JPH06194000A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06194000A
JPH06194000A JP4343902A JP34390292A JPH06194000A JP H06194000 A JPH06194000 A JP H06194000A JP 4343902 A JP4343902 A JP 4343902A JP 34390292 A JP34390292 A JP 34390292A JP H06194000 A JPH06194000 A JP H06194000A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
heat exchanger
heat
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343902A
Other languages
Japanese (ja)
Inventor
Mitsuo Kudo
光夫 工藤
Toshihiko Fukushima
敏彦 福島
Masaaki Ito
正昭 伊藤
Mari Uchida
麻理 内田
Hiroshi Kogure
博志 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4343902A priority Critical patent/JPH06194000A/en
Publication of JPH06194000A publication Critical patent/JPH06194000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent the deterioration of heat exchange performance of a heat exchanger as a condenser and evaporator by thermally separating by means of slits the heat exchanger into an upwind side half and a downwind side half in respect of fins. CONSTITUTION:A large number of heat transfer fins 8, which are parallelly disposed with specified spaces interposed between them, are respectively provided with separating slits 81 in their intermediate part, and rows of circular holes 80 for inserting the heat transfer pipes are provided in a longitudinal direction in such a manner as to sandwich the respective slits. Cooling medium pipes 9, in which cooling medium flows, are inserted through the holes 80 and vertically connected to the heat transfer fins 8. Upper and lower U-shaped cooling medium circuits are formed by use of heat transfer pipes of bends 10 connecting the cooling medium pipes 9. The cooling medium is distributed to the respective circuits by means of Y-shaped cooling medium distributors 12 provided at an inlet and outlet of a heat exchanger 3. Thus, unnecessary heat transfer between the two heat transfer circuits through the heat transfer fins 8 are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非共沸混合冷媒を作動媒
体とするヒートポンプ型空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner using a non-azeotropic mixed refrigerant as a working medium.

【0002】[0002]

【従来の技術】ヒートポンプ型空気調和機は、冷房時に
は室内熱交換器を蒸発器,室外熱交換器を凝縮器として
使用し、冷房時には室内熱交換器を凝縮器,室外熱交換
器を蒸発器として使用する。この場合、熱交換器は、例
えば、特開平3−194370 号公報に示すように多数のフィ
ンを所定の間隔をおいて並置しこれに直行するように複
数の伝熱管を全体として千鳥状になるように貫通して構
成されたクロスフィンチューブ型熱交換器が使用され
る。
2. Description of the Related Art A heat pump type air conditioner uses an indoor heat exchanger as an evaporator and an outdoor heat exchanger as a condenser during cooling, and uses an indoor heat exchanger as a condenser and an outdoor heat exchanger as an evaporator during cooling. To use as. In this case, the heat exchanger has a plurality of heat transfer tubes arranged in a zigzag manner as a whole so that a large number of fins are juxtaposed at predetermined intervals and are orthogonal to each other as shown in JP-A-3-194370. A cross fin tube type heat exchanger configured so as to penetrate therethrough is used.

【0003】冷房運転の場合、圧縮機から吐き出された
高温高圧の非共沸混合冷媒は凝縮器として作用する室外
熱交換器で空気によって冷却されて凝縮液化し、この液
冷媒は減圧器で減圧されて低温の気液2相冷媒となって
蒸発器として作用する室内側熱交換器へ流入する。室内
側熱交換器内を通過する間に室内空気との熱交換によっ
て蒸発潜熱を奪われて蒸発し、再び、気相冷媒となって
圧縮機に吸入されて循環を繰り返す。
In the cooling operation, the high-temperature and high-pressure non-azeotropic mixed refrigerant discharged from the compressor is cooled by air in the outdoor heat exchanger acting as a condenser to be condensed and liquefied, and this liquid refrigerant is decompressed in the decompressor. Then, it becomes a low-temperature gas-liquid two-phase refrigerant and flows into the indoor heat exchanger that functions as an evaporator. While passing through the indoor heat exchanger, the latent heat of vaporization is taken away by the heat exchange with the indoor air to evaporate, and the vaporized refrigerant is sucked into the compressor again to repeat the circulation.

【0004】この時、凝縮器内の非共沸混合冷媒は、混
合比によって決まる露点温度まで冷却されると沸点の高
い冷媒成分の多い凝縮が始まり、凝縮の進行につれて沸
点の低い冷媒成分の凝縮割合が増え、ついには混合比に
よって決まる液相温度まで冷却されて全量凝縮する。し
たがって、冷媒の凝縮温度は、伝熱管を通過する間にか
なり低下する。
At this time, when the non-azeotropic mixed refrigerant in the condenser is cooled to the dew point temperature determined by the mixing ratio, a large amount of the refrigerant component having a high boiling point begins to be condensed, and as the condensation progresses, the refrigerant component having a low boiling point is condensed. The ratio increases, and finally the liquid phase temperature determined by the mixing ratio is cooled and the entire amount is condensed. Therefore, the condensing temperature of the refrigerant drops considerably while passing through the heat transfer tube.

【0005】蒸発器内では、空気による加熱によって最
初は沸点の低い冷媒成分の多い液相冷媒が蒸発し、さら
に加熱されると沸点の高い液冷媒成分も蒸発するように
なり、混合比によって決まる露点温度まで加熱されると
全量気相冷媒となる。したがって、冷媒の蒸発温度は、
伝熱管を通過する間にかなり上昇する。
In the evaporator, the liquid-phase refrigerant having a large amount of the low-boiling-point refrigerant component evaporates at first by heating with air, and the liquid-refrigerant component having a high-boiling point also evaporates when further heated, which is determined by the mixing ratio. When heated to the dew point temperature, the whole amount becomes a vapor phase refrigerant. Therefore, the evaporation temperature of the refrigerant is
It rises considerably while passing through the heat transfer tubes.

【0006】[0006]

【発明が解決しようとする課題】このように、作動媒体
として非共沸混合冷媒を用いると、冷媒の温度が凝縮の
場合及び蒸発の場合で伝熱管を通過する間にかなり変化
する。そのため、風上側の伝熱管と風下側の伝熱管との
間の温度差、特に、冷媒出口付近の伝熱管と入口付近の
伝熱管との間の温度差が大きい。ところが、従来の熱交
換器は、風上側の伝熱管と風下側の伝熱管とで1組のフ
ィンを共用しているため、フィンを介して両伝熱管間で
の不必要な熱移動現象が生じてしまい、凝縮器および蒸
発器としての熱交換性能が著しく低下し、ヒートポンプ
型空気調和機の暖房性能および冷房性能を発揮できない
という問題があった。
As described above, when the non-azeotropic mixed refrigerant is used as the working medium, the temperature of the refrigerant changes considerably during passing through the heat transfer tube in the case of condensation and the case of evaporation. Therefore, there is a large temperature difference between the heat transfer tube on the windward side and the heat transfer tube on the leeward side, and in particular, the temperature difference between the heat transfer tube near the refrigerant outlet and the heat transfer tube near the inlet. However, in the conventional heat exchanger, one set of fins is shared by the heat transfer pipes on the windward side and the heat transfer pipes on the leeward side, so that an unnecessary heat transfer phenomenon between the heat transfer pipes via the fins occurs. However, the heat exchange performance as a condenser and an evaporator is significantly deteriorated, and there is a problem that the heating performance and the cooling performance of the heat pump type air conditioner cannot be exhibited.

【0007】本発明の目的は、フィンを介して風上側の
伝熱管と風下側の伝熱管との間の温度差によって生じる
両伝熱管間での不必要な熱移動現象による凝縮器および
蒸発器としての熱交換性能の低下を防ぐことによって、
性能が大幅に向上するヒートポンプ型空気調和機を提供
することにある。
An object of the present invention is to provide a condenser and an evaporator due to an unnecessary heat transfer phenomenon between the heat transfer tubes on the upwind side and the heat transfer tubes on the leeward side caused by a temperature difference between the heat transfer tubes. By preventing the deterioration of heat exchange performance as
It is to provide a heat pump type air conditioner with significantly improved performance.

【0008】[0008]

【課題を解決するための手段】本発明による空気調和機
は、平行に多数並べられた複数の円孔を有する伝熱フィ
ンに、この円孔を介して伝熱管を直角に挿入接合して構
成した複数個のクロスフィン型熱交換器と、圧縮機,四
方弁,減圧器からなる非共沸混合冷媒用冷凍サイクルを
有する空気調和機であって、前記熱交換器は、伝熱フィ
ンの風上側半部及び風下側半部とをスリットによって熱
的に分離したことを特徴とする。
An air conditioner according to the present invention is constructed by inserting a heat transfer tube into a heat transfer fin having a plurality of circular holes arranged in parallel and inserting the heat transfer tube at a right angle through the circular holes. An air conditioner having a plurality of cross fin type heat exchangers and a refrigeration cycle for a non-azeotropic mixed refrigerant comprising a compressor, a four-way valve, and a pressure reducer, wherein the heat exchanger is a wind of a heat transfer fin. It is characterized in that the upper half and the leeward half are thermally separated by a slit.

【0009】[0009]

【作用】本発明では、伝熱フィンの風上側半部及び風下
側半部とをスリットによって熱的に分離したので、フィ
ンを介して両伝熱管間での不必要な熱移動現象が生じる
のを防ぐことができるので、凝縮器および蒸発器として
の熱交換性能が改善され、非共沸混合冷媒用冷凍サイク
ルを有するヒートポンプ型空気調和器の性能が著しく向
上する。
In the present invention, since the windward half and the leeward half of the heat transfer fin are thermally separated by the slit, an unnecessary heat transfer phenomenon occurs between the heat transfer tubes via the fin. Therefore, the heat exchange performance as the condenser and the evaporator is improved, and the performance of the heat pump type air conditioner having the refrigeration cycle for non-azeotropic mixed refrigerant is significantly improved.

【0010】[0010]

【実施例】本発明の空気調和器を図1ないし図4に示す
実施例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An air conditioner of the present invention will be described based on the embodiments shown in FIGS.

【0011】図1はクロスフィン型室内熱交換器の側面
図、図2はクロスフィン型室外熱交換器の側面図、図3
は伝熱フィンの平面図、図4は本発明に係るヒートポン
プ型空気調和器の冷凍サイクルを示す。
FIG. 1 is a side view of a cross fin type indoor heat exchanger, FIG. 2 is a side view of a cross fin type outdoor heat exchanger, and FIG.
Is a plan view of a heat transfer fin, and FIG. 4 shows a refrigeration cycle of a heat pump type air conditioner according to the present invention.

【0012】冷凍サイクルは、冷媒圧縮器1,四方弁
2,室外熱交換器3,減圧器4および室内熱交換器5を
冷媒配管で接続して内部を冷媒が循環するように構成さ
れている。図5に於いて矢印18は冷房運転時の、矢印
19は暖房運転時の冷媒の流れ方向を示す。
The refrigeration cycle is constructed so that the refrigerant compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducer 4 and the indoor heat exchanger 5 are connected by a refrigerant pipe so that the refrigerant circulates inside. . In FIG. 5, the arrow 18 indicates the flow direction of the refrigerant during the cooling operation, and the arrow 19 indicates the flow direction of the refrigerant during the heating operation.

【0013】冷房運転時(暖房運転時)には、圧縮器1
は四方弁2を介して室内熱交換器5(室外側熱交換器
3)から送られてくる冷媒ガスを圧縮して、高温高圧の
冷媒ガスを矢印18(矢印19)で示すように、四方弁
2を通って室外側熱交換器3(室内熱交換器5)へ吐出
する。室外側熱交換器3(室内熱交換器5)は凝縮器と
して作用し、室外熱交換器3(室内熱交換器5)の内部
に流入した冷媒ガスを、送風器6(送風機7)を介して
外部を通過する室外(室内)空気と熱交換させることに
よって凝縮液化させる。室内熱交換器5(室外側熱交換
器3)は蒸発器として作用し、減圧器4によって減圧さ
れ室内熱交換器(室外側熱交換器)へ流入した低温の気
液2相冷媒18(19)を、送風機6(送風機7)を介
して外部を流れる室内(室外)空気と熱交換させること
によって冷媒ガスとする。なお、この時冷却(加熱)さ
れた空気を室内に放出して冷房(暖房)する。冷媒ガス
は室内熱交換器5(室外熱交換器3)を通過した後、四
方弁2を通って圧縮機1に戻り再び圧縮されて循環す
る。
During cooling operation (during heating operation), the compressor 1
Compresses the refrigerant gas sent from the indoor heat exchanger 5 (outdoor heat exchanger 3) through the four-way valve 2, and the high-temperature high-pressure refrigerant gas is four-wayed as shown by an arrow 18 (arrow 19). It discharges to the outdoor heat exchanger 3 (indoor heat exchanger 5) through the valve 2. The outdoor heat exchanger 3 (indoor heat exchanger 5) acts as a condenser, and the refrigerant gas that has flowed into the outdoor heat exchanger 3 (indoor heat exchanger 5) passes through the blower 6 (blower 7). It is condensed and liquefied by exchanging heat with the outdoor (indoor) air passing through the outside. The indoor heat exchanger 5 (outdoor heat exchanger 3) acts as an evaporator, and is a low-temperature gas-liquid two-phase refrigerant 18 (19) that is decompressed by the pressure reducer 4 and flows into the indoor heat exchanger (outdoor heat exchanger). Is heat-exchanged with the indoor (outdoor) air flowing outside through the blower 6 (blower 7) to form a refrigerant gas. At this time, the cooled (heated) air is discharged into the room for cooling (heating). After passing through the indoor heat exchanger 5 (outdoor heat exchanger 3), the refrigerant gas returns to the compressor 1 through the four-way valve 2 and is compressed again and circulated.

【0014】室外熱交換器3は、図1に示す構造となっ
ている。図1において、矢印20は熱交換器3に対する
空気の通過方向を示す。8は所定の間隔をおいて並置さ
れた多数の伝熱フィンで、伝熱フィン8は、図3に示す
ように分離スリット81が中間部に設けられ、これを挟
んで、伝熱管挿入用の円孔列80が長手方向に沿って穿
たれている。9はこの伝熱フィン8に円孔80を介して
直角に挿入接合され、内部を冷媒が流動する冷媒管、1
0は冷媒管を接続するベンドで、このベンドによって接
続された伝熱管群によって、U字型冷媒回路が上下に2
回路構成されている。熱交換器の入口,出口に設けられ
たY字型冷媒分流器12によって夫々の回路に冷媒を分
流させる。
The outdoor heat exchanger 3 has the structure shown in FIG. In FIG. 1, an arrow 20 indicates the passage direction of air to the heat exchanger 3. Reference numeral 8 denotes a large number of heat transfer fins juxtaposed at predetermined intervals. The heat transfer fin 8 is provided with a separation slit 81 at an intermediate portion as shown in FIG. The circular hole array 80 is bored along the longitudinal direction. Reference numeral 9 is a refrigerant pipe which is inserted and joined to the heat transfer fin 8 at a right angle through a circular hole 80 and through which a refrigerant flows.
Reference numeral 0 is a bend for connecting the refrigerant pipes, and the heat transfer pipe group connected by the bend causes the U-shaped refrigerant circuit to move up and down by two.
The circuit is configured. The Y-shaped refrigerant distributor 12 provided at the inlet and outlet of the heat exchanger divides the refrigerant into the respective circuits.

【0015】室内熱交換器5は、図2に示す構造となっ
ている。図2において、矢印21は熱交換器5に対する
空気の通過方向を示す。熱交換器の中間部には冷媒を分
流させるT字型冷媒分流器11が配置されており、この
T字型冷媒分流器11を介して熱交換器内部ではU字型
冷媒回路が上下に2回路構成されている。
The indoor heat exchanger 5 has the structure shown in FIG. In FIG. 2, the arrow 21 indicates the passage direction of air to the heat exchanger 5. A T-shaped refrigerant shunt 11 for diverting the refrigerant is arranged in the middle of the heat exchanger, and a U-shaped refrigerant circuit is vertically arranged in the heat exchanger via the T-shaped refrigerant shunt 11. The circuit is configured.

【0016】以上のように構成された本実施例の作動に
ついて図1ないし図4に基づいて説明する。
The operation of this embodiment constructed as described above will be described with reference to FIGS.

【0017】冷房運転の場合、圧縮機1から吐出された
高温高圧のガス冷媒は、入口パイプ16を通って室外熱
交換器へ流入する。室外熱交換器へ流入した冷媒は、Y
字型冷媒分流器12を介して上下二つのU字型冷媒回路
内を分流する。この時、凝縮器内の非共沸混合冷媒は、
外部空気との熱交換によって混合比によって決まる露点
温度まで冷却されると、沸点の高い冷媒成分の多い凝縮
が始まり、凝縮の進行につれて沸点の低い冷媒成分の凝
縮割合が増え、ついには混合比によって決まる液相温度
まで冷却されて全量凝縮する。したがって、U字型冷媒
回路を構成している伝熱管内での冷媒の凝縮温度は、伝
熱管を通過する間にかなり低下する。そのため、スリッ
ト81を挟む風上側の伝熱管と風下側の伝熱管との間の
温度差、特に冷媒出口付近の伝熱管と入口付近の伝熱管
との間の温度差が大きくなってしまう。しかし本発明で
は、伝熱フィンの風上側半部及び風下側半部とをスリッ
ト81によって熱的に分離した構成としたので、フィン
を介して両伝熱管間での不必要な熱移動現象が生じるの
を防ぐことができるので、凝縮器としての熱交換性能が
改善される。
In the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger through the inlet pipe 16. The refrigerant that has flowed into the outdoor heat exchanger is Y
The U-shaped refrigerant circuit is divided into two upper and lower parts through the U-shaped refrigerant distributor 12. At this time, the non-azeotropic mixed refrigerant in the condenser is
When cooled to the dew point temperature determined by the mixing ratio by heat exchange with the external air, condensation with a large amount of refrigerant components with a high boiling point begins, and the condensation ratio of the refrigerant components with a low boiling point increases as the condensation progresses, and finally, depending on the mixing ratio. It is cooled to the determined liquidus temperature and the whole amount is condensed. Therefore, the condensation temperature of the refrigerant in the heat transfer tube forming the U-shaped refrigerant circuit is considerably lowered while passing through the heat transfer tube. Therefore, the temperature difference between the heat transfer pipe on the windward side and the heat transfer pipe on the leeward side sandwiching the slit 81, particularly the temperature difference between the heat transfer pipe near the refrigerant outlet and the heat transfer pipe near the inlet becomes large. However, in the present invention, since the windward half and the leeward half of the heat transfer fin are thermally separated by the slit 81, an unnecessary heat transfer phenomenon between the both heat transfer tubes via the fin occurs. Since it can be prevented from occurring, the heat exchange performance as the condenser is improved.

【0018】凝縮液化された冷媒は、減圧器4を通って
膨張して低温低圧の霧状の気液2相冷媒となって蒸発器
として作用する室内熱交換器5に流入する。室内熱交換
器中央部に配置された冷媒入口パイプ11から流入した
気液2相冷媒は、熱交換器内に設けられたT字型分流器
11を介して上下2方向に分流し、U字型冷媒回路を構
成している伝熱管群内へ流入する。蒸発器として作用す
る室内熱交換器内では、空気による加熱によって最初は
沸点の低い冷媒成分の多い液相冷媒が蒸発し、さらに加
熱されると沸点の高い液冷媒成分も蒸発するようにな
り、混合比によって決まる露点温度まで加熱されると全
量気相冷媒となる。したがって、冷媒の蒸発温度は、伝
熱管を通過する間にかなり上昇する。このため凝縮器と
して作用する室外熱交換器の場合と同じように、風上側
の伝熱管と風下側の伝熱管との間の温度差、特に冷媒出
口付近の伝熱管と入口付近の伝熱管との間の温度差が大
きくなるが、伝熱フィンの風上側半部及び風下側半部と
をスリット81によって熱的に分離した構成としたの
で、フィンを介して両伝熱管間での不必要な熱移動現象
が生じるのを防ぐことができるので、蒸発器としての熱
交換性能が改善される。
The condensed and liquefied refrigerant passes through the decompressor 4 and expands into a low-temperature and low-pressure atomized gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 5 which functions as an evaporator. The gas-liquid two-phase refrigerant that has flowed in from the refrigerant inlet pipe 11 arranged in the center of the indoor heat exchanger is divided into two directions, up and down, through the T-shaped flow divider 11 provided in the heat exchanger to form a U-shape. The refrigerant flows into the heat transfer tube group forming the refrigerant circuit. In the indoor heat exchanger acting as an evaporator, the liquid phase refrigerant having a large amount of the low boiling point refrigerant component is first evaporated by heating with air, and the liquid refrigerant component having the high boiling point is also evaporated when further heated, When heated to the dew point temperature determined by the mixing ratio, the entire amount becomes a vapor phase refrigerant. Therefore, the evaporation temperature of the refrigerant rises considerably while passing through the heat transfer tube. Therefore, as in the case of the outdoor heat exchanger acting as a condenser, the temperature difference between the heat transfer pipes on the windward side and the heat transfer pipes on the leeward side, especially between the heat transfer pipe near the refrigerant outlet and the heat transfer pipe near the inlet. Although the temperature difference between the heat transfer fins becomes large, since the windward half and the leeward half of the heat transfer fins are thermally separated by the slit 81, it is unnecessary between the heat transfer tubes via the fins. Since it is possible to prevent the occurrence of various heat transfer phenomena, the heat exchange performance as the evaporator is improved.

【0019】以上、冷房運転時の動作について説明した
が、暖房時には図4に示すように冷房運転時とは反対に
室内熱交換器は凝縮器として、室外熱交換器は蒸発器と
して作用する。
The operation during the cooling operation has been described above. However, during heating, the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator, as opposed to the cooling operation, as shown in FIG.

【0020】以下、暖房運転時の動作について説明す
る。圧縮機1から吐出された高温高圧のガス冷媒は、入
口パイプ14を通って室内熱交換器5へ流入する。室内
熱交換器へ流入した冷媒は、Y字型冷媒分流器12を介
して上下二つのU字型冷媒回路内を分流する。この時、
凝縮器内の非共沸混合冷媒は、室内空気との熱交換によ
って混合比によって決まる露点温度まで冷却されると、
沸点の高い冷媒成分の多い凝縮が始まり、凝縮の進行に
つれて沸点の低い冷媒成分の凝縮割合が増え、ついには
混合比によって決まる液相温度まで冷却されて全量凝縮
する。したがって、U字型冷媒回路を構成している伝熱
管内での冷媒の凝縮温度は、伝熱管を通過する間にかな
り低下する。そのため、スリット81を挟む風上側の伝
熱管と風下側の伝熱管との間の温度差、特に冷媒出口付
近の伝熱管と入口付近の伝熱管との間の温度差が大きく
なってしまう。しかし、この発明では、伝熱フィンの風
上側半部及び風下側半部とをスリット81によって熱的
に分離した構成としたので、フィンを介して両伝熱管間
での不必要な熱移動現象が生じるのを防ぐことができる
ので、凝縮器としての熱交換性能が改善される。二つU
字型冷媒回路を通って凝縮された冷媒は、T字型冷媒分
流器11を介して再び合流したのち伝熱管内でさらに冷
却され過冷却液冷媒となって出口パイプ13から流出す
る。
The operation during the heating operation will be described below. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 5 through the inlet pipe 14. The refrigerant that has flowed into the indoor heat exchanger is divided into two upper and lower U-shaped refrigerant circuits via the Y-shaped refrigerant distributor 12. At this time,
The non-azeotropic mixed refrigerant in the condenser is cooled to the dew point temperature determined by the mixing ratio by heat exchange with room air,
Condensation with a large amount of the refrigerant component having a high boiling point starts, and the condensation ratio of the refrigerant component with a low boiling point increases as the condensation proceeds, and finally the liquid component is cooled to a liquid phase temperature determined by the mixing ratio and the whole amount is condensed. Therefore, the condensation temperature of the refrigerant in the heat transfer tube forming the U-shaped refrigerant circuit is considerably lowered while passing through the heat transfer tube. Therefore, the temperature difference between the heat transfer pipe on the windward side and the heat transfer pipe on the leeward side sandwiching the slit 81, particularly the temperature difference between the heat transfer pipe near the refrigerant outlet and the heat transfer pipe near the inlet becomes large. However, in the present invention, since the windward half and the leeward half of the heat transfer fins are thermally separated by the slit 81, an unnecessary heat transfer phenomenon between the heat transfer tubes via the fins. The heat exchange performance as a condenser is improved because it can be prevented from occurring. Two U
The refrigerant condensed through the V-shaped refrigerant circuit merges again via the T-shaped refrigerant distributor 11 and is further cooled in the heat transfer tube to become a supercooled liquid refrigerant, which flows out from the outlet pipe 13.

【0021】室内熱交換器を出た液冷媒は、減圧器4を
通って膨張して低温低圧の霧状の気液2相冷媒となって
蒸発器として作用する室外熱交換器5に流入する。室外
熱交換器中央部に配置された冷媒入口パイプ17から流
入した気液2相冷媒は、Y字型冷媒分流器12を介して
上下二つのU字型冷媒回路内を分流する。このとき蒸発
器として作用する室外熱交換器内では、空気による加熱
によって最初は沸点の低い冷媒成分の多い液相冷媒が蒸
発し、さらに加熱されると沸点の高い液冷媒成分も蒸発
するようになり、混合比によって決まる露点温度まで加
熱されると全量気相冷媒となる。したがって、冷媒の蒸
発温度は、伝熱管を通過する間にかなり上昇する。この
ため凝縮器として作用する室内熱交換器の場合と同じよ
うに、風上側の伝熱管と風下側の伝熱管との間の温度
差、特に冷媒出口付近の伝熱管と入口付近の伝熱管との
間の温度差が大きくなるが、伝熱フィンの風上側半部及
び風下側半部とをスリット81によって熱的に分離した
構成としたので、フィンを介して両伝熱管間での不必要
な熱移動現象が生じるのを防ぐことができるので、蒸発
器としての熱交換性能が改善される。
The liquid refrigerant discharged from the indoor heat exchanger expands through the pressure reducer 4 to become a low-temperature low-pressure atomized gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 5 which functions as an evaporator. . The gas-liquid two-phase refrigerant that has flowed in from the refrigerant inlet pipe 17 arranged in the central portion of the outdoor heat exchanger is divided into two upper and lower U-shaped refrigerant circuits via the Y-shaped refrigerant distributor 12. At this time, in the outdoor heat exchanger acting as an evaporator, the liquid-phase refrigerant having a large amount of the low-boiling-point refrigerant component is first evaporated by heating with air, and the liquid refrigerant component having the high-boiling point is also evaporated when further heated. When heated to the dew point temperature determined by the mixing ratio, the entire amount becomes a vapor phase refrigerant. Therefore, the evaporation temperature of the refrigerant rises considerably while passing through the heat transfer tube. Therefore, as in the case of the indoor heat exchanger acting as a condenser, the temperature difference between the heat transfer pipes on the windward side and the heat transfer pipes on the leeward side, especially between the heat transfer pipes near the refrigerant outlet and the heat transfer pipes near the inlet. Although the temperature difference between the heat transfer fins becomes large, since the windward half and the leeward half of the heat transfer fins are thermally separated by the slit 81, it is unnecessary between the heat transfer tubes via the fins. Since it is possible to prevent the occurrence of various heat transfer phenomena, the heat exchange performance as the evaporator is improved.

【0022】本発明では、伝熱フィンの風上側半部及び
風下側半部とをスリットによって熱的に分離したので、
フィンを介して両伝熱管間での不必要な熱移動現象が生
じるのを防ぐことができるので、凝縮器および蒸発器と
しての熱交換性能が改善され、非共沸混合冷媒用冷凍サ
イクルを有するヒートポンプ型空気調和器の性能が著し
く向上する。
In the present invention, since the windward half and the leeward half of the heat transfer fin are thermally separated by the slit,
Since it is possible to prevent unnecessary heat transfer phenomenon between both heat transfer tubes via the fins, heat exchange performance as a condenser and an evaporator is improved, and a refrigeration cycle for non-azeotropic mixed refrigerant is provided. The performance of the heat pump type air conditioner is significantly improved.

【0023】本実施例に示した伝熱フィンは、図3に示
すように、スリット80がフィン長手方向に沿って全長
にわたって形成されているが、風上側半部及び風下側半
部とを熱的に分離できる形状であれば、図5に示すよう
に部分スリット81を設けるようにしても良い。
In the heat transfer fin shown in this embodiment, as shown in FIG. 3, the slit 80 is formed over the entire length along the longitudinal direction of the fin, but the windward half and the leeward half are heated. A partial slit 81 may be provided as shown in FIG.

【0024】[0024]

【発明の効果】本発明では、伝熱フィンの風上側半部及
び風下側半部とをスリットによって熱的に分離したこと
により、フィンを介して両伝熱管間での不必要な熱移動
現象が生じるのを防ぐことができるので、凝縮器および
蒸発器としての熱交換性能が改善され、非共沸混合冷媒
用冷凍サイクルを有するヒートポンプ型空気調和器の冷
房,暖房性能を著しく向上できる。
According to the present invention, since the windward half and the leeward half of the heat transfer fins are thermally separated by the slits, an unnecessary heat transfer phenomenon between the heat transfer tubes via the fins is achieved. As a result, the heat exchange performance as the condenser and the evaporator is improved, and the cooling and heating performance of the heat pump type air conditioner having the refrigeration cycle for the non-azeotropic mixed refrigerant can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に於ける空気調和機の室外熱
交換器の説明図。
FIG. 1 is an explanatory diagram of an outdoor heat exchanger of an air conditioner according to an embodiment of the present invention.

【図2】本発明の第二の実施例に於ける空気調和機の室
内熱交換器の説明図。
FIG. 2 is an explanatory diagram of an indoor heat exchanger of an air conditioner according to a second embodiment of the present invention.

【図3】本発明の一実施例に於ける熱交換器の伝熱フィ
ンの平面図。
FIG. 3 is a plan view of heat transfer fins of the heat exchanger according to the embodiment of the present invention.

【図4】本発明の一実施例に於ける空気調和機の冷凍サ
イクルの系統図。
FIG. 4 is a system diagram of a refrigeration cycle of an air conditioner according to an embodiment of the present invention.

【図5】本発明の第三の実施例を示す伝熱フィンの平面
図。
FIG. 5 is a plan view of a heat transfer fin showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、3…室外側熱交換器、4…減圧器、8…伝
熱フィン、9…伝熱管、81…スリット部。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 3 ... Outdoor heat exchanger, 4 ... Decompressor, 8 ... Heat transfer fin, 9 ... Heat transfer tube, 81 ... Slit part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 麻理 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小暮 博志 栃木県下都賀郡大平町富田800番地 株式 会社日立製作所リビング機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mari Uchida 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture, Hiritsu Seisakusho Co., Ltd. (72) Inventor Hiroshi Kogure 800 Tomita, Ohira Town, Shimotsuga-gun, Tochigi Hitachi, Ltd. Living Equipment Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平行に並べられた複数の円孔を有する伝熱
フィンに、前記円孔を介して伝熱管を直角に挿入接合し
て構成した複数個のクロスフィン型の熱交換器と、圧縮
機,四方弁,膨張機構からなる非共沸混合冷媒用冷凍サ
イクルを有する空気調和機であって、前記熱交換器は、
伝熱フィンの風上側半部及び風下側半部とをスリットに
よって分離したことを特徴とする空気調和機。
1. A plurality of cross fin type heat exchangers configured by inserting and joining heat transfer tubes at right angles to the heat transfer fins having a plurality of circular holes arranged in parallel, An air conditioner having a refrigeration cycle for a non-azeotropic mixed refrigerant consisting of a compressor, a four-way valve, and an expansion mechanism, wherein the heat exchanger comprises:
An air conditioner characterized in that the windward half and the leeward half of the heat transfer fin are separated by a slit.
JP4343902A 1992-12-24 1992-12-24 Air conditioner Pending JPH06194000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343902A JPH06194000A (en) 1992-12-24 1992-12-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343902A JPH06194000A (en) 1992-12-24 1992-12-24 Air conditioner

Publications (1)

Publication Number Publication Date
JPH06194000A true JPH06194000A (en) 1994-07-15

Family

ID=18365128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343902A Pending JPH06194000A (en) 1992-12-24 1992-12-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPH06194000A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327080A (en) * 1995-06-02 1996-12-10 Mitsubishi Heavy Ind Ltd Air conditioner
JPH102638A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Heat exchanger and slit fin
WO1999046544A1 (en) * 1998-03-13 1999-09-16 Hitachi, Ltd. Coolant distributor, and air conditioner using it
KR20000015555A (en) * 1998-08-31 2000-03-15 구자홍 Outdoor device of heat pump
JP2007232365A (en) * 2007-05-08 2007-09-13 Mitsubishi Electric Corp Air conditioner
JP2009257740A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating apparatus
JP2010223495A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Ceiling cassette type air conditioner
JP2015034669A (en) * 2013-08-09 2015-02-19 日立アプライアンス株式会社 Heat exchanger and heat pump water heater using the same
EP1467160B1 (en) * 1997-12-16 2018-04-25 Panasonic Corporation Refrigeration cycle using a refrigerant
WO2023281656A1 (en) * 2021-07-07 2023-01-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327080A (en) * 1995-06-02 1996-12-10 Mitsubishi Heavy Ind Ltd Air conditioner
JPH102638A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Heat exchanger and slit fin
EP1467160B1 (en) * 1997-12-16 2018-04-25 Panasonic Corporation Refrigeration cycle using a refrigerant
WO1999046544A1 (en) * 1998-03-13 1999-09-16 Hitachi, Ltd. Coolant distributor, and air conditioner using it
KR20000015555A (en) * 1998-08-31 2000-03-15 구자홍 Outdoor device of heat pump
JP2007232365A (en) * 2007-05-08 2007-09-13 Mitsubishi Electric Corp Air conditioner
JP4710869B2 (en) * 2007-05-08 2011-06-29 三菱電機株式会社 Air conditioner
JP2009257740A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating apparatus
JP2010223495A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Ceiling cassette type air conditioner
JP2015034669A (en) * 2013-08-09 2015-02-19 日立アプライアンス株式会社 Heat exchanger and heat pump water heater using the same
WO2023281656A1 (en) * 2021-07-07 2023-01-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2979926B2 (en) Air conditioner
TW200921030A (en) Economized vapor compression circuit
JP2000249479A (en) Heat exchanger
JPH09145187A (en) Air conditioner
JP6734002B1 (en) Heat exchanger and refrigeration cycle device
US5660056A (en) Air conditioner
JPH06194000A (en) Air conditioner
KR19980066449A (en) Chiller condenser
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
JP2003232553A (en) Air conditioner
JP2001066017A (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP3650358B2 (en) Air conditioner
JPH0798162A (en) Air-conditioner
JPH06194003A (en) Air conditioner
JPH09257334A (en) Heat pump air conditioner
JPH06341736A (en) Refrigerant condenser
JPH1068560A (en) Refrigeration cycle device
JPH11264629A (en) Cross fin coil type heat exchanger
JPH10196984A (en) Air conditioner
AU783130B2 (en) Heat exchanger
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
WO2021245877A1 (en) Heat exchanger and refrigeration cycle device
JPH0861799A (en) Air conditioner
US20240175599A1 (en) Air conditioner and method for controlling an air conditioner