JPH08327080A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08327080A
JPH08327080A JP7136523A JP13652395A JPH08327080A JP H08327080 A JPH08327080 A JP H08327080A JP 7136523 A JP7136523 A JP 7136523A JP 13652395 A JP13652395 A JP 13652395A JP H08327080 A JPH08327080 A JP H08327080A
Authority
JP
Japan
Prior art keywords
heat exchanger
air conditioner
exchanger located
indoor heat
upper side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7136523A
Other languages
Japanese (ja)
Other versions
JP3438996B2 (en
Inventor
Takeshi Ito
武司 伊藤
Yoshihiro Ito
喜啓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13652395A priority Critical patent/JP3438996B2/en
Publication of JPH08327080A publication Critical patent/JPH08327080A/en
Application granted granted Critical
Publication of JP3438996B2 publication Critical patent/JP3438996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE: To prevent a dripping of water from being carried out on a cross-flow fan by a method wherein the number of rows of heat exchanging tubes of an indoor heat exchanger is set such that the number of rows of heat exchanging tubes in a heat exchanger installed at an upper side is made to be lower than the number of heat exchanging tubes of a heat exchanger placed at the most near lower side of a cross-flow fan. CONSTITUTION: A first indoor heat exchanger 4 is placed at a lower side near a cross- flow fan 2, and a second indoor heat exchanger 7 is placed at an upper side which is a far position from a cross-flow fan 2. The number of rows of heat exchanging tubes 7a of the second indoor heat exchanger 7 is set to be lower than the number of rows of heat exchanging tubes 4a of the first indoor heat exchanger 4. Drain condensed by the first indoor heat exchanger 4 is positively received by a first drain pan 3, drain condensed in the second indoor heat exchanger 7 is reduced in correspondence with the less number of rows of the heat exchanging tubes 7a of the second indoor heat exchanger 7 in view of its volume, the volume does not reach such an amount of overflowed drip against its flowing-down action, but the flow is positively flowed down onto the first indoor heat exchanger 4, and the flow is flowed down into the first drain pan 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機、詳しくはそ
の室内機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an indoor unit thereof.

【0002】[0002]

【従来の技術】図8に従来の空気調和機の室内機の概略
側断面図を示す。主要構成はケーシング1、クロスフロ
ーファン2、第一ドレンパン3、第一室内熱交換器4、
第2室内熱交換器5からなり6は気流の流れを示す矢印
である。この室内機に図示していない室外機を接続して
冷房運転を行う場合、第一室内熱交換器4および第二室
内熱交換器5は蒸発器となり、空気中の水分が凝縮して
付着する。付着した水分はドレンとして第一室内熱交換
器4の場合は直接、第一ドレンパン3に回収され、第二
室内熱交換器5の場合は第一室内熱交換器4を伝って第
一ドレンパン3に回収されるように構成されている。
2. Description of the Related Art FIG. 8 is a schematic side sectional view of an indoor unit of a conventional air conditioner. The main components are a casing 1, a cross flow fan 2, a first drain pan 3, a first indoor heat exchanger 4,
The second indoor heat exchanger 5 comprises an arrow 6 which indicates the flow of air flow. When an outdoor unit (not shown) is connected to this indoor unit to perform a cooling operation, the first indoor heat exchanger 4 and the second indoor heat exchanger 5 serve as evaporators, and water in the air is condensed and attached. . The attached water is collected as drainage directly in the first drain pan 3 in the case of the first indoor heat exchanger 4, and in the case of the second indoor heat exchanger 5 it travels through the first indoor heat exchanger 4 in the first drain pan 3 Is configured to be recovered.

【0003】[0003]

【発明が解決しようとする課題】上記従来の空気調和機
には解決すべき次の課題があった。
The above conventional air conditioner has the following problems to be solved.

【0004】即ち、従来の空気調和機の室内機は第二室
内熱交換器5の傾斜角度が大きい場合には冷房時凝縮す
るドレンを確実に第一室内熱交換器4の上へ流すことが
できず、クロスフローファン2の上への滴下が生じると
いう問題があった。
That is, in the conventional indoor unit of the air conditioner, when the second indoor heat exchanger 5 has a large inclination angle, the drainage condensed during cooling can be surely flowed above the first indoor heat exchanger 4. However, there was a problem in that it could not be done and dripping onto the cross flow fan 2 occurred.

【0005】又、第二室内熱交換器5はクロスフローフ
ァン2から離れておりそこを通過する空気のスピードが
遅く、含有水分が凝縮しやすく、ドレン量が多くなって
上記不具合が一層、助長されるという問題もあった。
Further, the second indoor heat exchanger 5 is separated from the cross flow fan 2, the speed of the air passing therethrough is slow, the water content is likely to be condensed, and the amount of drain is large, which further promotes the above-mentioned problems. There was also the problem that it would be done.

【0006】本発明は上記課題を解決した空気調和機を
提供することを目的とする。
An object of the present invention is to provide an air conditioner that solves the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題の解決
手段として次の(1)〜(10)に記載の空気調和機を
提供しようとするものである。
The present invention is intended to provide an air conditioner described in the following (1) to (10) as a means for solving the above problems.

【0008】(1)空気流路中の上流側に下部にドレン
パンを備えた室内側熱交換器を設置し、その下流側にク
ロスフローファンを設置すると共に、前記室内側熱交換
器を上下方向に2以上に分割又は折曲げ構成し、上部側
に位置する熱交換器が前記クロスフローファンの上部側
を覆うように設置されてなる空気調和機において、前記
室内側熱交換器の熱交換チューブの列数を前記クロスフ
ローファンに最も近い下部側に位置する熱交換器の熱交
換チューブ列数より、上部側に位置する熱交換器の熱交
換チューブ列数を少なくしてなることを特徴とする空気
調和機。
(1) An indoor heat exchanger equipped with a drain pan is installed on the upstream side of the air flow path, a cross flow fan is installed on the downstream side thereof, and the indoor heat exchanger is vertically moved. In an air conditioner that is divided into two or more parts or is bent and is installed so that a heat exchanger located on the upper side covers the upper side of the cross flow fan, a heat exchange tube of the indoor heat exchanger The number of rows of heat exchange tubes of the heat exchanger located on the upper side is smaller than the number of rows of heat exchange tubes of the heat exchanger located on the lower side closest to the cross flow fan. An air conditioner.

【0009】(2)上記(1)記載の空気調和機におい
て、上部側に位置する熱交換器を2以上に分割又は折曲
げ構成し、前記クロスフローファンの上部側を囲むよう
に山形に設置してなることを特徴とする空気調和機。
(2) In the air conditioner described in (1) above, the heat exchanger located on the upper side is divided or bent into two or more and installed in a mountain shape so as to surround the upper side of the cross flow fan. An air conditioner characterized by

【0010】(3)上記(2)記載の空気調和機におい
て、山形に設置した熱交換器のうち、下部側に位置する
熱交換器から遠い側の熱交換器の下部に第2のドレンパ
ンを設けてなることを特徴とする空気調和機。
(3) In the air conditioner according to the above (2), a second drain pan is provided below the heat exchanger located on the lower side among the heat exchangers installed in a mountain shape. An air conditioner characterized by being provided.

【0011】(4)上記(1)記載の空気調和機におい
て、上部側に位置する熱交換器の熱交換チューブのピッ
チを、下部側に位置する熱交換器のそれより大きくして
なることを特徴とする空気調和機。
(4) In the air conditioner described in (1) above, the pitch of the heat exchange tubes of the heat exchanger located on the upper side is made larger than that of the heat exchanger located on the lower side. A characteristic air conditioner.

【0012】(5)上記(1)記載の空気調和機におい
て、上部側に位置する熱交換器の空気流方向に沿う厚さ
寸法を、下部側に位置する熱交換器のそれより小さくし
てなることを特徴とする空気調和機。
(5) In the air conditioner described in (1) above, the thickness dimension of the heat exchanger located on the upper side along the air flow direction is made smaller than that of the heat exchanger located on the lower side. An air conditioner characterized by becoming.

【0013】(6)上記(1)記載の空気調和機におい
て、室内側熱交換器に対し、冷媒を冷房時は上部側に位
置する熱交換器を経て下部側に位置する熱交換器の前列
下部より流入し、後列下部から流出するように流し、暖
房時は逆方向に流れるように流路構成してなることを特
徴とする空気調和機。
(6) In the air conditioner described in (1) above, the front row of the heat exchangers located on the lower side through the heat exchangers located on the upper side when the refrigerant is cooled with respect to the indoor heat exchanger An air conditioner characterized in that the flow path is configured so that it flows in from the lower part, flows out from the lower part of the rear row, and flows in the opposite direction during heating.

【0014】(7)上記(1)及び(2)記載の空気調
和機において、上部側に位置する熱交換器と下部側に位
置する熱交換器とに対し、冷媒を2サーキットに分けて
流すよう流路構成してなることを特徴とする空気調和
機。
(7) In the air conditioners described in (1) and (2) above, the refrigerant is divided into two circuits to flow into the heat exchanger located on the upper side and the heat exchanger located on the lower side. An air conditioner characterized by having such a flow path configuration.

【0015】(8)上記(7)記載の空気調和機におい
て、下部側に位置する熱交換器に対し、冷媒を冷房時は
熱交換器の前列下部より流入し、後列下部から流出する
ように流し、暖房時は逆方向に流れるように流路構成し
てなることを特徴とする空気調和機。
(8) In the air conditioner described in (7) above, the refrigerant flows into the heat exchanger located on the lower side from the lower part of the front row and flows out from the lower part of the rear row during cooling. An air conditioner characterized in that the flow path is configured so that it flows in the opposite direction when flowing and heating.

【0016】(9)上記(1)記載の空気調和機におい
て、上部側に位置する熱交換器と下部側に位置する熱交
換器とを直列に接続し、両熱交換器の間に絞り機構と開
閉弁とを並列回路を接続してなることを特徴とする空気
調和機。
(9) In the air conditioner described in (1) above, a heat exchanger located on the upper side and a heat exchanger located on the lower side are connected in series, and a throttle mechanism is provided between both heat exchangers. And an on-off valve connected in parallel to the air conditioner.

【0017】(10)上記(9)記載の空気調和機にお
いて、冷房時及び除湿時に冷媒を上部側に位置する熱交
換器から流すように流路構成してなることを特徴とする
空気調和機。
(10) In the air conditioner according to (9), the flow path is configured so that the refrigerant flows from the heat exchanger located on the upper side during cooling and dehumidification. .

【0018】[0018]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0019】(1).上記(1)の構成にあっては室内
側熱交換器の熱交換チューブの列数を、クロスフローフ
ァンに最も近い下部側の熱交換器の熱交換チューブ列数
より上部側の熱交換器の熱交換チューブ列数が少なくな
るよう構成するので熱交換チューブの表面に結露して生
じる上部側熱交換器のドレンが減り、流下し切れずに溢
れて滴下するという現象が生じず、従ってクロスフロー
ファンへのドレン滴下も発生しない。
(1). In the configuration of (1) above, the number of rows of the heat exchange tubes of the indoor heat exchanger is set to be larger than that of the heat exchange tubes of the lower heat exchanger closest to the crossflow fan. Since the number of rows of heat exchange tubes is reduced, the drainage of the upper heat exchanger caused by dew condensation on the surface of the heat exchange tubes is reduced, and the phenomenon of overflow and dripping without falling down does not occur. No drain drops on the fan.

【0020】また、下部側熱交換器より上部側熱交換器
の熱交換チューブ列数が疎であるため、従来より上部側
熱交換器の空気の通りがよく、この点からも上部側熱交
換器のドレンがよりよく減少し、下方へのドレン滴下が
なくなる。
Further, since the number of rows of heat exchange tubes in the upper heat exchanger is less than that in the lower heat exchanger, the air in the upper heat exchanger passes better than before, and from this point as well, the upper heat exchanger The drainage of the vessel is better reduced and there is no downward drainage.

【0021】(2).上記(2)の構成にあっては上記
(1)の構成の上部側の熱交換器を2以上に分割または
折曲げ構成し、クロスフローファンの上部側を囲むよう
に山形に構成するのでクロスフローファン上にドレンが
滴下する可能性を有する上部側の熱交換器の熱交換チュ
ーブ列数は更に減り、上記(1)の作用が一層、確実に
奏せられる。
(2). In the configuration of (2) above, the heat exchanger on the upper side of the configuration of (1) above is divided or bent into two or more, and is formed in a mountain shape so as to surround the upper side of the cross flow fan. The number of rows of heat exchange tubes of the heat exchanger on the upper side where there is a possibility that the drain may drip on the flow fan is further reduced, and the action of the above (1) can be more reliably exhibited.

【0022】(3).上記(3)の構成にあっては上記
(2)の構成の山形に設置した上部側の熱交換器のう
ち、下部側の熱交換器から遠い側の熱交換器の下部に第
2のドレンパンを設けるため、同ドレンパンに受けられ
た熱交換器からドレンが流下してもドレンパンに受容処
理され、下方へ滴下することがない。
(3). In the configuration of (3) above, of the upper side heat exchangers installed in the mountain configuration of (2) above, a second drain pan is provided under the heat exchanger on the side far from the lower side heat exchanger. Since the drain is provided, even if the drain flows down from the heat exchanger received by the drain pan, it is received by the drain pan and does not drip downward.

【0023】(4).上記(4)の構成にあっては、上
記(1)の構成の上部側の熱交換器の熱交換チューブの
ピッチを下部側の熱交換器のそれより大きく構成するた
め、下部側の熱交換器より空気の通りが一層よくなり、
上記(1)の作用が一層、確実に奏せられる。
(4). In the configuration of (4) above, since the pitch of the heat exchange tubes of the heat exchanger on the upper side of the configuration of (1) above is configured to be larger than that of the heat exchanger on the lower side, heat exchange on the lower side The air passage is better than the container,
The action of (1) above can be more reliably exhibited.

【0024】(5).上記(5)の構成にあっては上記
(1)の構成の上部側の熱交換器の空気流方向に沿う厚
さ寸法を、下部側の熱交換器のそれより小さくするの
で、重量軽減と資材節減が果たされる。
(5). In the configuration of (5) above, since the thickness dimension along the air flow direction of the heat exchanger on the upper side of the configuration of (1) is made smaller than that of the heat exchanger on the lower side, the weight is reduced. Material savings are achieved.

【0025】(6).上記(6)の構成にあっては冷房
時、上記(1)の構成の上部側の熱交換器を経て下部側
の熱交換器の前列下部より冷媒が流入し、後列下部から
流出するよう流路構成され、かつ、暖房時はその逆方向
に冷媒が流れるよう流路構成されるため、冷房時は上部
側の熱交換器の熱交換チューブ全体が除湿に寄与し、除
湿されないままに通過する空気がなくなる。即ち、除湿
が適確に果たされる。
(6). In the configuration of (6) above, during cooling, the refrigerant flows from the lower part of the front row of the lower heat exchanger through the upper heat exchanger of the configuration of (1) and flows out from the lower part of the rear row. Since the flow path is configured so that the refrigerant flows in the opposite direction during heating, the entire heat exchange tube of the upper heat exchanger contributes to dehumidification during cooling and passes without being dehumidified. There is no air. That is, dehumidification is properly performed.

【0026】また、暖房時は冷媒が下部側の熱交換器の
後列下部から流入し、上部側の熱交換器の下部より流出
するため入口と出口が隣接せず、出口部が加熱されるこ
とがない。
Further, during heating, the refrigerant flows in from the lower part of the rear row of the heat exchanger on the lower side and flows out from the lower part of the heat exchanger on the upper side, so that the inlet and the outlet are not adjacent to each other and the outlet is heated. There is no.

【0027】更に冷媒に非共沸の混合冷媒を用いる場
合、下部側の熱交換器がカウンタフローとなるため、冷
媒と空気の温度差が確保され、熱交換性能が高い。
Furthermore, when a non-azeotropic mixed refrigerant is used as the refrigerant, the heat exchanger on the lower side has a counter flow, so that the temperature difference between the refrigerant and the air is secured and the heat exchange performance is high.

【0028】(7).上記(7)の構成にあっては上記
(1)及び(2)の構成の上部側及び下部側の各熱交換
器に対し、冷媒を2サーキットに分けて流すよう流路構
成されるため、上記(1)及び(2)と同等の作用が一
層、顕著に奏せられる。
(7). In the above configuration (7), since the flow path is configured to flow the refrigerant in two circuits to each of the upper and lower heat exchangers in the configurations (1) and (2), The same effects as the above (1) and (2) are more remarkably exhibited.

【0029】(8).上記(8)の構成にあっては上記
(7)の構成の下部側の熱交換器に対し、冷媒を、冷房
時は熱交換器の前列下部より流入し、後列下部から流出
するように、暖房時はその逆方向に流れるように流路構
成するため、上記(7)と同等の作用が、一層、十分に
奏せられる。
(8). In the above configuration (8), the refrigerant flows into the lower heat exchanger of the above configuration (7) from the lower front row of the heat exchanger during cooling, and flows out from the lower rear row of the heat exchanger. Since the flow path is configured so as to flow in the opposite direction during heating, the same effect as (7) above can be more sufficiently exhibited.

【0030】(9).上記(9)の構成にあっては上記
(1)の構成の上部側及び下部側の各熱交換器を直列に
接続し、両熱交換器の間に絞り機構と、開閉弁とを並列
に接続するので冷房時は絞り機構を閉とし、開閉弁を開
として上部側、下部側の各熱交換器を、詳しくはその各
熱交換チューブを直列に冷媒が通るようにすれば冷房が
果たされ、除湿時は、たとえば開閉弁を閉め、絞り機構
を開いて上部側の熱交換器を流れた冷媒が絞り機構で膨
張して(温度降下して)下部側の熱交換器を流れて出る
ようにすれば上部側の熱交換器では空気が加熱され、下
部側の熱交換器では空気が冷却減湿されて全体として適
温で除湿が果たされる。
(9). In the configuration of (9) above, the upper and lower heat exchangers of the configuration of (1) are connected in series, and the throttle mechanism and the on-off valve are arranged in parallel between the two heat exchangers. Since it is connected, when cooling, the throttling mechanism is closed, the on-off valve is opened, and the upper and lower heat exchangers, in particular, the refrigerant is passed in series through each heat exchange tube, cooling is achieved. At the time of dehumidification, for example, the on-off valve is closed, the throttle mechanism is opened, and the refrigerant flowing through the upper heat exchanger expands (the temperature drops) by the throttle mechanism and flows out through the lower heat exchanger. By doing so, the air is heated in the upper heat exchanger, and the air is cooled and dehumidified in the lower heat exchanger, so that dehumidification is achieved at an appropriate temperature as a whole.

【0031】(10).上記(10)の構成にあっては
冷房時及び除湿時に上記(9)の構成の上部側の熱交換
器から冷媒を流すよう流路構成するため、上記(9)の
作用が確実に奏せられる。
(10). In the configuration of (10) above, since the flow path is configured to allow the refrigerant to flow from the heat exchanger on the upper side of the configuration of (9) during cooling and dehumidification, the action of (9) can be reliably achieved. To be

【0032】[0032]

【実施例】本発明の第1〜第7実施例を図1〜図7によ
り説明する。なお、各図はすべて空気調和機の側断面図
で示すため、第2実施例以降は図の説明を省略する。ま
た、従来例ないしは先の実施例と同様の構成部材には同
符号を付し、必要ある場合を除き説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First to seventh embodiments of the present invention will be described with reference to FIGS. Since all the drawings are side sectional views of the air conditioner, the description of the drawings is omitted after the second embodiment. Further, the same components as those in the conventional example or the previous example are designated by the same reference numerals, and the description thereof will be omitted unless necessary.

【0033】(第1実施例)第1実施例を図1により説
明する。
(First Embodiment) A first embodiment will be described with reference to FIG.

【0034】図1は本実施例に係る空気調和機の模式的
側断面で、4は従来と同様のクロスフローファン2に近
い下側の第一室内熱交換器、7はクロスフローファン2
から遠い位置となる上側の第二室内熱交換器、4aは第
一室内熱交換器4の熱交換チューブ、7aは第一室内熱
交換器4の熱交換チューブ4aの列より少なく設けられ
た第二室内熱交換器7の熱交換チューブである。その他
の構成は従来例と同様である。
FIG. 1 is a schematic side section of an air conditioner according to the present embodiment, 4 is a lower first indoor heat exchanger close to the same crossflow fan 2 as the conventional one, and 7 is a crossflow fan 2
The second indoor heat exchanger on the upper side, which is located farther away from the first indoor heat exchanger 4, is denoted by 4a, and 7a is less than the row of heat exchange tubes 4a of the first indoor heat exchanger 4. It is a heat exchange tube of the two indoor heat exchanger 7. Other configurations are similar to those of the conventional example.

【0035】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0036】第一室内熱交換器4で凝縮するドレンは第
一ドレンパン3で確実に受けられる。又、第二室内熱交
換器7で凝縮するドレンは第二室内熱交換器7の熱交換
チューブ7aの列数が少ない分だけドレン量が少なくな
り、流下に対して溢れ滴下する程の量に達せず、第一室
内熱交換器4の上に確実に流下し、第一ドレンパン3内
へ流下して処理される。
The drain condensed in the first indoor heat exchanger 4 is surely received by the first drain pan 3. In addition, the amount of drain condensed in the second indoor heat exchanger 7 decreases as the number of rows of the heat exchange tubes 7a of the second indoor heat exchanger 7 decreases, and the amount of drain overflows to the downflow and drops. It does not reach, and it surely flows down onto the first indoor heat exchanger 4 and flows down into the first drain pan 3 for processing.

【0037】又、図1に見るようにクロスフローファン
に近い第一室内熱交換器4の熱交換チューブ4aの列数
が大きいため、第一室内熱交換器4および第二室内熱交
換器7の気流の速度はほぼ均一になる。
Further, as shown in FIG. 1, since the number of rows of the heat exchange tubes 4a of the first indoor heat exchanger 4 close to the cross flow fan is large, the first indoor heat exchanger 4 and the second indoor heat exchanger 7 are arranged. The velocity of the air flow is almost uniform.

【0038】(第2実施例)第2実施例を図2により説
明する。
(Second Embodiment) A second embodiment will be described with reference to FIG.

【0039】図2に示すように本実施例は第一室内熱交
換器8の熱交換チューブ8aが3列、第二室内熱交換器
9の熱交換チューブ9aが二列の例であり、その作用効
果は基本的に第1実施例と同様である。
As shown in FIG. 2, this embodiment is an example in which the first indoor heat exchanger 8 has three rows of heat exchange tubes 8a and the second indoor heat exchanger 9 has two rows of heat exchange tubes 9a. The function and effect are basically the same as those of the first embodiment.

【0040】(第3実施例)第3実施例を図3により説
明する。
(Third Embodiment) A third embodiment will be described with reference to FIG.

【0041】図3に示すように本実施例は室内熱交換器
を3つに分割した例を示す。第三室内熱交換器11を第
二室内熱交換器7と同様に1列として室内機背側上部に
傾斜配設し、冷房運転時のドレンを第二ドレンパン10
で受けるようにしたものである。本実施例の場合も第1
実施例と同様の作用効果を奏する。
As shown in FIG. 3, this embodiment shows an example in which the indoor heat exchanger is divided into three. Similarly to the second indoor heat exchanger 7, the third indoor heat exchanger 11 is arranged in one row in a slanted manner on the upper back side of the indoor unit, and the drain during cooling operation is used as the second drain pan 10.
It was designed to be received at. Also in the case of this embodiment, the first
The same operational effect as the embodiment is achieved.

【0042】(第4実施例)第4実施例を図4により説
明する。
(Fourth Embodiment) A fourth embodiment will be described with reference to FIG.

【0043】図4に示すように本実施例は第二室内熱交
換器12に空気流れ方向に沿う厚さ寸法17を大きくし
た構造のものを用いた例を示す。本実施例の場合は第一
熱交換器4との空気抵抗を熱交換チューブ12aの列数
だけでなく、チューブ間のピッチを大きくすることによ
っても調整することが可能である。冷房運転時の露の処
理及び作用効果は第1実施例と同様である。
As shown in FIG. 4, this embodiment shows an example in which the second indoor heat exchanger 12 has a structure in which the thickness dimension 17 along the air flow direction is increased. In the case of the present embodiment, the air resistance with the first heat exchanger 4 can be adjusted not only by the number of rows of the heat exchange tubes 12a but also by increasing the pitch between the tubes. The dew treatment and the operation effect during the cooling operation are the same as those in the first embodiment.

【0044】(第5実施例)第5実施例を図5により説
明する。
(Fifth Embodiment) A fifth embodiment will be described with reference to FIG.

【0045】本実施例はたとえば第1実施例を基本構成
に用いて冷媒の流し方を変え、性能向上、除湿機能の追
加をさせる例である。
This embodiment is an example in which the first embodiment is used as a basic structure to change the flow of the refrigerant to improve performance and add a dehumidifying function.

【0046】図5において13は冷房運転時の冷媒の流
れを示す矢印、14は暖房運転時の冷媒の流れを示す矢
印(破線)である。冷房運転時は冷媒は第二室内熱交換
器7の下部から入り、上部から出て第一室内熱交換器4
の下部前列から入りその上部でUターンし、下部後列よ
り出るように構成されている。又、暖房運転時は第一室
内熱交換器4下部後列から入り、その上部でUターン
し、下部前列より出て第二室内熱交換器7の上部から入
り、下部から出るように構成されている。この冷媒の流
し方により冷房運転時は第二室内熱交換器7の一列コイ
ルの部分が全面が湿りコイルとなり、除湿されない空気
のバイパスがなくなる。又、暖房運転時は凝縮器入口部
分となる第一室内熱交換器4の下部後列と出口部となる
第二室内熱交換器7の下部が隣り合わせとならず、出口
部が加熱されることもない。更に、冷媒に非共沸の混合
冷媒を用いる場合では第一室内熱交換器4がカウンタフ
ローとなっており冷媒と空気の温度差が確保でき、熱交
換性能が向上できるという利点がある。
In FIG. 5, 13 is an arrow showing the flow of the refrigerant during the cooling operation, and 14 is an arrow (broken line) showing the flow of the refrigerant during the heating operation. During the cooling operation, the refrigerant enters from the lower part of the second indoor heat exchanger 7 and exits from the upper part of the second indoor heat exchanger 4
It is configured so that it enters from the lower front row and makes a U-turn at the upper part, and exits from the lower rear row. Also, during heating operation, the first indoor heat exchanger 4 is configured to enter from the lower rear row, make a U-turn at the upper portion, exit from the lower front row, enter from the upper portion of the second indoor heat exchanger 7, and exit from the lower portion. There is. Due to this way of flowing the refrigerant, the entire one-row coil portion of the second indoor heat exchanger 7 becomes a wet coil during the cooling operation, and the bypass of undehumidified air is eliminated. Further, during the heating operation, the lower rear row of the first indoor heat exchanger 4 that is the condenser inlet portion and the lower portion of the second indoor heat exchanger 7 that is the outlet portion are not adjacent to each other, and the outlet portion may be heated. Absent. Further, when a non-azeotropic mixed refrigerant is used as the refrigerant, there is an advantage that the first indoor heat exchanger 4 has a counter flow and a temperature difference between the refrigerant and the air can be secured, and the heat exchange performance can be improved.

【0047】(第6実施例)第6実施例を図6により説
明する。
(Sixth Embodiment) A sixth embodiment will be described with reference to FIG.

【0048】本実施例は室内機の背面側に第三室内熱交
換器11を配設した第3実施例を基本構成に用いて冷媒
の流し方を変える例で、冷房運転時、暖房運転時共に2
サーキットとなっている。冷房運転時は冷媒は第一室内
熱交換器4の前列下部と第二室内熱交換器7下部から入
り、第一室内熱交換器4の後列下部と第三室内熱交換器
11下部から出るようになっている。暖房運転時は矢印
14で示すように冷房運転とは逆に流れるようになって
いる。
This embodiment is an example in which the third embodiment in which the third indoor heat exchanger 11 is arranged on the back side of the indoor unit is used as the basic structure to change the flow of the refrigerant, and during the cooling operation and the heating operation. Both 2
It is a circuit. During the cooling operation, the refrigerant enters from the lower part of the front row of the first indoor heat exchanger 4 and the lower part of the second indoor heat exchanger 7, and exits from the lower part of the rear row of the first indoor heat exchanger 4 and the lower part of the third indoor heat exchanger 11. It has become. During heating operation, as indicated by arrow 14, the flow is opposite to that during cooling operation.

【0049】本実施例の場合も第5実施例と同様、冷媒
が非共沸混合冷媒の場合、第1室内熱交換器4が暖房運
転時、カウンタフローとなり空気と冷媒の温度差が確保
できる運転となり熱交換性能が向上するという利点があ
る。
Also in the case of the present embodiment, as in the case of the fifth embodiment, when the refrigerant is a non-azeotropic mixed refrigerant, the first indoor heat exchanger 4 becomes a counter flow during the heating operation, and the temperature difference between the air and the refrigerant can be secured. It has the advantage that it is operated and the heat exchange performance is improved.

【0050】(第7実施例)第7実施例を図7により説
明する。
(Seventh Embodiment) A seventh embodiment will be described with reference to FIG.

【0051】本実施例は第3実施例を基本構成に用いて
除湿運転を可能とした例で、図7において、13aは冷
房運転および除湿運転時の冷媒の流れを示す矢印、15
は絞り機構、16は開閉弁である。
The present embodiment is an example in which the dehumidifying operation is made possible by using the third embodiment as a basic structure. In FIG. 7, 13a is an arrow indicating the flow of the refrigerant during the cooling operation and the dehumidifying operation, and 15
Is a throttle mechanism, and 16 is an opening / closing valve.

【0052】冷房運転時は開閉弁16が開となり、冷媒
は第三室内熱交換器11下部より入り、第2室内熱交換
器7、開閉弁16を経て第一室内熱交換器4下部前側よ
り入り、同下部後側より出る。
During the cooling operation, the opening / closing valve 16 is opened, and the refrigerant enters from the lower portion of the third indoor heat exchanger 11, passes through the second indoor heat exchanger 7 and the opening / closing valve 16, and enters from the front side of the lower portion of the first indoor heat exchanger 4. Enter, and exit from the lower rear side.

【0053】除湿運転時には開閉弁16は閉、絞り機構
15は所定の開度に設定される。冷媒は第三室内熱交換
器11下部より入り、第三室内熱交換器11および第二
室内熱交換器7で凝縮され、絞り機構15で絞り膨張
し、第一室内熱交換器4で蒸発する。ここで第二室内熱
交換器7および第三室内熱交換器11では空気が加熱、
第一室内熱交換器4では空気が冷却減湿され、除湿運転
ができるようになっている。
During the dehumidifying operation, the on-off valve 16 is closed and the throttle mechanism 15 is set to a predetermined opening. The refrigerant enters from the lower part of the third indoor heat exchanger 11, is condensed in the third indoor heat exchanger 11 and the second indoor heat exchanger 7, is expanded by expansion by the expansion mechanism 15, and is evaporated by the first indoor heat exchanger 4. . Here, air is heated in the second indoor heat exchanger 7 and the third indoor heat exchanger 11,
In the first indoor heat exchanger 4, the air is cooled and dehumidified so that dehumidifying operation can be performed.

【0054】本実施例では冷房運転時、除湿運転時共に
第二室内熱交換器7からのドレンの滴下はなくなるとい
う利点がある。
This embodiment has an advantage that the drain does not drip from the second indoor heat exchanger 7 during both the cooling operation and the dehumidifying operation.

【0055】以上の通り、第1〜第7実施例によれば第
一室内熱交換器4,8の熱交換チューブ4a,8aの列
数より、クロスフローファン2より遠い第二室内熱交換
器7,9,12の熱交換チューブ7a,9a,12aの
列数を少なくするので、冷房運転時、上部側の第二室内
熱交換器7,9,12のドレン量が少なく、ドレンが下
部側の第一室内熱交換4,8へと適切に流下し、従来の
ように流下し切れずに溢れてクロスフローファン2上に
滴下する不具合が生じないという利点がある。
As described above, according to the first to seventh embodiments, the second indoor heat exchanger farther from the cross flow fan 2 than the number of rows of the heat exchange tubes 4a and 8a of the first indoor heat exchangers 4 and 8. Since the number of rows of the heat exchange tubes 7a, 9a, 12a of 7, 9, 12 is reduced, the drain amount of the second indoor heat exchanger 7, 9 and 12 on the upper side is small and the drain is on the lower side during the cooling operation. There is an advantage that the problem of properly flowing down to the first indoor heat exchanges 4 and 8 and not overflowing and dropping onto the cross flow fan 2 unlike the conventional case does not occur.

【0056】また、クロスフローファン2に近い下部側
の第一室内熱交換器4,8よりクロスフローファン2か
ら遠い上部側の第二室内熱交換器7,9,12の熱交換
チューブ列が疎で空気が貫流しやすく、クロスフローフ
ァン2から遠いことによる貫流の不充分さが生じさせて
いたドレン量の増大を抑制し、上記利点が一層、助勢さ
れるという利点がある。
Further, the row of heat exchange tubes of the second indoor heat exchangers 7, 9, 12 on the upper side farther from the crossflow fan 2 than the first indoor heat exchangers 4, 8 on the lower side near the crossflow fan 2 are There is an advantage that the above-mentioned advantage is further assisted by suppressing an increase in the amount of drain, which is sparse and easily allows air to flow therethrough and causes insufficient inflow due to the distance from the cross flow fan 2.

【0057】また、第5,6実施例によれば、冷房時の
上記第1〜第4実施例と同等の利点に加え、暖房時、非
共沸の混合冷媒を用いる場合、第1室内熱交換器4が、
カウンターフローとなり、冷媒と空気の温度差が確保で
き、熱交換性能が向上するという利点がある。
Further, according to the fifth and sixth embodiments, in addition to the same advantages as those of the first to fourth embodiments during cooling, when the non-azeotropic mixed refrigerant is used during heating, the first indoor heat Exchanger 4
The counter flow is provided, and the temperature difference between the refrigerant and the air can be secured, and the heat exchange performance is improved.

【0058】また、第7実施例の場合、絞り機構15、
開閉弁16の併用により、冷房運転時、除湿運転時共に
上部側の第二室内熱交換器7から全くドレンが滴下しな
いという利点がある。
In the case of the seventh embodiment, the diaphragm mechanism 15,
The combined use of the on-off valve 16 has an advantage that no drain is dropped from the upper second indoor heat exchanger 7 during both the cooling operation and the dehumidifying operation.

【0059】[0059]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
The present invention has the following effects because it is configured as described above.

【0060】(1)クロスフローファンより遠い上部側
の室内熱交換器の熱交換チューブの列数を下部側の室内
熱交換器の熱交換チューブの列数より減らすことによ
り、上部側の室内熱交換器の除湿量が減り、クロスフロ
ーファンへのドレンの滴下を防止できる。又、下部側お
よび上部側の室内熱交換器を通過する気流の速度を均一
化できる。
(1) By reducing the number of rows of heat exchange tubes of the indoor heat exchanger on the upper side farther from the cross flow fan from the number of rows of heat exchange tubes of the indoor heat exchanger on the lower side, the indoor heat on the upper side is The amount of dehumidification of the exchanger is reduced, and it is possible to prevent the drain from dripping onto the cross flow fan. In addition, the velocity of the airflow passing through the lower and upper indoor heat exchangers can be made uniform.

【0061】(2)下部側の室内熱交換器の気流と冷媒
の流れを暖房運転時カウンターフローにすることで、非
共沸の混合冷媒を媒体とするシステムにおいて熱交換性
能が向上する。
(2) The heat exchange performance is improved in a system using a non-azeotropic mixed refrigerant as a medium by making the air flow of the lower indoor heat exchanger and the refrigerant flow counter flows during heating operation.

【0062】(3)上部側の室内熱交換器の熱交換チュ
ーブの列数を下部側の室内熱交換器のそれより小さく
し、さらに上部側の室内熱交換器の熱交換チューブの列
ピッチを大きくすることにより、さらに下部側および上
部側の室内熱交換器を通過する気流の速度が均一化でき
る。
(3) The number of rows of the heat exchange tubes of the upper indoor heat exchanger is made smaller than that of the lower indoor heat exchanger, and the row pitch of the heat exchange tubes of the upper indoor heat exchanger is made smaller. By increasing the size, the velocity of the airflow passing through the indoor heat exchangers on the lower side and the upper side can be made uniform.

【0063】(4)上部側の室内熱交換器を2以上に折
り曲げてクロスフローファンを囲むように配設すること
により室内機の伝熱面積が向上できる。
(4) The heat transfer area of the indoor unit can be improved by bending the indoor heat exchanger on the upper side into two or more and disposing it so as to surround the cross flow fan.

【0064】(5)下部側および上部側の室内熱交換器
を直列に接続し、冷房運転時、上部側の室内熱交換器か
ら冷媒を流すことにより上部側の室内熱交換器からの一
次空気のバイパスが防止できる。
(5) The lower side and upper side indoor heat exchangers are connected in series, and during the cooling operation, the primary air from the upper side indoor heat exchanger is caused by flowing the refrigerant from the upper side indoor heat exchanger. Bypass can be prevented.

【0065】(6)下部側および2以上に折り曲げた上
部側の各室内熱交換器を直列に接続し、下部側および上
部側の室内熱交換器の間に絞り機構、開閉弁を用いたサ
イクルで除湿運転を行った時、上部側の室内熱交換器が
凝縮器となりクロスフローファンへのドレン滴下がなく
なる。
(6) A cycle in which the indoor heat exchangers on the lower side and the upper side bent to two or more are connected in series, and a throttle mechanism and an on-off valve are used between the indoor heat exchangers on the lower side and the upper side. When the dehumidifying operation is performed at, the indoor heat exchanger on the upper side serves as a condenser, and the drain drop on the cross flow fan is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る空気調和機の模式的
側断面図、
FIG. 1 is a schematic side sectional view of an air conditioner according to a first embodiment of the present invention,

【図2】本発明の第2実施例に係る空気調和機の模式的
側断面図、
FIG. 2 is a schematic side sectional view of an air conditioner according to a second embodiment of the present invention,

【図3】本発明の第3実施例に係る空気調和機の模式的
側断面図、
FIG. 3 is a schematic side sectional view of an air conditioner according to a third embodiment of the present invention,

【図4】本発明の第4実施例に係る空気調和機の模式的
側断面図、
FIG. 4 is a schematic side sectional view of an air conditioner according to a fourth embodiment of the present invention,

【図5】本発明の第5実施例に係る空気調和機の模式的
側断面図、
FIG. 5 is a schematic side sectional view of an air conditioner according to a fifth embodiment of the present invention,

【図6】本発明の第6実施例に係る空気調和機の模式的
側断面図、
FIG. 6 is a schematic side sectional view of an air conditioner according to a sixth embodiment of the present invention,

【図7】本発明の第7実施例に係る空気調和機の模式的
側断面図、
FIG. 7 is a schematic side sectional view of an air conditioner according to a seventh embodiment of the present invention,

【図8】従来の空気調和機の模式的側断面図である。FIG. 8 is a schematic side sectional view of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 クロスフローファン 3 第一ドレンパン 4 第一室内熱交換器 4a 熱交換チューブ 7 第二室内熱交換器 7a 熱交換チューブ 8 第一室内熱交換器 8a 熱交換チューブ 9 第二室内熱交換器 9a 熱交換チューブ 10 第二ドレンパン 11 第三室内熱交換器 12 第二室内熱交換器 12a 熱交換チューブ 15 絞り機構 16 開閉弁 1 Casing 2 Cross Flow Fan 3 First Drain Pan 4 First Indoor Heat Exchanger 4a Heat Exchange Tube 7 Second Indoor Heat Exchanger 7a Heat Exchange Tube 8 First Indoor Heat Exchanger 8a Heat Exchange Tube 9 Second Indoor Heat Exchanger 9a Heat exchange tube 10 Second drain pan 11 Third indoor heat exchanger 12 Second indoor heat exchanger 12a Heat exchange tube 15 Throttle mechanism 16 Open / close valve

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 空気流路中の上流側に下部にドレンパン
を備えた室内側熱交換器を設置し、その下流側にクロス
フローファンを設置すると共に、前記室内側熱交換器を
上下方向に2以上に分割又は折曲げ構成し、上部側に位
置する熱交換器が前記クロスフローファンの上部側を覆
うように設置されてなる空気調和機において、前記室内
側熱交換器の熱交換チューブの列数を前記クロスフロー
ファンに最も近い下部側に位置する熱交換器の熱交換チ
ューブ列数より、上部側に位置する熱交換器の熱交換チ
ューブ列数を少なくしてなることを特徴とする空気調和
機。
1. An indoor heat exchanger equipped with a drain pan at a lower part is installed upstream in an air flow path, a cross flow fan is installed downstream thereof, and the indoor heat exchanger is vertically moved. In an air conditioner that is divided or bent into two or more and the heat exchanger located on the upper side is installed so as to cover the upper side of the cross flow fan, the heat exchange tube of the indoor side heat exchanger is It is characterized in that the number of rows of heat exchange tubes of the heat exchanger located on the upper side is smaller than the number of rows of heat exchange tubes of the heat exchanger located on the lower side closest to the cross flow fan. Air conditioner.
【請求項2】 請求項1記載の空気調和機において、上
部側に位置する熱交換器を2以上に分割又は折曲げ構成
し、前記クロスフローファンの上部側を囲むように山形
に設置してなることを特徴とする空気調和機。
2. The air conditioner according to claim 1, wherein the heat exchanger located on the upper side is divided or bent into two or more, and is installed in a mountain shape so as to surround the upper side of the cross flow fan. An air conditioner characterized by becoming.
【請求項3】 請求項2記載の空気調和機において、山
形に設置した熱交換器のうち、下部側に位置する熱交換
器から遠い側の熱交換器の下部に第2のドレンパンを設
けてなることを特徴とする空気調和機。
3. The air conditioner according to claim 2, wherein among the heat exchangers installed in a mountain shape, a second drain pan is provided below the heat exchanger located on the side farther from the heat exchanger located on the lower side. An air conditioner characterized by becoming.
【請求項4】 請求項1記載の空気調和機において、上
部側に位置する熱交換器の熱交換チューブのピッチを、
下部側に位置する熱交換器のそれより大きくしてなるこ
とを特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the pitch of the heat exchange tubes of the heat exchanger located on the upper side is
An air conditioner characterized by being made larger than that of the heat exchanger located on the lower side.
【請求項5】 請求項1記載の空気調和機において、上
部側に位置する熱交換器の空気流方向に沿う厚さ寸法
を、下部側に位置する熱交換器のそれより小さくしてな
ることを特徴とする空気調和機。
5. The air conditioner according to claim 1, wherein the thickness dimension of the heat exchanger located on the upper side in the air flow direction is smaller than that of the heat exchanger located on the lower side. An air conditioner characterized by.
【請求項6】 請求項1記載の空気調和機において、室
内側熱交換器に対し、冷媒を冷房時は上部側に位置する
熱交換器を経て下部側に位置する熱交換器の前列下部よ
り流入し、後列下部から流出するように流し、暖房時は
逆方向に流れるように流路構成してなることを特徴とす
る空気調和機。
6. The air conditioner according to claim 1, wherein, when the refrigerant is being cooled, the heat exchanger located on the upper side of the indoor heat exchanger is passed through the heat exchanger located on the lower side of the front row lower part of the heat exchanger located on the lower side. An air conditioner having a flow path structure that allows the air to flow in, flow out from the lower part of the rear row, and flow in the opposite direction during heating.
【請求項7】 請求項1及び2記載の空気調和機におい
て、上部側に位置する熱交換器と下部側に位置する熱交
換器とに対し、冷媒を2サーキットに分けて流すよう流
路構成してなることを特徴とする空気調和機。
7. The air conditioner according to claim 1 or 2, wherein a flow passage configuration is provided so that the refrigerant is divided into two circuits to flow to the heat exchanger located on the upper side and the heat exchanger located on the lower side. An air conditioner characterized by
【請求項8】 請求項7記載の空気調和機において、下
部側に位置する熱交換器に対し、冷媒を冷房時は熱交換
器の前列下部より流入し、後列下部から流出するように
流し、暖房時は逆方向に流れるように流路構成してなる
ことを特徴とする空気調和機。
8. The air conditioner according to claim 7, wherein the refrigerant flows into the heat exchanger located on the lower side so as to flow from the lower part of the front row and out of the lower part of the rear row during cooling. An air conditioner characterized in that the flow path is configured to flow in the opposite direction during heating.
【請求項9】 請求項1記載の空気調和機において、上
部側に位置する熱交換器と下部側に位置する熱交換器と
を直列に接続し、両熱交換器の間に絞り機構と開閉弁と
を並列回路を接続してなることを特徴とする空気調和
機。
9. The air conditioner according to claim 1, wherein a heat exchanger located on the upper side and a heat exchanger located on the lower side are connected in series, and a throttle mechanism and an opening / closing mechanism are provided between both heat exchangers. An air conditioner characterized in that a valve and a parallel circuit are connected.
【請求項10】 請求項9記載の空気調和機において、
冷房時及び除湿時に冷媒を上部側に位置する熱交換器か
ら流すように流路構成してなることを特徴とする空気調
和機。
10. The air conditioner according to claim 9,
An air conditioner having a flow passage structure so that a refrigerant flows from a heat exchanger located on the upper side during cooling and dehumidification.
JP13652395A 1995-06-02 1995-06-02 Air conditioner Expired - Lifetime JP3438996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13652395A JP3438996B2 (en) 1995-06-02 1995-06-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13652395A JP3438996B2 (en) 1995-06-02 1995-06-02 Air conditioner

Publications (2)

Publication Number Publication Date
JPH08327080A true JPH08327080A (en) 1996-12-10
JP3438996B2 JP3438996B2 (en) 2003-08-18

Family

ID=15177175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13652395A Expired - Lifetime JP3438996B2 (en) 1995-06-02 1995-06-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP3438996B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019112A1 (en) * 1996-10-31 1998-05-07 Daikin Industries, Ltd. Air conditioner
JPH10220789A (en) * 1997-02-06 1998-08-21 Fujitsu General Ltd Air conditioner
JP2015127607A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger
JPWO2018235134A1 (en) * 2017-06-19 2019-12-26 三菱電機株式会社 Unit, air conditioner, and method of manufacturing heat exchanger
JP6641070B1 (en) * 2019-03-12 2020-02-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166325U (en) * 1979-05-18 1980-11-29
JPS6382127U (en) * 1986-11-17 1988-05-30
JPH0468921U (en) * 1990-10-23 1992-06-18
JPH04316930A (en) * 1991-04-16 1992-11-09 Daikin Ind Ltd Air conditioner
JPH0534469U (en) * 1991-10-11 1993-05-07 ダイキン工業株式会社 Air conditioner
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH0783458A (en) * 1993-09-10 1995-03-28 Toshiba Corp Indoor device for air conditioner
JPH07139797A (en) * 1993-11-19 1995-05-30 Fujitsu General Ltd Air conditioner
JPH07158888A (en) * 1993-12-10 1995-06-20 Fujitsu General Ltd Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166325U (en) * 1979-05-18 1980-11-29
JPS6382127U (en) * 1986-11-17 1988-05-30
JPH0468921U (en) * 1990-10-23 1992-06-18
JPH04316930A (en) * 1991-04-16 1992-11-09 Daikin Ind Ltd Air conditioner
JPH0534469U (en) * 1991-10-11 1993-05-07 ダイキン工業株式会社 Air conditioner
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH0783458A (en) * 1993-09-10 1995-03-28 Toshiba Corp Indoor device for air conditioner
JPH07139797A (en) * 1993-11-19 1995-05-30 Fujitsu General Ltd Air conditioner
JPH07158888A (en) * 1993-12-10 1995-06-20 Fujitsu General Ltd Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019112A1 (en) * 1996-10-31 1998-05-07 Daikin Industries, Ltd. Air conditioner
JPH10220789A (en) * 1997-02-06 1998-08-21 Fujitsu General Ltd Air conditioner
JP2015127607A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger
JPWO2018235134A1 (en) * 2017-06-19 2019-12-26 三菱電機株式会社 Unit, air conditioner, and method of manufacturing heat exchanger
JP6641070B1 (en) * 2019-03-12 2020-02-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2020183606A1 (en) * 2019-03-12 2020-09-17 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3438996B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
Zhang et al. Air-side performance of a parallel-flow parallel-fin (PF2) heat exchanger in sequential frosting
EP3540318B1 (en) Indoor unit for air conditioner, and air conditioner
CN104110736A (en) Air conditioner
JPS58217195A (en) Heat exchanger
JP3438996B2 (en) Air conditioner
US3313123A (en) Condensate removal apparatus
JP6253513B2 (en) Air conditioner indoor unit
JPS61153498A (en) Finned heat exchanger
JPH11337104A (en) Air conditioner
JP3736514B2 (en) Heat exchanger and air conditioner using heat exchanger
JPS58214793A (en) Heat exchanger
JPH10246459A (en) Air conditioner
Osada et al. Research on corrugated multi‐louvered fins under dehumidification
JPH04136690A (en) Heat exchanger
JPH10246506A (en) Indoor unit for air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP4300502B2 (en) Parallel flow type heat exchanger for air conditioning
JPH10206058A (en) Heat exchanger for air conditioner
JP2004085139A (en) Indoor unit for air conditioner
JP2008215757A (en) Heat exchanger
JP2004286256A (en) Humidification device with double lid
JP7054308B2 (en) Environmental test equipment and air conditioning equipment
JPH0717951Y2 (en) Heat exchanger
JPH04222363A (en) Room heat exchanger for heat pump air conditioner
JPS61159094A (en) Finned heat exchanger

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term