exactly equal to each other. It also represents the existing state.
For example, the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range where the same effect can be obtained. The shape including parts and the like is also shown.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.

図1は、一実施形態に係る熱交換器10(10A)の斜視図であり、図2は、別な実施形態に係る熱交換器10(10B)の一部を示す平面図である。熱交換器10(10A、10B)のケーシング12は、被冷却空気aから流入する前面及び流出する後面は開放されており、ファン14などの稼働によってケーシング12の内部を通る被冷却空気aの流路が形成される。ケーシング12の内部に冷却空気流路に面して複数の伝熱管16が設けられる。なお、図1ではファン14(14a、14b、14c)はケーシング12の流れ方向下流側に配置されているが、ケーシング12の流れ方向上流側に配置し、押込み型のファンとして稼働させてもよい。ケーシング12に対して熱交換器10(10B)では、伝熱管16の外周に放熱部材40が設けられる。図1に示す熱交換器10(10A)には、放熱部材40が図示されていないが、放熱部材40は設けられてもよいし、あるいは設けられていなくてもよい。   FIG. 1 is a perspective view of a heat exchanger 10 (10A) according to one embodiment, and FIG. 2 is a plan view showing a part of a heat exchanger 10 (10B) according to another embodiment. The casing 12 of the heat exchanger 10 (10A, 10B) has an open front surface that flows in from the air to be cooled a and a rear surface that flows out from the air to be cooled a, and the flow of the air to be cooled a passing through the inside of the casing 12 by the operation of the fan 14 or the like. A path is formed. Inside the casing 12, a plurality of heat transfer tubes 16 are provided facing the cooling air flow path. Although the fan 14 (14a, 14b, 14c) is arranged on the downstream side in the flow direction of the casing 12 in FIG. 1, it may be arranged on the upstream side in the flow direction of the casing 12 and operated as a push-type fan. .. In the heat exchanger 10 (10B) with respect to the casing 12, the heat dissipation member 40 is provided on the outer periphery of the heat transfer tube 16. Although the heat radiating member 40 is not shown in the heat exchanger 10 (10A) shown in FIG. 1, the heat radiating member 40 may or may not be provided.

図3〜図5に示すように、熱交換器10は上流側加熱部50(50a、50b、50c)を備え、上流側加熱部50によって、複数の伝熱管16のうち、被冷却空気aの流れ方向上流側領域に位置する1つ以上の上流側伝熱管16(16a)の霜層付着面温度、又は上流側伝熱管16(16a)の外周に設けられた上流側放熱部材40(40a)の霜層付着面温度のうち、少なくとも一方を0℃未満でかつ被冷却空気aよりも高温に維持することができる。
なお、上流側伝熱管16(16a)及び上流側放熱部材40(40a)のうち、上記温度範囲に維持されない部位がある場合、その部位は0℃以上にならないように温度維持される。0℃以上になる部位があると、その部位で霜の融解水が発生するからである。
As shown in FIGS. 3 to 5, the heat exchanger 10 includes the upstream heating unit 50 (50 a, 50 b, 50 c ), and the upstream heating unit 50 causes the cooled air a of the plurality of heat transfer tubes 16 to flow. The frost layer adhering surface temperature of one or more upstream heat transfer tubes 16 (16a) located in the upstream area in the flow direction, or the upstream heat dissipation member 40 (40a) provided on the outer circumference of the upstream heat transfer tubes 16 (16a). It is possible to maintain at least one of the frost layer attachment surface temperatures of less than 0° C. and higher than the cooled air a.
If there is a part of the upstream heat transfer tube 16 (16a) and the upstream heat radiating member 40 (40a) that is not maintained within the above temperature range, the temperature of that part is maintained so as not to exceed 0°C. This is because if there is a portion where the temperature is 0° C. or higher, frost-melting water is generated at that portion.

熱交換器10の冷却運転中に、上流側加熱部50によって、常時上流側伝熱管16(16a)又は上流側放熱部材40(40a)の表面温度を昇華デフロストが可能な上記温度範囲に調節する。これによって、上流側伝熱管16(16a)及び上流側放熱部材40(40a)によって形成される上流側伝熱面に付着した霜を昇華させ飛散させることができるため、上流側伝熱面の霜層の成長を抑制し、霜層による伝熱面周囲の空気流路の閉塞を抑制できる。また、この上流側加熱は、常時行うことで、霜層付着面温度を被冷却空気aよりわずかに高い温度にするだけで(微温加熱)、上流側伝熱面の霜層の成長を抑制し、霜層による伝熱面周囲の気体流路の閉塞を抑制できる。   During the cooling operation of the heat exchanger 10, the upstream heating unit 50 constantly adjusts the surface temperature of the upstream heat transfer tube 16 (16a) or the upstream heat radiating member 40 (40a) to the above temperature range in which sublimation defrosting is possible. .. As a result, the frost attached to the upstream heat transfer surface formed by the upstream heat transfer tube 16 (16a) and the upstream heat dissipation member 40 (40a) can be sublimated and scattered, so that the frost on the upstream heat transfer surface. It is possible to suppress the growth of the layer and to prevent the air passage around the heat transfer surface from being blocked by the frost layer. In addition, by constantly performing the upstream heating, the growth of the frost layer on the upstream heat transfer surface is suppressed only by making the temperature of the frost layer adhering surface slightly higher than the air to be cooled a (light temperature heating). It is possible to prevent the gas passage around the heat transfer surface from being blocked by the frost layer.

一実施形態では、図1に示す熱交換器10(10A)を構成する複数の伝熱管16は、冷却空気流路内において、被冷却空気aの流れ方向と直交する方向(矢印b方向。以下「第1方向」とも言う。)に沿って延在し、かつ、被冷却空気aの流れ方向及び第1方向に直交する方向(矢印c方向。以下「第2方向」とも言う。)に沿って配列された複数の伝熱管16により形成される伝熱管列が、流れ方向に複数並ぶように配列される。上流側伝熱管16(16a)は、少なくとも流れ方向の最上流側の伝熱管列に属する1つ以上の伝熱管を含む。   In one embodiment, the plurality of heat transfer tubes 16 constituting the heat exchanger 10 (10A) shown in FIG. 1 are in the cooling air flow path in a direction orthogonal to the flow direction of the cooled air a (arrow b direction. And a direction (arrow c direction; hereinafter also referred to as "second direction") extending along the "first direction") and orthogonal to the flow direction of the cooled air a and the first direction. A plurality of heat transfer tube rows formed by the plurality of heat transfer tubes 16 arranged in parallel are arranged so as to be aligned in the flow direction. The upstream heat transfer tubes 16 (16a) include at least one or more heat transfer tubes belonging to the most upstream heat transfer tube row in the flow direction.

熱交換器10の冷却運転中に、上流側加熱部50によって少なくとも流れ方向の最上流側の伝熱管列に属する1つ以上の伝熱管を上記温度範囲に選択的に調節することで、最上流側伝熱管列に形成される伝熱面に付着した霜を重点的に昇華させ飛散させることができる。これによって、霜が急成長しやすい最上流側伝熱管列の霜層の成長を抑制し、伝熱面周囲の冷却空気流路の閉塞を抑制できる。   During the cooling operation of the heat exchanger 10, the upstream heating unit 50 selectively adjusts at least one or more heat transfer tubes belonging to the row of heat transfer tubes on the most upstream side in the flow direction to the above temperature range. Frost attached to the heat transfer surface formed in the side heat transfer tube row can be sublimated and scattered intensively. As a result, it is possible to suppress the growth of the frost layer in the uppermost stream side heat transfer tube array where frost is likely to grow rapidly and to prevent the cooling air flow passages around the heat transfer surface from being blocked.

一実施形態では、図3に示すように、熱交換器10は、複数の伝熱管16のうちデフロスト対象管をデフロストするためのデフロストユニット18を備える。図1に示すように、冷却空気流路は、第2方向に並ぶ複数の流路領域Fa、Fb及びFcを含み、複数の伝熱管16は、複数の流路領域Fa〜Fcに夫々対応し、かつ、同一の流路領域内において流れ方向にて互いに隣接する2以上の伝熱管列に属する複数の伝熱管16により形成される複数の伝熱管グループTa、Tb、Tc、・・・を含む。なお、図1において、流路領域Fb及びFcに複数の伝熱管グループが図示されていないが、流路領域Fb及びFcにおいても流路領域Faと同様に複数の伝熱管グループを含んでいるものとする。デフロストユニット18は、複数の伝熱管グループのうち1つ以上の伝熱管グループの伝熱管16をデフロスト対象管として選択的にデフロストを行うように構成される。   In one embodiment, as shown in FIG. 3, the heat exchanger 10 includes a defrost unit 18 for defrosting a defrost target tube among the plurality of heat transfer tubes 16. As shown in FIG. 1, the cooling air flow passage includes a plurality of flow passage regions Fa, Fb, and Fc arranged in the second direction, and the plurality of heat transfer tubes 16 correspond to the plurality of flow passage regions Fa to Fc, respectively. , And a plurality of heat transfer tube groups Ta, Tb, Tc,... Formed by a plurality of heat transfer tubes 16 belonging to two or more heat transfer tube rows adjacent to each other in the flow direction within the same flow path region. .. In FIG. 1, the plurality of heat transfer tube groups are not shown in the flow path regions Fb and Fc, but the flow path regions Fb and Fc also include a plurality of heat transfer tube groups like the flow path region Fa. And The defrost unit 18 is configured to selectively defrost the heat transfer tubes 16 of one or more heat transfer tube groups among the plurality of heat transfer tube groups as defrosting target tubes.

一実施形態では、図1に示すように、ファン14(14a、14b、14c)は、各流路領域Fa、Fb及びFcに設けられ、該流路領域毎に被冷却空気aの流れを選択的に形成できる。また、図1に示すように、複数の伝熱管グループTa、Tb、Tcは流れ方向上流側から順に配置され、上流側伝熱管16(16a)は上流側に設けられた伝熱管グループTaを構成する伝熱管群のうち上流側に配置された一部の伝熱管である。   In one embodiment, as shown in FIG. 1, the fan 14 (14a, 14b, 14c) is provided in each flow passage region Fa, Fb, and Fc, and selects the flow of the cooled air a for each flow passage region. Can be formed as desired. Further, as shown in FIG. 1, a plurality of heat transfer tube groups Ta, Tb, Tc are sequentially arranged from the upstream side in the flow direction, and the upstream heat transfer tube 16 (16a) constitutes a heat transfer tube group Ta provided on the upstream side. Is a part of the heat transfer tubes arranged on the upstream side.

上記構成において、複数の伝熱管グループのうち1つ以上の伝熱管グループをデフロスト対象管として選択し、選択された伝熱管グループからデフロストを行う。デフロストの順序を適宜選択することで、伝熱管16や放熱部材40の表面に形成される伝熱面周囲の冷却空気流路の閉塞を防止しながら、デフロスト時に付着面から剥離した霜が下流側伝熱面に再付着するのを抑制できる。例えば、複数の流路領域Fa、Fb及びFcのうち同一流路領域の属する伝熱管群においては、上流側及び下流側とも同時にデフロストを行うことで、上流側付着面から剥離した霜層が下流側伝熱面に再付着するのを抑制できる。あるいは、霜層の成長が遅い流れ方向下流側の伝熱管グループほどデフロスト頻度を少なくすることで、デフロスト運転を効率化できる。あるいは、後述するように、伝熱管グループ毎に伝熱面における空気流路の閉塞時間を求めておき、各伝熱管グループの閉塞時間当たり少なくとも1回のデフロスト運転を行うようにする。   In the above configuration, one or more heat transfer tube groups are selected as the defrosting target tubes from the plurality of heat transfer tube groups, and defrosting is performed from the selected heat transfer tube group. By appropriately selecting the order of defrosting, the frost separated from the adhering surface at the time of defrosting is prevented on the downstream side while preventing the cooling air flow passage around the heat transfer surface formed on the surface of the heat transfer tube 16 or the heat dissipation member 40 from being blocked. Reattachment to the heat transfer surface can be suppressed. For example, in the heat transfer tube group to which the same flow passage region belongs to the same flow passage region among the plurality of flow passage regions Fa, Fb, and Fc, defrosting is performed simultaneously on both the upstream side and the downstream side, so that the frost layer separated from the upstream-side adhered surface is on the downstream side. Redeposition on the side heat transfer surface can be suppressed. Alternatively, the defrost operation can be made more efficient by reducing the defrost frequency in the heat transfer tube group on the downstream side in the flow direction in which the frost layer grows slowly. Alternatively, as described later, the blocking time of the air flow path on the heat transfer surface is obtained for each heat transfer tube group, and at least one defrost operation is performed per blocking time of each heat transfer tube group.

一実施形態では、図3に示すように、冷凍機20は、冷却運転時に伝熱管16に冷媒を供給して被冷却空気aを冷却する。デフロストユニット18は、デフロスト時にデフロスト対象となる伝熱管グループにデフロスト流体を供給する。冷媒回路22を循環する冷媒は、ガス状で圧縮機24に吸入され、圧縮機24で加圧された後、コンデンサ26で冷却されて液化する。コンデンサ26で液化された冷媒液は一旦レシーバ28に貯留された後、膨張弁30を経て減圧される。膨張弁30で減圧された冷媒は、熱交換器10の上流側伝熱管16(16a)及び各伝熱管グループTa、Tb及びTcのうち、デフロスト対象となった伝熱管グループTaを除き、逆止弁32を経て伝熱管グループTb及びTcの伝熱管16に供給され、被冷却空気aを所定の冷却温度に冷却する。被冷却空気aの冷却に供された後の冷媒は冷媒回路22に戻される。   In one embodiment, as shown in FIG. 3, the refrigerator 20 supplies the refrigerant to the heat transfer tubes 16 to cool the cooled air a during the cooling operation. The defrost unit 18 supplies the defrost fluid to the heat transfer tube group to be defrosted during defrosting. The refrigerant circulating in the refrigerant circuit 22 is sucked into the compressor 24 in a gaseous state, pressurized by the compressor 24, cooled by the condenser 26, and liquefied. The refrigerant liquid liquefied by the condenser 26 is once stored in the receiver 28, and then depressurized via the expansion valve 30. The refrigerant whose pressure has been reduced by the expansion valve 30 is non-returned except for the heat transfer tube group Ta (Ta, Tb and Tc) of the upstream side heat transfer tube 16 (16a) of the heat exchanger 10 which is the defrosting target heat transfer tube group Ta. It is supplied to the heat transfer tubes 16 of the heat transfer tube groups Tb and Tc through the valve 32 and cools the cooled air a to a predetermined cooling temperature. The refrigerant that has been used to cool the cooled air a is returned to the refrigerant circuit 22.

デフロスト対象となった伝熱管グループには、上記デフロスト流体として、レシーバ28内の高圧下の冷媒(ガス相部)がバッファタンク45に貯留され、デフロスト流路34を介して供給される。この高圧下の冷媒は温度、圧力等の状態を調整されてバッファタンク45に貯留される。制御部48は、圧力センサ47の検出値が所定値となるように圧力調整弁36の開度を制御し、かつ加熱部46の作動を制御し、デフロスト流路34を流れるデフロスト用冷媒ガスを、デフロスト対象となっている伝熱管グループに送った際,霜の付着面温度を0℃未満で被冷却空気aより高い温度を維持できる状態に調整し,昇華デフロストが可能な状態に調整する。調整されたデフロスト用冷媒ガスはデフロスト対象となった伝熱管グループに送られる。デフロストに供された冷媒ガスは伝熱管内部で凝縮液化した後、キャピラリチューブ38を経て膨張減圧され、低圧冷媒ライン22aに合流する。その後、他の伝熱管グループを経て蒸発ガス化して冷媒回路22に戻される。なお、このキャピラリチューブ38の代わりの減圧機構として電磁弁や膨張弁等の減圧弁を用いてもよい。   As the defrosting fluid, a refrigerant (gas phase portion) under high pressure in the receiver 28 is stored in the buffer tank 45 and is supplied to the heat transfer tube group that has been defrosted through the defrosting flow path 34. The refrigerant under high pressure is stored in the buffer tank 45 after adjusting the temperature, pressure, and other conditions. The control unit 48 controls the opening degree of the pressure adjusting valve 36 so that the detection value of the pressure sensor 47 becomes a predetermined value, controls the operation of the heating unit 46, and controls the defrosting refrigerant gas flowing through the defrosting passage 34. , When it is sent to the heat transfer tube group that is the target of defrosting, the frost adhesion surface temperature is adjusted to a temperature lower than 0° C. so that it can be maintained at a temperature higher than that of the air to be cooled a, and the sublimation defrosting is adjusted. The adjusted defrosting refrigerant gas is sent to the heat transfer tube group that is the object of defrosting. The refrigerant gas provided for defrosting is condensed and liquefied inside the heat transfer tube, then expanded and decompressed through the capillary tube 38, and joins the low pressure refrigerant line 22a. After that, it is vaporized and gasified through another heat transfer tube group and is returned to the refrigerant circuit 22. A pressure reducing valve such as an electromagnetic valve or an expansion valve may be used as a pressure reducing mechanism instead of the capillary tube 38.

一実施形態では、図3に示すように、上流側加熱部50(50a)は、デフロスト時に、上流側伝熱管16(16a)に霜が付着する伝熱面の温度を0℃未満でかつ被冷却空気aの温度より高い温度に維持可能なデフロスト流体を供給可能なデフロスト流体供給部44を含む。デフロスト流体供給部44は、バッファタンク45及び加熱部46を含む。デフロスト流体供給部44によって、例えば、霜の付着面温度を−2℃〜−5℃の温度に維持可能なデフロスト流体を供給する。このデフロスト流体供給部44によって、デフロスト対象となった伝熱管グループに対して、霜の付着面温度を0℃未満でかつ被冷却空気aの温度より高い温度に維持可能なデフロスト流体を供給する。これによって、霜層付着面に付着した霜を昇華させて除去する昇華デフロストが可能になる。
また、着霜の昇華が可能な状態に調整されたデフロスト流体を上流側伝熱管16(16a)に供給することで、上流側加熱が可能になる。構造によって上流側加熱でも対応できない着霜は,デフロスト運転によって対応することができる。
In one embodiment, as shown in FIG. 3, the upstream heating unit 50 (50a) has a temperature of the heat transfer surface where frost adheres to the upstream heat transfer pipe 16 (16a) at a temperature of less than 0° C. and less than 0° C. during defrosting. It includes a defrost fluid supply unit 44 capable of supplying a defrost fluid that can be maintained at a temperature higher than the temperature of the cooling air a. The defrost fluid supply unit 44 includes a buffer tank 45 and a heating unit 46. The defrost fluid supply unit 44 supplies, for example, a defrost fluid that can maintain the frost attachment surface temperature at a temperature of −2° C. to −5° C. The defrost fluid supply unit 44 supplies the defrost fluid capable of maintaining the temperature of the frost adhering surface below 0° C. and higher than the temperature of the cooled air “a” to the heat transfer tube group that is the object of defrost. This enables sublimation defrost to sublime and remove the frost attached to the frost layer attachment surface.
Further, by supplying the defrost fluid, which is adjusted to allow sublimation of frost, to the upstream heat transfer pipe 16 (16a), upstream heating becomes possible. Frost, which cannot be handled by upstream heating due to its structure, can be dealt with by defrosting operation.

図3に示す冷凍機20において、デフロスト流体は、レシーバ28内に貯留され、デフロスト流路34を介して供給される高圧下の冷媒である。この冷媒をデフロスト流体として用いることで、デフロスト熱源を他の熱源から求める必要がなくなる。   In the refrigerator 20 shown in FIG. 3, the defrost fluid is a refrigerant under high pressure that is stored in the receiver 28 and is supplied through the defrost flow passage 34. By using this refrigerant as the defrost fluid, it is not necessary to obtain the defrost heat source from another heat source.

一実施形態では、図3に示すように、デフロストユニット18は、複数の伝熱管列のうち流れ方向の最上流側の伝熱管列である上流側伝熱管16(16a)のみをデフロスト対象管として選択的にデフロストするように構成される。
この実施形態によれば、上流側伝熱管16(16a)のみをデフロスト対象管として選択的にデフロストすることで、霜層が急成長しやすい上流側伝熱管16(16a)を優先してデフロストできる。これによって、着霜の成長が顕著な上流側伝熱管16(16a)の着霜の成長を抑制できる。この場合、上流側加熱部50(50a)によってデフロスト流体を着霜の昇華が可能な状態に維持することで、デフロスト運転によって上流側加熱を兼ねることができる。
In one embodiment, as shown in FIG. 3, the defrost unit 18 sets only the upstream heat transfer tube 16 (16a), which is the most upstream heat transfer tube row in the flow direction among the plurality of heat transfer tube rows, as the defrosting target tube. It is configured to selectively defrost.
According to this embodiment, by selectively defrosting only the upstream heat transfer pipe 16 (16a) as the defrosting target pipe, the upstream heat transfer pipe 16 (16a) in which the frost layer is likely to grow rapidly can be preferentially defrosted. .. As a result, it is possible to suppress the growth of frost on the upstream heat transfer tube 16 (16a) where the growth of frost is remarkable. In this case, the upstream side heating unit 50 (50a) maintains the defrost fluid in a state where sublimation of frost can be performed, so that the upstream side heating can also be performed by the defrost operation.

一実施形態では、図3に示すように、最上流側の伝熱管列である上流側伝熱管16(16a)のみにバッファタンク45からデフロスト流体を供給するデフロスト流路35を備える。上流側伝熱管16(16a)の伝熱管列はデフロスト運転のみ行われ、通常の冷却運転はこの実施形態では行われない。上流側伝熱管16(16a)の伝熱管列に常時昇華デフロストが可能な温度、圧力等の状態のデフロスト流体を供給することで、上流側加熱が可能になる。
一実施形態では、デフロスト時に最上流側の伝熱管列である上流側伝熱管16(16a)の霜層付着面の温度を下流側伝熱管グループの霜層付着面の温度より低くなるように構成される。例えば、デフロスト流路35に設けられた圧力調整弁37によってデフロスト流体の温度,圧力等の状態を制御することで、霜層付着面の温度を調整する。これにより,霜層の成長抑制を効率よく行なうことができる。
In one embodiment, as shown in FIG. 3, a defrost flow passage 35 that supplies the defrost fluid from the buffer tank 45 to only the upstream heat transfer pipe 16 (16a) that is the most upstream heat transfer pipe array is provided. Only the defrost operation is performed for the heat transfer tube row of the upstream heat transfer tube 16 (16a), and the normal cooling operation is not performed in this embodiment. By supplying the defrost fluid in a state of temperature, pressure, etc., which allows constant sublimation defrost, to the heat transfer tube row of the upstream heat transfer tube 16 (16a), upstream heating becomes possible.
In one embodiment, the temperature of the frost layer adhering surface of the upstream heat transfer tube 16 (16a), which is the most upstream heat transfer tube row, is lower than the temperature of the frost layer adhering surface of the downstream heat transfer tube group during defrosting. To be done. For example, the temperature of the defrost fluid is controlled by the pressure control valve 37 provided in the defrost flow path 35 to adjust the temperature of the frost layer adhering surface. This makes it possible to efficiently suppress the growth of the frost layer.

上流側伝熱管16(16a)でデフロストに供されたデフロスト流体は、キャピラリチューブ38を経て膨張減圧され、低圧冷媒ライン22aに合流する。上流側伝熱管16(16a)には、他の伝熱管グループのように、冷媒回路22から冷媒が流入する分岐ライン23は設けられていない。   The defrost fluid that has been defrosted in the upstream heat transfer pipe 16 (16a) is expanded and decompressed via the capillary tube 38, and joins the low pressure refrigerant line 22a. Unlike the other heat transfer tube group, the upstream heat transfer tube 16 (16a) is not provided with the branch line 23 through which the refrigerant flows from the refrigerant circuit 22.

図4及び図5に、上流側加熱部50の別な実施形態を示す。上流側加熱部50(50b、50c)は、上流側伝熱管16(16a)又は上流側放熱部材40(40a)を加熱するように構成される。上流側加熱部50(50b、50c)によって上流側伝熱管16(16a)又は上流側放熱部材40(40a)が形成する上流側伝熱面を加温し、昇華デフロストが可能な温度にすることで、上流側伝熱面に付着した霜層Fを昇華させて除去できる。
この実施形態では、デフロスト運転とは別な手段で上流側加熱が可能になる。
4 and 5 show another embodiment of the upstream heating section 50. The upstream heating section 50 (50b, 50c) is configured to heat the upstream heat transfer tube 16 (16a) or the upstream heat dissipation member 40 (40a). The upstream heating section 50 (50b, 50c) heats the upstream heat transfer surface formed by the upstream heat transfer tube 16 (16a) or the upstream heat dissipation member 40 (40a) to a temperature at which sublimation defrost is possible. Thus, the frost layer F attached to the upstream heat transfer surface can be sublimated and removed.
In this embodiment, upstream heating can be performed by means other than the defrost operation.

図4に示す上流側加熱部50(50b)は、高周波電流誘導部52を含んで構成される。高周波電流誘導部52は、導線54を介して上流側伝熱管16(16a)に接続される。伝熱管16(16a)の内部には冷凍機20で冷却された冷却媒体rが流れる。高周波電流誘導部52から上流側伝熱管16(16a)に高周波電流Eを流すことで、上流側伝熱管16(16a)の表面温度を昇華デフロストが可能な温度にすることができる。この場合、表皮効果によって霜層Fが付着した上流側伝熱管16(16a)の表面に高周波電流Eを集中させることができるため、霜層Fの加温効果を向上できると共に、高周波電流Eを上流側伝熱管16(16a)の表面に集中させることで、省エネが可能になる。
なお、加温対象を上流側伝熱管16(16a)の代わりに上流側放熱部材40(40a)とし、上流側放熱部材40(40a)に付着した霜層Fを昇華デフロストにより除去するようにしてもよい。
The upstream heating section 50 (50b) shown in FIG. 4 includes a high frequency current induction section 52. The high-frequency current induction section 52 is connected to the upstream heat transfer tube 16 (16a) via a conductor wire 54. The cooling medium r cooled by the refrigerator 20 flows inside the heat transfer tube 16 (16a). By flowing the high-frequency current E from the high-frequency current guide portion 52 to the upstream heat-transfer tube 16 (16a), the surface temperature of the upstream heat-transfer tube 16 (16a) can be set to a temperature at which sublimation defrosting is possible. In this case, since the high frequency current E can be concentrated on the surface of the upstream heat transfer tube 16 (16a) to which the frost layer F adheres due to the skin effect, the heating effect of the frost layer F can be improved and the high frequency current E can be increased. Energy can be saved by concentrating on the surface of the upstream heat transfer tube 16 (16a).
It should be noted that the heating target is the upstream heat dissipation member 40 (40a) instead of the upstream heat transfer tube 16 (16a), and the frost layer F attached to the upstream heat dissipation member 40 (40a) is removed by sublimation defrosting. Good.

一実施形態では、図5に示すように、上流側放熱部材40(40a)の表面には、通電部56から電流を流すことで加温する導電性物質層58が形成され、導電性物質層58の内側に電気絶縁層60が形成されている。上流側加熱部50(50b)は、導電性物質層58に導線54を介して電流を流すための通電部56を含んで構成される。デフロスト運転時に、通電部56から導電性物質層58に電流を流して導電性物質層58を加温し、導電性物質層58の表面に付着した霜層Fを0℃未満の温度に昇温させ、霜層Fを昇華させて除去する。この実施形態によれば、導電性物質層58の内側に電気絶縁層60を備えるため、導電性物質層58に集中して電流を流すことができる。また、導電性物質層58の膜厚を可能な限り薄くすることで、加温に必要な電力を節減できる。
なお、本実施形態では、加温対象を上流側放熱部材40(40a)としているが、代わりに上流側伝熱管16(16a)であってもよい。
In one embodiment, as shown in FIG. 5, on the surface of the upstream side heat dissipation member 40 (40a), a conductive material layer 58 that is heated by flowing an electric current from the current-carrying portion 56 is formed. An electric insulation layer 60 is formed inside the layer 58. The upstream heating section 50 (50b) is configured to include an energization section 56 for passing an electric current through the conductive material layer 58 through the conductive wire 54. During the defrost operation, an electric current is passed from the energizing portion 56 to the conductive material layer 58 to heat the conductive material layer 58, and the frost layer F attached to the surface of the conductive material layer 58 is heated to a temperature of less than 0°C. Then, the frost layer F is sublimated and removed. According to this embodiment, since the electrically insulating layer 60 is provided inside the conductive material layer 58, the electric current can be concentrated on the conductive material layer 58 to flow the current. Further, by reducing the film thickness of the conductive material layer 58 as much as possible, it is possible to reduce the power required for heating.
In the present embodiment, the object to be heated is the upstream heat dissipation member 40 (40a), but the upstream heat transfer tube 16 (16a) may be used instead.

一実施形態では、上流側加熱部50は、上流側伝熱管16(16a)又は上流側放熱部材40(40a)の少なくとも一方の霜層付着面温度と被冷却空気aとの温度差を0℃を超え10℃以下に維持するように構成される。この微温加熱によって、昇華によるデフロスト時にデフロスト熱源として必要な熱量を低減できる。   In one embodiment, the upstream heating unit 50 sets the temperature difference between the frost layer attachment surface temperature of at least one of the upstream heat transfer tube 16 (16a) and the upstream heat dissipation member 40 (40a) and the cooled air a to 0°C. It is configured to maintain above 10°C and above. This slight heating can reduce the amount of heat required as a defrost heat source during defrosting due to sublimation.

一実施形態では、図2に示すように、複数の伝熱管16が貫通又は接触するように冷却空気流路内にて流れ方向(矢印a方向)に沿って板状の放熱部材40が設けられる。板状の放熱部材40を設けることで、伝熱面積が増加するため、熱交換器10の伝熱性能を向上できる。また、板状の放熱部材40は被冷却空気aの流れ方向に沿って設けられるので、被冷却空気aの乱れを抑制できる。図6Aに示すように、被冷却空気aの乱れが抑制された板状の放熱部材40の表面には、板状の放熱部材40の表面に近づくほど温度が徐々に低くなる温度境界層Btが形成される。この温度境界層の形成によって、伝熱面の熱伝達率が減少し板状放熱部材の表面に形成される霜層の成長を抑制できる。図6Aに温度境界層Btの温度分布を模式的に示している。   In one embodiment, as shown in FIG. 2, a plate-shaped heat dissipation member 40 is provided along the flow direction (direction of arrow a) in the cooling air flow path so that the plurality of heat transfer tubes 16 penetrate or contact each other. .. Since the heat transfer area is increased by providing the plate-shaped heat dissipation member 40, the heat transfer performance of the heat exchanger 10 can be improved. Further, since the plate-shaped heat dissipation member 40 is provided along the flow direction of the cooled air a, it is possible to suppress the disturbance of the cooled air a. As shown in FIG. 6A, on the surface of the plate-shaped heat dissipation member 40 in which the turbulence of the cooled air a is suppressed, there is a temperature boundary layer Bt in which the temperature gradually decreases toward the surface of the plate-shaped heat dissipation member 40. It is formed. By forming this temperature boundary layer, the heat transfer coefficient of the heat transfer surface is reduced, and the growth of the frost layer formed on the surface of the plate-shaped heat dissipation member can be suppressed. FIG. 6A schematically shows the temperature distribution of the temperature boundary layer Bt.

一実施形態では、図2に示すように、板状の放熱部材40は、流れ方向に沿って互いに間隔を置いて複数並列に配置される。このように、板状の放熱部材40が被冷却空気aの流れ方向に沿って配置されるため、被冷却空気aの乱れを抑制でき、かつ複数並列に配置されるため、伝熱面積を増加でき伝熱性能を向上できる。また、被冷却空気aの乱れを抑制できるため、板状の放熱部材40の表面に温度境界層Btが形成される。これによって、霜層の成長を抑制できる。
なお、板状の放熱部材40は、平板形状とすることで、被冷却空気aの乱れを最大限に抑制できるが、平板状放熱部材に限られず、コルゲート形状、ルーバ形状又はウェーブ形状の板状放熱部材であってもよい。
In one embodiment, as shown in FIG. 2, a plurality of plate-shaped heat dissipation members 40 are arranged in parallel with each other at intervals along the flow direction. In this way, since the plate-shaped heat dissipation member 40 is arranged along the flow direction of the cooled air a, it is possible to suppress the disturbance of the cooled air a, and a plurality of them are arranged in parallel, so that the heat transfer area is increased. The heat transfer performance can be improved. Further, since the turbulence of the cooled air a can be suppressed, the temperature boundary layer Bt is formed on the surface of the plate-shaped heat dissipation member 40. This can suppress the growth of the frost layer.
Note that the plate-shaped heat dissipation member 40 can suppress the disturbance of the cooled air a to the maximum by forming the plate-shaped heat dissipation member 40. However, the plate-shaped heat dissipation member 40 is not limited to the plate-shaped heat dissipation member, and has a corrugated, louver-shaped, or wave-shaped plate shape. It may be a heat dissipation member.

一実施形態では、複数の伝熱管16の配置は、被冷却空気aの乱流を形成せずに霜層の成長を抑制し、慣性によるミストの付着に起因する着霜の集中を抑制するという観点から、被冷却空気aの流れに対して千鳥配置とするより格子配置とするのが望ましい。また、伝熱促進の観点からは千鳥配置とするのが望ましく、交換熱量やデフロストサイクル時間の条件等に関連して適宜選択すると良い。   In one embodiment, the arrangement of the plurality of heat transfer tubes 16 suppresses the growth of the frost layer without forming a turbulent flow of the cooled air a, and suppresses the concentration of frost due to the attachment of mist due to inertia. From the viewpoint, it is preferable to use the lattice arrangement rather than the staggered arrangement with respect to the flow of the cooled air a. In addition, from the viewpoint of promoting heat transfer, it is desirable to arrange in a staggered manner, and it may be appropriately selected in relation to the conditions such as the heat exchange amount and the defrost cycle time.

一実施形態では、図6A及び図6Bに示すように、上流側放熱部材40(40a)の流れ方向先端部分40(40b)と下流側部位との間に、先端部分40(40b)と下流側伝熱管16との間の伝熱を抑制する断熱域62(62a、62b)を有する。断熱域62(62a、62b)を有するため、上流側加熱部50(50b、50c)によって上流側加熱を行うとき、上流側加熱部50から先端部分40(40b)に加えられる熱が冷却運転中の下流側伝熱管16に伝わって冷却効率を低下させるのを抑制できる。
図6A及び図6Bは、上流側伝熱管16(16a)よりさらに上流側に放熱部材40を設けた実施形態を示している。
In one embodiment, as shown in FIGS. 6A and 6B, the tip end portion 40 (40b) and the downstream side are provided between the tip end portion 40 (40b) in the flow direction of the upstream heat dissipation member 40 (40a) and the downstream side portion. It has the heat insulation area|region 62 (62a, 62b) which suppresses heat transfer between the heat transfer tubes 16. Since the heat insulating area 62 (62a, 62b) is provided, when the upstream heating section 50 (50b, 50c) performs upstream heating, the heat applied from the upstream heating section 50 to the tip portion 40 (40b) is in the cooling operation. It is possible to prevent the cooling efficiency from being lowered by being transmitted to the downstream heat transfer tube 16.
6A and 6B show an embodiment in which the heat dissipation member 40 is provided on the upstream side of the upstream heat transfer tube 16 (16a).

図6Aに示す実施形態では、断熱域62(62a)は、被冷却空気aの流れ方向で温度境界層Btが途切れずに維持可能な長さに形成された隙間sで構成される。この隙間sに存在する空気は断熱性を有するので、隙間sを形成することで、断熱域を形成できる。また、隙間sは被冷却空気aの流れ方向で温度境界層Btが途切れずに維持可能な長さに形成されているので、隙間sによって形成された放熱部材40の端部で着霜が促進されることはない。
図6Bに示す実施形態では、断熱域62(62b)は、熱伝導率が小さい物質で構成された断熱域を構成している。この断熱域の表面は被冷却空気aが乱れないように平滑に形成され、かつ他の先端部分40(40b)との間で段差を形成していない。
なお、断熱域62は各伝熱管グループの間に設けられていてもよい。
In the embodiment shown in FIG. 6A, the heat insulating area 62 (62a) is formed by a gap s formed to have a length such that the temperature boundary layer Bt can be maintained without interruption in the flow direction of the cooled air a. Since the air existing in the gap s has a heat insulating property, the heat insulating region can be formed by forming the gap s. Further, since the gap s is formed to have a length that allows the temperature boundary layer Bt to be maintained without interruption in the flow direction of the cooled air a, frost formation is promoted at the end of the heat dissipation member 40 formed by the gap s. It will not be done.
In the embodiment shown in FIG. 6B, the heat insulating area 62 (62b) constitutes a heat insulating area made of a material having a low thermal conductivity. The surface of this adiabatic region is formed so as not to disturb the cooled air a, and does not form a step with the other tip portion 40 (40b).
The heat insulating area 62 may be provided between the heat transfer tube groups.

一実施形態では、図7A及び図7Bに示すように、放熱部材40は、複数の伝熱管グループのうち流れ方向上流側に配置された上流側伝熱管グループTaと上流側伝熱管グループTaより流れ方向下流側に配置された下流側伝熱管グループTbとを跨るように配置される。そして、放熱部材40の上流側伝熱管グループTaと下流側伝熱管グループTbとの間の部位に、上流側伝熱管グループTaと下流側伝熱管グループTbとの間の伝熱を抑制する断熱域62(62a、62b)を有する。
これらの実施形態によれば、流れ方向先端部分40(40b)を除き温度境界層Btを連続的に延在できる。これによって、流れ方向先端部分40(40b)以外の領域全体で着霜の成長を抑制できる。また、上流側伝熱管グループTaと下流側伝熱管グループTbとの間に断熱域62(62a、62b)を有するので、上流側加熱を行うとき、又は上流側伝熱管グループTa又は下流側伝熱管グループTbの一方でデフロストを行うとき、上流側加熱又はデフロスト運転により伝熱管16や放熱部材40に加えられた熱が冷却運転中の他方の伝熱管グループに伝わって冷却効率を低下させるのを抑制できる。
In one embodiment, as shown in FIGS. 7A and 7B, the heat dissipation member 40 flows from the upstream heat transfer tube group Ta and the upstream heat transfer tube group Ta that are arranged on the upstream side in the flow direction of the plurality of heat transfer tube groups. It is arranged so as to straddle the downstream heat transfer tube group Tb arranged on the downstream side in the direction. Then, in a portion of the heat dissipation member 40 between the upstream heat transfer tube group Ta and the downstream heat transfer tube group Tb, a heat insulating region that suppresses heat transfer between the upstream heat transfer tube group Ta and the downstream heat transfer tube group Tb. 62 (62a, 62b).
According to these embodiments, the temperature boundary layer Bt can be continuously extended except for the tip portion 40 (40b) in the flow direction. As a result, it is possible to suppress the growth of frost in the entire region except the flow direction tip portion 40 (40b). Further, since the heat insulation zone 62 (62a, 62b) is provided between the upstream heat transfer tube group Ta and the downstream heat transfer tube group Tb, when performing upstream heating, or the upstream heat transfer tube group Ta or the downstream heat transfer tube. When defrosting is performed on one side of the group Tb, it is suppressed that heat applied to the heat transfer tube 16 or the heat radiating member 40 due to upstream heating or defrosting operation is transferred to the other heat transfer tube group during cooling operation to reduce cooling efficiency. it can.

一実施形態では、図1に示すように、複数の伝熱管グループを被冷却空気aの流れ方向に配置するようにしてもよい。例えば、被冷却空気aの流れ方向で2つ以上の伝熱管グループを配置してもよいし、あるいはさらに、最上流側の上流側伝熱管16(16a)を別な伝熱管グループとし、上述のように、最上流側の上流側伝熱管16(16a)を優先してデフロストするようにしてもよい。また、複数の伝熱管グループを上下方向に重ねて配置するようにしてもよい。
また、図8Aに示すように、複数の伝熱管グループTa、Tb及びTcをファン14を中心としてファン14を囲むように円弧状に形成してもよい。複数の伝熱管グループTa、Tb及びTcはこの順序で被冷却空気aの上流側から配置する。図8Bに示す実施形態は、伝熱管群を複数の流路領域Fa、Fb及びFcに分け、各流路領域が複数の伝熱管グループTa、Tb及びTcで構成される例である。
In one embodiment, as shown in FIG. 1, a plurality of heat transfer tube groups may be arranged in the flow direction of the cooled air a. For example, two or more heat transfer tube groups may be arranged in the flow direction of the cooled air a, or further, the upstreammost heat transfer tube 16 (16a) on the most upstream side is set as another heat transfer tube group, and Thus, the upstream heat transfer pipe 16 (16a) on the most upstream side may be preferentially defrosted. In addition, a plurality of heat transfer tube groups may be arranged so as to be vertically stacked.
Further, as shown in FIG. 8A, a plurality of heat transfer tube groups Ta, Tb and Tc may be formed in an arc shape so as to surround the fan 14 with the fan 14 as the center. The plurality of heat transfer tube groups Ta, Tb, and Tc are arranged in this order from the upstream side of the cooled air a. The embodiment shown in FIG. 8B is an example in which the heat transfer tube group is divided into a plurality of flow path areas Fa, Fb, and Fc, and each flow path area is configured by a plurality of heat transfer tube groups Ta, Tb, and Tc.

一実施形態に係るデフロスト方法は、図9に示すように、熱交換器10の稼働中に、上流側加熱部50によって、まず、上流側伝熱管16(16a)又は上流側放熱部材40(40a)の少なくとも一方の霜層付着面温度を常時0℃未満かつ被冷却空気aよりも高温に維持する(上流側加熱ステップS10)。これによって、上流側伝熱管16(16a)又は上流側放熱部材40(40a)に付着した霜層を昇華させて除去できる。従って、上記温度条件に調節することで、霜層の成長を抑制し、伝熱面における冷却空気流路を常に確保できる。   In the defrosting method according to the embodiment, as shown in FIG. 9, during operation of the heat exchanger 10, the upstream heating unit 50 first causes the upstream heat transfer pipe 16 (16a) or the upstream heat dissipation member 40 (40a). ) At least one of the frost layer adhering surface temperatures of 0) is constantly maintained below 0° C. and higher than the air to be cooled a (upstream heating step S10). Thereby, the frost layer adhered to the upstream heat transfer tube 16 (16a) or the upstream heat dissipation member 40 (40a) can be sublimated and removed. Therefore, by adjusting to the above temperature condition, it is possible to suppress the growth of the frost layer and always secure the cooling air flow path on the heat transfer surface.

上流側加熱ステップS10では、図3に示すように、上流側加熱が可能なデフロスト流体を伝熱管内に流して上流側伝熱管16(16a)を加熱する場合と、図5、図6A及び図6Bに示すように、上流側放熱部材40(40a)を通電などで加熱する場合と、図4、図7A及び図7Bのように、これらを併用する場合とがある。通電加熱は通電部56から上流側放熱部材40(40a)の導電性物質層58に電流を流して導電性物質層58を加温し、導電性物質層58の表面に付着した霜層Fを0℃未満の温度に昇温させ、霜層Fを昇華させて除去する。 In the upstream heating step S10, as shown in FIG. 3, a case where a defrost fluid capable of upstream heating is flowed into the heat transfer tube to heat the upstream heat transfer tube 16 (16a), and FIG. 5, FIG. 6A and FIG. As shown in FIG. 6B, there is a case where the upstream heat radiating member 40 (40a) is heated by energization or the like, and a case where these are used together as in FIGS. 4, 7A and 7B. The energization heating is performed by passing an electric current from the energization section 56 to the conductive material layer 58 of the upstream heat dissipation member 40 (40a) to heat the conductive material layer 58, and remove the frost layer F attached to the surface of the conductive material layer 58. The frost layer F is sublimated and removed by raising the temperature to below 0°C.

一実施形態では、複数の伝熱管16は、冷却空気流路における被冷却空気aの流れ方向と直交する幅方向(図1中の矢印b方向。第1方向)に沿って延在し、かつ流れ方向及び幅方向に直交する上下方向(図1中の矢印c方向。第2方向)に沿って配列された複数の伝熱管16により形成される伝熱管列が、流れ方向に複数並ぶように配列される。また、図3に示すように、熱交換器10は、複数の伝熱管16のうちデフロスト対象管をデフロストするためのデフロストユニット18を備え、冷却空気流路は、上下方向に並ぶ複数の流路領域Fa、Fb及びFcを含む。複数の伝熱管16は、複数の流路領域Fa〜Fcに夫々対応し、かつ同一の流路領域内において流れ方向にて互いに隣接する2以上の伝熱管列に属する複数の伝熱管により形成される複数の伝熱管グループTa、Tb、Tc、・・・を含み、デフロストユニット18は、複数の伝熱管グループのうち1以上の伝熱管グループの伝熱管16をデフロスト対象管として選択的にデフロストを行うように構成されている。かかる構成の熱交換器10において、複数の伝熱管グループのうち1つ以上の伝熱管グループ毎にデフロストする(デフロストステップS12)。   In one embodiment, the plurality of heat transfer tubes 16 extend along the width direction (the arrow b direction in FIG. 1, the first direction) orthogonal to the flow direction of the cooled air a in the cooling air flow path, and A plurality of heat transfer tube rows formed by a plurality of heat transfer tubes 16 arranged in the up-down direction (the arrow c direction in FIG. 1, the second direction) orthogonal to the flow direction and the width direction are arranged in the flow direction. Arranged. Further, as shown in FIG. 3, the heat exchanger 10 includes a defrost unit 18 for defrosting the defrost target pipe among the plurality of heat transfer pipes 16, and the cooling air flow passage has a plurality of flow passages arranged in the vertical direction. It includes regions Fa, Fb and Fc. The plurality of heat transfer tubes 16 are formed by a plurality of heat transfer tubes that respectively correspond to the plurality of flow path areas Fa to Fc and belong to two or more heat transfer tube rows adjacent to each other in the same flow path area in the flow direction. , The plurality of heat transfer tube groups Ta, Tb, Tc,... Are included, and the defrost unit 18 selectively defrosts the heat transfer tubes 16 of one or more heat transfer tube groups among the plurality of heat transfer tube groups as defrosting target tubes. Is configured to do. In the heat exchanger 10 having such a configuration, defrosting is performed for each one or more heat transfer tube groups among the plurality of heat transfer tube groups (defrosting step S12).

デフロストステップS12によれば、デフロスト時に、各伝熱管グループTa、Tb、Tc、・・・の霜の成長の違いに応じてデフロストを行う順序を適宜選択することで、各伝熱面における冷却空気流路の閉塞を防止しながら、効率的なデフロストを行うことができると共に、付着面から剥離した霜が流れ方向下流側の伝熱面に再付着するのを抑制できる。なお、このデフロスト運転と上流側加熱とを併用することで、伝熱面周囲の気体流路の閉塞を効果的に防止できる。   According to the defrosting step S12, at the time of defrosting, by appropriately selecting the order of defrosting according to the difference in frost growth of each heat transfer tube group Ta, Tb, Tc,... It is possible to perform efficient defrosting while preventing the blockage of the flow path, and it is possible to suppress the re-adhesion of the frost separated from the adhesion surface to the heat transfer surface on the downstream side in the flow direction. By using the defrosting operation and the upstream heating together, it is possible to effectively prevent the gas passage around the heat transfer surface from being blocked.

一実施形態では、デフロストユニット18は、複数の伝熱管列のうち流れ方向最上流側の伝熱管列である上流側伝熱管16(16a)のみをデフロスト対象管として選択的にデフロストするように構成される。そして、デフロストステップS12において、流れ方向の上流側伝熱管16(16a)をデフロスト対象管として選択的にデフロストする(ステップS12a)。
この実施形態によれば、デフロストステップS12において、上流側伝熱管16(16a)をデフロスト対象管として選択的にデフロストすることで、上流側伝熱管16(16a)を優先してデフロストでき、上流側伝熱管16(16a)の着霜の成長を抑制できる。
In one embodiment, the defrost unit 18 is configured to selectively defrost only the upstream heat transfer tube 16 (16a), which is the heat transfer tube row on the most upstream side in the flow direction among the plurality of heat transfer tube rows, as the defrosting target tube. To be done. Then, in the defrosting step S12, the upstream heat transfer tube 16 (16a) in the flow direction is selectively defrosted as the defrosting target tube (step S12a).
According to this embodiment, in the defrosting step S12, by selectively defrosting the upstream heat transfer pipe 16 (16a) as the defrosting target pipe, the upstream heat transfer pipe 16 (16a) can be preferentially defrosted, and the upstream heat transfer pipe 16 (16a) can be defrosted. The growth of frost on the heat transfer tube 16 (16a) can be suppressed.

一実施形態では、デフロストステップS12において、伝熱管16の少なくとも一部に付着する着霜量が許容値の上限に達する限界時間に合わせて、すべての伝熱管グループを1回デフロストするに要する1デフロスト時間を設定する。そして、この1デフロスト時間から伝熱管グループの各々のデフロスト実施時間間隔を設定する。
この実施形態によれば、上記限界時間を被冷却空気aの流れが複数の放熱部材40間などの隙間を閉塞しない上限値に設定することで、各伝熱管グループにおいて放熱部材40間の冷却空気流路の閉塞が生じないようにかつ効率的にデフロストを実施できる。
In one embodiment, in the defrost step S12, one defrost required for defrosting all the heat transfer tube groups once in accordance with the limit time when the amount of frost adhering to at least a part of the heat transfer tubes 16 reaches the upper limit of the allowable value. Set the time. Then, the defrost execution time interval of each heat transfer tube group is set from this one defrost time.
According to this embodiment, the limit time is set to the upper limit value at which the flow of the cooled air a does not close the gaps between the plurality of heat radiating members 40, so that the cooling air between the heat radiating members 40 in each heat transfer tube group. The defrosting can be performed efficiently without blocking the flow path.

一実施形態では、複数の伝熱管グループの各々のデフロスト実施時間間隔は、被冷却空気aの流れ方向下流側の伝熱管グループほど着霜の成長は遅くなる傾向にあるため、流れ方向下流側に配置された伝熱管グループほど長く設定される。
この実施形態によれば、デフロスト実施時間間隔を被冷却空気aの流れ方向下流側の伝熱管グループほど長く設定することで、デフロスト運転の頻度を少なくでき、これによって、デフロスト実施中の熱交換器10の冷却効率が低下するのを抑制できる。
In one embodiment, the defrosting time interval of each of the plurality of heat transfer tube groups is set to the downstream side in the flow direction because the growth of frost tends to be slower in the heat transfer tube group on the downstream side in the flow direction of the cooled air a. The arranged heat transfer tube group is set longer.
According to this embodiment, by setting the defrost execution time interval to be longer in the heat transfer tube group on the downstream side in the flow direction of the cooled air a, it is possible to reduce the frequency of defrost operation, and thus the heat exchanger during the defrost operation. It can suppress that the cooling efficiency of 10 falls.

一実施形態では、デフロストステップS12において、霜の付着面温度を0℃未満でかつ前記被冷却気体の温度より高い温度に維持可能なデフロスト流体をデフロスト対象となった伝熱管グループの伝熱管16に供給し、該デフロスト流体の保有熱によって伝熱管16に付着した霜を昇華させる(昇華デフロストステップS12b)。上記デフロスト流体は、例えば、図3に示す冷凍機20において、レシーバ28内に貯留され、デフロスト流路34を介して供給される高圧下の冷媒である。
この実施形態によれば、デフロストを行う伝熱管16に対して、霜の付着面温度を0℃未満でかつ被冷却気体の温度より高く維持可能なデフロスト流体を供給することで、付着面に付着した霜を昇華させて除去する昇華デフロストが可能になる。
In one embodiment, in the defrosting step S12, the defrosting fluid capable of maintaining the frost attachment surface temperature below 0° C. and higher than the temperature of the gas to be cooled is transferred to the heat transfer tubes 16 of the heat transfer tube group which is the defrosting target. The frost adhered to the heat transfer tube 16 is sublimated by the retained heat of the defrost fluid (sublimation defrost step S12b). The defrost fluid is, for example, a refrigerant under high pressure that is stored in the receiver 28 and supplied through the defrost flow passage 34 in the refrigerator 20 shown in FIG.
According to this embodiment, by supplying the defrost fluid capable of maintaining the frost adhesion surface temperature below 0° C. and higher than the temperature of the gas to be cooled to the heat transfer tube 16 for defrosting, the frost adhesion surface adheres to the adhesion surface. Sublimation defrost that sublimates and removes frost is possible.

一実施形態では、デフロストステップS12において、複数の伝熱管グループの各々において、被冷却空気aの流れ方向下流側に配置された伝熱管グループほど被冷却空気aとデフロスト流体との温度差は小さく設定される。被冷却空気aとデフロスト流体との温度差が小さいほど、着霜の除去効果は減少する。従って、着霜の成長が遅い流れ方向下流側ほど上記温度差を小さくすることで、着霜除去効果を維持しながら、熱交換器10の冷却効率の低下を抑制できる。   In one embodiment, in the defrost step S12, in each of the plurality of heat transfer tube groups, the temperature difference between the air to be cooled a and the defrost fluid is set to be smaller as the heat transfer tube group is arranged on the downstream side in the flow direction of the air to be cooled a. To be done. The smaller the temperature difference between the cooled air a and the defrost fluid, the smaller the frost removal effect. Therefore, the cooling efficiency of the heat exchanger 10 can be suppressed from decreasing while maintaining the frost removal effect by reducing the above-mentioned temperature difference toward the downstream side in the flow direction where the growth of frost is slow.

一実施形態では、デフロストステップS12において、デフロスト対象となる伝熱管グループが被冷却空気aの流れ方向上流側に配置されているとき、ファン14を逆回転させ、流れ方向を逆向きにする(逆流ステップS12c)。
この実施形態によれば、流れ方向上流側に配置された伝熱管グループをデフロストするとき、被冷却空気aの流れ方向を逆向きにすることで、付着面から剥離した霜が下流側の伝熱管に再付着するのを抑制できると共に、上流側で処理することを可能とする。また、先端部分に付着した霜を効率的に除去できる。さらに、デフロスト時に加えられる熱によって昇温した被冷却気体が一度上流側に戻って混合され、他の伝熱管グループに流入するため、熱交換器10の下流側の温度むらを抑制できる。
In one embodiment, in the defrost step S12, when the heat transfer tube group to be defrosted is arranged on the upstream side in the flow direction of the cooled air a, the fan 14 is rotated in the reverse direction to reverse the flow direction (backflow). Step S12c).
According to this embodiment, when defrosting the heat transfer tube group arranged on the upstream side in the flow direction, by making the flow direction of the cooled air a reverse, the frost separated from the adhering surface causes the frost on the downstream side. It is possible to suppress re-adhesion to the surface and to perform processing on the upstream side. Moreover, the frost adhering to the tip portion can be efficiently removed. Further, the gas to be cooled, which has been heated by the heat applied during the defrosting, once returns to the upstream side and is mixed and flows into another heat transfer tube group, so that temperature unevenness on the downstream side of the heat exchanger 10 can be suppressed.

幾つかの実施形態によれば、上流側伝熱管や放熱部材の先端部分に付着した霜が成長して冷却気体流路が閉塞するのを防止できると共に、効率的なデフロスト運転が可能になるため、デフロスト運転により伝熱管やフィンに加えられた熱により冷却運転中の熱交換器の熱効率が低下するのを抑制できる。   According to some embodiments, it is possible to prevent the frost adhering to the tips of the upstream heat transfer pipes and the heat dissipation member from growing and blocking the cooling gas flow path, and it becomes possible to perform an efficient defrost operation. It is possible to suppress a decrease in the thermal efficiency of the heat exchanger during the cooling operation due to the heat applied to the heat transfer tubes and the fins during the defrost operation.

10(10A、10B) 熱交換器
12 ケーシング
14 ファン
16 伝熱管
16a 上流側伝熱管
18 デフロストユニット
20 冷凍機
22 冷媒回路
22a 低圧冷媒ライン
23 冷媒分岐路
24 圧縮機
26 コンデンサ
28 レシーバ
30 膨張弁
32 逆止弁
34、35 デフロスト流路
36、37 圧力調整弁
38 キャピラリチューブ
40 放熱部材
40a 上流側放熱部材
40b 先端部分
44 デフロスト流体供給部
45 バッファタンク
46 加熱部
47 圧力センサ
48 制御部
50(50a、50b、50c) 上流側加熱部
52 高周波電流誘導部
54 導線
56 通電部
58 導電性物質層
60 電気絶縁層
62(62a、62b) 断熱域
Bt 温度境界層
F 霜層
Fa、Fb、Fc 流路領域
Ta、Tb、Tc 伝熱管グループ
a 被冷却空気
r 冷却媒体
s 隙間
10 (10A, 10B) Heat exchanger 12 Casing 14 Fan 16 Heat transfer tube 16a Upstream heat transfer tube 18 Defrost unit 20 Refrigerator 22 Refrigerant circuit 22a Low pressure refrigerant line 23 Refrigerant branch path 24 Compressor 26 Condenser 28 Receiver 30 Expansion valve 32 Reverse Stop valve 34, 35 Defrost flow path 36, 37 Pressure adjusting valve 38 Capillary tube 40 Heat dissipation member 40a Upstream heat dissipation member 40b Tip part 44 Defrost fluid supply part 45 Buffer tank 46 Heating part 47 Pressure sensor 48 Control part 50 (50a, 50b) , 50c) Upstream heating part 52 High frequency current induction part 54 Conductive wire 56 Conducting part 58 Conductive material layer 60 Electrical insulating layer 62 (62a, 62b) Thermal insulation area Bt Temperature boundary layer
F Frost layer Fa, Fb, Fc Flow path region Ta, Tb, Tc Heat transfer tube group a Cooled air r Cooling medium s Gap

Claims (15)

被冷却気体が流れる気体流路と、
前記気体流路内に設けられる複数の伝熱管と、
前記複数の伝熱管のうち、前記被冷却気体の流れ方向の上流側領域に位置する1以上の上流側伝熱管又は前記上流側伝熱管の外周に設けられた放熱部材のうち少なくとも一方の霜層付着面温度を0℃未満でかつ前記被冷却気体よりも高温に維持するための上流側加熱部と、
を備えることを特徴とする熱交換器。
A gas flow path through which the cooled gas flows,
A plurality of heat transfer tubes provided in the gas flow path,
Of the plurality of heat transfer tubes, at least one frost layer of at least one upstream heat transfer tube located in an upstream region in the flow direction of the gas to be cooled or a heat dissipation member provided on the outer periphery of the upstream heat transfer tube. An upstream heating unit for maintaining the temperature of the adhered surface below 0° C. and higher than the gas to be cooled;
A heat exchanger comprising:
前記複数の伝熱管は、前記気体流路内において、前記気体流路における前記流れ方向と直交する第1方向に沿って延在し、かつ、前記流れ方向及び前記第1方向に直交する第2方向に沿って配列された複数の前記伝熱管により形成される伝熱管列が、前記流れ方向に複数並ぶように配列され、
前記上流側伝熱管は、少なくとも前記流れ方向の最上流側の前記伝熱管列に属する1以上の前記伝熱管を含むことを特徴とする請求項1に記載の熱交換器。
The plurality of heat transfer tubes extend in the gas flow path along a first direction orthogonal to the flow direction in the gas flow path, and a second direction orthogonal to the flow direction and the first direction. A heat transfer tube row formed by the plurality of heat transfer tubes arranged along the direction is arranged so as to be lined up in the flow direction,
The heat exchanger according to claim 1, wherein the upstream heat transfer tube includes at least one heat transfer tube belonging to the heat transfer tube row on the most upstream side in the flow direction.
前記複数の伝熱管のうちデフロスト対象管をデフロストするためのデフロストユニット
を備え、
前記気体流路は、前記第2方向に並ぶ複数の流路領域を含み、
前記複数の伝熱管は、前記複数の流路領域に夫々対応し、かつ、同一の前記流路領域内において前記流れ方向にて互いに隣接する2以上の前記伝熱管列に属する複数の前記伝熱管により形成される複数の伝熱管グループを含み、
前記デフロストユニットは、前記複数の伝熱管グループのうち1以上の前記伝熱管グループの前記伝熱管を前記デフロスト対象管として選択的にデフロストを行うように構成されたことを特徴とする請求項2に記載の熱交換器。
A defrost unit for defrosting a defrost target tube among the plurality of heat transfer tubes,
The gas flow path includes a plurality of flow path regions arranged in the second direction,
The plurality of heat transfer tubes respectively correspond to the plurality of flow path areas and belong to two or more heat transfer tube rows adjacent to each other in the same flow path area in the flow direction. Including a plurality of heat transfer tube groups formed by
The defrost unit is configured to selectively defrost the heat transfer tubes of one or more heat transfer tube groups of the plurality of heat transfer tube groups as the defrost target tubes. The heat exchanger described.
前記デフロストユニットは、複数の前記伝熱管列のうち前記流れ方向の最上流側の前記伝熱管列のみを前記デフロスト対象管として選択的にデフロストするように構成されたことを特徴とする請求項3に記載の熱交換器。   The defrost unit is configured to selectively defrost only the heat transfer tube row on the most upstream side in the flow direction among the plurality of heat transfer tube rows as the defrosting target tube. The heat exchanger described in. 前記上流側伝熱管はデフロスト流体のみを供給可能に構成されることを特徴とする請求項1乃至4の何れか一項に記載の熱交換器。   The heat exchanger according to claim 1, wherein the upstream heat transfer pipe is configured to be able to supply only a defrost fluid. 前記上流側加熱部は、前記上流側伝熱管又は前記放熱部材を加熱するように構成されたことを特徴とする請求項1乃至5の何れか一項に記載の熱交換器。   The heat exchanger according to claim 1, wherein the upstream heating unit is configured to heat the upstream heat transfer tube or the heat dissipation member. 前記上流側加熱部は、前記上流側伝熱管に霜の付着面温度を0℃未満でかつ前記被冷却気体の温度より高い温度に維持可能なデフロスト流体を供給可能なデフロスト流体供給部を含むことを特徴とする請求項1乃至6の何れか一項に記載の熱交換器。   The upstream heating unit includes a defrost fluid supply unit capable of supplying a defrost fluid capable of maintaining the temperature of the frost attachment surface to be lower than 0° C. and higher than the temperature of the gas to be cooled to the upstream heat transfer tube. The heat exchanger according to claim 1, wherein the heat exchanger is a heat exchanger. 前記上流側加熱部は、前記上流側伝熱管又は前記放熱部材の少なくとも一方の霜層付着面温度と前記被冷却気体との温度差を0℃を超え10℃以下に維持するように構成されたことを特徴とする請求項1乃至7の何れか一項に記載の熱交換器。   The upstream heating unit is configured to maintain the temperature difference between the frost layer adhering surface temperature of at least one of the upstream heat transfer tube or the heat dissipation member and the gas to be cooled to more than 0° C. and 10° C. or less. The heat exchanger according to claim 1, wherein the heat exchanger is a heat exchanger. 前記放熱部材は、前記複数の伝熱管が貫通又は接触するように前記気体流路内にて前記流れ方向に沿って設けられる板状放熱部材で構成されたことを特徴とする請求項1乃至8の何れか一項に記載の熱交換器。   9. The heat dissipating member is a plate-shaped heat dissipating member provided along the flow direction in the gas flow path so that the plurality of heat transfer tubes penetrate or contact each other. The heat exchanger according to claim 1. 前記放熱部材は、前記放熱部材の前記流れ方向先端部分と下流側部位との間に、前記流れ方向先端部分と前記下流側部位との間の伝熱を抑制する断熱域を有することを特徴とする請求項1乃至9の何れか一項に記載の熱交換器。   The heat dissipating member has a heat insulating region between the tip portion in the flow direction of the heat dissipating member and a downstream side portion that suppresses heat transfer between the tip portion in the flow direction and the downstream side portion. The heat exchanger according to any one of claims 1 to 9. 前記放熱部材は、
前記複数の伝熱管グループのうち前記流れ方向上流側に配置された上流側伝熱管グループと前記上流側伝熱管グループより前記流れ方向下流側に配置された下流側伝熱管グループとを跨るように配置されると共に、
前記放熱部材の前記上流側伝熱管グループと前記下流側伝熱管グループとの間の部位に、前記上流側伝熱管グループと前記下流側伝熱管グループとの間の伝熱を抑制する断熱域を有することを特徴とする請求項3又は4に記載の熱交換器。
The heat dissipation member is
Of the plurality of heat transfer tube groups, it is arranged so as to straddle an upstream heat transfer tube group arranged on the upstream side in the flow direction and a downstream heat transfer tube group arranged on the downstream side in the flow direction from the upstream heat transfer tube group. As well as
A heat insulating region that suppresses heat transfer between the upstream heat transfer tube group and the downstream heat transfer tube group is provided in a portion of the heat dissipation member between the upstream heat transfer tube group and the downstream heat transfer tube group. The heat exchanger according to claim 3, wherein the heat exchanger is a heat exchanger.
被冷却気体が流れる気体流路と、前記気体流路内に設けられる複数の伝熱管と、前記複数の伝熱管のうち、前記被冷却気体の流れ方向の上流側領域に位置する1以上の上流側伝熱管又は前記上流側伝熱管の外周に設けられた放熱部材のうち少なくとも一方の霜層付着面温度を0℃未満かつ前記被冷却気体よりも高温に維持するための上流側加熱部と、を備える熱交換器のデフロスト方法であって、
前記熱交換器の稼働中において、前記上流側加熱部によって前記上流側伝熱管又は前記放熱部材のうち少なくとも一方の霜層付着面温度を常時0℃未満かつ前記被冷却気体よりも高温に維持する上流側加熱ステップを備えることを特徴とする熱交換器のデフロスト方法。
A gas flow path through which the gas to be cooled flows, a plurality of heat transfer tubes provided in the gas flow path, and one or more upstreams of the plurality of heat transfer tubes located in an upstream region in the flow direction of the gas to be cooled. An upstream heating unit for maintaining the frost layer adhesion surface temperature of at least one of the heat dissipation members provided on the outer periphery of the side heat transfer tube or the upstream heat transfer tube at a temperature lower than 0° C. and higher than the gas to be cooled; A method of defrosting a heat exchanger comprising:
During operation of the heat exchanger, the temperature of the frost layer attachment surface of at least one of the upstream heat transfer tube or the heat dissipation member is constantly kept below 0° C. and higher than the gas to be cooled by the upstream heating unit. A defrosting method for a heat exchanger, comprising an upstream heating step.
前記複数の伝熱管は、前記気体流路内において、前記気体流路における前記被冷却気体の流れ方向と直交する第1方向に沿って延在し、かつ、前記流れ方向及び前記第1方向に直交する第2方向に沿って配列された複数の前記伝熱管により形成される伝熱管列が、前記流れ方向に複数並ぶように配列され、
前記熱交換器は、前記複数の伝熱管のうちデフロスト対象管をデフロストするためのデフロストユニットを備え、
前記気体流路は、前記第2方向に並ぶ複数の流路領域を含み、
前記複数の伝熱管は、前記複数の流路領域に夫々対応し、かつ、同一の前記流路領域内において前記流れ方向にて互いに隣接する2以上の前記伝熱管列に属する複数の前記伝熱管により形成される複数の伝熱管グループを含み、
前記デフロストユニットは、前記複数の伝熱管グループのうち1以上の前記伝熱管グループの前記伝熱管を前記デフロスト対象管として選択的にデフロストを行うように構成され、
前記複数の伝熱管グループのうち1以上の前記伝熱管グループ毎にデフロストするデフロストステップを備えることを特徴とする請求項12に記載の熱交換器のデフロスト方法。
The plurality of heat transfer tubes extend in the gas flow path along a first direction orthogonal to the flow direction of the gas to be cooled in the gas flow path, and in the flow direction and the first direction. A heat transfer tube array formed by a plurality of the heat transfer tubes arranged along a second direction orthogonal to each other is arranged so as to be lined up in the flow direction,
The heat exchanger includes a defrost unit for defrosting a defrost target pipe among the plurality of heat transfer pipes,
The gas flow path includes a plurality of flow path regions arranged in the second direction,
The plurality of heat transfer tubes respectively correspond to the plurality of flow path areas and belong to two or more heat transfer tube rows adjacent to each other in the same flow path area in the flow direction. Including a plurality of heat transfer tube groups formed by
The defrost unit is configured to selectively defrost the heat transfer tubes of one or more heat transfer tube groups of the plurality of heat transfer tube groups as the defrost target tubes,
The defrosting method for a heat exchanger according to claim 12, further comprising a defrosting step of defrosting each of the one or more heat transfer tube groups out of the plurality of heat transfer tube groups.
前記デフロストユニットは、複数の前記伝熱管列のうち前記流れ方向最上流側の前記伝熱管列のみを前記デフロスト対象管として選択的にデフロストするように構成され、
前記デフロストステップは、前記流れ方向最上流側の前記伝熱管列のみを前記デフロスト対象管として選択的にデフロストするステップを含むことを特徴とする請求項13に記載の熱交換器のデフロスト方法。
The defrost unit is configured to selectively defrost only the heat transfer tube row on the most upstream side in the flow direction among the plurality of heat transfer tube rows as the defrosting target tube,
The defrosting method for a heat exchanger according to claim 13, wherein the defrosting step includes a step of selectively defrosting only the heat transfer tube row on the most upstream side in the flow direction as the defrosting target tube.
前記デフロストステップにおいて、
前記流れ方向上流側に配置された前記伝熱管グループがデフロスト対象となったとき、前記流れ方向を逆向きにすることを特徴とする請求項13又は14に記載の熱交換器のデフロスト方法。
In the defrosting step,
The defrosting method for a heat exchanger according to claim 13 or 14, wherein when the heat transfer tube group arranged on the upstream side in the flow direction is subjected to defrosting, the flow direction is reversed.
JP2018213342A 2018-11-13 2018-11-13 Heat exchanger and heat exchanger defrosting method Active JP7208770B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018213342A JP7208770B2 (en) 2018-11-13 2018-11-13 Heat exchanger and heat exchanger defrosting method
PCT/JP2019/043988 WO2020100768A1 (en) 2018-11-13 2019-11-08 Heat exchanger and method for defrosting heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213342A JP7208770B2 (en) 2018-11-13 2018-11-13 Heat exchanger and heat exchanger defrosting method

Publications (2)

Publication Number Publication Date
JP2020079681A true JP2020079681A (en) 2020-05-28
JP7208770B2 JP7208770B2 (en) 2023-01-19

Family

ID=70730278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213342A Active JP7208770B2 (en) 2018-11-13 2018-11-13 Heat exchanger and heat exchanger defrosting method

Country Status (2)

Country Link
JP (1) JP7208770B2 (en)
WO (1) WO2020100768A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145056U (en) * 1974-05-17 1975-12-01
JPS5731769A (en) * 1980-07-31 1982-02-20 Tokyo Shibaura Electric Co Heat pump type air conditioner
JPS5727371B2 (en) * 1976-07-30 1982-06-10
JPS604056Y2 (en) * 1976-03-22 1985-02-04 ダイキン工業株式会社 Refrigeration circuit for refrigerator
US5771699A (en) * 1996-10-02 1998-06-30 Ponder; Henderson F. Three coil electric heat pump
JP2002286332A (en) * 2001-03-27 2002-10-03 Kubota Corp Vapor compression type heat pump
JP2013160483A (en) * 2012-02-08 2013-08-19 Daikin Industries Ltd Air conditioning device
WO2017175411A1 (en) * 2016-04-07 2017-10-12 株式会社前川製作所 Method for defrosting by sublimation, device for defrosting by sublimation, and cooling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145056U (en) * 1974-05-17 1975-12-01
JPS604056Y2 (en) * 1976-03-22 1985-02-04 ダイキン工業株式会社 Refrigeration circuit for refrigerator
JPS5727371B2 (en) * 1976-07-30 1982-06-10
JPS5731769A (en) * 1980-07-31 1982-02-20 Tokyo Shibaura Electric Co Heat pump type air conditioner
US5771699A (en) * 1996-10-02 1998-06-30 Ponder; Henderson F. Three coil electric heat pump
JP2002286332A (en) * 2001-03-27 2002-10-03 Kubota Corp Vapor compression type heat pump
JP2013160483A (en) * 2012-02-08 2013-08-19 Daikin Industries Ltd Air conditioning device
WO2017175411A1 (en) * 2016-04-07 2017-10-12 株式会社前川製作所 Method for defrosting by sublimation, device for defrosting by sublimation, and cooling device

Also Published As

Publication number Publication date
JP7208770B2 (en) 2023-01-19
WO2020100768A1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
JP5531703B2 (en) refrigerator
JP6541874B2 (en) Defrosting method by sublimation, defrosting device by sublimation and cooling device
JP2011102656A (en) Heat exchanger, cooling system using the same, and refrigerator
WO2020100768A1 (en) Heat exchanger and method for defrosting heat exchanger
JP7208768B2 (en) Heat exchanger and heat exchanger defrosting method
CN106197099A (en) Heat-exchanger rig and there is the semiconductor refrigerating equipment of this heat-exchanger rig
JP6869800B2 (en) Air cooler, refrigeration system and defrosting method for air cooler
JP7140552B2 (en) Air cooler, refrigeration system and air cooler defrosting method
JP2009243769A (en) Heat exchanger
JP7346812B2 (en) Cooling system
WO2020100767A1 (en) Heat exchanger and heat exchanger defrosting method
KR102505390B1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2013061120A (en) Evaporator and refrigerator with the same
JP2015045465A (en) Heat exchanger
JP2009217651A (en) Cooling/heating apparatus of vending machine
KR100547327B1 (en) Defrost apparatus of refrigerator
JP2007017016A (en) Low temperature storage cabinet
JP4998163B2 (en) Heat exchanger
WO2016194189A1 (en) Cooling apparatus
JP2011163638A (en) Heat exchanger and article storage device with the same
JP2009250491A (en) Refrigerator
CN105222433A (en) A kind of camber anti-freezing device
Saygin et al. INFLUENCE OF FROST FORMATION ON HEAT TRANSFER EFFECTIVENESS OF EXTENDED SURFACES
JP2014222144A (en) Heat exchanger, cooling system using the same and refrigerator
KR100309415B1 (en) Method and apparatus for suppressing frost of evaporator for refrigeration, freezer and heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230106

R150 Certificate of patent or registration of utility model

Ref document number: 7208770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150