WO2023281656A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2023281656A1
WO2023281656A1 PCT/JP2021/025606 JP2021025606W WO2023281656A1 WO 2023281656 A1 WO2023281656 A1 WO 2023281656A1 JP 2021025606 W JP2021025606 W JP 2021025606W WO 2023281656 A1 WO2023281656 A1 WO 2023281656A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat exchanger
heat
refrigerant
flow
Prior art date
Application number
PCT/JP2021/025606
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180100132.XA priority Critical patent/CN117642595A/en
Priority to PCT/JP2021/025606 priority patent/WO2023281656A1/en
Priority to JP2023532947A priority patent/JPWO2023281656A1/ja
Publication of WO2023281656A1 publication Critical patent/WO2023281656A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present disclosure relates to heat exchangers and refrigeration cycle devices.
  • multi-row heat transfer tubes As a means of improving the performance of heat exchangers in refrigeration cycle equipment, multi-row heat transfer tubes have been proposed. Since heat exchangers are mounted in a limited space, multi-row heat transfer tubes can improve the mounting density of the heat transfer tubes and expand the heat transfer area.
  • a heat exchanger of an indoor unit of an air conditioner disclosed in Japanese Patent Application Laid-Open No. 2014-40983 Patent Document 1 has heat transfer tubes arranged in multiple rows.
  • heat exchange loss occurs when the refrigerant flows parallel to the air flow due to the effect of temperature distribution in the non-azeotropic refrigerant mixture. occurs.
  • the direction of the refrigerant flowing through the heat exchanger is opposite between when the heat exchanger functions as a condenser and when the heat exchanger functions as an evaporator. Therefore, the refrigerant flows parallel to the air flow in either the condenser or the evaporator. Therefore, heat exchange efficiency is reduced in either the condenser or the evaporator.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a heat exchanger and a refrigeration cycle that can ensure average heat exchange efficiency in a condenser and an evaporator while using a non-azeotropic refrigerant mixture. to provide the equipment.
  • a heat exchanger of the present disclosure includes a first heat transfer section having a plurality of first heat transfer tubes, and a non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes of the first heat transfer section.
  • the plurality of first heat transfer tubes are arranged in a row.
  • the first heat transfer section includes a plurality of first heat transfer tubes arranged such that the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes is orthogonal to the flow of air flowing through the first heat transfer section. have.
  • the heat exchanger of the present disclosure it is possible to ensure average heat exchange efficiency in the condenser and evaporator while using a non-azeotropic refrigerant mixture.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device according to Embodiment 1.
  • FIG. 3 is a diagram showing a heat exchanger and a blowout temperature distribution according to Embodiment 1; 1 is a perspective view schematically showing a heat exchanger according to Embodiment 1;
  • FIG. 3 is a cross-sectional view schematically showing first heat transfer tubes and second heat transfer tubes of the heat exchanger according to Embodiment 1.
  • FIG. 4 is a perspective view schematically showing a capillary tube of the heat exchanger according to Embodiment 1;
  • FIG. FIG. 4 is a cross-sectional view schematically showing a modification of the first heat transfer tube and the second heat transfer tube of the heat exchanger according to Embodiment 1;
  • FIG. 4 is a cross-sectional view schematically showing Modification 1 of the heat exchanger according to Embodiment 1;
  • FIG. 7 is a front view schematically showing Modification 2 of the heat exchanger according to Embodiment 1;
  • FIG. 3 shows counter-flow, co-flow and cross-flow heat exchange efficiencies in a condenser and an evaporator.
  • 4 is a diagram showing the relationship between refrigerant flow and refrigerant temperature in the condenser and evaporator of the heat exchanger according to Embodiment 1.
  • FIG. FIG. 7 is a diagram showing a heat exchanger and a blowout temperature distribution according to Embodiment 2;
  • FIG. 7 is a cross-sectional view schematically showing a modification of the heat exchanger according to Embodiment 2;
  • FIG. 9 is a diagram showing the relationship between refrigerant flow and refrigerant temperature in a condenser and an evaporator of a heat exchanger according to Embodiment 2;
  • FIG. 10 is a diagram showing a heat exchanger and outlet temperature distribution according to Embodiment 3;
  • FIG. 10 is a cross-sectional view schematically showing Modification 1 of the heat exchanger according to Embodiment 3;
  • FIG. 11 is a cross-sectional view schematically showing Modification 2 of the heat exchanger according to Embodiment 3;
  • FIG. 10 is a diagram showing the relationship between refrigerant flow and temperature in a condenser and an evaporator of a heat exchanger according to Embodiment 3;
  • Embodiment 1 A configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 will be described with reference to FIG. In Embodiment 1, an air conditioner will be described as an example of the refrigeration cycle device 100.
  • FIG. Solid arrows in FIG. 1 indicate the flow of the refrigerant during the cooling operation.
  • Broken line arrows in FIG. 1 indicate the flow of the refrigerant during the heating operation.
  • the refrigeration cycle device 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, an outdoor fan 6, and an indoor fan. 7 and a control device 8 .
  • the heat exchanger HE according to Embodiment 1 is applied to the outdoor heat exchanger 3 .
  • a refrigerating cycle device 100 includes an outdoor unit 101 and an indoor unit 102 connected to the outdoor unit 101 .
  • a refrigerant circuit 10 includes a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 , an expansion valve 4 and an indoor heat exchanger 5 .
  • Compressor 1 , four-way valve 2 , outdoor heat exchanger 3 , expansion valve 4 and indoor heat exchanger 5 are connected by piping 20 .
  • the refrigerant circuit 10 is configured to circulate the refrigerant.
  • the refrigerant is a non-azeotropic mixed refrigerant.
  • the non-azeotropic refrigerant mixture contains R32 and may contain R1234yf as another refrigerant.
  • the non-azeotropic refrigerant mixture may contain R1123 or R1234ze as another refrigerant.
  • the non-azeotropic mixed refrigerant may be a mixed refrigerant of three or more types.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the outdoor fan 6 and the control device 8 are housed in the outdoor unit 101.
  • Indoor heat exchanger 5 and indoor fan 7 are housed in indoor unit 102 .
  • the outdoor unit 101 and the indoor unit 102 are connected by a gas pipe 21 and a liquid pipe 22 .
  • a part of the pipe 20 constitutes a gas pipe 21 and a liquid pipe 22 .
  • the refrigerant circuit 10 is configured such that the refrigerant circulates through the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2 in this order during cooling operation. Further, the refrigerant circuit 10 is configured such that the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2 during the heating operation. .
  • the compressor 1 is configured to compress refrigerant.
  • the compressor 1 is for compressing the non-azeotropic refrigerant mixture flowing into the heat exchanger HE.
  • the compressor 1 is configured to compress and discharge the sucked refrigerant.
  • the compressor 1 may be configured to have a variable capacity.
  • the compressor 1 may be configured such that the displacement is changed by adjusting the rotational speed of the compressor 1 based on an instruction from the control device 8 .
  • the four-way valve 2 is configured to switch the flow of refrigerant so that the refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 or the indoor heat exchanger 5 .
  • the four-way valve 2 has a first port P1 to a fourth port P4.
  • the first port P1 is connected to the discharge side of the compressor 1 .
  • a second port P2 is connected to the suction side of the compressor 1 .
  • the third port P3 is connected to the outdoor heat exchanger 3.
  • a fourth port P4 is connected to the indoor heat exchanger 5 .
  • the four-way valve 2 is configured to flow the refrigerant discharged from the compressor 1 to the outdoor heat exchanger 3 during cooling operation.
  • the four-way valve 2 During cooling operation, the four-way valve 2 has the first port P1 connected to the third port P3 and the second port P2 connected to the fourth port P4.
  • the four-way valve 2 is configured to flow the refrigerant discharged from the compressor 1 to the indoor heat exchanger 5 during heating operation.
  • the four-way valve 2 has the first port P1 connected to the fourth port P4 and the second port P2 connected to the third port P3.
  • the outdoor heat exchanger 3 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3 .
  • the outdoor heat exchanger 3 is configured to function as a condenser that condenses refrigerant during cooling operation, and to function as an evaporator that evaporates refrigerant during heating operation.
  • the expansion valve 4 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser.
  • the expansion valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation, and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation.
  • Expansion valve 4 is, for example, an electromagnetic expansion valve.
  • the indoor heat exchanger 5 is configured to exchange heat between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5 .
  • the indoor heat exchanger 5 is configured to function as an evaporator that evaporates the refrigerant during cooling operation and as a condenser that condenses the refrigerant during heating operation.
  • the outdoor blower 6 is configured to blow outdoor air to the outdoor heat exchanger 3. That is, the outdoor fan 6 is configured to supply air to the outdoor heat exchanger 3 .
  • the indoor blower 7 is configured to blow indoor air to the indoor heat exchanger 5 . That is, the indoor fan 7 is configured to supply air to the indoor heat exchanger 5 .
  • the control device 8 is configured to perform calculations, instructions, etc. to control each device of the refrigeration cycle device 100 .
  • the control device 8 is electrically connected to the compressor 1, the four-way valve 2, the expansion valve 4, the outdoor blower 6, the indoor blower 7, etc., and is configured to control these operations.
  • FIG. 2 shows the relationship between the structure of the heat exchanger HE and the air outlet temperature distribution. Solid arrows in FIG. 3 indicate the flow of refrigerant, and white arrows in FIG. 3 indicate the flow of air.
  • the outdoor heat exchanger 3 includes a heat exchange section 31, a header distributor 32, a gas-liquid two-phase distributor 33, and a non-azeotropic refrigerant. have.
  • the heat exchange section 31 includes a first heat exchange section 31a and a second heat exchange section 31b.
  • the first heat exchange section 31a is arranged on the windward side in the air flow direction D1.
  • the first heat exchange portions 31a are arranged in the first row in the air flow direction D1.
  • the second heat exchange portion 31b is arranged on the leeward side in the air flow direction D1.
  • the second heat exchange portions 31b are arranged in the second row in the air flow direction D1.
  • the first heat exchange section 31a includes a first heat transfer section HP1.
  • the first heat exchange section 31a includes a plurality of first heat transfer sections HP1.
  • the second heat exchange section 31b includes a second heat transfer section HP2.
  • the second heat exchange section 31b includes a plurality of second heat transfer sections HP2.
  • the first heat exchange portion 31a has a plurality of first fins F1, a plurality of first heat transfer tubes T1, and a plurality of first connection portions C1.
  • Each of the plurality of first fins F1 has a plate shape.
  • the plurality of first fins F1 are arranged so as to overlap each other.
  • the material of the plurality of first fins F1 is, for example, aluminum.
  • the multiple first heat transfer tubes T1 penetrate through the multiple first fins F1.
  • the plurality of first heat transfer tubes T1 are configured to linearly extend in an orthogonal direction D2 orthogonal to the air flow direction D1.
  • the plurality of first connection portions C1 are portions that connect the first heat transfer tubes T1 to each other outside the plurality of first fins F1.
  • Each of the plurality of first heat transfer tubes T1 is connected by each of the plurality of first connection portions C1, so that the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1 meander as a whole.
  • the material of the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1 is, for example, copper or aluminum.
  • the first heat transfer part HP1 has a plurality of first heat transfer tubes T1.
  • the plurality of first heat transfer tubes T1 are arranged in a row.
  • the plurality of first heat transfer tubes T1 are arranged side by side in a stage direction D3 that intersects the air flow direction D1 and the orthogonal direction D2.
  • the first heat transfer sections HP1 are arranged such that the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 is orthogonal to the flow of air flowing through the first heat transfer sections HP1. It has a heat transfer tube T1.
  • the second heat exchange portion 31b has a plurality of second fins F2, a plurality of second heat transfer tubes T2, and a plurality of second connection portions C2.
  • Each of the plurality of second fins F2 has a plate shape.
  • the plurality of second fins F2 are arranged so as to overlap each other.
  • the material of the plurality of second fins F2 is aluminum, for example.
  • the plurality of second heat transfer tubes T2 pass through the plurality of second fins F2.
  • the plurality of second heat transfer tubes T2 are configured to linearly extend in an orthogonal direction D2 orthogonal to the air flow direction D1.
  • the plurality of second connection portions C2 are portions that connect the second heat transfer tubes T2 to each other outside the plurality of second fins F2.
  • Each of the plurality of second heat transfer tubes T2 is connected by each of the plurality of second connection portions C2, so that the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2 are configured to meander as a whole.
  • the material of the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2 is, for example, copper or aluminum.
  • the second heat transfer part HP2 has a plurality of second heat transfer tubes T2.
  • the second heat transfer section HP2 is arranged adjacent to the first heat transfer section HP1.
  • the plurality of second heat transfer tubes T2 are arranged in a row.
  • the plurality of second heat transfer tubes T2 are arranged side by side along the direction in which the plurality of first heat transfer tubes T1 are arranged.
  • the plurality of second heat transfer tubes T2 are arranged side by side in a stage direction D3 that intersects the airflow direction D1 and the orthogonal direction D2.
  • the non-azeotropic refrigerant mixture flows through the plurality of first heat transfer tubes T1 of the first heat transfer section HP1.
  • the non-azeotropic refrigerant mixture continuously flows through the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1.
  • the non-azeotropic refrigerant mixture flows through the plurality of second heat transfer tubes T2 of the second heat transfer portion HP2.
  • the non-azeotropic refrigerant mixture continuously flows through the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2.
  • a header distributor 32 is provided at the heat exchanger inlet (condenser inlet), and a gas-liquid two-phase distribution is provided at the heat exchanger outlet (condenser outlet).
  • a vessel 33 is provided.
  • the gas-liquid two-phase distributor 33 is configured to evenly distribute the gas-liquid two-phase flow.
  • the gas-liquid two-phase distributor 33 has a distributor 33 a and capillary tubes 34 .
  • each of the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1 is a circular tube.
  • Each of the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2 is a circular tube.
  • the capillary tubes 34 are connected to the first heat exchange sections 31a of the first row and the second heat exchange sections 31b of the second row. It includes a second capillary tube 34b.
  • the inner diameter of the first capillary tube 34a may be larger than the inner diameter of the second capillary tube 34b.
  • the length of the first capillary tube 34a may be longer than the length of the second capillary tube 34b.
  • first heat transfer tube T1 and second heat transfer tube T2 of heat exchanger HE are flat tubes. be.
  • FIG. 1 the operation of the refrigeration cycle apparatus 100 according to Embodiment 1 will be described with reference to FIGS. 1 to 3.
  • FIG. 1 the operation of the refrigeration cycle apparatus 100 according to Embodiment 1 will be described with reference to FIGS. 1 to 3.
  • the refrigeration cycle device 100 can selectively perform cooling operation and heating operation.
  • refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2.
  • the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor fan 6 .
  • the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7 .
  • the high-pressure gas refrigerant discharged from the compressor 1 passes through the header distributor 32 of the heat exchanger HE, and passes through the first heat transfer tube T1 of the first heat exchange section 31a of the first row and the second heat exchanger of the second row. It flows into the second heat transfer tube T2 of the portion 31b and flows perpendicularly to the air flow.
  • the flow resistance of the first capillary tube 34a installed on the outlet side of the first heat exchange section 31a is replaced by the flow resistance of the second capillary tube 34b installed on the outlet side of the second heat exchange section 31b. , more refrigerant flows through the first capillary tube 34a than through the second capillary tube 34b.
  • the high-pressure gas refrigerant becomes a high-pressure liquid refrigerant by exchanging heat with the air through the plurality of first fins F1, the plurality of first heat transfer tubes T1, the plurality of second fins F2, and the plurality of second heat transfer tubes T2. .
  • the refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2.
  • the indoor heat exchanger 5 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7 .
  • the outdoor heat exchanger 3 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor fan 6 .
  • the low-pressure gas-liquid two-phase refrigerant with low dryness is depressurized by the distributor 33a of the gas-liquid two-phase distributor 33 of the heat exchanger HE and stirred, so that the gas-liquid two-phase spray state is distributed with equal dryness. be done.
  • the flow resistance of the first capillary tubes 34a connected to the first heat exchange portions 31a of the first row is set higher than the flow resistance of the second capillary tubes 34b connected to the second heat exchange portions 31b of the second row. By reducing the size, more coolant flows through the first capillary tube 34a than through the second capillary tube 34b.
  • the low-pressure gas-liquid two-phase refrigerant with low dryness exchanges heat with the air via the plurality of first fins F1, the plurality of first heat transfer tubes T1, the plurality of first fins F1, and the plurality of second heat transfer tubes T2. becomes a low-pressure gas refrigerant.
  • a plurality of header distributors 32 and gas-liquid two-phase distributors 33 are arranged for each row.
  • two header distributors 32 and two gas-liquid two-phase distributors 33 are arranged.
  • Two electronic expansion valves 35 are arranged downstream of each of the two gas-liquid two-phase distributors 33, respectively.
  • the inner diameter of the first capillary tube 34a connected to the first heat exchange section 31a in the first row is the second diameter connected to the second heat exchange section 31b in the second row. It is made larger than the inner diameter of the capillary tube 34b. Furthermore, the length of the first capillary tubes 34a connected to the first heat exchange sections 31a in the first row is longer than the length of the second capillary tubes 34b connected to the second heat exchange sections 31b in the second row. do.
  • the plurality of first fins F1 are corrugated fins.
  • the multiple first heat transfer tubes T1 are straight flat tubes.
  • Each of the plurality of first fins F1 is arranged between each of the plurality of first heat transfer tubes T1.
  • Headers 36 are connected to both ends of each of the plurality of first heat transfer tubes T1.
  • Refrigerant temperature in each path with respect to the refrigerant flow when the heat exchanger HE in this embodiment functions as a condenser or an evaporator will be described with reference to FIG.
  • the refrigerant temperature decreases in both the first and second rows as the refrigerant flow increases.
  • the coolant temperature in the first row will be lower than the coolant temperature in the second row.
  • the refrigerant temperature increases in both the first and second rows as the refrigerant flow increases.
  • the coolant temperature in the first row will be higher than the coolant temperature in the second row.
  • the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 is combined with the flow of air flowing through the first heat transfer section HP1. It has a plurality of first heat transfer tubes T1 arranged so as to be orthogonal to each other. Therefore, the flow of the non-azeotropic refrigerant mixture becomes a cross flow with respect to the air flow. This makes it possible to increase the heat exchange efficiency compared to co-flow when the heat exchanger HE functions as either a condenser or an evaporator. Therefore, it is possible to secure an average heat exchange efficiency in the condenser and the evaporator while using the non-azeotropic mixed refrigerant.
  • the gas-liquid two-phase distributor 33 increases the pressure loss of the high-pressure gas refrigerant in the condenser.
  • the amount of refrigerant increases due to the increased capacity of the outlet header.
  • the pressure loss in the extension pipe increases.
  • the flow resistance of the first capillary tube 34a smaller than the flow resistance of the second capillary tube 34b, more refrigerant can flow through the first heat transfer tubes T1 in the first row, which have a large heat load. Therefore, since the difference in refrigerant outlet temperature between the first heat transfer tubes T1 of the first row and the second heat transfer tubes T2 of the second row is small, the heat exchange efficiency can be increased.
  • the refrigeration cycle apparatus 100 includes the heat exchanger HE described above. For this reason, it is possible to provide the refrigeration cycle apparatus 100 including the heat exchanger HE that can maintain the average heat exchange efficiency in the condenser and the evaporator while using a non-azeotropic mixed refrigerant.
  • Embodiment 2 The heat exchanger HE according to the second embodiment has the same configuration, operation and effects as the heat exchanger HE according to the first embodiment unless otherwise specified.
  • first heat transfer section HP1 and second heat transfer section HP2 are arranged on opposite sides of each other. are placed.
  • the refrigerant inlet is arranged at the uppermost stage, and the refrigerant outlet is arranged at the lowermost stage.
  • the refrigerant inlet is arranged at the lowest stage, and the refrigerant outlet is arranged at the uppermost stage. That is, the inlets and outlets of the non-azeotropic refrigerant mixture of the first heat transfer section HP1 and the second heat transfer section HP2 are arranged upside down.
  • the heat exchange section 31 includes a third heat exchange section 31c.
  • the third heat exchange portion 31c is arranged on the windward side of the first heat exchange portion 31a in the air flow direction D1.
  • the third heat exchange portions 31c are arranged in the first row in the air flow direction D1.
  • the third heat exchange section 31c includes a third heat transfer section HP3.
  • the third heat exchange section 31c includes a plurality of third heat transfer sections HP3.
  • the third heat exchange portion 31c has a plurality of third fins F3, a plurality of third heat transfer tubes T3, and a plurality of third connection portions C3 (not shown).
  • the plurality of third fins F3, the plurality of third heat transfer tubes T3, and the plurality of third connection portions C3 (not shown) are composed of the plurality of first fins F1, the plurality of first heat transfer tubes T1, and the plurality of It is configured in the same manner as the first connection portion C1 (not shown).
  • the non-azeotropic refrigerant mixture flows through the plurality of third heat transfer tubes T3 of the third heat transfer portion HP3.
  • the non-azeotropic refrigerant mixture continuously flows through the plurality of third heat transfer tubes T3 and the plurality of third connection portions C3 (not shown).
  • the capillary tube 34 includes a third capillary tube 34c connected to the third heat exchange section 31c.
  • the inner diameter of the third capillary tube 34c may be larger than the inner diameter of the first capillary tube 34a.
  • the length of the third capillary tube 34c may be longer than the length of the first capillary tube 34a.
  • the refrigerant temperature in each path with respect to the refrigerant flow when the heat exchanger HE in this embodiment functions as a condenser or an evaporator will be described.
  • the difference in refrigerant temperature between the first and second rows is smaller in both the condenser and the evaporator.
  • the non-azeotropic mixed refrigerant inlets and outlets of the first heat transfer section HP1 and the second heat transfer section HP2 are arranged on opposite sides of each other. Therefore, it is possible to average the temperature distribution of the blown air in the height direction of the heat exchanger HE.
  • the heat exchanger HE when the heat exchanger HE is applied to the outdoor heat exchanger 3, the amount of frost formed when the outside air is low is uniformed, so the average heating capacity can be improved. In addition, when the heat exchanger HE is applied to the indoor heat exchanger 5, dewdrops are less likely to occur, so comfort and quality performance can be improved.
  • Embodiment 3 The heat exchanger HE according to the third embodiment has the same configuration, operation and effects as the heat exchangers HE according to the first and second embodiments unless otherwise specified.
  • the first heat transfer section HP1 and the second heat transfer section HP2 have a first pass PS1 and a second pass PS2.
  • the first pass PS1 the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 is combined with the flow of air flowing through the first heat transfer section HP1 and the second heat transfer section HP2. are arranged parallel to each other.
  • the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 is combined with the flow of air flowing through the first heat transfer section HP1 and the second heat transfer section HP2. are arranged to face each other.
  • a first pass PS1 and a second pass PS2 are combined.
  • heat exchanging portion 31 includes a third heat exchanging portion 31c.
  • the third heat exchange portion 31c is arranged between the first heat exchange portion 31a and the second heat exchange portion 31b in the air flow direction D1.
  • the refrigerant temperature in each path with respect to the refrigerant flow when the heat exchanger HE in this embodiment functions as a condenser or an evaporator will be described.
  • the difference in refrigerant temperature between the first and second rows is smaller in both the condenser and the evaporator.
  • the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 reaches the first heat transfer section. It is arranged so as to be parallel to the flow of air flowing through HP1 and second heat transfer part HP2.
  • the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 is combined with the flow of air flowing through the first heat transfer section HP1 and the second heat transfer section HP2. are arranged to face each other. Therefore, it is possible to further average the temperature distribution of the blown air in the height direction of the heat exchanger HE. As a result, the heat load of each path is further uniformed, so that the heat exchange efficiency can be improved.
  • the heat exchanger HE when the heat exchanger HE is applied to the outdoor heat exchanger 3, the amount of frost formed when the outside air is low is uniformed, so the average heating capacity can be improved. In addition, when the heat exchanger HE is applied to the indoor heat exchanger 5, dewdrops are less likely to occur, so comfort and quality performance can be improved.

Abstract

This heat exchanger (HE) comprises: a first heat transfer part (HP1) having a plurality of first heat transfer pipes (T1); and a non-azeotropic mixture refrigerant, which flows through the plurality of first heat transfer pipes (T1) of the first heat transfer part (HP1). The plurality of first heat transfer pipes (T1) are aligned side by side. The first heat transfer part (HP1) has the plurality of first heat transfer pipes (T1) which are arranged such that the flow of the non-azeotropic mixture refrigerant flowing through the plurality of first heat transfer pipes (T1) is orthogonal to the flow of air flowing through the first heat transfer part (HP1).

Description

熱交換器および冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本開示は熱交換器および冷凍サイクル装置に関するものである。 The present disclosure relates to heat exchangers and refrigeration cycle devices.
 冷凍サイクル装置の熱交換器の性能向上手段として、伝熱管の多列化が提案されている。熱交換器は限られたスペースに実装されるため、多列化することで伝熱管の実装密度を向上させるとともに伝熱面積を拡大させることができる。例えば、特開2014-40983号公報(特許文献1)に記載された空気調和装置の室内ユニットの熱交換器は、多列化された伝熱管を有している。 As a means of improving the performance of heat exchangers in refrigeration cycle equipment, multi-row heat transfer tubes have been proposed. Since heat exchangers are mounted in a limited space, multi-row heat transfer tubes can improve the mounting density of the heat transfer tubes and expand the heat transfer area. For example, a heat exchanger of an indoor unit of an air conditioner disclosed in Japanese Patent Application Laid-Open No. 2014-40983 (Patent Document 1) has heat transfer tubes arranged in multiple rows.
特開2014-40983号公報JP 2014-40983 A
 多列化された伝熱管を有する熱交換器に非共沸混合冷媒が用いられる場合、非共沸混合冷媒に温度分布が生じる影響により、空気流れに対して並行に冷媒が流れると熱交換ロスが生じる。熱交換器が凝縮器として機能するときと熱交換器が蒸発器として機能するときとで、熱交換器を流れる冷媒の向きが反対となる。このため、凝縮器および蒸発器のいずれかで空気流れに対して並行に冷媒が流れる。したがって、凝縮器および蒸発器のいずれかで熱交換効率が低下する。 When a non-azeotropic refrigerant mixture is used in a heat exchanger with multiple rows of heat transfer tubes, heat exchange loss occurs when the refrigerant flows parallel to the air flow due to the effect of temperature distribution in the non-azeotropic refrigerant mixture. occurs. The direction of the refrigerant flowing through the heat exchanger is opposite between when the heat exchanger functions as a condenser and when the heat exchanger functions as an evaporator. Therefore, the refrigerant flows parallel to the air flow in either the condenser or the evaporator. Therefore, heat exchange efficiency is reduced in either the condenser or the evaporator.
 本開示は上記課題に鑑みてなされたものであり、その目的は、非共沸混合冷媒を用いつつ凝縮器および蒸発器で平均的に熱交換効率を確保することができる熱交換器および冷凍サイクル装置を提供することである。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a heat exchanger and a refrigeration cycle that can ensure average heat exchange efficiency in a condenser and an evaporator while using a non-azeotropic refrigerant mixture. to provide the equipment.
 本開示の熱交換器は、複数の第1伝熱管を有する第1伝熱部と、第1伝熱部の複数の第1伝熱管を流れる非共沸混合冷媒とを備えている。複数の第1伝熱管は一列に並んで配置されている。第1伝熱部は、複数の第1伝熱管を流れる非共沸混合冷媒の流れが第1伝熱部を流れる空気の流れに対して直交するように配置された複数の第1伝熱管を有している。 A heat exchanger of the present disclosure includes a first heat transfer section having a plurality of first heat transfer tubes, and a non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes of the first heat transfer section. The plurality of first heat transfer tubes are arranged in a row. The first heat transfer section includes a plurality of first heat transfer tubes arranged such that the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes is orthogonal to the flow of air flowing through the first heat transfer section. have.
 本開示の熱交換器によれば、非共沸混合冷媒を用いつつ凝縮器および蒸発器で平均的に熱交換効率を確保することができる。 According to the heat exchanger of the present disclosure, it is possible to ensure average heat exchange efficiency in the condenser and evaporator while using a non-azeotropic refrigerant mixture.
実施の形態1に係る冷凍サイクル装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration cycle device according to Embodiment 1. FIG. 実施の形態1に係る熱交換器および吹出温度分布を示す図である。FIG. 3 is a diagram showing a heat exchanger and a blowout temperature distribution according to Embodiment 1; 実施の形態1に係る熱交換器を概略的に示す斜視図である。1 is a perspective view schematically showing a heat exchanger according to Embodiment 1; FIG. 実施の形態1に係る熱交換器の第1伝熱管および第2伝熱管を概略的に示す断面図である。3 is a cross-sectional view schematically showing first heat transfer tubes and second heat transfer tubes of the heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器のキャピラリーチューブを概略的に示す斜視図である。4 is a perspective view schematically showing a capillary tube of the heat exchanger according to Embodiment 1; FIG. 実施の形態1に係る熱交換器の第1伝熱管および第2伝熱管の変形例を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a modification of the first heat transfer tube and the second heat transfer tube of the heat exchanger according to Embodiment 1; 実施の形態1に係る熱交換器の変形例1を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing Modification 1 of the heat exchanger according to Embodiment 1; 実施の形態1に係る熱交換器の変形例2を概略的に示す正面図である。FIG. 7 is a front view schematically showing Modification 2 of the heat exchanger according to Embodiment 1; 凝縮器および蒸発器での対向流、並行流、直交流の熱交換効率を示す図である。FIG. 3 shows counter-flow, co-flow and cross-flow heat exchange efficiencies in a condenser and an evaporator. 実施の形態1に係る熱交換器の凝縮器および蒸発器での冷媒流れと冷媒温度との関係を示す図である。4 is a diagram showing the relationship between refrigerant flow and refrigerant temperature in the condenser and evaporator of the heat exchanger according to Embodiment 1. FIG. 実施の形態2に係る熱交換器および吹出温度分布を示す図である。FIG. 7 is a diagram showing a heat exchanger and a blowout temperature distribution according to Embodiment 2; 実施の形態2に係る熱交換器の変形例を概略的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a modification of the heat exchanger according to Embodiment 2; 実施の形態2に係る熱交換器の凝縮器および蒸発器での冷媒流れと冷媒温度との関係を示す図である。FIG. 9 is a diagram showing the relationship between refrigerant flow and refrigerant temperature in a condenser and an evaporator of a heat exchanger according to Embodiment 2; 実施の形態3に係る熱交換器および吹出温度分布を示す図である。FIG. 10 is a diagram showing a heat exchanger and outlet temperature distribution according to Embodiment 3; 実施の形態3に係る熱交換器の変形例1を概略的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing Modification 1 of the heat exchanger according to Embodiment 3; 実施の形態3に係る熱交換器の変形例2を概略的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing Modification 2 of the heat exchanger according to Embodiment 3; 実施の形態3に係る熱交換器の凝縮器および蒸発器での冷媒流れと温度との関係を示す図である。FIG. 10 is a diagram showing the relationship between refrigerant flow and temperature in a condenser and an evaporator of a heat exchanger according to Embodiment 3;
 以下、図面を参照して、実施の形態について説明する。なお、図中において、同一または相当する部分には同一の符号を付してその説明は繰り返さない。 Embodiments will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1を参照して、実施の形態1に係る冷凍サイクル装置100の構成について説明する。実施の形態1では、冷凍サイクル装置100の一例として空気調和機について説明する。図1中実線矢印は、冷房運転時における冷媒の流れを示している。図1中破線矢印は、暖房運転時における冷媒の流れを示している。
Embodiment 1.
A configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 will be described with reference to FIG. In Embodiment 1, an air conditioner will be described as an example of the refrigeration cycle device 100. FIG. Solid arrows in FIG. 1 indicate the flow of the refrigerant during the cooling operation. Broken line arrows in FIG. 1 indicate the flow of the refrigerant during the heating operation.
 図1に示されるように、冷凍サイクル装置100は、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、室外送風機6と、室内送風機7と、制御装置8とを備えている。実施の形態1に係る熱交換器HEは、室外熱交換器3に適用されている。冷凍サイクル装置100は、室外機101と、室外機101に接続された室内機102とを備えている。 As shown in FIG. 1, the refrigeration cycle device 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, an outdoor fan 6, and an indoor fan. 7 and a control device 8 . The heat exchanger HE according to Embodiment 1 is applied to the outdoor heat exchanger 3 . A refrigerating cycle device 100 includes an outdoor unit 101 and an indoor unit 102 connected to the outdoor unit 101 .
 冷媒回路10は、圧縮機1、四方弁2、室外熱交換器3、膨張弁4および室内熱交換器5を含んでいる。圧縮機1、四方弁2、室外熱交換器3、膨張弁4および室内熱交換器5は、配管20によって接続されている。冷媒回路10は、冷媒を循環させるように構成されている。 A refrigerant circuit 10 includes a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 , an expansion valve 4 and an indoor heat exchanger 5 . Compressor 1 , four-way valve 2 , outdoor heat exchanger 3 , expansion valve 4 and indoor heat exchanger 5 are connected by piping 20 . The refrigerant circuit 10 is configured to circulate the refrigerant.
 冷媒は、非共沸混合冷媒である。非共沸混合冷媒は、R32を含み、他の冷媒としてR1234yfを含んでいてもよい。非共沸混合冷媒は、他の冷媒としてR1123あるいはR1234zeを含んでいてもよい。また、非共沸混合冷媒は、3種類以上の混合冷媒であってもよい。 The refrigerant is a non-azeotropic mixed refrigerant. The non-azeotropic refrigerant mixture contains R32 and may contain R1234yf as another refrigerant. The non-azeotropic refrigerant mixture may contain R1123 or R1234ze as another refrigerant. Also, the non-azeotropic mixed refrigerant may be a mixed refrigerant of three or more types.
 圧縮機1、四方弁2、室外熱交換器3、膨張弁4、室外送風機6および制御装置8は、室外機101に収容されている。室内熱交換器5および室内送風機7は、室内機102に収容されている。室外機101と室内機102とは、ガス管21と液管22とにより接続されている。配管20の一部がガス管21および液管22を構成している。 The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the outdoor fan 6 and the control device 8 are housed in the outdoor unit 101. Indoor heat exchanger 5 and indoor fan 7 are housed in indoor unit 102 . The outdoor unit 101 and the indoor unit 102 are connected by a gas pipe 21 and a liquid pipe 22 . A part of the pipe 20 constitutes a gas pipe 21 and a liquid pipe 22 .
 冷媒回路10は、冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、室内熱交換器5、四方弁2の順に冷媒が循環するように構成されている。また、冷媒回路10は、暖房運転時には、圧縮機1、四方弁2、室内熱交換器5、膨張弁4、室外熱交換器3、四方弁2の順に冷媒が循環するように構成されている。 The refrigerant circuit 10 is configured such that the refrigerant circulates through the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2 in this order during cooling operation. Further, the refrigerant circuit 10 is configured such that the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2 during the heating operation. .
 圧縮機1は、冷媒を圧縮するように構成されている。圧縮機1は、熱交換器HEに流入する非共沸混合冷媒を圧縮するためのものである。圧縮機1は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1は、容量可変に構成されていてもよい。圧縮機1は、制御装置8からの指示に基づいて圧縮機1の回転数が調整されることにより容量が変化するように構成されていてもよい。 The compressor 1 is configured to compress refrigerant. The compressor 1 is for compressing the non-azeotropic refrigerant mixture flowing into the heat exchanger HE. The compressor 1 is configured to compress and discharge the sucked refrigerant. The compressor 1 may be configured to have a variable capacity. The compressor 1 may be configured such that the displacement is changed by adjusting the rotational speed of the compressor 1 based on an instruction from the control device 8 .
 四方弁2は、圧縮機1により圧縮された冷媒を室外熱交換器3または室内熱交換器5に流すように冷媒の流れを切替えるように構成されている。四方弁2は、第1ポートP1~第4ポートP4を有している。第1ポートP1は、圧縮機1の吐出側に接続されている。第2ポートP2は圧縮機1の吸入側に接続されている。第3ポートP3は、室外熱交換器3に接続されている。第4ポートP4は、室内熱交換器5に接続されている。四方弁2は、冷房運転時には圧縮機1から吐出された冷媒を室外熱交換器3に流すように構成されている。冷房運転時には、四方弁2において第1ポートP1に第3ポートP3が接続されているとともに第2ポートP2に第4ポートP4が接続されている。また、四方弁2は、暖房運転時には圧縮機1から吐出された冷媒を室内熱交換器5に流すように構成されている。暖房運転時には、四方弁2において第1ポートP1に第4ポートP4が接続されているとともに第2ポートP2に第3ポートP3が接続されている。 The four-way valve 2 is configured to switch the flow of refrigerant so that the refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 or the indoor heat exchanger 5 . The four-way valve 2 has a first port P1 to a fourth port P4. The first port P1 is connected to the discharge side of the compressor 1 . A second port P2 is connected to the suction side of the compressor 1 . The third port P3 is connected to the outdoor heat exchanger 3. A fourth port P4 is connected to the indoor heat exchanger 5 . The four-way valve 2 is configured to flow the refrigerant discharged from the compressor 1 to the outdoor heat exchanger 3 during cooling operation. During cooling operation, the four-way valve 2 has the first port P1 connected to the third port P3 and the second port P2 connected to the fourth port P4. The four-way valve 2 is configured to flow the refrigerant discharged from the compressor 1 to the indoor heat exchanger 5 during heating operation. During heating operation, the four-way valve 2 has the first port P1 connected to the fourth port P4 and the second port P2 connected to the third port P3.
 室外熱交換器3は、室外熱交換器3の内部を流れる冷媒と室外熱交換器3の外部を流れる空気との間で熱交換を行うように構成されている。室外熱交換器3は、冷房運転時には冷媒を凝縮させる凝縮器として機能し、暖房運転時には冷媒を蒸発させる蒸発器として機能するように構成されている。 The outdoor heat exchanger 3 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3 . The outdoor heat exchanger 3 is configured to function as a condenser that condenses refrigerant during cooling operation, and to function as an evaporator that evaporates refrigerant during heating operation.
 膨張弁4は、凝縮器で凝縮された冷媒を膨張させることにより減圧させるように構成されている。膨張弁4は、冷房運転時には室外熱交換器3により凝縮された冷媒を減圧させ、暖房運転時には室内熱交換器5により凝縮された冷媒を減圧させるように構成されている。膨張弁4は、たとえば、電磁膨張弁である。 The expansion valve 4 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser. The expansion valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation, and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation. Expansion valve 4 is, for example, an electromagnetic expansion valve.
 室内熱交換器5は、室内熱交換器5の内部を流れる冷媒と室内熱交換器5の外部を流れる空気との間で熱交換を行うように構成されている。室内熱交換器5は、冷房運転時には冷媒を蒸発させる蒸発器として機能し、暖房運転時には冷媒を凝縮させる凝縮器として機能するように構成されている。 The indoor heat exchanger 5 is configured to exchange heat between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5 . The indoor heat exchanger 5 is configured to function as an evaporator that evaporates the refrigerant during cooling operation and as a condenser that condenses the refrigerant during heating operation.
 室外送風機6は、室外熱交換器3に室外の空気を送風するように構成されている。つまり、室外送風機6は、室外熱交換器3に対して空気を供給するように構成されている。 The outdoor blower 6 is configured to blow outdoor air to the outdoor heat exchanger 3. That is, the outdoor fan 6 is configured to supply air to the outdoor heat exchanger 3 .
 室内送風機7は、室内熱交換器5に室内の空気を送風するように構成されている。つまり、室内送風機7は、室内熱交換器5に対して空気を供給するように構成されている。 The indoor blower 7 is configured to blow indoor air to the indoor heat exchanger 5 . That is, the indoor fan 7 is configured to supply air to the indoor heat exchanger 5 .
 制御装置8は、演算、指示等を行って冷凍サイクル装置100の各機器等を制御するように構成されている。制御装置8は、圧縮機1、四方弁2、膨張弁4、室外送風機6、室内送風機7などに電気的に接続されており、これらの動作を制御するように構成されている。 The control device 8 is configured to perform calculations, instructions, etc. to control each device of the refrigeration cycle device 100 . The control device 8 is electrically connected to the compressor 1, the four-way valve 2, the expansion valve 4, the outdoor blower 6, the indoor blower 7, etc., and is configured to control these operations.
 図2~図5を参照して、実施の形態1に係る熱交換器HEが適用された室外熱交換器3の構成について詳しく説明する。なお、実施の形態1に係る熱交換器HEは、室内熱交換器5に適用されてもよい。図2は、熱交換器HEの構造と空気の吹出温度分布との関係を示している。図3中実線矢印は冷媒の流れを示しており、図3中白抜き矢印は空気の流れを示している。 The configuration of the outdoor heat exchanger 3 to which the heat exchanger HE according to Embodiment 1 is applied will be described in detail with reference to FIGS. 2 to 5. FIG. Note that the heat exchanger HE according to Embodiment 1 may be applied to the indoor heat exchanger 5 . FIG. 2 shows the relationship between the structure of the heat exchanger HE and the air outlet temperature distribution. Solid arrows in FIG. 3 indicate the flow of refrigerant, and white arrows in FIG. 3 indicate the flow of air.
 図2および図3に示されるように、本実施の形態では、室外熱交換器3は、熱交換部31と、ヘッダー分配器32と、気液二相分配器33と、非共沸冷媒とを有している。 As shown in FIGS. 2 and 3, in the present embodiment, the outdoor heat exchanger 3 includes a heat exchange section 31, a header distributor 32, a gas-liquid two-phase distributor 33, and a non-azeotropic refrigerant. have.
 熱交換部31は、第1熱交換部31aと、第2熱交換部31bとを含んでいる。第1熱交換部31aは、空気流れ方向D1において風上側に配置されている。第1熱交換部31aは、空気流れ方向D1において第1列に配置されている。第2熱交換部31bは、空気流れ方向D1において風下側に配置されている。第2熱交換部31bは、空気流れ方向D1において第2列に配置されている。 The heat exchange section 31 includes a first heat exchange section 31a and a second heat exchange section 31b. The first heat exchange section 31a is arranged on the windward side in the air flow direction D1. The first heat exchange portions 31a are arranged in the first row in the air flow direction D1. The second heat exchange portion 31b is arranged on the leeward side in the air flow direction D1. The second heat exchange portions 31b are arranged in the second row in the air flow direction D1.
 第1熱交換部31aは、第1伝熱部HP1を含んでいる。本実施の形態では第1熱交換部31aは、複数の第1伝熱部HP1を含んでいる。第2熱交換部31bは、第2伝熱部HP2を含んでいる。本実施の形態では第2熱交換部31bは、複数の第2伝熱部HP2を含んでいる。 The first heat exchange section 31a includes a first heat transfer section HP1. In this embodiment, the first heat exchange section 31a includes a plurality of first heat transfer sections HP1. The second heat exchange section 31b includes a second heat transfer section HP2. In this embodiment, the second heat exchange section 31b includes a plurality of second heat transfer sections HP2.
 第1熱交換部31aは、複数の第1フィンF1と、複数の第1伝熱管T1と、複数の第1接続部C1とを有している。複数の第1フィンF1の各々は板状に構成されている。複数の第1フィンF1は互いに重なるように配置されている。複数の第1フィンF1の材料は、例えばアルミニウムである。 The first heat exchange portion 31a has a plurality of first fins F1, a plurality of first heat transfer tubes T1, and a plurality of first connection portions C1. Each of the plurality of first fins F1 has a plate shape. The plurality of first fins F1 are arranged so as to overlap each other. The material of the plurality of first fins F1 is, for example, aluminum.
 複数の第1伝熱管T1は、複数の第1フィンF1を貫通している。複数の第1伝熱管T1は、空気流れ方向D1に直交する直交方向D2に直線状に延びるように構成されている。複数の第1接続部C1は複数の第1フィンF1の外側で第1伝熱管T1同士を接続する部分である。複数の第1伝熱管T1の各々が複数の第1接続部C1の各々によって接続されることで複数の第1伝熱管T1および複数の第1接続部C1は全体として蛇行するように構成されている。複数の第1伝熱管T1および複数の第1接続部C1の材料は、例えば銅またはアルミニウムである。 The multiple first heat transfer tubes T1 penetrate through the multiple first fins F1. The plurality of first heat transfer tubes T1 are configured to linearly extend in an orthogonal direction D2 orthogonal to the air flow direction D1. The plurality of first connection portions C1 are portions that connect the first heat transfer tubes T1 to each other outside the plurality of first fins F1. Each of the plurality of first heat transfer tubes T1 is connected by each of the plurality of first connection portions C1, so that the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1 meander as a whole. there is The material of the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1 is, for example, copper or aluminum.
 第1伝熱部HP1は、複数の第1伝熱管T1を有する。複数の第1伝熱管T1は一列に並んで配置されている。複数の第1伝熱管T1は、空気流れ方向D1および直交方向D2に交差する段方向D3に並んで配置されている。 The first heat transfer part HP1 has a plurality of first heat transfer tubes T1. The plurality of first heat transfer tubes T1 are arranged in a row. The plurality of first heat transfer tubes T1 are arranged side by side in a stage direction D3 that intersects the air flow direction D1 and the orthogonal direction D2.
 第1伝熱部HP1は、複数の第1伝熱管T1を流れる非共沸混合冷媒の流れが第1伝熱部HP1を流れる空気の流れに対して直交するように配置された複数の第1伝熱管T1を有している。 The first heat transfer sections HP1 are arranged such that the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 is orthogonal to the flow of air flowing through the first heat transfer sections HP1. It has a heat transfer tube T1.
 第2熱交換部31bは、複数の第2フィンF2と、複数の第2伝熱管T2と、複数の第2接続部C2とを有している。複数の第2フィンF2の各々は板状に構成されている。複数の第2フィンF2は互いに重なるように配置されている。複数の第2フィンF2の材料は、例えばアルミニウムである。 The second heat exchange portion 31b has a plurality of second fins F2, a plurality of second heat transfer tubes T2, and a plurality of second connection portions C2. Each of the plurality of second fins F2 has a plate shape. The plurality of second fins F2 are arranged so as to overlap each other. The material of the plurality of second fins F2 is aluminum, for example.
 複数の第2伝熱管T2は、複数の第2フィンF2を貫通している。複数の第2伝熱管T2は、空気流れ方向D1に直交する直交方向D2に直線状に延びるように構成されている。複数の第2接続部C2は複数の第2フィンF2の外側で第2伝熱管T2同士を接続する部分である。複数の第2伝熱管T2の各々が複数の第2接続部C2の各々によって接続されることで複数の第2伝熱管T2および複数の第2接続部C2は全体として蛇行するように構成されている。複数の第2伝熱管T2および複数の第2接続部C2の材料は、例えば銅またはアルミニウムである。 The plurality of second heat transfer tubes T2 pass through the plurality of second fins F2. The plurality of second heat transfer tubes T2 are configured to linearly extend in an orthogonal direction D2 orthogonal to the air flow direction D1. The plurality of second connection portions C2 are portions that connect the second heat transfer tubes T2 to each other outside the plurality of second fins F2. Each of the plurality of second heat transfer tubes T2 is connected by each of the plurality of second connection portions C2, so that the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2 are configured to meander as a whole. there is The material of the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2 is, for example, copper or aluminum.
 第2伝熱部HP2は、複数の第2伝熱管T2を有する。第2伝熱部HP2は、第1伝熱部HP1と隣り合うように配置されている。複数の第2伝熱管T2は一列に並んで配置されている。複数の第2伝熱管T2は、複数の第1伝熱管T1が並ぶ方向に沿って並んで配置されている。複数の第2伝熱管T2は、空気流れ方向D1および直交方向D2に交差する段方向D3に並んで配置されている。 The second heat transfer part HP2 has a plurality of second heat transfer tubes T2. The second heat transfer section HP2 is arranged adjacent to the first heat transfer section HP1. The plurality of second heat transfer tubes T2 are arranged in a row. The plurality of second heat transfer tubes T2 are arranged side by side along the direction in which the plurality of first heat transfer tubes T1 are arranged. The plurality of second heat transfer tubes T2 are arranged side by side in a stage direction D3 that intersects the airflow direction D1 and the orthogonal direction D2.
 非共沸混合冷媒は、第1伝熱部HP1の複数の第1伝熱管T1を流れる。非共沸混合冷媒は、複数の第1伝熱管T1および複数の第1接続部C1を連続して流れる。非共沸混合冷媒は、第2伝熱部HP2の複数の第2伝熱管T2を流れる。非共沸混合冷媒は、複数の第2伝熱管T2および複数の第2接続部C2を連続して流れる。 The non-azeotropic refrigerant mixture flows through the plurality of first heat transfer tubes T1 of the first heat transfer section HP1. The non-azeotropic refrigerant mixture continuously flows through the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1. The non-azeotropic refrigerant mixture flows through the plurality of second heat transfer tubes T2 of the second heat transfer portion HP2. The non-azeotropic refrigerant mixture continuously flows through the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2.
 室外熱交換器3が凝縮器として機能する場合、熱交換器入口(凝縮器入口)にはヘッダー分配器32が設けられており、熱交換器出口(凝縮器出口)には気液二相分配器33が設けられている。気液二相分配器33は、気液二相流を均等に分配することが可能に構成されている。気液二相分配器33は、ディストリビュータ33aおよびキャピラリーチューブ34を有している。 When the outdoor heat exchanger 3 functions as a condenser, a header distributor 32 is provided at the heat exchanger inlet (condenser inlet), and a gas-liquid two-phase distribution is provided at the heat exchanger outlet (condenser outlet). A vessel 33 is provided. The gas-liquid two-phase distributor 33 is configured to evenly distribute the gas-liquid two-phase flow. The gas-liquid two-phase distributor 33 has a distributor 33 a and capillary tubes 34 .
 図3および図4に示されるように、複数の第1伝熱管T1および複数の第1接続部C1の各々は、円管である。複数の第2伝熱管T2および複数の第2接続部C2の各々は、円管である。  As shown in FIGS. 3 and 4, each of the plurality of first heat transfer tubes T1 and the plurality of first connection portions C1 is a circular tube. Each of the plurality of second heat transfer tubes T2 and the plurality of second connection portions C2 is a circular tube.
 図2および図5に示されるように、キャピラリーチューブ34は、第1列の第1熱交換部31aに接続された第1キャピラリーチューブ34aおよび第2列の第2熱交換部31bに接続された第2キャピラリーチューブ34bを含んでいる。第1キャピラリーチューブ34aの内径は、第2キャピラリーチューブ34bの内径よりも大きくてもよい。第1キャピラリーチューブ34aの長さは、第2キャピラリーチューブ34bの長さよりも長くてもよい。 As shown in FIGS. 2 and 5, the capillary tubes 34 are connected to the first heat exchange sections 31a of the first row and the second heat exchange sections 31b of the second row. It includes a second capillary tube 34b. The inner diameter of the first capillary tube 34a may be larger than the inner diameter of the second capillary tube 34b. The length of the first capillary tube 34a may be longer than the length of the second capillary tube 34b.
 図6を参照して、実施の形態1に係る熱交換器HEの第1伝熱管T1および第2伝熱管T2の変形例では、第1伝熱管T1および第2伝熱管T2は、扁平管である。 Referring to FIG. 6, in a modification of first heat transfer tube T1 and second heat transfer tube T2 of heat exchanger HE according to Embodiment 1, first heat transfer tube T1 and second heat transfer tube T2 are flat tubes. be.
 続いて、図1~図3を参照して、実施の形態1に係る冷凍サイクル装置100の動作について説明する。 Next, the operation of the refrigeration cycle apparatus 100 according to Embodiment 1 will be described with reference to FIGS. 1 to 3. FIG.
 冷凍サイクル装置100は、冷房運転と暖房運転とを選択的に行うことが可能である。冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、室内熱交換器5、四方弁2の順に冷媒が冷媒回路10を循環する。冷房運転時には室外熱交換器3は、凝縮器として機能する。室外熱交換器3を流れる冷媒と室外送風機6によって送風される空気との間で熱交換が行われる。冷房運転時には室内熱交換器5は、蒸発器として機能する。室内熱交換器5を流れる冷媒と室内送風機7によって送風される空気との間で熱交換が行われる。 The refrigeration cycle device 100 can selectively perform cooling operation and heating operation. During cooling operation, refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2. During cooling operation, the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor fan 6 . During cooling operation, the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7 .
 圧縮機1から吐出された高圧ガス冷媒は、熱交換器HEのヘッダー分配器32を経由して第1列の第1熱交換部31aの第1伝熱管T1および第2列の第2熱交換部31bの第2伝熱管T2に流入し、空気流れに対して直交するように流れる。この際に、第1熱交換部31aの出口側に設置される第1キャピラリーチューブ34aの流路抵抗を、第2熱交換部31bの出口側に設置される第2キャピラリーチューブ34bの流路抵抗よりも小さくすることで、第1キャピラリーチューブ34aに第2キャピラリーチューブ34bよりも多くの冷媒が流れる。高圧ガス冷媒は、複数の第1フィンF1、複数の第1伝熱管T1、複数の第2フィンF2、複数の第2伝熱管T2を介して空気と熱交換することにより高圧の液冷媒となる。 The high-pressure gas refrigerant discharged from the compressor 1 passes through the header distributor 32 of the heat exchanger HE, and passes through the first heat transfer tube T1 of the first heat exchange section 31a of the first row and the second heat exchanger of the second row. It flows into the second heat transfer tube T2 of the portion 31b and flows perpendicularly to the air flow. At this time, the flow resistance of the first capillary tube 34a installed on the outlet side of the first heat exchange section 31a is replaced by the flow resistance of the second capillary tube 34b installed on the outlet side of the second heat exchange section 31b. , more refrigerant flows through the first capillary tube 34a than through the second capillary tube 34b. The high-pressure gas refrigerant becomes a high-pressure liquid refrigerant by exchanging heat with the air through the plurality of first fins F1, the plurality of first heat transfer tubes T1, the plurality of second fins F2, and the plurality of second heat transfer tubes T2. .
 暖房運転には、圧縮機1、四方弁2、室内熱交換器5、膨張弁4、室外熱交換器3、四方弁2の順に冷媒が冷媒回路10を循環する。暖房運転時には室内熱交換器5は、凝縮器として機能する。室内熱交換器5を流れる冷媒と室内送風機7によって送風される空気との間で熱交換が行われる。暖房運転時には室外熱交換器3は、蒸発器として機能する。室外熱交換器3を流れる冷媒と室外送風機6によって送風される空気との間で熱交換が行われる。 During heating operation, the refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2. During heating operation, the indoor heat exchanger 5 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7 . During heating operation, the outdoor heat exchanger 3 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor fan 6 .
 低乾き度の低圧気液二相冷媒は、熱交換器HEの気液二相分配器33のディストリビュータ33aで減圧され、攪拌されることにより、気液二相の噴霧状態において等乾き度で分配される。第1列の第1熱交換部31aに接続される第1キャピラリーチューブ34aの流路抵抗を、第2列の第2熱交換部31bに接続される第2キャピラリーチューブ34bの流路抵抗よりも小さくすることで、第1キャピラリーチューブ34aに第2キャピラリーチューブ34bよりも多くの冷媒が流れる。低乾き度の低圧気液二相冷媒は、複数の第1フィンF1、複数の第1伝熱管T1、複数の第1フィンF1、複数の第2伝熱管T2を介して空気と熱交換することにより低圧のガス冷媒となる。 The low-pressure gas-liquid two-phase refrigerant with low dryness is depressurized by the distributor 33a of the gas-liquid two-phase distributor 33 of the heat exchanger HE and stirred, so that the gas-liquid two-phase spray state is distributed with equal dryness. be done. The flow resistance of the first capillary tubes 34a connected to the first heat exchange portions 31a of the first row is set higher than the flow resistance of the second capillary tubes 34b connected to the second heat exchange portions 31b of the second row. By reducing the size, more coolant flows through the first capillary tube 34a than through the second capillary tube 34b. The low-pressure gas-liquid two-phase refrigerant with low dryness exchanges heat with the air via the plurality of first fins F1, the plurality of first heat transfer tubes T1, the plurality of first fins F1, and the plurality of second heat transfer tubes T2. becomes a low-pressure gas refrigerant.
 続いて、実施の形態1に係る熱交換器HEが適用された室外熱交換器3の変形例について説明する。 Next, a modification of the outdoor heat exchanger 3 to which the heat exchanger HE according to Embodiment 1 is applied will be described.
 図7を参照して、実施の形態1に係る室外熱交換器3の変形例1では、ヘッダー分配器32および気液二相分配器33は、列毎に複数配置されている。実施の形態1に係る室外熱交換器3の変形例1では、ヘッダー分配器32および気液二相分配器33は、2個ずつ配置されている。2個の気液二相分配器33の各々の下流に2個の電子膨張弁35の各々がそれぞれ配置されている。 Referring to FIG. 7, in Modification 1 of outdoor heat exchanger 3 according to Embodiment 1, a plurality of header distributors 32 and gas-liquid two-phase distributors 33 are arranged for each row. In Modification 1 of outdoor heat exchanger 3 according to Embodiment 1, two header distributors 32 and two gas-liquid two-phase distributors 33 are arranged. Two electronic expansion valves 35 are arranged downstream of each of the two gas-liquid two-phase distributors 33, respectively.
 また、電子膨張弁35が配置されない場合、第1列の第1熱交換部31aに接続される第1キャピラリーチューブ34aの内径は、第2列の第2熱交換部31bに接続される第2キャピラリーチューブ34bの内径よりも大きくする。さらに、第1列の第1熱交換部31aに接続される第1キャピラリーチューブ34aの長さは、第2列の第2熱交換部31bに接続される第2キャピラリーチューブ34bの長さよりも長くする。 Further, when the electronic expansion valve 35 is not arranged, the inner diameter of the first capillary tube 34a connected to the first heat exchange section 31a in the first row is the second diameter connected to the second heat exchange section 31b in the second row. It is made larger than the inner diameter of the capillary tube 34b. Furthermore, the length of the first capillary tubes 34a connected to the first heat exchange sections 31a in the first row is longer than the length of the second capillary tubes 34b connected to the second heat exchange sections 31b in the second row. do.
 図8を参照して、実施の形態1に係る室外熱交換器3の変形例2では、説明の便宜のため第1熱交換部31aのみが示されている。第2熱交換部31bは、第1熱交換部31aと同様に構成されている。 With reference to FIG. 8, in Modification 2 of outdoor heat exchanger 3 according to Embodiment 1, only first heat exchange section 31a is shown for convenience of explanation. The second heat exchange portion 31b is configured similarly to the first heat exchange portion 31a.
 実施の形態1に係る室外熱交換器3の変形例2では、複数の第1フィンF1は、コルゲートフィンである。複数の第1伝熱管T1は、直線状の扁平管である。複数の第1伝熱管T1の各々の間に複数の第1フィンF1の各々が配置されている。複数の第1伝熱管T1の各々の両端にヘッダー36が接続されている。 In Modified Example 2 of the outdoor heat exchanger 3 according to Embodiment 1, the plurality of first fins F1 are corrugated fins. The multiple first heat transfer tubes T1 are straight flat tubes. Each of the plurality of first fins F1 is arranged between each of the plurality of first heat transfer tubes T1. Headers 36 are connected to both ends of each of the plurality of first heat transfer tubes T1.
 次に、本実施の形態の作用効果について説明する。
 図9を参照して、凝縮器および蒸発器の対向流、並行流、直交流の熱交換効率について説明する。対向流、並行流、直交流は、空気流れに対する冷媒流れの関係を示している。凝縮器および蒸発器のいずれにおいても、対向流、直交流、並行流の順に熱交換効率が低下する。
Next, the effects of this embodiment will be described.
With reference to FIG. 9, the heat exchange efficiencies of counterflow, parallel flow, and crossflow of the condenser and evaporator will be described. Counterflow, cocurrent flow, and crossflow refer to the relationship of refrigerant flow to air flow. In both condensers and evaporators, the heat exchange efficiency decreases in the order of counter flow, cross flow, and parallel flow.
 図10を参照して、本実施の形態での熱交換器HEが凝縮器または蒸発器として機能するときの冷媒流れに対する各パスの冷媒温度について説明する。凝縮器では、冷媒流れが増大するにつれて第1列および第2列とも冷媒温度が低くなる。第1列の冷媒温度は、第2列の冷媒温度よりも低くなる。蒸発器では、冷媒流れが増大するにつれて第1列および第2列とも冷媒温度が高くなる。第1列の冷媒温度は、第2列の冷媒温度よりも高くなる。 Refrigerant temperature in each path with respect to the refrigerant flow when the heat exchanger HE in this embodiment functions as a condenser or an evaporator will be described with reference to FIG. In the condenser, the refrigerant temperature decreases in both the first and second rows as the refrigerant flow increases. The coolant temperature in the first row will be lower than the coolant temperature in the second row. In the evaporator, the refrigerant temperature increases in both the first and second rows as the refrigerant flow increases. The coolant temperature in the first row will be higher than the coolant temperature in the second row.
 本実施の形態に係る熱交換器HEによれば、第1伝熱部HP1は、複数の第1伝熱管T1を流れる非共沸混合冷媒の流れが第1伝熱部HP1を流れる空気の流れに対して直交するように配置された複数の第1伝熱管T1を有している。このため、空気流れに対する非共沸混合冷媒の流れは直交流となる。これにより、熱交換器HEが凝縮器および蒸発器のいずれとして機能するときでも並行流に比べて熱交換効率を高くすることができる。したがって、非共沸混合冷媒を用いつつ凝縮器および蒸発器で平均的に熱交換効率を確保することができる。 According to the heat exchanger HE according to the present embodiment, in the first heat transfer section HP1, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 is combined with the flow of air flowing through the first heat transfer section HP1. It has a plurality of first heat transfer tubes T1 arranged so as to be orthogonal to each other. Therefore, the flow of the non-azeotropic refrigerant mixture becomes a cross flow with respect to the air flow. This makes it possible to increase the heat exchange efficiency compared to co-flow when the heat exchanger HE functions as either a condenser or an evaporator. Therefore, it is possible to secure an average heat exchange efficiency in the condenser and the evaporator while using the non-azeotropic mixed refrigerant.
 なお、仮に凝縮器および蒸発器ともに対向流にしようとすると、次の問題がある。まず、凝縮器において気液二相分配器33によって高圧ガス冷媒の圧力損失が増大する。また、出口ヘッダーの大容量化によって冷媒量が増大する。さらに延長配管部の圧力損失が増大する。本実施の形態に係る熱交換器HEによれば、これらの問題が生じない。 In addition, if both the condenser and the evaporator are made to flow countercurrently, the following problems arise. First, the gas-liquid two-phase distributor 33 increases the pressure loss of the high-pressure gas refrigerant in the condenser. In addition, the amount of refrigerant increases due to the increased capacity of the outlet header. Furthermore, the pressure loss in the extension pipe increases. These problems do not occur with the heat exchanger HE according to the present embodiment.
 また、第1キャピラリーチューブ34aの流路抵抗を第2キャピラリーチューブ34bの流路抵抗より小さくすることにより、熱負荷が大きい第1列の第1伝熱管T1に冷媒を多く流すことができる。このため、第1列の第1伝熱管T1と第2列の第2伝熱管T2とで冷媒の出口温度の差異が小さくなるため、熱交換効率を大きくすることができる。 Also, by making the flow resistance of the first capillary tube 34a smaller than the flow resistance of the second capillary tube 34b, more refrigerant can flow through the first heat transfer tubes T1 in the first row, which have a large heat load. Therefore, since the difference in refrigerant outlet temperature between the first heat transfer tubes T1 of the first row and the second heat transfer tubes T2 of the second row is small, the heat exchange efficiency can be increased.
 本実施の形態に係る冷凍サイクル装置100によれば、上記の熱交換器HEを備えている。このため、非共沸混合冷媒を用いつつ凝縮器および蒸発器で平均的に熱交換効率を確保することができる熱交換器HEを備えた冷凍サイクル装置100を提供することができる。 The refrigeration cycle apparatus 100 according to the present embodiment includes the heat exchanger HE described above. For this reason, it is possible to provide the refrigeration cycle apparatus 100 including the heat exchanger HE that can maintain the average heat exchange efficiency in the condenser and the evaporator while using a non-azeotropic mixed refrigerant.
 実施の形態2.
 実施の形態2に係る熱交換器HEは、特に説明しない限り、実施の形態1に係る熱交換器HEと同一の構成、動作および作用効果を有している。
Embodiment 2.
The heat exchanger HE according to the second embodiment has the same configuration, operation and effects as the heat exchanger HE according to the first embodiment unless otherwise specified.
 図11を参照して、実施の形態2に係る熱交換器HEでは、第1伝熱部HP1および第2伝熱部HP2の各々の非共沸混合冷媒の入口および出口は、互いに反対側に配置されている。第1伝熱部HP1では、冷媒入口は最上段に配置されており、冷媒出口は最下段に配置されている。第2伝熱部HP2では、冷媒入口は最下段に配置されており、冷媒出口は最上段に配置されている。つまり、第1伝熱部HP1および第2伝熱部HP2の各々の非共沸混合冷媒の入口および出口は、互いに上下逆に配置されている。 Referring to FIG. 11, in heat exchanger HE according to Embodiment 2, the non-azeotropic refrigerant inlet and outlet of first heat transfer section HP1 and second heat transfer section HP2 are arranged on opposite sides of each other. are placed. In the first heat transfer section HP1, the refrigerant inlet is arranged at the uppermost stage, and the refrigerant outlet is arranged at the lowermost stage. In the second heat transfer part HP2, the refrigerant inlet is arranged at the lowest stage, and the refrigerant outlet is arranged at the uppermost stage. That is, the inlets and outlets of the non-azeotropic refrigerant mixture of the first heat transfer section HP1 and the second heat transfer section HP2 are arranged upside down.
 続いて、実施の形態2に係る熱交換器HEが適用された室外熱交換器3の変形例について説明する。 Next, a modification of the outdoor heat exchanger 3 to which the heat exchanger HE according to Embodiment 2 is applied will be described.
 図12を参照して、実施の形態2に係る室外熱交換器3の変形例では、熱交換部31は、第3熱交換部31cを含んでいる。第3熱交換部31cは、空気流れ方向D1において第1熱交換部31aよりも風上側に配置されている。第3熱交換部31cは、空気流れ方向D1において第1列に配置されている。 Referring to FIG. 12, in a modification of the outdoor heat exchanger 3 according to Embodiment 2, the heat exchange section 31 includes a third heat exchange section 31c. The third heat exchange portion 31c is arranged on the windward side of the first heat exchange portion 31a in the air flow direction D1. The third heat exchange portions 31c are arranged in the first row in the air flow direction D1.
 第3熱交換部31cは、第3伝熱部HP3を含んでいる。本実施の形態では第3熱交換部31cは、複数の第3伝熱部HP3を含んでいる。第3熱交換部31cは、複数の第3フィンF3と、複数の第3伝熱管T3と、複数の第3接続部C3(図示せず)とを有している。複数の第3フィンF3と、複数の第3伝熱管T3と、複数の第3接続部C3(図示せず)は、複数の第1フィンF1と、複数の第1伝熱管T1と、複数の第1接続部C1(図示せず)と同様に構成されている。非共沸混合冷媒は、第3伝熱部HP3の複数の第3伝熱管T3を流れる。非共沸混合冷媒は、複数の第3伝熱管T3および複数の第3接続部C3(図示せず)を連続して流れる。 The third heat exchange section 31c includes a third heat transfer section HP3. In this embodiment, the third heat exchange section 31c includes a plurality of third heat transfer sections HP3. The third heat exchange portion 31c has a plurality of third fins F3, a plurality of third heat transfer tubes T3, and a plurality of third connection portions C3 (not shown). The plurality of third fins F3, the plurality of third heat transfer tubes T3, and the plurality of third connection portions C3 (not shown) are composed of the plurality of first fins F1, the plurality of first heat transfer tubes T1, and the plurality of It is configured in the same manner as the first connection portion C1 (not shown). The non-azeotropic refrigerant mixture flows through the plurality of third heat transfer tubes T3 of the third heat transfer portion HP3. The non-azeotropic refrigerant mixture continuously flows through the plurality of third heat transfer tubes T3 and the plurality of third connection portions C3 (not shown).
 キャピラリーチューブ34は、第3熱交換部31cに接続された第3キャピラリーチューブ34cを含んでいる。第3キャピラリーチューブ34cの内径は、第1キャピラリーチューブ34aの内径よりも大きくてもよい。第3キャピラリーチューブ34cの長さは、第1キャピラリーチューブ34aの長さよりも長くてもよい。 The capillary tube 34 includes a third capillary tube 34c connected to the third heat exchange section 31c. The inner diameter of the third capillary tube 34c may be larger than the inner diameter of the first capillary tube 34a. The length of the third capillary tube 34c may be longer than the length of the first capillary tube 34a.
 次に、本実施の形態の作用効果について説明する。
 図13を参照して、本実施の形態での熱交換器HEが凝縮器または蒸発器として機能するときの冷媒流れに対する各パスの冷媒温度について説明する。実施の形態1に比べて、凝縮器および蒸発器のいずれでも第1列および第2列の冷媒温度の差異が小さくなる。
Next, the effects of this embodiment will be described.
Referring to FIG. 13, the refrigerant temperature in each path with respect to the refrigerant flow when the heat exchanger HE in this embodiment functions as a condenser or an evaporator will be described. Compared to the first embodiment, the difference in refrigerant temperature between the first and second rows is smaller in both the condenser and the evaporator.
 本実施の形態に係る熱交換器HEによれば、第1伝熱部HP1および第2伝熱部HP2の各々の非共沸混合冷媒の入口および出口は、互いに反対側に配置されている。このため、熱交換器HEの高さ方向の空気の吹出温度分布を平均化することができる。 According to the heat exchanger HE according to the present embodiment, the non-azeotropic mixed refrigerant inlets and outlets of the first heat transfer section HP1 and the second heat transfer section HP2 are arranged on opposite sides of each other. Therefore, it is possible to average the temperature distribution of the blown air in the height direction of the heat exchanger HE.
 したがって、熱交換器HEが室外熱交換器3に適用される場合、低外気時での着霜量が均一化されるため、平均暖房能力を向上させることができる。また、熱交換器HEが室内熱交換器5に適用される場合、露飛びが発生し難いため、快適性および品質性能を向上させることができる。 Therefore, when the heat exchanger HE is applied to the outdoor heat exchanger 3, the amount of frost formed when the outside air is low is uniformed, so the average heating capacity can be improved. In addition, when the heat exchanger HE is applied to the indoor heat exchanger 5, dewdrops are less likely to occur, so comfort and quality performance can be improved.
 実施の形態3.
 実施の形態3に係る熱交換器HEは、特に説明しない限り、実施の形態1および2に係る熱交換器HEと同一の構成、動作および作用効果を有している。
Embodiment 3.
The heat exchanger HE according to the third embodiment has the same configuration, operation and effects as the heat exchangers HE according to the first and second embodiments unless otherwise specified.
 図14を参照して、実施の形態3に係る熱交換器HEでは、第1伝熱部HP1および第2伝熱部HP2は、第1パスPS1および第2パスPS2を有している。第1パスPS1は、複数の第1伝熱管T1および複数の第2伝熱管T2を流れる非共沸混合冷媒の流れが第1伝熱部HP1および第2伝熱部HP2を流れる空気の流れに対して並行するように配置されている。第2パスPS2は、複数の第1伝熱管T1および複数の第2伝熱管T2を流れる非共沸混合冷媒の流れが第1伝熱部HP1および第2伝熱部HP2を流れる空気の流れに対して対向するように配置されている。第1パスPS1と第2パスPS2とが組み合わされている。 Referring to FIG. 14, in the heat exchanger HE according to Embodiment 3, the first heat transfer section HP1 and the second heat transfer section HP2 have a first pass PS1 and a second pass PS2. In the first pass PS1, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 is combined with the flow of air flowing through the first heat transfer section HP1 and the second heat transfer section HP2. are arranged parallel to each other. In the second pass PS2, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 is combined with the flow of air flowing through the first heat transfer section HP1 and the second heat transfer section HP2. are arranged to face each other. A first pass PS1 and a second pass PS2 are combined.
 続いて、実施の形態3に係る熱交換器HEが適用された室外熱交換器3の変形例について説明する。 Next, a modification of the outdoor heat exchanger 3 to which the heat exchanger HE according to Embodiment 3 is applied will be described.
 図15を参照して、実施の形態3に係る室外熱交換器3の変形例1では、第1伝熱部HP1および第2伝熱部HP2の各々の非共沸混合冷媒の入口および出口は、互いに反対側に配置されている。 Referring to FIG. 15, in Modification 1 of outdoor heat exchanger 3 according to Embodiment 3, the non-azeotropic refrigerant mixture inlet and outlet of first heat transfer section HP1 and second heat transfer section HP2 are respectively , are arranged opposite each other.
 図16を参照して、実施の形態3に係る室外熱交換器3の変形例2では、熱交換部31は、第3熱交換部31cを含んでいる。第3熱交換部31cは、空気流れ方向D1において第1熱交換部31aと第2熱交換部31bとの間に配置されている。 Referring to FIG. 16, in Modified Example 2 of outdoor heat exchanger 3 according to Embodiment 3, heat exchanging portion 31 includes a third heat exchanging portion 31c. The third heat exchange portion 31c is arranged between the first heat exchange portion 31a and the second heat exchange portion 31b in the air flow direction D1.
 次に、本実施の形態の作用効果について説明する。
 図17を参照して、本実施の形態での熱交換器HEが凝縮器または蒸発器として機能するときの冷媒流れに対する各パスの冷媒温度について説明する。実施の形態1に比べて、凝縮器および蒸発器のいずれでも第1列および第2列の冷媒温度の差異が小さくなる。
Next, the effects of this embodiment will be described.
Referring to FIG. 17, the refrigerant temperature in each path with respect to the refrigerant flow when the heat exchanger HE in this embodiment functions as a condenser or an evaporator will be described. Compared to the first embodiment, the difference in refrigerant temperature between the first and second rows is smaller in both the condenser and the evaporator.
 本実施の形態に係る熱交換器HEによれば、第1パスPS1は、複数の第1伝熱管T1および複数の第2伝熱管T2を流れる非共沸混合冷媒の流れが第1伝熱部HP1および第2伝熱部HP2を流れる空気の流れに対して並行するように配置されている。第2パスPS2は、複数の第1伝熱管T1および複数の第2伝熱管T2を流れる非共沸混合冷媒の流れが第1伝熱部HP1および第2伝熱部HP2を流れる空気の流れに対して対向するように配置されている。このため、熱交換器HEの高さ方向の空気の吹出温度分布をさらに平均化することができる。これにより、各パスの熱負荷がさらに均一化されるため、熱交換効率を向上させることができる。 According to the heat exchanger HE according to the present embodiment, in the first pass PS1, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 reaches the first heat transfer section. It is arranged so as to be parallel to the flow of air flowing through HP1 and second heat transfer part HP2. In the second pass PS2, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes T1 and the plurality of second heat transfer tubes T2 is combined with the flow of air flowing through the first heat transfer section HP1 and the second heat transfer section HP2. are arranged to face each other. Therefore, it is possible to further average the temperature distribution of the blown air in the height direction of the heat exchanger HE. As a result, the heat load of each path is further uniformed, so that the heat exchange efficiency can be improved.
 したがって、熱交換器HEが室外熱交換器3に適用される場合、低外気時での着霜量が均一化されるため、平均暖房能力を向上させることができる。また、熱交換器HEが室内熱交換器5に適用される場合、露飛びが発生し難いため、快適性および品質性能を向上させることができる。 Therefore, when the heat exchanger HE is applied to the outdoor heat exchanger 3, the amount of frost formed when the outside air is low is uniformed, so the average heating capacity can be improved. In addition, when the heat exchanger HE is applied to the indoor heat exchanger 5, dewdrops are less likely to occur, so comfort and quality performance can be improved.
 また、実施の形態1のように電子膨張弁35が配置されない場合でもキャピラリーチューブ34の内径および長さの調整が不要となる。 Also, even if the electronic expansion valve 35 is not arranged as in the first embodiment, it is unnecessary to adjust the inner diameter and length of the capillary tube 34 .
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器、6 室外送風機、7 室内送風機、8 制御装置、10 冷媒回路、31 熱交換部、31a 第1熱交換部、31b 第2熱交換部、31c 第3熱交換部、32 ヘッダー分配器、33 気液二相分配器、100 冷凍サイクル装置、HE 熱交換器、HP1 第1伝熱部、HP2 第2伝熱部、HP3 第3伝熱部、PS1 第1パス、PS2 第2パス、T1 第1伝熱管、T2 第2伝熱管、T3 第3伝熱管。 1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4 expansion valve, 5 indoor heat exchanger, 6 outdoor blower, 7 indoor blower, 8 control device, 10 refrigerant circuit, 31 heat exchange section, 31a first heat exchange Section, 31b Second heat exchange section, 31c Third heat exchange section, 32 Header distributor, 33 Gas-liquid two-phase distributor, 100 Refrigeration cycle device, HE Heat exchanger, HP1 First heat transfer section, HP2 Second transfer Heat section, HP3 3rd heat transfer section, PS1 1st pass, PS2 2nd pass, T1 1st heat transfer tube, T2 2nd heat transfer tube, T3 3rd heat transfer tube.

Claims (5)

  1.  複数の第1伝熱管を有する第1伝熱部と、
     前記第1伝熱部の前記複数の第1伝熱管を流れる非共沸混合冷媒とを備え、
     前記複数の第1伝熱管は一列に並んで配置されており、
     前記第1伝熱部は、前記複数の第1伝熱管を流れる前記非共沸混合冷媒の流れが前記第1伝熱部を流れる空気の流れに対して直交するように配置された前記複数の第1伝熱管を有している、熱交換器。
    a first heat transfer section having a plurality of first heat transfer tubes;
    a non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes of the first heat transfer section;
    The plurality of first heat transfer tubes are arranged in a row,
    The first heat transfer section is arranged such that the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes is orthogonal to the flow of air flowing through the first heat transfer section. A heat exchanger having a first heat transfer tube.
  2.  複数の第2伝熱管を有する第2伝熱部をさらに備え、
     前記第2伝熱部は、前記第1伝熱部と隣り合うように配置されており、
     前記複数の第2伝熱管は一列に並んで配置されており、かつ前記複数の第1伝熱管が並ぶ方向に沿って並んで配置されており、
     前記非共沸混合冷媒は、前記第2伝熱部の前記複数の第2伝熱管を流れ、
     前記第2伝熱部は、前記複数の第2伝熱管を流れる前記非共沸混合冷媒の流れが前記第2伝熱部を流れる空気の流れに対して直交するように配置された前記複数の第2伝熱管を有している、請求項1に記載の熱交換器。
    Further comprising a second heat transfer section having a plurality of second heat transfer tubes,
    The second heat transfer section is arranged adjacent to the first heat transfer section,
    The plurality of second heat transfer tubes are arranged in a row, and are arranged along the direction in which the plurality of first heat transfer tubes are arranged,
    The non-azeotropic refrigerant mixture flows through the plurality of second heat transfer tubes of the second heat transfer section,
    The second heat transfer section is arranged such that the flow of the non-azeotropic refrigerant mixture flowing through the plurality of second heat transfer tubes is orthogonal to the flow of air flowing through the second heat transfer section. 2. The heat exchanger of claim 1, comprising a second heat transfer tube.
  3.  前記第1伝熱部および前記第2伝熱部の各々の前記非共沸混合冷媒の入口および出口は、互いに反対側に配置されている、請求項2に記載の熱交換器。 3. The heat exchanger according to claim 2, wherein the non-azeotrope refrigerant inlet and outlet of each of the first heat transfer section and the second heat transfer section are arranged opposite to each other.
  4.  前記第1伝熱部および前記第2伝熱部は、第1パスおよび第2パスを有し、
     前記第1パスは、前記複数の第1伝熱管および前記複数の第2伝熱管を流れる前記非共沸混合冷媒の流れが前記第1伝熱部および前記第2伝熱部を流れる空気の流れに対して並行するように配置されており、
     前記第2パスは、前記複数の第1伝熱管および前記複数の第2伝熱管を流れる前記非共沸混合冷媒の流れが前記第1伝熱部および前記第2伝熱部を流れる空気の流れに対して対向するように配置されている、請求項2または3に記載の熱交換器。
    The first heat transfer section and the second heat transfer section have a first pass and a second pass,
    In the first pass, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes and the plurality of second heat transfer tubes is the flow of air flowing through the first heat transfer section and the second heat transfer section. are arranged parallel to the
    In the second pass, the flow of the non-azeotropic refrigerant mixture flowing through the plurality of first heat transfer tubes and the plurality of second heat transfer tubes is the flow of air flowing through the first heat transfer section and the second heat transfer section. 4. A heat exchanger according to claim 2 or 3, arranged opposite to the
  5.  請求項1~4のいずれか1項に記載の前記熱交換器と、
     前記熱交換器に流入する前記非共沸混合冷媒を圧縮するための圧縮機とを備えた、冷凍サイクル装置。
    The heat exchanger according to any one of claims 1 to 4;
    and a compressor for compressing the non-azeotropic refrigerant mixture flowing into the heat exchanger.
PCT/JP2021/025606 2021-07-07 2021-07-07 Heat exchanger and refrigeration cycle device WO2023281656A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100132.XA CN117642595A (en) 2021-07-07 2021-07-07 Heat exchanger and refrigeration cycle device
PCT/JP2021/025606 WO2023281656A1 (en) 2021-07-07 2021-07-07 Heat exchanger and refrigeration cycle device
JP2023532947A JPWO2023281656A1 (en) 2021-07-07 2021-07-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025606 WO2023281656A1 (en) 2021-07-07 2021-07-07 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023281656A1 true WO2023281656A1 (en) 2023-01-12

Family

ID=84800477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025606 WO2023281656A1 (en) 2021-07-07 2021-07-07 Heat exchanger and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2023281656A1 (en)
CN (1) CN117642595A (en)
WO (1) WO2023281656A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862469A (en) * 1981-10-08 1983-04-13 三菱重工業株式会社 Heat pump type refrigerator
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH06265228A (en) * 1993-03-15 1994-09-20 Matsushita Electric Ind Co Ltd Refrigerating device
JPH06307725A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Air conditioner
JPH0798162A (en) * 1993-09-29 1995-04-11 Toshiba Corp Air-conditioner
JPH07294043A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JP2001050685A (en) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd Heat exchanger
JP2007155175A (en) * 2005-12-02 2007-06-21 Showa Tansan Co Ltd Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture
JP2014040983A (en) 2012-08-23 2014-03-06 Daikin Ind Ltd Heat exchanger of air conditioning apparatus
WO2019043768A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Condenser and refrigeration device provided with condenser
WO2020021593A1 (en) * 2018-07-23 2020-01-30 三菱電機株式会社 Air-conditioning apparatus
WO2021131038A1 (en) * 2019-12-27 2021-07-01 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862469A (en) * 1981-10-08 1983-04-13 三菱重工業株式会社 Heat pump type refrigerator
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH06265228A (en) * 1993-03-15 1994-09-20 Matsushita Electric Ind Co Ltd Refrigerating device
JPH06307725A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Air conditioner
JPH0798162A (en) * 1993-09-29 1995-04-11 Toshiba Corp Air-conditioner
JPH07294043A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JP2001050685A (en) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd Heat exchanger
JP2007155175A (en) * 2005-12-02 2007-06-21 Showa Tansan Co Ltd Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture
JP2014040983A (en) 2012-08-23 2014-03-06 Daikin Ind Ltd Heat exchanger of air conditioning apparatus
WO2019043768A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Condenser and refrigeration device provided with condenser
WO2020021593A1 (en) * 2018-07-23 2020-01-30 三菱電機株式会社 Air-conditioning apparatus
WO2021131038A1 (en) * 2019-12-27 2021-07-01 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
CN117642595A (en) 2024-03-01
JPWO2023281656A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US9702637B2 (en) Heat exchanger, indoor unit, and refrigeration cycle apparatus
WO2016056064A1 (en) Heat exchanger and air conditioning device
US20090314020A1 (en) Indoor unit for air conditioner
WO2014181400A1 (en) Heat exchanger and refrigeration cycle device
JP2011127831A (en) Heat exchanger and refrigerating cycle device including the same
JP6793831B2 (en) Heat exchanger and refrigeration cycle equipment
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
WO2023281656A1 (en) Heat exchanger and refrigeration cycle device
US11384996B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
CN110285603B (en) Heat exchanger and refrigeration system using same
JP7292389B2 (en) Heat exchanger and refrigeration cycle equipment
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
WO2021245877A1 (en) Heat exchanger and refrigeration cycle device
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
JP7118279B2 (en) HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device
WO2022215193A1 (en) Refrigeration cycle device
WO2023030508A1 (en) Heat exchanger and multi-system air conditioning unit
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
WO2021171446A1 (en) Heat exchanger of heat source-side unit, and heat pump device equipped with said heat exchanger
JP7305085B1 (en) Heat exchanger and refrigeration cycle equipment
WO2023233572A1 (en) Heat exchanger, and refrigeration cycle device
JP7150157B2 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301008182

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2023532947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021949290

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021949290

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE