JP6641070B1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6641070B1
JP6641070B1 JP2019540020A JP2019540020A JP6641070B1 JP 6641070 B1 JP6641070 B1 JP 6641070B1 JP 2019540020 A JP2019540020 A JP 2019540020A JP 2019540020 A JP2019540020 A JP 2019540020A JP 6641070 B1 JP6641070 B1 JP 6641070B1
Authority
JP
Japan
Prior art keywords
heat exchanger
row
row heat
indoor
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019540020A
Other languages
Japanese (ja)
Other versions
JPWO2020183606A1 (en
Inventor
浩之 豊田
浩之 豊田
禎夫 関谷
禎夫 関谷
政志 吉川
政志 吉川
智史 遠藤
智史 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Application granted granted Critical
Publication of JP6641070B1 publication Critical patent/JP6641070B1/en
Publication of JPWO2020183606A1 publication Critical patent/JPWO2020183606A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

室内機と室外機を備える空気調和機であって、室内機は、室内熱交換器を有し、室外機は、膨張弁を有し、室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、膨張弁は、2列熱交換器の一方の列の少なくとも一部、及び、2列熱交換器の他方の列の少なくとも一部を介して、1列熱交換器に接続されている。An air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchanger is provided with two rows of heat transfer tubes. A two-row heat exchanger, and a one-row heat exchanger on which one-row heat transfer tubes are arranged, wherein the expansion valve has at least a part of one row of the two-row heat exchanger and two rows. It is connected to the single-row heat exchanger via at least a part of the other row of the heat exchanger.

Description

本発明は、室内機と室外機とを有する空気調和機に関する。   The present invention relates to an air conditioner having an indoor unit and an outdoor unit.

空気調和機は、室外機と室内機を有し、室外機及び室内機のそれぞれに、空気と冷媒を熱交換させる熱交換器と、空気の流れを生み出す送風装置が備わっている。冷房運転時には、室内機に設けた熱交換器の内部に低温の冷媒を流し、熱交換器の外部に建屋内の空気を流すことで、建屋内の空気を冷却する。この際に、建屋内の空気に含まれる水蒸気の一部が、熱交換器表面で冷却されることで結露が生じる。熱交換器表面の結露水は、熱交換器のフィンを伝いドレインパンを経て、ドレインホースから室外に排出される。   An air conditioner has an outdoor unit and an indoor unit. Each of the outdoor unit and the indoor unit is provided with a heat exchanger for exchanging heat between air and a refrigerant, and a blower for generating a flow of air. During the cooling operation, a low-temperature refrigerant flows inside the heat exchanger provided in the indoor unit, and air inside the building flows outside the heat exchanger, thereby cooling the air inside the building. At this time, a part of the water vapor contained in the air in the building is cooled on the surface of the heat exchanger, so that dew condensation occurs. Condensed water on the surface of the heat exchanger is discharged from the drain hose to the outside through a drain pan via a fin of the heat exchanger and a drain pan.

熱交換器に温度分布がある場合には、一部の空気は過剰に冷やされ、一部の空気は冷却不足となる場合がある。このような温度差のある空気が熱交換器から吹出された場合に、室内機の吹き出し部の送風路上で結露が生じることがある。送風路上の結露は、風に乗って吹き出し口から室内へ吹き出されたり、送風路を伝い室内へ滴下されたりする恐れがある。これに対し、特許文献1には、室内機内部での結露を防止するために室内機の熱交換器に温度センサを設け、測定された温度に応じて膨張弁を制御することで熱交換器内部に温度差がつかないように制御する技術が開示されている。また、低コスト化やコンパクト化の観点から、1列熱交換器と2列熱交換器で構成される熱交換器の適用が望まれている。   If the heat exchanger has a temperature distribution, some air may be excessively cooled and some air may be undercooled. When air having such a temperature difference is blown out of the heat exchanger, dew condensation may occur on the airflow path of the blowing unit of the indoor unit. Condensation on the air passage may be blown into the room from the outlet by the wind, or may be dropped into the room along the air passage. On the other hand, in Patent Document 1, a heat sensor is provided in a heat exchanger of an indoor unit in order to prevent dew condensation inside the indoor unit, and an expansion valve is controlled in accordance with the measured temperature to thereby control the heat exchanger. There is disclosed a technique for controlling such that a temperature difference does not occur inside. Further, from the viewpoint of cost reduction and compactness, application of a heat exchanger composed of a single-row heat exchanger and a double-row heat exchanger is desired.

特開平8−159538号公報JP-A-8-159538

しかしながら、1列熱交換器と2列熱交換器で構成される熱交換器においては、2列部よりも1列部において空気が流れやすくなる。このため、熱交換器を通過した後の空気温度に差がつき易い課題があった。   However, in a heat exchanger composed of a single-row heat exchanger and a two-row heat exchanger, air flows more easily in the first row than in the second row. For this reason, there is a problem that the air temperature after passing through the heat exchanger tends to be different.

本発明はこのような問題点に鑑みなされたもので、1列熱交換器と2列熱交換器を有する熱交換器を用いつつ、室内機内部における結露を防止することを目的とする。   The present invention has been made in view of such a problem, and has as its object to prevent dew condensation inside an indoor unit while using a heat exchanger having a single-row heat exchanger and a two-row heat exchanger.

そこで、本発明は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室外機は、膨張弁を有し、前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、前記2列熱交換器は、前記室内機の前面側に配置され、前記1列熱交換器は、前記室内機の背面側に配置され、冷房運転時、前記膨張弁は、前記2列熱交換器の一方の列の少なくとも一部、及び、前記2列熱交換器の他方の列の少なくとも一部を介して、前記1列熱交換器に接続され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
本発明の他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室外機は、膨張弁を有し、前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、前記2列熱交換器は、前記室内機の前面側に配置され、前記室内熱交換器は、第1の1列熱交換器と、第2の1列熱交換器とを有し、前記第1の1列熱交換器は、前記室内機の背面側に配置され、前記第2の1列熱交換器は、前記2列熱交換器の下側に配置され、冷房運転時、前記膨張弁は、前記2列熱交換器の一方の列の少なくとも一部、及び、前記2列熱交換器の他方の列の少なくとも一部を介して、前記1列熱交換器に接続され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
また他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室外機は、膨張弁を有し、前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、前記2列熱交換器は、前記室内機の前面側に配置され、前記1列熱交換器は、前記室内機の背面側に配置され、冷房運転時、前記膨張弁は、前記2列熱交換器の少なくとも一部を介して前記1列熱交換器に接続され、前記2列熱交換器は、前記1列熱交換器と前記2列熱交換器の接続部の温度が露点温度に応じて定まる温度になるように配管され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
また他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室外機は、膨張弁を有し、前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された第1の1列熱交換器と、一列の伝熱管が配置された第2の1列熱交換器とを有し、前記2列熱交換器は、前記室内機の前面側に配置され、前記第1の1列熱交換器は、前記室内機の背面側に配置され、前記第2の1列熱交換器は、前記2列熱交換器の下側に配置され、冷房運転時、前記膨張弁は、前記2列熱交換器の少なくとも一部を介して前記第1の1列熱交換器及び前記第2の1列熱交換器に接続され、前記2列熱交換器は、前記第2列熱交換器と前記1列熱交換器の接続部の温度が露点温度に応じて定まる温度になるように配管され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
また他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、前記2列熱交換器は、前記室内機の前面側に配置され、前記1列熱交換器は、前記室内機の背面側に配置され、前記室外機は、膨張弁を有し、冷房運転時、前記膨張弁は、前記2列熱交換器内における、前記2列熱交換器の全流路のうち半分以上の流路を介して、前記1列熱交換器に接続され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
また他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された第1の1列熱交換器と、1列の伝熱管が配置された第2の1列熱交換器と、を有し、前記2列熱交換器は、前記室内機の前面側に配置され、前記第の1列熱交換器は、前記2列熱交換器の下側に配置され、前記第の1列熱交換器は、前記室内機の背面側に配置され、前記室外機は、膨張弁を有し、冷房運転時、前記膨張弁は、前記2列熱交換器内における、前記2列熱交換器の全流路のうち半分以上の流路を介して、前記第1の1列熱交換器及び前記第2の1列熱交換器に接続され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
また他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室外機は、膨張弁を有し、前記室内熱交換器は、m(mは2以上の整数)列の伝熱管が配置されたm列熱交換器と、n(nは1以上かつmよりも小さい整数)列の伝熱管が配置されたn列熱交換器と、を有し、前記m列熱交換器は、前記室内機の前面側に配置され、前記n列熱交換器は、前記室内機の背面側に配置され、冷房運転時、前記膨張弁は、前記m列熱交換器の第1列の少なくとも一部、及び前記m列熱交換器の第2列の少なくとも一部を介して、前記n列熱交換器に接続され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
また他の形態は、室内機と室外機を備える空気調和機であって、前記室内機は、室内熱交換器を有し、前記室外機は、膨張弁を有し、前記室内熱交換器は、m(mは2以上の整数)列の伝熱管が配置されたm列熱交換器と、n(nは1以上かつmよりも小さい整数)列の伝熱管が配置された第1のn列熱交換器と、n列の伝熱管が配置された第2のn列熱交換器と、を有し、前記m列熱交換器は、前記室内機の前面側に配置され、前記第のn列熱交換器は、前記m列熱交換器の下側に配置され、前記第のn列熱交換器は、前記室内機の背面側に配置され、冷房運転時、前記膨張弁は、前記m列熱交換器の第1列の少なくとも一部、及び前記m列熱交換器の第2列の少なくとも一部を介して、前記第1のn列熱交換器及び前記第2のn列熱交換器に接続され、前記室内熱交換器の流路は、1パスで形成されていることを特徴とする。
Therefore, the present invention is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchanger is A two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a one-row heat exchanger in which one row of heat transfer tubes are arranged, wherein the two-row heat exchanger is provided on a front surface of the indoor unit. Side, the single-row heat exchanger is disposed on the rear side of the indoor unit, and during a cooling operation, the expansion valve is at least a part of one row of the two-row heat exchanger, and The two-row heat exchanger is connected to the one-row heat exchanger via at least a part of the other row, and a flow path of the indoor heat exchanger is formed in one pass.
Another embodiment of the present invention is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchange The heat exchanger includes a two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a one-row heat exchanger in which one row of heat exchanger tubes is arranged. , The indoor heat exchanger has a first single-row heat exchanger and a second single-row heat exchanger, and the first single-row heat exchanger is And the second single-row heat exchanger is disposed below the double-row heat exchanger, and during cooling operation, the expansion valve is connected to one of the double-row heat exchangers. Connected to the single-row heat exchanger via at least a part of the row and at least a part of the other row of the two-row heat exchanger, wherein the flow path of the indoor heat exchanger is formed in one pass Is And said that you are.
Still another embodiment is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchanger is A two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a one-row heat exchanger in which one row of heat transfer tubes are arranged, wherein the two-row heat exchanger is provided on a front surface of the indoor unit. , The single-row heat exchanger is disposed on the rear side of the indoor unit, and during cooling operation, the expansion valve is connected to the single-row heat exchanger via at least a part of the double-row heat exchanger. And the pipes are connected so that the temperature of the connecting portion between the single-row heat exchanger and the double-row heat exchanger becomes a temperature determined according to the dew point temperature, and the indoor heat exchange is performed. The flow path of the vessel is formed in one pass.
Still another embodiment is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchanger is A two-row heat exchanger in which two rows of heat transfer tubes are arranged, a first one-row heat exchanger in which one row of heat transfer tubes is arranged, and a second one-row heat in which one row of heat exchanger tubes are arranged An air conditioner, wherein the two-row heat exchanger is disposed on the front side of the indoor unit, the first single-row heat exchanger is disposed on the rear side of the indoor unit, The single-row heat exchanger is disposed below the double-row heat exchanger, and during a cooling operation, the expansion valve is connected to the first single-row heat exchanger via at least a part of the double-row heat exchanger. is connected to a vessel and the second one column heat exchanger, the two rows heat exchanger is determined temperature of the connecting portion before Symbol said one column heat exchanger and the second row heat exchanger according to the dew point temperature Warm Plumbed so that the flow path of the indoor heat exchanger is characterized in that it is formed in one pass.
Another embodiment is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, and the indoor heat exchanger has two rows of heat transfer tubes. A row heat exchanger, and a single row heat exchanger on which a single row of heat transfer tubes are arranged, wherein the double row heat exchanger is disposed on the front side of the indoor unit, and the single row heat exchanger Is disposed on the rear side of the indoor unit, the outdoor unit has an expansion valve, and during the cooling operation, the expansion valve is configured so that the entire flow of the two-row heat exchanger in the two-row heat exchanger The passage is connected to the single-row heat exchanger through at least half of the passages, and the passage of the indoor heat exchanger is formed in one pass.
Another embodiment is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, and the indoor heat exchanger has two rows of heat transfer tubes. A row heat exchanger, a first single-row heat exchanger in which a single row of heat transfer tubes are arranged, and a second single-row heat exchanger in which a single row of heat transfer tubes are arranged; The row heat exchanger is arranged on the front side of the indoor unit, the first single-row heat exchanger is arranged below the double-row heat exchanger, and the second single-row heat exchanger is The outdoor unit has an expansion valve, which is disposed on the back side of the indoor unit. When the cooling operation is performed, the expansion valve is disposed in the two-row heat exchanger in the entire flow path of the two-row heat exchanger. Of the indoor heat exchanger are connected to the first single-row heat exchanger and the second single-row heat exchanger through at least half of the flow paths. Being And it features.
Still another embodiment is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchanger is , M (m is an integer of 2 or more) rows of heat transfer tubes, and n (n is an integer of 1 or more and less than m) rows of heat exchangers. Wherein the m-row heat exchanger is disposed on the front side of the indoor unit, and the n-row heat exchanger is disposed on the back side of the indoor unit, and the cooling valve operates during the cooling operation. Is connected to the n-row heat exchanger via at least a part of the first row of the m-row heat exchanger and at least a part of the second row of the m-row heat exchanger, and The flow path of the vessel is formed in one pass.
Still another embodiment is an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit has an indoor heat exchanger, the outdoor unit has an expansion valve, and the indoor heat exchanger is , M (m is an integer of 2 or more) rows of heat transfer tubes, and n (n is an integer of 1 or more and less than m) rows of first heat exchangers. a column heat exchanger, and a second n rows heat exchanger heat transfer tube of the n rows is arranged, has the m column heat exchanger is disposed on the front side of the indoor unit, the first The n-row heat exchanger is disposed below the m-row heat exchanger, the second n-row heat exchanger is disposed on the back side of the indoor unit, and during the cooling operation, the expansion valve is Via at least a portion of a first row of the m-row heat exchanger and at least a portion of a second row of the m-row heat exchanger, the first n-row heat exchanger and the second n Row heat Is connected to the exchanger, the flow path of the indoor heat exchanger is characterized in that it is formed in one pass.

本発明によれば、1列熱交換器と2列熱交換器を有する熱交換器を用いつつ、室内機内部における結露を防止することができる。   Advantageous Effects of Invention According to the present invention, it is possible to prevent dew condensation inside an indoor unit while using a heat exchanger having a single-row heat exchanger and a two-row heat exchanger.

室内機の構造を示す図である。It is a figure showing the structure of an indoor unit. 室内熱交換器の断面図である。It is sectional drawing of an indoor heat exchanger. 室内熱交換器の変形例を示す図である。It is a figure which shows the modification of an indoor heat exchanger. 空気調和機の全体構成図である。FIG. 1 is an overall configuration diagram of an air conditioner. 第2の実施形態に係る室内熱交換器の断面図である。It is sectional drawing of the indoor heat exchanger which concerns on 2nd Embodiment. 第3の実施形態に係る室内熱交換器の断面図である。It is sectional drawing of the indoor heat exchanger which concerns on 3rd Embodiment. 第4の実施形態に係る室内熱交換器の断面図である。It is sectional drawing of the indoor heat exchanger which concerns on 4th Embodiment. 比較例に係る熱交換器を示す図である。It is a figure showing the heat exchanger concerning a comparative example. 比較例に係る熱交換器を示す図である。It is a figure showing the heat exchanger concerning a comparative example.

以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is included in the range.

(第1の実施形態)
図1は、第1の実施形態に係る空気調和機の室内機100の構造を示す図である。図1は、室内機100の背面120に垂直でかつ室内機100の上下方向に平行な断面図である。以下、図1に示すような3次元座標におけるx軸方向(紙面の奥行方向)を室内機100の横方向、y軸方向(紙面の縦方向)を室内機100の上下方向(紙面上側が上方向)、z軸方向(紙面の横方向)を室内機100の奥行き方向とする。
(First embodiment)
FIG. 1 is a diagram illustrating a structure of an indoor unit 100 of the air conditioner according to the first embodiment. FIG. 1 is a cross-sectional view perpendicular to the rear surface 120 of the indoor unit 100 and parallel to the vertical direction of the indoor unit 100. Hereinafter, the x-axis direction (the depth direction of the paper) in the three-dimensional coordinates as shown in FIG. 1 is the horizontal direction of the indoor unit 100, and the y-axis direction (the vertical direction of the paper) is the vertical direction of the indoor unit 100 (the upper side of the paper is upward). Direction) and the z-axis direction (horizontal direction on the paper) are defined as the depth direction of the indoor unit 100.

室内機100は、背面120が壁Aに面するように、部屋の天井近くに設置される。図1においては、紙面の左下側に被空調空間としての部屋が広がっており、室内機100は、部屋の温度を調整するように風を流す構造となっている。   The indoor unit 100 is installed near the ceiling of the room such that the rear surface 120 faces the wall A. In FIG. 1, a room as a space to be air-conditioned extends on the lower left side of the drawing, and the indoor unit 100 has a structure in which air flows so as to adjust the temperature of the room.

室内機100の内部には、室内熱交換器110及び室内ファン102が搭載されている。室内熱交換器110においては室内ファン102から風が送られることで熱交換が行われる。室内機100には、さらに、フィルター装置103、バックケーシング104、フロントケーシング105、ルーバー106及び縦ルーバー107が設けられている。   Inside the indoor unit 100, an indoor heat exchanger 110 and an indoor fan 102 are mounted. In the indoor heat exchanger 110, heat is exchanged by blowing air from the indoor fan 102. The indoor unit 100 is further provided with a filter device 103, a back casing 104, a front casing 105, a louver 106, and a vertical louver 107.

空気は、図1の上部側、すなわち室内機100の上部側から室内機100に吸い込まれ、フィルター装置103によって大きな埃などが除去され、室内熱交換器110を通過する。室内ファン102は、室内熱交換器110に送風する。室内ファン102には、貫流ファンを用いることができる。貫流ファンを用いる場合、室内ファン102の前側にフロントノーズ109が設けられ、後方(背面120側)にバックノーズ108が設けられている。フロントノーズ109及びバックノーズ108によって、室内ファン102の空気吸込側と空気吹出側が分離され、室内ファン102が送風機能を発揮する。   The air is sucked into the indoor unit 100 from the upper side of FIG. 1, that is, the upper side of the indoor unit 100, and large dust and the like are removed by the filter device 103, and passes through the indoor heat exchanger 110. The indoor fan 102 blows air to the indoor heat exchanger 110. As the indoor fan 102, a once-through fan can be used. When a once-through fan is used, a front nose 109 is provided on the front side of the indoor fan 102, and a back nose 108 is provided on the rear side (back side 120 side). The front nose 109 and the back nose 108 separate the air suction side and the air blowing side of the indoor fan 102, and the indoor fan 102 exhibits a blowing function.

図1のように室内熱交換器110の上方から空気を吸い込み、下方の空間へ風を流す場合には、室内ファン102は、図1に示すように、奥行き方向に向かって右から見て、時計回りとなる方向に回転する。空気は室内ファン102によって吹出された後に、フロントノーズ109とバックケーシング104によって作られた風路を通過し、さらにルーバー106及び縦ルーバー107によって吹出し方向が制御されて、室内へ流出する。ルーバー106は、吹き出し風の風向を上下方向に制御する。縦ルーバー107は、横方向(左右方向)に風向を制御する。   When sucking air from above the indoor heat exchanger 110 and flowing air to the space below as shown in FIG. 1, the indoor fan 102, as shown in FIG. Rotate clockwise. After being blown out by the indoor fan 102, the air passes through the air path formed by the front nose 109 and the back casing 104, and further flows out into the room with the blowing direction controlled by the louver 106 and the vertical louver 107. The louver 106 controls the wind direction of the blowing wind in the vertical direction. The vertical louver 107 controls the wind direction in the horizontal direction (left-right direction).

室内熱交換器110は、冷媒が流れる伝熱管と、伝熱管の周囲に接続されたフィンとを有している。図1において室内熱交換器110の内部に示された複数の円110aは、伝熱管を示している。伝熱管は奥行き方向に延び、右端又は左端で、U字管で接続されることで、冷媒の1本の流路(1パス)を形成している。フィンは、厚さ0.1mm程度のアルミ板であり、1mm程度の間隔で、室内熱交換器110の横方向に連なっている。フィンと伝熱管は密着しており、伝熱管の内部を冷媒が通過する。   The indoor heat exchanger 110 has a heat transfer tube through which the refrigerant flows, and fins connected around the heat transfer tube. In FIG. 1, a plurality of circles 110a shown inside the indoor heat exchanger 110 indicate heat transfer tubes. The heat transfer tube extends in the depth direction, and is connected at the right end or the left end by a U-shaped tube, thereby forming one flow path (one pass) of the refrigerant. The fins are aluminum plates having a thickness of about 0.1 mm, and are arranged in a horizontal direction of the indoor heat exchanger 110 at intervals of about 1 mm. The fins and the heat transfer tube are in close contact, and the refrigerant passes through the inside of the heat transfer tube.

冷房運転では、室外機200から、室内空気温度より低温の冷媒が、室内熱交換器110に供給される。室内熱交換器110のフィンの温度は供給される冷媒の温度に近い温度となっている。室内の暖かい空気は、室内ファン102によって流され、室内熱交換器110で冷却される。室内熱交換器110のフィンの温度が、室内熱交換器110に流される室内空気の露点よりも低い場合、室内熱交換器110のフィン表面で空気中の水分が結露する。この結露した水は、フィンを伝って室内熱交換器110の下方に流れ、ケーシング内部に設けられたドレイン流路を伝い、室外へ流出する。このように、冷房運転をした際に、室内熱交換器110において空気中の水分が結露することがある。また、室内熱交換器110を通過した空気は、室内熱交換器110で冷却され一部の水分が結露するものの相対湿度としては100%に近い湿度を保っている。   In the cooling operation, the outdoor unit 200 supplies a refrigerant having a temperature lower than the indoor air temperature to the indoor heat exchanger 110. The temperature of the fins of the indoor heat exchanger 110 is close to the temperature of the supplied refrigerant. The warm air in the room is flown by the indoor fan 102 and cooled by the indoor heat exchanger 110. When the temperature of the fins of the indoor heat exchanger 110 is lower than the dew point of the indoor air flowing through the indoor heat exchanger 110, moisture in the air condenses on the fin surfaces of the indoor heat exchanger 110. The condensed water flows below the indoor heat exchanger 110 via the fins, flows along a drain flow path provided inside the casing, and flows out of the room. As described above, when the cooling operation is performed, moisture in the air may condense in the indoor heat exchanger 110. Further, the air that has passed through the indoor heat exchanger 110 is cooled by the indoor heat exchanger 110 and a part of moisture is condensed, but the relative humidity is kept close to 100%.

図2は、室内熱交換器110の構造を示す図である。室内熱交換器110は、2列熱交換器111と、前面側1列熱交換器112と、背面側1列熱交換器113と、を有している。2列熱交換器111は、室内機100の前面上部側において、奥行き方向に沿って2列の伝熱管が配置されるように設けられている。2列熱交換器111では、室内ファン102が駆動した時に空気が流れる方向に沿って2列の伝熱管が配置される。2列熱交換器111のうち前面側、すなわち風上側の列を風上列1111と称する。また、2列熱交換器111のうち背面側、すなわち風下側の列を風下列1112と称する。前面側1列熱交換器112は、2列熱交換器111の下側からより下方に延びるように配置されている。背面側1列熱交換器113は、2列熱交換器111の上側から背面側に延びるように配置されている。なお、冷房運転時の冷媒の流入口となる2列熱交換器111の最下段111aは配管を介して室外機の膨張弁と接続している。また、冷房運転時の冷房の流出口となる背面側熱交換器113の最下段13bは配管を介して室外機の四方弁と接続している。   FIG. 2 is a diagram showing the structure of the indoor heat exchanger 110. The indoor heat exchanger 110 includes a two-row heat exchanger 111, a front-side single-row heat exchanger 112, and a back-side single-row heat exchanger 113. The two-row heat exchanger 111 is provided on the upper front side of the indoor unit 100 so that two rows of heat transfer tubes are arranged along the depth direction. In the two-row heat exchanger 111, two rows of heat transfer tubes are arranged along the direction in which air flows when the indoor fan 102 is driven. The front row, that is, the row on the windward side of the two-row heat exchanger 111 is referred to as a windward row 1111. The rear row, that is, the leeward row of the two-row heat exchanger 111 is referred to as a leeward row 1112. The front-side single-row heat exchanger 112 is disposed so as to extend downward from below the double-row heat exchanger 111. The rear-side single-row heat exchanger 113 is arranged to extend from the upper side of the double-row heat exchanger 111 to the rear side. The lowermost stage 111a of the two-row heat exchanger 111, which serves as a refrigerant inlet during the cooling operation, is connected to an expansion valve of an outdoor unit via a pipe. Further, the lowermost stage 13b of the rear heat exchanger 113 serving as an outlet for cooling during cooling operation is connected to a four-way valve of the outdoor unit via a pipe.

本実施形態の室内熱交換器110は、このように1列部を有する。従来の熱交換器においては、前面側及び背面側の双方とも2列熱交換器が用いられることが多い。これに対し、本実施形態の室内熱交換器110は、前面側の一部と、背面側を1列熱交換器にすることで、熱交換器の材料を削減している。これにより、資源の有効利用だけでなく、コンパクト化、省エネ性の維持が期待できる。   The indoor heat exchanger 110 of the present embodiment thus has a single row. In a conventional heat exchanger, a double-row heat exchanger is often used on both the front side and the rear side. On the other hand, in the indoor heat exchanger 110 of the present embodiment, the material of the heat exchanger is reduced by forming a part of the front side and the back side into a single-row heat exchanger. As a result, not only effective use of resources but also compactness and energy saving can be expected.

しかしながら、1列と2列では、同じ風速における空気の通風抵抗が倍程度異なる。このため風速から単純に考えれば、1列熱交換器を通過する風量と2列熱交換器を通過する風量も、1.4倍程度異なることが考えられる。なお、実際には、空気の吸込が室内機100の天井側(上方側)からであるため、図2に示す室内熱交換器110の配置においては、上方に位置する2列熱交換器111の位置よりも下方に位置する前面側1列熱交換器112の方が空気を吸い込み難い。このため、風量の差は、1.4倍よりは小さくなると考えられる。背面側1列熱交換器113においても、バックノーズ108が、背面側1列熱交換器113から室内ファン102への流れを阻害する壁となりうる。このため、背面側1列熱交換器113においても、2列熱交換器111に比べて空気を吸い込み難い。すなわち、前面側1列熱交換器112及び背面側1列熱交換器113に比べて2列熱交換器111は、熱交換効率が高い。   However, in the first row and the second row, the ventilation resistance of air at the same wind speed is about twice different. Therefore, if simply considered from the wind speed, the amount of air passing through the single-row heat exchanger and the amount of air passing through the two-row heat exchanger may differ by about 1.4 times. Note that, since the air is actually sucked from the ceiling side (upper side) of the indoor unit 100, in the arrangement of the indoor heat exchanger 110 shown in FIG. The front-side single-row heat exchanger 112 located below the position is harder to suck in air. For this reason, it is considered that the difference in air volume is smaller than 1.4 times. Also in the back side single-row heat exchanger 113, the back nose 108 can be a wall that obstructs the flow from the back side single-row heat exchanger 113 to the indoor fan 102. For this reason, even in the back side single-row heat exchanger 113, it is difficult to suck in air as compared with the two-row heat exchanger 111. That is, the two-row heat exchanger 111 has a higher heat exchange efficiency than the front-side single-row heat exchanger 112 and the rear-side single-row heat exchanger 113.

また、上述の通り、本実施形態の室内熱交換器110は、冷媒パスを途中で分岐をさせない1パスとしている。これは、可燃性冷媒を使用する際には、熱交換器内の冷媒のパスはシンプルで、分岐などによるロウ付け部が少ない方が漏えいリスクを低減できるのが望ましいことに対応したものである。可燃性冷媒としては、プロパン(R290)などが挙げられる。また微燃性冷媒としてはジフルオロメタン(R32)や2、3、3、3‐テトラフルオロプロペン(R1234yf)などが挙げられる。   Further, as described above, the indoor heat exchanger 110 of the present embodiment has one refrigerant path that does not branch off in the middle. This corresponds to the fact that when using a flammable refrigerant, it is desirable that the refrigerant path in the heat exchanger is simple, and that the smaller the number of brazing parts due to branching or the like can reduce the risk of leakage. . Examples of the flammable refrigerant include propane (R290). Examples of the slightly flammable refrigerant include difluoromethane (R32) and 2,3,3,3-tetrafluoropropene (R1234yf).

さらに、本実施形態においては、伝熱管はアルミニウム又はアルミニウム合金で形成されているものとする。このように、伝熱管にアルミニウム又はアルミニウム合金を使用する場合、銅管などに比べるとロウ付け性が良くない。このため、ロウ付け部を減らすことが熱交換器の生産性向上につながる。アルミニウムは、銅に比べて埋蔵量が多いと考えられており、サスティナブル社会の実現のためには、使用している銅を極力減らし、アルミニウムに置き換えることが有効ではないかと考えられる。またアルミニウム管と銅管が接合されている部分は、結露が生じると腐食する場合がある。したがって、極力余計な結露は生じないことが望ましい。以上の理由から、本実施形態に係る2列熱交換器111には1パスを採用している。   Further, in the present embodiment, the heat transfer tube is formed of aluminum or an aluminum alloy. As described above, when aluminum or an aluminum alloy is used for the heat transfer tube, the brazing property is not good as compared with a copper tube or the like. Therefore, reducing the number of brazed portions leads to an improvement in the productivity of the heat exchanger. Aluminum is considered to have more reserves than copper, and it may be effective to reduce the copper used and replace it with aluminum in order to achieve a sustainable society. In addition, a portion where the aluminum tube and the copper tube are joined may be corroded when dew condensation occurs. Therefore, it is desirable that unnecessary condensation does not occur. For the above reasons, one pass is adopted for the two-row heat exchanger 111 according to the present embodiment.

冷房運転時に、2列熱交換器111の入口付近においては、冷媒は、液相が多い状態であり、2列熱交換器111を通過する際に、冷媒中の液相が蒸発することで空気を冷却していく。したがって、2列熱交換器111を通過する際に、冷媒中のガス相が増加していく。このため、2列熱交換器111内の冷媒の流路において、冷媒の速度も加速していく。従来の熱交換器においては、熱交換器中の配管に分岐を設け、冷媒を分割して流すことで2列熱交換器の内部の冷媒圧力損失を低減してきた。これに対し、本実施形態の2列熱交換器111においては、1パスを採用しているため、2パスを採用した場合に比べて、圧力損失による冷媒の加速が大きくなる。圧力損失が大きくなることで、2列熱交換器111の流路の後半においては前半に比べて圧力が低下し、それに伴い飽和温度も低下する。これにより熱交換器内部における冷媒の温度差が大きくなる。これに対し、本実施形態の室内熱交換器110は、以下の構成により、この温度差に起因した結露を防ぐことができる。   During the cooling operation, the refrigerant has a large liquid phase near the inlet of the two-row heat exchanger 111, and when passing through the two-row heat exchanger 111, the liquid phase in the refrigerant evaporates, and Cool down. Therefore, when passing through the two-row heat exchanger 111, the gas phase in the refrigerant increases. Therefore, the speed of the refrigerant in the refrigerant flow path in the two-row heat exchanger 111 also increases. In a conventional heat exchanger, a branch is provided in a pipe in the heat exchanger, and a refrigerant pressure loss inside the two-row heat exchanger has been reduced by dividing and flowing the refrigerant. On the other hand, in the two-row heat exchanger 111 of the present embodiment, since one pass is employed, the acceleration of the refrigerant due to the pressure loss is greater than in the case where two passes are employed. As the pressure loss increases, the pressure in the second half of the flow path of the two-row heat exchanger 111 decreases compared to the first half, and the saturation temperature also decreases accordingly. Thereby, the temperature difference of the refrigerant inside the heat exchanger increases. In contrast, the indoor heat exchanger 110 of the present embodiment can prevent dew condensation due to this temperature difference with the following configuration.

図2に示す矢印は、冷房運転時の冷媒の流れを示している。冷房運転時、後述する室外機の膨張弁によって減圧され、低温の2相状態となった冷媒は、2列熱交換器111の風上列1111の最下段111aを流入口として2列熱交換器111へ流入する。その後、冷媒は、風上列1111を、重力方向に逆らう方向、すなわち上方に流れ、最上段111bまで流れると、その後風下列1112へ流入する。風下列1112において、冷媒は最上段111cから下方に流れ、最下段111dまで流れると、続いて前面側1列熱交換器112の最上段112aへ流入する。前面側1列熱交換器112においても、冷媒は下方に流れ、最下段112bまで流れると、背面側1列熱交換器113へ流入する。背面側1列熱交換器113において、冷媒は最上段113aから最下段113bまで下方に流れ、最下段113bを出口として流出する。   The arrows shown in FIG. 2 indicate the flow of the refrigerant during the cooling operation. During the cooling operation, the refrigerant which has been decompressed by the expansion valve of the outdoor unit to be described later and is in a low-temperature two-phase state has a two-row heat exchanger with the lowest stage 111a of the upwind row 1111 of the two-row heat exchanger 111 as an inlet. It flows into 111. Thereafter, the refrigerant flows in the leeward row 1111 in a direction opposite to the direction of gravity, that is, upwards, and after flowing to the uppermost stage 111b, flows into the leeward row 1112 thereafter. In the leeward row 1112, the refrigerant flows downward from the uppermost stage 111c, flows to the lowermost stage 111d, and subsequently flows into the uppermost stage 112a of the front-side single-row heat exchanger 112. In the front-side single-row heat exchanger 112 as well, the refrigerant flows downward, and when flowing to the lowermost stage 112b, flows into the rear-side single-row heat exchanger 113. In the rear-side single-row heat exchanger 113, the refrigerant flows downward from the uppermost stage 113a to the lowermost stage 113b, and flows out using the lowermost stage 113b as an outlet.

以上の構成において、室内熱交換器110の冷房入口側の冷媒は、伝熱面積の多い2列熱交換器111で空気と熱交換する。さらに、2列熱交換器111を通過することで温度の低下した冷媒は、伝熱面積の小さい前面側1列熱交換器112及び背面側1列熱交換器113にて空気と熱交換する。これにより、室内熱交換器110の通過後の空気温度を均一に近づけることができる。すなわち、室内熱交換器110の後段の送風路で結露が生じることを抑制することができる。   In the above configuration, the refrigerant on the cooling inlet side of the indoor heat exchanger 110 exchanges heat with air in the two-row heat exchanger 111 having a large heat transfer area. Further, the refrigerant whose temperature has decreased by passing through the two-row heat exchanger 111 exchanges heat with air in the front-side single-row heat exchanger 112 and the rear-side single-row heat exchanger 113 having small heat transfer areas. Thereby, the air temperature after passing through the indoor heat exchanger 110 can be made uniform. That is, it is possible to suppress the occurrence of dew condensation in the ventilation path at the subsequent stage of the indoor heat exchanger 110.

また、2列熱交換器111から流出した冷媒は、前面側1列熱交換器112及び背面側1列熱交換器113のうち、できるだけ2列熱交換器111に近い位置に流入するのが好ましい。この観点から、本実施形態においては、前面側1列熱交換器112及び背面側1列熱交換器113のいずれにおいても、冷媒は、最上段112a、113aに流入するように配管されている。   In addition, it is preferable that the refrigerant flowing out of the two-row heat exchanger 111 flows into a position as close as possible to the two-row heat exchanger 111 among the front-side single-row heat exchanger 112 and the rear-side single-row heat exchanger 113. . From this viewpoint, in the present embodiment, in both the front-side single-row heat exchanger 112 and the rear-side single-row heat exchanger 113, the refrigerant is piped so as to flow into the uppermost stages 112a and 113a.

また、図2においては、冷房運転時の冷媒の流れを示しているが、暖房運転時の冷媒の流れは、冷房運転時とは逆になる。暖房運転時には、冷房時に冷媒入口となった配管が、出口となる。暖房運転においては、室内熱交換器110にはガス冷媒が流れ込み、空気を暖めることで、液化される。室内熱交換器110の暖房出口では、冷媒は、冷却され、ほぼ液となり入口と比べて低温となって流出する。このため空気との温度差をなるべく大きくとり空気に熱を伝えるには、室内熱交換器110を通過していない空気と接する風上側が良い。また、暖房出口側のパスは重力に沿って上段から下段に流れる方が、液が流れやすくなり、冷媒の滞留を抑制することができる。本実施形態の室内熱交換器110は、これらの観点から、暖房時の出口すなわち冷房時の熱交入口を、2列熱交換器111の風上列1111の最下段111aとし、そこから上方段へ流す構成とした。   Further, FIG. 2 shows the flow of the refrigerant during the cooling operation, but the flow of the refrigerant during the heating operation is opposite to that during the cooling operation. During the heating operation, the pipe that has become the refrigerant inlet during cooling becomes the outlet. In the heating operation, the gas refrigerant flows into the indoor heat exchanger 110 and is liquefied by warming the air. At the heating outlet of the indoor heat exchanger 110, the refrigerant is cooled, becomes almost liquid, and flows out at a lower temperature than the inlet. Therefore, in order to transfer the heat to the air while making the temperature difference between the air and the air as large as possible, the windward side in contact with the air that has not passed through the indoor heat exchanger 110 is preferable. Further, when the path on the heating outlet side flows from the upper stage to the lower stage along the gravity, the liquid flows more easily, and the stagnation of the refrigerant can be suppressed. From these viewpoints, the indoor heat exchanger 110 of the present embodiment sets the outlet during heating, that is, the heat exchange inlet during cooling as the lowermost stage 111a of the windward row 1111 of the two-row heat exchanger 111, and the upper stage from there. Flow to

さらに、前面側1列熱交換器112の最下段112bと、背面側1列熱交換器113の最上段113aを配管で結んでいる。この配管もまた圧力損失の一因となる。そこで、この配管は、他の配管よりも太くするものとする。さらに、吹き出し空気以外への熱交換を避けるため、断熱材によって覆うものとする。   Further, the lowermost stage 112b of the front-side single-row heat exchanger 112 and the uppermost stage 113a of the rear-side single-row heat exchanger 113 are connected by piping. This piping also contributes to pressure loss. Therefore, this pipe is made thicker than the other pipes. Furthermore, in order to avoid heat exchange with the air other than the blown air, it is covered with a heat insulating material.

図8は、比較例に係る熱交換器800を示す図である。熱交換器800は、本実施形態の室内熱交換器110と同様に、2列熱交換器801と、前面側1列熱交換器802と、背面側1列熱交換器803とを有している。前面側1列熱交換器802は2列熱交換器801の下側に設けられ、背面側1列熱交換器803は、2列熱交換器801の上側から延びるように、背面側に設けられている。   FIG. 8 is a diagram illustrating a heat exchanger 800 according to a comparative example. The heat exchanger 800 includes a two-row heat exchanger 801, a front-side single-row heat exchanger 802, and a back-side single-row heat exchanger 803, similarly to the indoor heat exchanger 110 of the present embodiment. I have. The front-side single-row heat exchanger 802 is provided below the double-row heat exchanger 801, and the rear-side single-row heat exchanger 803 is provided on the rear side so as to extend from above the double-row heat exchanger 801. ing.

熱交換器800においては、冷媒は、2列熱交換器801の風上列8011の最下段801aを流入口として熱交換器800へ流入する。その後、冷媒は、風上列8011を上方に流れ、最上段801bまで流れると、その後、前面側1列熱交換器802の最下段802aへ流入する。冷媒は、最下段802aから最上段802bまで上方へ流れた後、さらに、2列熱交換器801の風下列8012の最下段801cから最上段801dまで上方へ流れる。その後、冷媒は、背面側1列熱交換器803の最上段803aから最下段803bまで下方へ流れる。   In the heat exchanger 800, the refrigerant flows into the heat exchanger 800 with the lowermost stage 801a of the upwind row 8011 of the two-row heat exchanger 801 as an inlet. Thereafter, the refrigerant flows upward in the windward row 8011 and flows to the uppermost stage 801b, and then flows into the lowermost stage 802a of the front-side single-row heat exchanger 802. After flowing upward from the lowermost stage 802a to the uppermost stage 802b, the refrigerant further flows upward from the lowermost stage 801c of the leeward row 8012 of the two-row heat exchanger 801 to the uppermost stage 801d. Thereafter, the refrigerant flows downward from the uppermost stage 803a to the lowermost stage 803b of the back-side single-row heat exchanger 803.

以上の構成においては、冷房入口側に近い冷媒は十分に温度が低下しておらず、このため、2列熱交換器801の1列しか通過していない冷媒が流れる前面側1列熱交換器802においては十分な熱交換を行えず、冷却及び除湿が不十分となる。一方で、2列熱交換器801の風下列8012の特に最上段801d付近においては、2列部であること、温度が低下した冷媒が流れることから、他に比べて温度低下が顕著になる。このため、風下列8012付近の冷たい空気と、前面側1列熱交換器802付近の暖かい空気が混合され、これが送風路での結露の原因となり得る。   In the above configuration, the temperature of the refrigerant near the cooling inlet side is not sufficiently lowered, and therefore, the front-side single-row heat exchanger through which the refrigerant that has passed only one row of the two-row heat exchanger 801 flows. In 802, sufficient heat exchange cannot be performed, and cooling and dehumidification become insufficient. On the other hand, especially in the vicinity of the uppermost stage 801d of the leeward row 8012 of the two-row heat exchanger 801, the temperature is remarkably reduced as compared with the other parts because of the two-row portion and the flow of the cooled refrigerant. Therefore, the cold air near the leeward row 8012 and the warm air near the front-side single-row heat exchanger 802 are mixed, and this may cause dew condensation in the ventilation path.

これに対し、図2に示すように、本実施形態の室内熱交換器110においては、2列熱交換器111をすべて通過した後で前面側1列熱交換器112へ流入するような配管とした。これにより、空気の温度を低下させ易い2列熱交換器111には、比較的温度の高い冷房入口側の冷媒が流れる。そして、前面側1列熱交換器112及び背面側1列熱交換器113には、温度が低下した冷媒が流れる。これにより、室内熱交換器110の全体における空気温度の差を小さくすることができる。   On the other hand, as shown in FIG. 2, in the indoor heat exchanger 110 of the present embodiment, piping that flows into the front-side single-row heat exchanger 112 after passing through all the two-row heat exchangers 111 is used. did. Thereby, the refrigerant at the cooling inlet side, which has a relatively high temperature, flows through the two-row heat exchanger 111 that easily lowers the temperature of the air. Then, the cooled refrigerant flows through the front-side single-row heat exchanger 112 and the rear-side single-row heat exchanger 113. Thereby, the difference in air temperature in the entire indoor heat exchanger 110 can be reduced.

図3は、室内熱交換器110の変形例を示す図である。図9は、図3に示す変形例に対応した比較例を示す図である。図3に示す例においては、冷媒は、2列熱交換器111を流れ、前面側1列熱交換器112を流れた後、背面側1列熱交換器113の最下段113bへ流入し、最上段113aまで上方に流れる。このように、1列熱交換器への冷媒の流入口は必ずしも、2列熱交換器に最も近い位置に設けられていなくともよい。   FIG. 3 is a diagram showing a modification of the indoor heat exchanger 110. FIG. 9 is a diagram showing a comparative example corresponding to the modification shown in FIG. In the example shown in FIG. 3, the refrigerant flows through the two-row heat exchanger 111, flows through the front-side single-row heat exchanger 112, and then flows into the lowermost stage 113b of the back-side single-row heat exchanger 113. It flows upward to the upper stage 113a. As described above, the inlet of the refrigerant to the single-row heat exchanger does not necessarily have to be provided at a position closest to the double-row heat exchanger.

一方、図9に示す比較例の熱交換器900においては、冷媒は、2列熱交換器901の最上段901aから最下段901bまで下方に流れた後、風下側に流入する前に、前面側1列熱交換器902の最下段902aに入り、最上段902bまで上方に流れる。その後、冷媒は、2列熱交換器901の風下側の最下段901cから最上段901dへ流れ、その後、背面側1列熱交換器113の最上段903aから最下段903bへ流れる。   On the other hand, in the heat exchanger 900 of the comparative example shown in FIG. 9, the refrigerant flows downward from the uppermost stage 901 a to the lowermost stage 901 b of the two-row heat exchanger 901, and before flowing into the leeward side, the front side. It enters the lowermost stage 902a of the single-row heat exchanger 902 and flows upward to the uppermost stage 902b. Thereafter, the refrigerant flows from the lowermost stage 901c on the leeward side of the two-row heat exchanger 901 to the uppermost stage 901d, and then flows from the uppermost stage 903a of the back-side single-row heat exchanger 113 to the lowermost stage 903b.

図3に示す、変形例に係る室内熱交換器110においては、冷房定格条件における理論計算から冷房入口温度は、16.2℃、2列熱交換器111の最上段111cの温度は15.7℃、前面側1列熱交換器112の最下段112bの温度は14.5℃、背面側1列熱交換器113の最上段113a、すなわち出口の温度は13.2℃となる。一方、図9に示す比較例に係る熱交換器900においては、冷房入口温度は16.3℃、前面側1列熱交換器902の最下段902aの温度は15.8℃、最上段902bの温度は15.3℃、2列熱交換器901の最上段901dの温度は14.3℃、背面側1列熱交換器903の最下段803b、すなわち出口の温度は13.1℃となる。   In the indoor heat exchanger 110 according to the modification shown in FIG. 3, the cooling inlet temperature is 16.2 ° C., and the temperature of the uppermost stage 111c of the two-row heat exchanger 111 is 15.7 based on theoretical calculations under the rated cooling condition. ° C, the temperature of the lowermost stage 112b of the front-side single-row heat exchanger 112 is 14.5 ° C, and the temperature of the uppermost stage 113a of the rear-side single-row heat exchanger 113, that is, the outlet temperature is 13.2 ° C. On the other hand, in the heat exchanger 900 according to the comparative example shown in FIG. 9, the cooling inlet temperature is 16.3 ° C., the temperature of the lowermost stage 902a of the front-side single-row heat exchanger 902 is 15.8 ° C., and the temperature of the uppermost stage 902b is The temperature is 15.3 ° C., the temperature of the uppermost stage 901d of the two-row heat exchanger 901 is 14.3 ° C., and the temperature of the lowermost stage 803b of the back-side single-row heat exchanger 903, ie, the outlet temperature is 13.1 ° C.

以上のように、比較例においては、前面側1列熱交換器902の最下段902aにおいて冷却不足、除湿不足であるのに対し、最上段901dにおいて冷え過ぎていることがわかる。これに対し、変形例に係る室内熱交換器110においては、前面側1列熱交換器112の最上段112aの温度は比較例の対応する位置(最下段902a)に比べて低くなっており、十分に冷却されていることがわかる。また、変形例に係る室内熱交換器110においては、2列熱交換器111の最上段111cの温度が比較例の対応位置(最上段901d)に比べて高くなっており、冷え過ぎが解消されていることがわかる。以上のように、本実施形態においては、1列熱交換器と2列熱交換器を有する室内熱交換器110を用いつつ、室内機100内部における結露を防止することができる。   As described above, in the comparative example, the lowermost stage 902a of the front-side single-row heat exchanger 902 is insufficiently cooled and dehumidified, whereas the uppermost stage 901d is excessively cooled. On the other hand, in the indoor heat exchanger 110 according to the modified example, the temperature of the uppermost stage 112a of the front-side single-row heat exchanger 112 is lower than the corresponding position (the lowermost stage 902a) of the comparative example. It turns out that it is cooled sufficiently. Further, in the indoor heat exchanger 110 according to the modified example, the temperature of the uppermost stage 111c of the two-row heat exchanger 111 is higher than the corresponding position (the uppermost stage 901d) of the comparative example, and excessive cooling is eliminated. You can see that it is. As described above, in the present embodiment, dew condensation inside the indoor unit 100 can be prevented while using the indoor heat exchanger 110 having the single-row heat exchanger and the double-row heat exchanger.

図4は、室内機100を含む、空気調和機10の全体構成図である。空気調和機10は、室内機100と室外機200とを有している。室内機100と室外機200は、冷媒接続配管によって接続されている。室外機200は、四方弁201と、圧縮機202と、アキュムレータ203と、膨張弁204と、室外熱交換器205と、室外ファン206と、を有している。   FIG. 4 is an overall configuration diagram of the air conditioner 10 including the indoor unit 100. The air conditioner 10 includes an indoor unit 100 and an outdoor unit 200. The indoor unit 100 and the outdoor unit 200 are connected by a refrigerant connection pipe. The outdoor unit 200 includes a four-way valve 201, a compressor 202, an accumulator 203, an expansion valve 204, an outdoor heat exchanger 205, and an outdoor fan 206.

矢印12は、暖房運転時の冷媒の流れる方向を示している。暖房運転時には、室外機200より室内機100に高温、高圧のガス冷媒が供給される。室内熱交換器110を流れる冷媒は、室内ファン102により供給される室内の空気を暖める。逆にガス冷媒は、温度の低い空気によって冷却されることとなるので凝縮し、高圧の液冷媒となる。室内機100で液化した冷媒は、室外機200側へ流され、膨張弁204へ至る。   The arrow 12 indicates the direction in which the refrigerant flows during the heating operation. During the heating operation, a high-temperature, high-pressure gas refrigerant is supplied from the outdoor unit 200 to the indoor unit 100. The refrigerant flowing through the indoor heat exchanger 110 warms indoor air supplied by the indoor fan 102. Conversely, the gas refrigerant is cooled by the low-temperature air and condenses, and becomes a high-pressure liquid refrigerant. The refrigerant liquefied in the indoor unit 100 flows toward the outdoor unit 200 and reaches the expansion valve 204.

高圧の液冷媒は、膨張弁204で減圧、低温化され、気液二相流となる。低圧、低温となった冷媒は、室外熱交換器205に至る。室外熱交換器205には室外ファン206により室外空気が流される。冷媒は、外気より温度が低くなるように膨張弁204で減圧されているので、室外熱交換器205で外気によって暖められ、液冷媒が蒸発しガス冷媒になる。   The high-pressure liquid refrigerant is decompressed and cooled to a low temperature by the expansion valve 204 to form a gas-liquid two-phase flow. The low-pressure, low-temperature refrigerant reaches the outdoor heat exchanger 205. Outdoor air is passed through the outdoor heat exchanger 205 by the outdoor fan 206. Since the refrigerant is depressurized by the expansion valve 204 so as to have a lower temperature than the outside air, the refrigerant is heated by the outside air in the outdoor heat exchanger 205, and the liquid refrigerant evaporates to become a gas refrigerant.

室外熱交換器205でガス化された、低温、低圧の冷媒は四方弁201に至る。このとき四方弁201は、室外熱交換器205から流出したガス冷媒をアキュムレータ203を経由して圧縮機202の吸込側に戻すように弁が切り替えられている。低温、低圧のガス冷媒は四方弁201より、アキュムレータ203を経由し、圧縮機202に至る。アキュムレータ203は、圧縮機202に液冷媒が大量に流れ込まないようにする機能を有している。   The low-temperature, low-pressure refrigerant gasified in the outdoor heat exchanger 205 reaches the four-way valve 201. At this time, the four-way valve 201 is switched such that the gas refrigerant flowing out of the outdoor heat exchanger 205 is returned to the suction side of the compressor 202 via the accumulator 203. The low-temperature, low-pressure gas refrigerant reaches the compressor 202 from the four-way valve 201 via the accumulator 203. The accumulator 203 has a function of preventing a large amount of liquid refrigerant from flowing into the compressor 202.

矢印11は、冷房時の冷媒の流れる方向を示している。圧縮機202は、低圧、低温状態の冷媒を圧縮し、高温、高圧状態のガス冷媒を吐出する。圧縮機202より吐出された高温、高圧のガス冷媒は、四方弁201に至る。四方弁201では、圧縮機202より流れてきたガス冷媒が室外熱交換器205側へ流れるように弁が切り替えられている。冷房運転の場合、室外熱交換器205には、高温高圧のガス冷媒が流れ込む。このガス冷媒よりも温度の低い室外空気を室外熱交換器205に流すことで、室外熱交換器205は、ガス冷媒を冷却し凝縮させ、液冷媒に相変化させる。室外熱交換器205において、一部または全部のガス冷媒が液化した冷媒は、膨張弁204に至り、この膨張弁204で減圧される。減圧されることで冷媒の一部がガス化し、この気化熱によって冷媒温度は低下する。そして、この低温冷媒が、冷媒接続配管を通して室内機100へ流れる。   Arrow 11 indicates the direction in which the refrigerant flows during cooling. The compressor 202 compresses a low-pressure, low-temperature refrigerant and discharges a high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from the compressor 202 reaches the four-way valve 201. The four-way valve 201 is switched so that the gas refrigerant flowing from the compressor 202 flows to the outdoor heat exchanger 205 side. In the case of the cooling operation, a high-temperature and high-pressure gas refrigerant flows into the outdoor heat exchanger 205. By flowing outdoor air having a lower temperature than the gas refrigerant to the outdoor heat exchanger 205, the outdoor heat exchanger 205 cools and condenses the gas refrigerant and changes its phase to a liquid refrigerant. In the outdoor heat exchanger 205, the refrigerant in which some or all of the gas refrigerant has been liquefied reaches the expansion valve 204, where the pressure is reduced. When the pressure is reduced, a part of the refrigerant is gasified, and the heat of vaporization lowers the temperature of the refrigerant. Then, the low-temperature refrigerant flows to the indoor unit 100 through the refrigerant connection pipe.

膨張弁204における冷媒の減圧量は、膨張弁204内部の弁の開度によって調整可能であり、開度を小さくすれば減圧量が大きくなり、冷媒はより低温になる。一方で、開度を大きくすれば減圧量が減り冷媒の温度低下は小さくなる。冷房運転条件では、室内機100に至る冷媒の温度は、屋内の空気温度よりも低温となるように膨張弁204の開度が調整されている。   The amount of pressure reduction of the refrigerant at the expansion valve 204 can be adjusted by the degree of opening of the valve inside the expansion valve 204. The smaller the degree of opening, the greater the amount of pressure reduction and the lower the temperature of the refrigerant. On the other hand, if the degree of opening is increased, the pressure reduction amount is reduced, and the decrease in the temperature of the refrigerant is reduced. Under the cooling operation condition, the opening degree of the expansion valve 204 is adjusted so that the temperature of the refrigerant reaching the indoor unit 100 is lower than the indoor air temperature.

なお、第1の変形例としては、室内熱交換器110は、冷媒が2列熱交換器111の風上列1111の少なくとも一部と風下列1112の少なくとも一部を通過した後で前面側1列熱交換器112又は背面側1列熱交換器113へ流入するように配管されていればよく、これ以外の配管状態は実施形態に限定されるものではない。   As a first modified example, the indoor heat exchanger 110 is configured such that the refrigerant passes through at least a part of the leeward row 1111 and at least a part of the leeward row 1112 of the two-row heat exchanger 111, and It is sufficient that the pipes are connected so as to flow into the row heat exchanger 112 or the back-side single-row heat exchanger 113, and other pipe states are not limited to the embodiment.

例えば、冷媒が、風上列1111の一部を通過した後、風下列1112のすべての伝熱管を通過し、その後再び風上列1111の残りの流路を通過した上で、前面側1列熱交換器112又は背面側1列熱交換器113へ流入するように配管されていてもよい。また例えば、冷媒が、2列熱交換器111をすべて通過した後、背面側1列熱交換器113を経由し、その後、前面側1列熱交換器112に流入するよう配管されていてもよい。また、例えば、冷媒が2列熱交換器111のうち最上段111b、111cを残した状態で前面側1列熱交換器112へ流入し、その後、2列熱交換器111の最上段111b、111cを通過した後で、背面側1列熱交換器113へ流れるように配管してもよい。   For example, the refrigerant passes through a part of the leeward row 1111, then passes through all the heat transfer tubes of the leeward row 1112, and then passes through the remaining flow paths of the leeward row 1111 again, and then passes through the front side row 1 The pipe may be provided so as to flow into the heat exchanger 112 or the back-side single-row heat exchanger 113. Further, for example, piping may be provided so that the refrigerant passes through the rear-side single-row heat exchanger 113 after passing through the two-row heat exchanger 111, and then flows into the front-side single-row heat exchanger 112. . In addition, for example, the refrigerant flows into the front-side single-row heat exchanger 112 with the uppermost stages 111b and 111c of the two-row heat exchanger 111 remaining, and thereafter, the uppermost stages 111b and 111c of the two-row heat exchanger 111 After passing through, the pipes may flow so as to flow to the rear-side single-row heat exchanger 113.

ただし、結露を防ぐ観点から、2列熱交換器111から前面側1列熱交換器112、113に流入する際には、冷媒が十分に冷却されている必要があり、冷媒温度が露点温度近くまで冷却されていることが好ましい。そこで、室内熱交換器110は、2列熱交換器111を通過し、前面側1列熱交換器112と2列熱交換器111の接続部が露点温度に応じて定まる温度になるように、2列熱交換器から1列熱交換器への流路が配管されているものとする。ここで、接続部は、2列熱交換器111dから1列熱交換器112の最上段112aの領域である。また、露点温度に応じて定まる温度は、露点温度でもよく、露点温度よりも一定の温度だけ高い値、または低い値であってもよい。また、露点温度に応じて定まる温度は、所定の温度幅を有していてもよい。   However, from the viewpoint of preventing dew condensation, when flowing from the two-row heat exchanger 111 to the front-side single-row heat exchangers 112 and 113, the refrigerant needs to be sufficiently cooled, and the refrigerant temperature is close to the dew point temperature. Preferably, it has been cooled down. Therefore, the indoor heat exchanger 110 passes through the two-row heat exchanger 111 so that the connection between the front-side one-row heat exchanger 112 and the two-row heat exchanger 111 has a temperature determined according to the dew point temperature. It is assumed that a flow path from the two-row heat exchanger to the one-row heat exchanger is piped. Here, the connection portion is a region from the two-row heat exchanger 111d to the uppermost stage 112a of the one-row heat exchanger 112. Further, the temperature determined according to the dew point temperature may be the dew point temperature, or may be a value higher or lower by a certain temperature than the dew point temperature. Further, the temperature determined according to the dew point temperature may have a predetermined temperature range.

また、結露を防ぐ観点から、冷媒が、2列熱交換器111において、室内熱交換器110の全流路のうち半分以上の流路を通過した後で1列熱交換器に流入するように、2列熱交換器111の流路で、室内熱交換器110の全流路の半分以上の距離の流路を介して、膨張弁と前面側熱交換器112が接続されているものとしてもよい。   In addition, from the viewpoint of preventing dew condensation, the refrigerant may flow into the single-row heat exchanger 111 after passing through half or more of all the flow paths of the indoor heat exchanger 110 in the two-row heat exchanger 111. In the flow path of the two-row heat exchanger 111, the expansion valve and the front-side heat exchanger 112 may be connected via a flow path that is at least half the distance of the entire flow path of the indoor heat exchanger 110. Good.

第2の変形例としては、室内熱交換器110は、列数の異なる複数の熱交換器を有していればよく、列数の組み合わせは実施形態に限定されるものではない。例えば、室内熱交換器110は、3列熱交換器と2列熱交換器を有してもよい。この場合にも、室内熱交換器110は、冷媒が、より列数の多い熱交換器をはじめに通過し、露点温度付近まで冷却される程度の距離を通過した後で、より列数の少ない熱交換器へ流入するように配管されるものとする。さらに、例えば、3列熱交換器、2列熱交換器及び1列熱交換器というように、3以上の列数の熱交換器を有していてもよい。この場合にも、室内熱交換器110は、列数の多い熱交換器から列数に応じた順に冷媒が通過するように配管されるものとする。   As a second modification, the indoor heat exchanger 110 may have a plurality of heat exchangers having different numbers of rows, and the combination of the numbers of rows is not limited to the embodiment. For example, the indoor heat exchanger 110 may have a three-row heat exchanger and a two-row heat exchanger. Also in this case, the indoor heat exchanger 110 passes through a heat exchanger having a smaller number of rows after the refrigerant first passes through a heat exchanger having a larger number of rows and passes through a distance to be cooled to a temperature near the dew point temperature. Pipes shall be provided so as to flow into the exchanger. Further, for example, a heat exchanger having three or more rows such as a three-row heat exchanger, a two-row heat exchanger, and a one-row heat exchanger may be provided. Also in this case, it is assumed that the indoor heat exchanger 110 is piped such that the refrigerant passes from the heat exchanger having the larger number of rows in the order corresponding to the number of rows.

(第2の実施形態)
次に、第2の実施形態に係る室内熱交換器110について、第1の実施形態に係る室内熱交換器110と異なる点を主に説明する。図5は、第2の実施形態に係る室内熱交換器110の断面図である。第2の実施形態に係る室内熱交換器110は、冷媒が1本の流路で2列熱交換器111に流入し、2列熱交換器111内で2つの流路(2パス)に分岐する。膨張弁と2列熱交換器111の最下段111aが配管を介して接続されており、図5に示すように、冷媒は、2列熱交換器111の最下段111aへ流入する。最下段111aから上方に流れる流路は、風上列1111の上から3番目の段111eにおいて2つの流路に分岐する。一方の流路は、3番目の段111eからさらに上方の段111f、最上段111bまで移動した後、風下列1112の上から2番目の段111g、次いで最上段111cへ流れ、その後、背面側1列熱交換器113の最上段113aから最下段113bへ流れる流路である。他方の流路は、風上列1111の上から3番目の段111eから風下列1112の上から3番目の段111hへ流れ、その後、風下列1112を下方向に流れ、さらに前面側1列熱交換器112の最上段112aから最下段112bへ流れる流路である。
(Second embodiment)
Next, the differences between the indoor heat exchanger 110 according to the second embodiment and the indoor heat exchanger 110 according to the first embodiment will be mainly described. FIG. 5 is a cross-sectional view of the indoor heat exchanger 110 according to the second embodiment. In the indoor heat exchanger 110 according to the second embodiment, the refrigerant flows into the two-row heat exchanger 111 through one flow path and branches into two flow paths (two passes) in the two-row heat exchanger 111. I do. The expansion valve and the lowermost stage 111a of the two-row heat exchanger 111 are connected via piping, and the refrigerant flows into the lowermost stage 111a of the two-row heat exchanger 111 as shown in FIG. The flow path flowing upward from the lowermost stage 111a is branched into two flow paths in the third stage 111e from the top of the windward row 1111. One flow path moves from the third stage 111e to the upper stage 111f and the uppermost stage 111b, and then flows to the second stage 111g from the top of the leeward row 1112, then to the uppermost stage 111c, and then to the rear side 1st. This is a flow path that flows from the uppermost stage 113a of the row heat exchanger 113 to the lowermost stage 113b. The other flow path flows from the third stage 111 e from the top of the leeward row 1111 to the third stage 111 h from the top of the leeward row 1112, and then flows downward in the leeward row 1112, and furthermore, heat in the front side row This is a flow path that flows from the uppermost stage 112a of the exchanger 112 to the lowermost stage 112b.

このように、2パスの構成を用いることで、室内熱交換器110の伝熱管内の冷媒の圧力損失は小さくなる。しかしながら圧力損失はゼロではないので、入口側の冷媒温度が高く、冷媒出口側の冷媒温度が低くなる。そこで、この2パスの構成においても、まず2列熱交換器111に冷媒を流し、次いで前面側1列熱交換器112又は背面側1列熱交換器113へ冷媒を流すパスを設けることとした。これにより、2パスに分岐した後で、前面側1列熱交換器112及び背面側1列熱交換器113のいずれにおいても十分に冷却された冷媒を流すことができる。したがって、空気の冷却不足を解消し、室内熱交換器110を通過した空気温度の温度差を小さくすることができる。   As described above, by using the two-pass configuration, the pressure loss of the refrigerant in the heat transfer tubes of the indoor heat exchanger 110 is reduced. However, since the pressure loss is not zero, the refrigerant temperature on the inlet side is high and the refrigerant temperature on the refrigerant outlet side is low. Therefore, in this two-pass configuration, a path is first provided in which the refrigerant flows through the two-row heat exchanger 111, and then flows through the front-side single-row heat exchanger 112 or the rear-side one-row heat exchanger 113. . Thus, after branching into two passes, a sufficiently cooled refrigerant can flow in both the front-side single-row heat exchanger 112 and the rear-side single-row heat exchanger 113. Therefore, the insufficient cooling of the air can be resolved, and the temperature difference between the air passing through the indoor heat exchanger 110 can be reduced.

第2の実施形態の変形例としては、分岐位置及び分岐後の流路は、実施形態に限定されるものではない。ただし、分岐位置は、2列熱交換器111内とするのが好ましい。また、分岐後の各パスの距離が等しくなるように分岐位置が決定されるのが好ましい。また、第2の実施形態の室内熱交換器110においても、室内熱交換器110の出口は、前面側1列熱交換器112又は背面側1列熱交換器113に設けられているものとする。   As a modified example of the second embodiment, the branch position and the flow path after the branch are not limited to the embodiment. However, it is preferable that the branch position is in the two-row heat exchanger 111. Further, it is preferable that the branch position is determined so that the distance of each path after the branch becomes equal. Also, in the indoor heat exchanger 110 of the second embodiment, the outlet of the indoor heat exchanger 110 is provided in the front-side single-row heat exchanger 112 or the rear-side single-row heat exchanger 113. .

(第3の実施形態)
次に、第3の実施形態に係る室内熱交換器について、他の実施形態に係る室内熱交換器と異なる点を主に説明する。図6は、第3の実施形態に係る室内熱交換器210の断面図である。第3の実施形態に係る室内熱交換器210は、第1の実施形態に係る室内熱交換器110の2列熱交換器111及び前面側1列熱交換器112に替えて、前面の上部から下部まで一体に設けられた2列熱交換器221を有している。
(Third embodiment)
Next, the differences between the indoor heat exchanger according to the third embodiment and the indoor heat exchanger according to the other embodiments will be mainly described. FIG. 6 is a cross-sectional view of the indoor heat exchanger 210 according to the third embodiment. The indoor heat exchanger 210 according to the third embodiment is different from the indoor heat exchanger 110 according to the first embodiment in that the two-row heat exchanger 111 and the front-side single-row heat exchanger 112 are replaced by a front upper part. It has a two-row heat exchanger 221 integrally provided to the lower part.

このような構成においても、冷房運転時に室内熱交換器210に流入した冷媒が、まず2列熱交換器221を通過し、次いで背面側1列熱交換器222へ冷媒を流すように配管されている。また、冷媒の流路は1パスである。本実施形態の室内熱交換器210においては、冷房運転時、冷媒は、まず、2列熱交換器221の風上列2211の最下段221aを流入口として2列熱交換器221へ流入する。その後、冷媒は、最下段221aから最上段221bまで上方に向かって流れ、続いて風下列2212の最上段221cから最下段221dまで下方に流れる。その後、冷媒は、背面側1列熱交換器222の最上段222aに流入し、最下段222bまで下方に流れ、最下段222bを出口として流出する。   Also in such a configuration, the refrigerant that has flowed into the indoor heat exchanger 210 during the cooling operation first passes through the two-row heat exchanger 221 and is then piped to flow the refrigerant to the back-side single-row heat exchanger 222. I have. The flow path of the refrigerant is one pass. In the indoor heat exchanger 210 of the present embodiment, during the cooling operation, first, the refrigerant flows into the two-row heat exchanger 221 with the lowest stage 221a of the upwind row 2211 of the two-row heat exchanger 221 as the inlet. Thereafter, the refrigerant flows upward from the lowermost stage 221a to the uppermost stage 221b, and subsequently flows downward from the uppermost stage 221c of the leeward row 2212 to the lowermost stage 221d. Thereafter, the refrigerant flows into the uppermost stage 222a of the back-side single-row heat exchanger 222, flows downward to the lowermost stage 222b, and flows out using the lowermost stage 222b as an outlet.

第3の実施形態に係る室内熱交換器210においても、他の実施形態における室内熱交換器と同様に、冷媒がまず2列熱交換器221に流入し、2列熱交換器221のすべての流路を通過した後で、背面側1列熱交換器222に冷媒が流入する。すなわち、背面側1列熱交換器222には、十分に冷却された冷媒が流入する。したがって、室内熱交換器210を通過した空気の温度差を小さくすることができ、結露を防止することができる。   In the indoor heat exchanger 210 according to the third embodiment, similarly to the indoor heat exchangers in the other embodiments, the refrigerant first flows into the two-row heat exchanger 221 and all of the two-row heat exchanger 221 After passing through the flow path, the refrigerant flows into the back-side single-row heat exchanger 222. That is, the sufficiently cooled refrigerant flows into the back-side single-row heat exchanger 222. Therefore, the temperature difference of the air that has passed through the indoor heat exchanger 210 can be reduced, and dew condensation can be prevented.

(第4の実施形態)
次に、第4の実施形態に係る室内熱交換器210について、第3の実施形態に係る室内熱交換器210と異なる点を主に説明する。図7は、第4の実施形態に係る室内熱交換器210の断面図である。第4の実施形態に係る室内熱交換器210は、冷媒が1本の流路で2列熱交換器221に流入し、2列熱交換器221内で2つの流路に分岐する。
(Fourth embodiment)
Next, the differences between the indoor heat exchanger 210 according to the fourth embodiment and the indoor heat exchanger 210 according to the third embodiment will be mainly described. FIG. 7 is a cross-sectional view of the indoor heat exchanger 210 according to the fourth embodiment. In the indoor heat exchanger 210 according to the fourth embodiment, the refrigerant flows into the two-row heat exchanger 221 through one flow path, and branches into two flow paths in the two-row heat exchanger 221.

図7に示すように、冷媒は、2列熱交換器221の風上列2211の下から5番目の段221eへ流入する。冷媒は5番目の段221eから最上段221bまで上方へ流れる。流路は最上段221bで2つの流路に分岐する。一方の流路は、冷媒が、風上列2211の最上段221bから、風下列2212の上から10番目の段221fへ流入し、最上段221cまで上方へ流れ、背面側1列熱交換器222の最上段222aへ流入し、上から4番目の段222cを流出口とする経路である。他方の流路は、風上列2211の最上段221bから風下列2212の下から6番目の段221gへ流入し、1段下の段221gを経由して、風上列2211の下から4番目の段221iから最下段221aまで下方へ流れ、背面側1列熱交換器222の最下段222bへ流入し、下から4番目の段222dを流出口とする経路である。   As shown in FIG. 7, the refrigerant flows into the fifth stage 221e from the bottom of the upwind row 2211 of the two-row heat exchanger 221. The refrigerant flows upward from the fifth stage 221e to the uppermost stage 221b. The flow path branches into two flow paths at the uppermost stage 221b. In one flow path, the refrigerant flows from the uppermost stage 221b of the leeward row 2211 to the tenth stage 221f from the top of the leeward row 2212 and flows upward to the uppermost stage 221c, where the rear-side single-row heat exchanger 222 Of the uppermost stage 222a, and the fourth stage 222c from the top as an outlet. The other flow path flows from the uppermost stage 221b of the leeward row 2211 to the sixth stage 221g from the bottom of the leeward column 2212, passes through the stage 221g one stage below, and passes through the fourth stage from the bottom of the leeward column 2211. Flows downward from the lower stage 221i to the lowermost stage 221a, flows into the lowermost stage 222b of the rear-side single-row heat exchanger 222, and has the fourth stage 222d from the bottom as an outlet.

第2の実施形態において説明したように、2パス構成においても、このように、まず2列熱交換器221に冷媒を流し、次いで背面側1列熱交換器222へ冷媒を流すことにより、室内熱交換器210を通過した空気温度の差を小さくすることができる。さらに、本実施形態においては、各パスの出口をいずれも背面側1列熱交換器222内に設けた。一方のパス出口を背面側1列熱交換器222に設け、他方のパス出口を2列熱交換器221内に設けることとすると、温度が低下した出口側の冷媒が2列熱交換器221内を通過することになり、空気を過剰に冷やしてしまう可能性がある。このような冷やし過ぎを避けるべく、本実施形態においては、上述各のように各パスの出口を背面側1列熱交換器222内に設けることとした。   As described in the second embodiment, even in the two-pass configuration, the refrigerant flows first through the two-row heat exchanger 221 and then flows through the rear-side single-row heat exchanger 222 in this manner. The difference in the temperature of the air that has passed through the heat exchanger 210 can be reduced. Further, in the present embodiment, all the outlets of each path are provided in the rear-side single-row heat exchanger 222. If one path outlet is provided in the back-side single-row heat exchanger 222 and the other path outlet is provided in the two-row heat exchanger 221, the outlet-side refrigerant whose temperature has decreased is discharged into the two-row heat exchanger 221. And the air may be excessively cooled. In order to avoid such overcooling, in the present embodiment, the outlet of each path is provided in the back-side single-row heat exchanger 222 as described above.

10 空気調和機
100 室内機
110 熱交換器
111 2列熱交換器
112 前面側1列熱交換器
113 背面側1列熱交換器
Reference Signs List 10 air conditioner 100 indoor unit 110 heat exchanger 111 double row heat exchanger 112 front side single row heat exchanger 113 rear side single row heat exchanger

Claims (17)

室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室外機は、膨張弁を有し、
前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、
前記2列熱交換器は、前記室内機の前面側に配置され、
前記1列熱交換器は、前記室内機の背面側に配置され、
冷房運転時、前記膨張弁は、前記2列熱交換器の一方の列の少なくとも一部、及び、前記2列熱交換器の他方の列の少なくとも一部を介して、前記1列熱交換器に接続され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The outdoor unit has an expansion valve,
The indoor heat exchanger has a two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a single-row heat exchanger in which one row of heat transfer tubes is arranged,
The two-row heat exchanger is arranged on the front side of the indoor unit,
The single-row heat exchanger is disposed on the rear side of the indoor unit,
During the cooling operation, the expansion valve is connected to the one-row heat exchanger via at least a part of one row of the two-row heat exchanger and at least a part of the other row of the two-row heat exchanger. Connected to
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室外機は、膨張弁を有し、
前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、
前記2列熱交換器は、前記室内機の前面側に配置され、
前記室内熱交換器は、第1の1列熱交換器と、第2の1列熱交換器とを有し、
前記第1の1列熱交換器は、前記室内機の背面側に配置され、
前記第2の1列熱交換器は、前記2列熱交換器の下側に配置され、
冷房運転時、前記膨張弁は、前記2列熱交換器の一方の列の少なくとも一部、及び、前記2列熱交換器の他方の列の少なくとも一部を介して、前記1列熱交換器に接続され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The outdoor unit has an expansion valve,
The indoor heat exchanger has a two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a single-row heat exchanger in which one row of heat transfer tubes is arranged,
The two-row heat exchanger is arranged on the front side of the indoor unit,
The indoor heat exchanger has a first single-row heat exchanger and a second single-row heat exchanger,
The first single-row heat exchanger is disposed on a rear side of the indoor unit,
The second single-row heat exchanger is disposed below the double-row heat exchanger;
During the cooling operation, the expansion valve is connected to the one-row heat exchanger via at least a part of one row of the two-row heat exchanger and at least a part of the other row of the two-row heat exchanger. Connected to
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
前記膨張弁は、前記一方の列の全部を介して前記他方の列の少なくとも一部と接続されていることを特徴とする請求項1又は2に記載の空気調和機。   The air conditioner according to claim 1, wherein the expansion valve is connected to at least a part of the other row through the entirety of the one row. 前記膨張弁は、前記2列熱交換器内の全流路を介して前記1列熱交換器に接続されていることを特徴とする請求項1乃至3の何れか1項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein the expansion valve is connected to the single-row heat exchanger via all flow paths in the double-row heat exchanger. Machine. 前記2列熱交換器は、前記1列熱交換器と前記2列熱交換器の接続部の温度が露点温度に応じて定まる温度になるように配管されていることを特徴とする請求項1乃至4の何れか1項に記載の空気調和機。   2. The double-row heat exchanger is piped such that a temperature of a connecting portion between the single-row heat exchanger and the double-row heat exchanger becomes a temperature determined according to a dew point temperature. 3. The air conditioner according to any one of claims 4 to 4. 前記膨張弁は、前記2列熱交換器内における、前記2列熱交換器の全流路のうち半分以上の流路を介して、前記1列熱交換器に接続されていることを特徴とする請求項1乃至5の何れか1項に記載の空気調和機。   The expansion valve is connected to the single-row heat exchanger via at least half of all the flow paths of the double-row heat exchanger in the double-row heat exchanger. The air conditioner according to any one of claims 1 to 5, wherein 前記2列熱交換器は、前記1列熱交換器のうち前記2列熱交換器に最も近い位置に設けられた伝熱管に接続されていることを特徴とする請求項1乃至6の何れか1項に記載の空気調和機。   The said two-row heat exchanger is connected to the heat exchanger tube provided in the position closest to the said two-row heat exchanger among the said one-row heat exchangers, The Claim 1 characterized by the above-mentioned. Item 2. The air conditioner according to item 1. 前記2列熱交換器の前記一方の列は、前記膨張弁側から重力方向に逆らう方向に沿って配管されていることを特徴とする請求項1乃至7の何れか1項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 7, wherein the one row of the two-row heat exchanger is piped from the expansion valve side along a direction opposite to a direction of gravity. Machine. 前記一方の列は、前記2列熱交換器に流れ込む風の風上側に配置され、
前記他方の列は、前記2列熱交換器に流れ込む風の風下側に配置されることを特徴とする請求項1乃至8の何れか1項に記載の空気調和機。
The one row is arranged on the windward side of the wind flowing into the two-row heat exchanger,
The air conditioner according to any one of claims 1 to 8, wherein the other row is arranged on a leeward side of wind flowing into the two-row heat exchanger.
前記室内熱交換器の冷房運転時の流出口は、前記1列熱交換器に設けられていることを特徴とする請求項1乃至9の何れか1項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 9, wherein an outlet during the cooling operation of the indoor heat exchanger is provided in the single-row heat exchanger. 前記室内熱交換器の伝熱管は、アルミニウム又はアルミニウム合金で形成されていることを特徴とする請求項1乃至10の何れか1項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 10, wherein the heat transfer tube of the indoor heat exchanger is formed of aluminum or an aluminum alloy. 室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室外機は、膨張弁を有し、
前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、
前記2列熱交換器は、前記室内機の前面側に配置され、
前記1列熱交換器は、前記室内機の背面側に配置され、
冷房運転時、前記膨張弁は、前記2列熱交換器の少なくとも一部を介して前記1列熱交換器に接続され、
前記2列熱交換器は、前記1列熱交換器と前記2列熱交換器の接続部の温度が露点温度に応じて定まる温度になるように配管され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The outdoor unit has an expansion valve,
The indoor heat exchanger has a two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a single-row heat exchanger in which one row of heat transfer tubes is arranged,
The two-row heat exchanger is arranged on the front side of the indoor unit,
The single-row heat exchanger is disposed on the rear side of the indoor unit,
During a cooling operation, the expansion valve is connected to the single-row heat exchanger via at least a part of the double-row heat exchanger,
The double-row heat exchanger is piped such that the temperature of the connection between the single-row heat exchanger and the double-row heat exchanger is a temperature determined according to the dew point temperature,
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室外機は、膨張弁を有し、
前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された第1の1列熱交換器と、一列の伝熱管が配置された第2の1列熱交換器とを有し、
前記2列熱交換器は、前記室内機の前面側に配置され、
前記第の1列熱交換器は、前記2列熱交換器の下側に配置され、
前記第の1列熱交換器は、前記室内機の背面側に配置され、
冷房運転時、前記膨張弁は、前記2列熱交換器の少なくとも一部を介して前記第1の1列熱交換器及び前記第2の1列熱交換器に接続され、
前記2列熱交換器は、前記2列熱交換器と前記第1の1列熱交換器の接続部の温度が露点温度に応じて定まる温度になるように配管され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The outdoor unit has an expansion valve,
The indoor heat exchanger includes a two-row heat exchanger in which two rows of heat transfer tubes are arranged, a first single-row heat exchanger in which one row of heat exchanger tubes is arranged, and a one-row heat exchanger tube. A second single-row heat exchanger;
The two-row heat exchanger is arranged on the front side of the indoor unit,
The first single-row heat exchanger is disposed below the double-row heat exchanger;
The second single-row heat exchanger is disposed on a rear side of the indoor unit,
During cooling operation, the expansion valve is connected to the first single-row heat exchanger and the second single-row heat exchanger via at least a part of the double-row heat exchanger ,
The two rows heat exchanger is a pipe such that the temperature of the connecting portion before Symbol the two rows heat exchanger first 1 column heat exchanger is determined temperature depending on the dew point temperature,
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された1列熱交換器と、を有し、
前記2列熱交換器は、前記室内機の前面側に配置され、
前記1列熱交換器は、前記室内機の背面側に配置され、
前記室外機は、膨張弁を有し、
冷房運転時、前記膨張弁は、前記2列熱交換器内における、前記2列熱交換器の全流路のうち半分以上の流路を介して、前記1列熱交換器に接続され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The indoor heat exchanger has a two-row heat exchanger in which two rows of heat transfer tubes are arranged, and a single-row heat exchanger in which one row of heat transfer tubes is arranged,
The two-row heat exchanger is arranged on the front side of the indoor unit,
The single-row heat exchanger is disposed on the rear side of the indoor unit,
The outdoor unit has an expansion valve,
During the cooling operation, the expansion valve is connected to the single-row heat exchanger via half or more of all the flow paths of the double-row heat exchanger in the double-row heat exchanger,
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室内熱交換器は、2列の伝熱管が配置された2列熱交換器と、1列の伝熱管が配置された第1の1列熱交換器と、1列の伝熱管が配置された第2の1列熱交換器と、を有し、
前記2列熱交換器は、前記室内機の前面側に配置され、
前記第の1列熱交換器は、前記2列熱交換器の下側に配置され、
前記第の1列熱交換器は、前記室内機の背面側に配置され、
前記室外機は、膨張弁を有し、
冷房運転時、前記膨張弁は、前記2列熱交換器内における、前記2列熱交換器の全流路のうち半分以上の流路を介して、前記第1の1列熱交換器及び前記第2の1列熱交換器に接続され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The indoor heat exchanger includes a two-row heat exchanger in which two rows of heat transfer tubes are arranged, a first single-row heat exchanger in which one row of heat exchanger tubes is arranged, and a one-row heat exchanger tube. A second single-row heat exchanger,
The two-row heat exchanger is arranged on the front side of the indoor unit,
The first single-row heat exchanger is disposed below the double-row heat exchanger;
The second single-row heat exchanger is disposed on a rear side of the indoor unit,
The outdoor unit has an expansion valve,
At the time of cooling operation, the expansion valve is connected to the first single-row heat exchanger and the first single-row heat exchanger through half or more of all the flow paths of the double-row heat exchanger in the double-row heat exchanger. Connected to a second single-row heat exchanger ,
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室外機は、膨張弁を有し、
前記室内熱交換器は、m(mは2以上の整数)列の伝熱管が配置されたm列熱交換器と、n(nは1以上かつmよりも小さい整数)列の伝熱管が配置されたn列熱交換器と、を有し、
前記m列熱交換器は、前記室内機の前面側に配置され、
前記n列熱交換器は、前記室内機の背面側に配置され、
冷房運転時、前記膨張弁は、前記m列熱交換器の第1列の少なくとも一部、及び前記m列熱交換器の第2列の少なくとも一部を介して、前記n列熱交換器に接続され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The outdoor unit has an expansion valve,
The indoor heat exchanger includes an m-row heat exchanger in which m (m is an integer of 2 or more) rows of heat transfer tubes and an n-row (n is an integer of 1 or more and less than m) rows of heat transfer tubes. N-row heat exchanger,
The m-row heat exchanger is disposed on the front side of the indoor unit,
The n-row heat exchanger is disposed on the rear side of the indoor unit,
During the cooling operation, the expansion valve is connected to the n-row heat exchanger via at least a part of the first row of the m-row heat exchanger and at least a part of the second row of the m-row heat exchanger. Connected
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
室内機と室外機を備える空気調和機であって、
前記室内機は、室内熱交換器を有し、
前記室外機は、膨張弁を有し、
前記室内熱交換器は、m(mは2以上の整数)列の伝熱管が配置されたm列熱交換器と、n(nは1以上かつmよりも小さい整数)列の伝熱管が配置された第1のn列熱交換器と、n列の伝熱管が配置された第2のn列熱交換器と、を有し、
前記m列熱交換器は、前記室内機の前面側に配置され、
前記第のn列熱交換器は、前記m列熱交換器の下側に配置され、
前記第のn列熱交換器は、前記室内機の背面側に配置され、
冷房運転時、前記膨張弁は、前記m列熱交換器の第1列の少なくとも一部、及び前記m列熱交換器の第2列の少なくとも一部を介して、前記第1のn列熱交換器及び前記第2のn列熱交換器に接続され、
前記室内熱交換器の流路は、1パスで形成されている
ことを特徴とする空気調和機。
An air conditioner including an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger,
The outdoor unit has an expansion valve,
The indoor heat exchanger includes an m-row heat exchanger in which m (m is an integer of 2 or more) rows of heat transfer tubes and an n-row (n is an integer of 1 or more and less than m) rows of heat transfer tubes. A first n-row heat exchanger, and a second n-row heat exchanger in which n-row heat transfer tubes are arranged,
The m-row heat exchanger is disposed on the front side of the indoor unit,
The first n-row heat exchanger is disposed below the m-row heat exchanger;
The second n-row heat exchanger is disposed on the rear side of the indoor unit,
During the cooling operation, the expansion valve, at least a portion of the first column of m column heat exchanger, and through at least a portion of the second column of the m columns heat exchanger, the first n columns fever An exchanger and said second n-row heat exchanger ;
The air conditioner according to claim 1, wherein a flow path of the indoor heat exchanger is formed in one pass.
JP2019540020A 2019-03-12 2019-03-12 Air conditioner Active JP6641070B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009993 WO2020183606A1 (en) 2019-03-12 2019-03-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP6641070B1 true JP6641070B1 (en) 2020-02-05
JPWO2020183606A1 JPWO2020183606A1 (en) 2021-04-01

Family

ID=69320955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540020A Active JP6641070B1 (en) 2019-03-12 2019-03-12 Air conditioner

Country Status (4)

Country Link
JP (1) JP6641070B1 (en)
CN (1) CN111936792B (en)
TW (1) TWI731588B (en)
WO (1) WO2020183606A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216620016U (en) * 2021-06-01 2022-05-27 广东美的暖通设备有限公司 Wall-mounted air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327080A (en) * 1995-06-02 1996-12-10 Mitsubishi Heavy Ind Ltd Air conditioner
JPH09210452A (en) * 1996-02-05 1997-08-12 Daikin Ind Ltd Air conditioner
JPH09264555A (en) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp Heat exchanger for air conditioner
JPH10160266A (en) * 1996-11-28 1998-06-19 Hitachi Ltd Heat exchanger for air conditioner
JPH10246506A (en) * 1997-03-03 1998-09-14 Hitachi Ltd Indoor unit for air conditioner
JP2001174047A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2005214560A (en) * 2004-01-30 2005-08-11 Daikin Ind Ltd Indoor machine of air conditioner
CN108458406A (en) * 2018-03-21 2018-08-28 广东美的制冷设备有限公司 New type heat exchanger, wall-hanging air conditioner indoor unit and air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159855A (en) * 1997-11-28 1999-06-15 Mitsubishi Heavy Ind Ltd Air conditioner
JP2001349606A (en) * 2000-06-06 2001-12-21 Fujitsu General Ltd Air conditioner
JP2002162065A (en) * 2000-11-20 2002-06-07 Fujitsu General Ltd Air conditioner
CN201751772U (en) * 2010-07-21 2011-02-23 海尔集团公司 Air conditioner and pipe diameter heat exchanger thereof
JP5316668B1 (en) * 2012-04-16 2013-10-16 ダイキン工業株式会社 Air conditioner
CN202792705U (en) * 2012-08-20 2013-03-13 广东美的电器股份有限公司 Air conditioner and heat exchanger thereof
JP2015013253A (en) * 2013-07-04 2015-01-22 ダイキン工業株式会社 Dehumidifier
CN206496497U (en) * 2016-10-28 2017-09-15 芜湖美智空调设备有限公司 Air-conditioning heat exchanger and air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327080A (en) * 1995-06-02 1996-12-10 Mitsubishi Heavy Ind Ltd Air conditioner
JPH09210452A (en) * 1996-02-05 1997-08-12 Daikin Ind Ltd Air conditioner
JPH09264555A (en) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp Heat exchanger for air conditioner
JPH10160266A (en) * 1996-11-28 1998-06-19 Hitachi Ltd Heat exchanger for air conditioner
JPH10246506A (en) * 1997-03-03 1998-09-14 Hitachi Ltd Indoor unit for air conditioner
JP2001174047A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2005214560A (en) * 2004-01-30 2005-08-11 Daikin Ind Ltd Indoor machine of air conditioner
CN108458406A (en) * 2018-03-21 2018-08-28 广东美的制冷设备有限公司 New type heat exchanger, wall-hanging air conditioner indoor unit and air conditioner

Also Published As

Publication number Publication date
WO2020183606A1 (en) 2020-09-17
JPWO2020183606A1 (en) 2021-04-01
TWI731588B (en) 2021-06-21
TW202033917A (en) 2020-09-16
CN111936792B (en) 2021-10-22
CN111936792A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
JP6641721B2 (en) Heat exchangers and air conditioners
US9702637B2 (en) Heat exchanger, indoor unit, and refrigeration cycle apparatus
JP6388670B2 (en) Refrigeration cycle equipment
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
JP6223596B2 (en) Air conditioner indoor unit
JP4845987B2 (en) Air conditioning system
JP6641070B1 (en) Air conditioner
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP2007147221A (en) Heat exchanger with fin
JP2012167913A (en) Air conditioner
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
JP2018169078A (en) Air conditioner
JP6104357B2 (en) Heat exchange device and refrigeration cycle device provided with the same
JP3177302U (en) Air conditioning unit
JP2008039278A (en) Heat exchanger and indoor unit of air conditioner
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP4624146B2 (en) Air conditioner indoor unit
JP2014137172A (en) Heat exchanger and refrigerator
JP6869382B2 (en) Air conditioner
JPH1151412A (en) Indoor unit for air-conditioner, and its indoor heat exchanger
WO2011111602A1 (en) Air conditioner
EP4166858A1 (en) Outdoor unit for air conditioning device
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
WO2022215193A1 (en) Refrigeration cycle device
KR102434570B1 (en) Heat exchangers, outdoor units and refrigeration cycle units

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190723

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190723

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6641070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150