JPH06307725A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06307725A
JPH06307725A JP9411493A JP9411493A JPH06307725A JP H06307725 A JPH06307725 A JP H06307725A JP 9411493 A JP9411493 A JP 9411493A JP 9411493 A JP9411493 A JP 9411493A JP H06307725 A JPH06307725 A JP H06307725A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
compressor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9411493A
Other languages
Japanese (ja)
Other versions
JP3298225B2 (en
Inventor
Mitsuo Kudo
光夫 工藤
Masaaki Ito
正昭 伊藤
Mari Uchida
麻理 内田
Toshihiko Fukushima
敏彦 福島
Hiroshi Kogure
博志 小暮
Hiroaki Matsushima
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP09411493A priority Critical patent/JP3298225B2/en
Publication of JPH06307725A publication Critical patent/JPH06307725A/en
Application granted granted Critical
Publication of JP3298225B2 publication Critical patent/JP3298225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To suppress lowering of thermal conduction characteristics in a heat exchanger in the case when a non-azeotropic mixture refrigerant is used, by using the non-azeotropic mixture refrigerant as a working refrigerant and by setting the sectional areas of passages of an indoor heat exchanger and an outdoor heat exchanger so that the mass flow rate of the refrigerant may show a specific value. CONSTITUTION:An air conditioner comprises an indoor heat exchanger 5, an outdoor heat exchanger 3, a compressor 1, a four-way valve 2 and an expansion mechanism 4 and the number of revolutions of the compressor 1 is controlled by a control device 100 in accordance with a state of operation of the air conditioner. In this case, a non-azeotropic mixture refrigerant is used as a working refrigerant and the sectional areas of passages of the indoor heat exchanger 5 and the outdoor heat exchanger 3 are set so that the mass flow rate of the refrigerant may show 200 to 400kg/s. Besides, sensors 101 and 102 provided at the entrance and the exit of the outdoor heat exchanger and detecting the temperature of evaporation of the refrigerant or the pressure of evaporation thereof at the time when the outdoor heat exchanger 3 operates as an evaporator, are provided, and based on the outputs thereof, the compressor 1 is controlled in the direction of increasing the number of revolutions thereof when an entrance refrigerant temperature is lower than an allowable value in comparison with an exit refrigerant temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機に係り、特に
地球環境に対する影響が少ない塩素を含まない冷媒を作
動媒体とする空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner using a chlorine-free refrigerant, which has a small effect on the global environment, as a working medium.

【0002】[0002]

【従来の技術】ヒ−トポンプ型の空気調和機は、冷房時
には室内熱交換器を蒸発器、室外熱交換器を凝縮器とし
て用い、暖房時には室内熱交換器を凝縮器、室外熱交換
器を蒸発器として用いる。前記室内外熱交換器として
は、例えば特公平4−45753号公報に示されるよう
に、複数のフィンを所定の間隔をおいて並置し、これに
直行するように複数の伝熱管を全体として千鳥状になる
ように貫通して構成されたいわゆるクロスフィンチュ−
ブ型の熱交換器が使用され、伝熱管としては例えば特開
平4−260792号公報に示されるように、内面に溝
加工等を施した内面溝付管が多用されている。冷媒は単
一冷媒であるHCFC22(ハイドロクロロフルオロカ
−ボンの略)が用いられ、熱交換器の外形寸法や冷媒通
路断面積等はHCFC22に対して効率が最も良くなる
ように設定されている。
2. Description of the Related Art A heat pump type air conditioner uses an indoor heat exchanger as an evaporator and an outdoor heat exchanger as a condenser during cooling, and uses an indoor heat exchanger as a condenser and an outdoor heat exchanger during heating. Used as an evaporator. As the indoor / outdoor heat exchanger, for example, as disclosed in Japanese Patent Publication No. 4-47553, a plurality of fins are juxtaposed at a predetermined interval, and a plurality of heat transfer tubes as a whole are staggered so as to be orthogonal to the fins. So-called cross fin tutu formed so as to form a shape
A tube-type heat exchanger is used, and as the heat transfer tube, for example, as shown in JP-A-4-260792, an inner grooved tube whose inner surface is grooved is often used. HCFC22 (abbreviation of hydrochlorofluorocarbon), which is a single refrigerant, is used as the refrigerant, and the outer dimensions of the heat exchanger, the cross-sectional area of the refrigerant passage, etc. are set so that the HCFC22 has the highest efficiency. .

【0003】すなわち、上記従来技術は、熱交換の過程
で沸点が変化しない単一冷媒HCFC22を対象とした
運転方法であるため、定格能力点での圧力損失を抑える
ように冷媒通路断面積が設定されている。例えば、暖房
時に蒸発器として作動する室外熱交換器の冷媒質量速度
Gは、100〜200kg/s程度と比較的小さく、能力
当りの管内通路断面積は0.2〜0.4cm2/kW程
度に設定されている。
That is, since the above-mentioned prior art is an operation method for a single refrigerant HCFC22 whose boiling point does not change in the process of heat exchange, the refrigerant passage cross-sectional area is set so as to suppress the pressure loss at the rated capacity point. Has been done. For example, the refrigerant mass velocity G of an outdoor heat exchanger that operates as an evaporator during heating is relatively small, about 100 to 200 kg / s, and the pipe passage cross-sectional area per capacity is about 0.2 to 0.4 cm 2 / kW. Is set to.

【0004】[0004]

【発明が解決しようとする課題】近年問題となっている
オゾン層保護のため、従来の空気調和機で使用される冷
媒HCFC22の代替冷媒として非共沸混合冷媒を用い
た場合、非共沸混合冷媒の特性として凝縮器内では、ま
ず入口側で沸点の高い冷媒成分の凝縮が始まり出口側に
向かって沸点の低い冷媒成分の凝縮が進行するので、凝
縮温度は伝熱管内を通過する間にかなり低下する。蒸発
器内では最初に沸点の低い冷媒成分の多い液相冷媒が蒸
発し、さらに加熱されると沸点の高い液冷媒成分も蒸発
するというように、蒸発温度が出口側に向かって高くな
るように冷媒の蒸発が進行するので、管内の蒸発温度は
熱交換器入口で最も低い温度となる。
In order to protect the ozone layer, which has become a problem in recent years, when a non-azeotropic mixed refrigerant is used as an alternative refrigerant to the refrigerant HCFC22 used in a conventional air conditioner, the non-azeotropic mixed refrigerant is used. As a characteristic of the refrigerant, in the condenser, first, the condensation of the refrigerant component having a high boiling point starts at the inlet side and the condensation of the refrigerant component having a low boiling point progresses toward the outlet side. Considerably lower. In the evaporator, the liquid-phase refrigerant with a large amount of low-boiling-point refrigerant components evaporates first, and the liquid refrigerant component with a high-boiling point also evaporates when heated further, so that the evaporation temperature rises toward the outlet side. Since the evaporation of the refrigerant proceeds, the evaporation temperature in the tube becomes the lowest temperature at the heat exchanger inlet.

【0005】このため、非共沸混合冷媒を上記したよう
な小さい冷媒質量速度で運転すると、伝熱管内での凝縮
過程においては、沸点の低い冷媒蒸気層が沸点の高い凝
縮液膜を囲むように壁面に沿って発達してしまい凝縮熱
伝達率が顕著に低下する。また、蒸発過程においては、
沸点の高い冷媒蒸気層が沸点の低い沸騰液膜を囲むよう
に壁面に沿って発達するので沸騰熱伝達率も顕著に低下
する。
Therefore, when the non-azeotropic mixed refrigerant is operated at the small refrigerant mass velocity as described above, the refrigerant vapor layer with a low boiling point surrounds the condensed liquid film with a high boiling point in the condensation process in the heat transfer tube. Then, it develops along the wall surface and the condensing heat transfer coefficient decreases remarkably. Also, in the evaporation process,
Since the refrigerant vapor layer having a high boiling point develops along the wall surface so as to surround the boiling liquid film having a low boiling point, the boiling heat transfer coefficient also remarkably decreases.

【0006】すなわち、上記従来技術は、凝縮および蒸
発過程において成分の偏りによって壁面に沿って生じる
伝熱を阻害する蒸気層の発達による伝熱特性低下という
非共沸混合冷媒特有の問題点につては配慮されていな
い。また、非共沸混合冷媒では、冷媒流れ方向に沿って
蒸発温度が上昇するので熱交換器入口部の蒸発温度が特
に低くなり暖房運転時に室外熱交換器が局所的に着霜し
易くなる点についても配慮されていないため、単一冷媒
HCFC22を用いた従来の運転方法そのままでは、熱
交換器の伝熱性能が著しく低下し、ヒートポンプ型空気
調和機の冷房能力や暖房能力を発揮できないという問題
があった。
That is, the above-mentioned prior art is concerned with a problem peculiar to the non-azeotropic mixed refrigerant that the heat transfer characteristic is deteriorated due to the development of the vapor layer which inhibits the heat transfer generated along the wall surface due to the deviation of the components in the condensation and evaporation processes. Is not considered. Further, in the non-azeotropic mixed refrigerant, the evaporation temperature rises along the refrigerant flow direction, so the evaporation temperature at the heat exchanger inlet is particularly low, and the outdoor heat exchanger tends to locally frost during heating operation. Since no consideration is given to the problem, the heat transfer performance of the heat exchanger is remarkably reduced and the cooling capacity and heating capacity of the heat pump type air conditioner cannot be exhibited if the conventional operation method using the single refrigerant HCFC22 is used as it is. was there.

【0007】本発明の第1の目的は、HCFC22の代
替冷媒として非共沸混合冷媒を用いても熱交換器の伝熱
特性の低下を抑えることができる空気調和機を提供する
ことにある。
A first object of the present invention is to provide an air conditioner capable of suppressing deterioration of heat transfer characteristics of a heat exchanger even when a non-azeotropic mixed refrigerant is used as a substitute refrigerant for the HCFC 22.

【0008】又、本発明の第2の目的は、低外気温時に
暖房能力を発揮できる空気調和機を提供することにあ
る。
A second object of the present invention is to provide an air conditioner capable of exerting heating capacity at low outside air temperature.

【0009】又、本発明の第3の目的は、非共沸混合冷
媒の混合割合が大きくずれて性能が低下したまま運転す
ることを防止できる空気調和機を提供することにある。
A third object of the present invention is to provide an air conditioner capable of preventing the non-azeotropic mixed refrigerant from being operated while its performance is deteriorated due to a large deviation of the mixing ratio.

【0010】[0010]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の空気調和機は、室内熱交換器、室外
熱交換器、圧縮機、四方弁、膨張機構からなる空気調和
機において、作動媒体として非共沸混合冷媒を用いると
ともに、冷媒質量流量が200〜400kg/sとなるよ
うに前記室内熱交換器、室外熱交換器の通路断面積を設
定したことを特徴とするものである。
In order to achieve the above first object, the air conditioner of the present invention is an air conditioner comprising an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, and an expansion mechanism. In the machine, a non-azeotropic mixed refrigerant is used as a working medium, and the passage cross-sectional areas of the indoor heat exchanger and the outdoor heat exchanger are set such that the mass flow rate of the refrigerant is 200 to 400 kg / s. It is a thing.

【0011】又、室内熱交換器、室外熱交換器、圧縮
機、四方弁、膨張機構からなり、前記圧縮機の回転数を
制御する制御装置を備え、作動冷媒として非共沸混合冷
媒を用いた空気調和機であって、前記室外熱交換器、室
内熱交換器は伝熱フィンと内面加工管である伝熱管から
構成され、前記室外熱交換器が蒸発器として作用すると
きの定格能力時の冷媒質量速度が200〜400kg/
sとなるように前記制御装置により圧縮機回転数を制御
することを特徴とするものである。
Further, it comprises an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve and an expansion mechanism, and is provided with a control device for controlling the number of revolutions of the compressor, and a non-azeotropic mixed refrigerant is used as a working refrigerant. In the air conditioner, the outdoor heat exchanger and the indoor heat exchanger are composed of heat transfer fins and heat transfer tubes that are inner surface processing tubes, and the outdoor heat exchanger has a rated capacity when acting as an evaporator. The mass velocity of the refrigerant is 200 to 400 kg /
The number of revolutions of the compressor is controlled by the control device so as to be s.

【0012】又、室内熱交換器、室外熱交換器、圧縮
機、四方弁、膨張機構からなり、前記圧縮機の回転数を
制御する制御装置を備え、作動媒体として非共沸混合冷
媒を用いた空気調和機であって、前記室内熱交換器、室
外熱交換器は伝熱フィンと内面加工管である伝熱管から
構成され、前記室外熱交換器が蒸発器として作用すると
きの定格能力当りの冷媒通路断面積が0.1〜0.21
cm2/kWとなるように管径、パス数を選定したこと
を特徴とするものである。
Further, it comprises an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve and an expansion mechanism, and is equipped with a control device for controlling the rotation speed of the compressor, and uses a non-azeotropic mixed refrigerant as a working medium. In the air conditioner, the indoor heat exchanger and the outdoor heat exchanger are composed of heat transfer fins and heat transfer tubes that are inner surface processing tubes, and the rated capacity when the outdoor heat exchanger acts as an evaporator The cross-sectional area of the refrigerant passage is 0.1 to 0.21
It is characterized in that the tube diameter and the number of passes are selected so that it becomes cm 2 / kW.

【0013】上記第2の目的を達成するために、本発明
の空気調和機は、室内熱交換器、室外熱交換器、圧縮
機、四方弁、膨張機構からなる空気調和機において、作
動媒体として非共沸混合冷媒を用いるとともに、前記室
外熱交換器の入口側及び出口側に冷媒温度を検出するた
めのセンサと、該センサの出力を入力して前記圧縮機の
回転数を制御する制御装置を備えたことを特徴とするも
のである。
In order to achieve the second object, the air conditioner of the present invention is an air conditioner comprising an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, and an expansion mechanism, as a working medium. Using a non-azeotropic mixed refrigerant, a sensor for detecting the refrigerant temperature at the inlet side and the outlet side of the outdoor heat exchanger, and a control device for controlling the rotational speed of the compressor by inputting the output of the sensor It is characterized by having.

【0014】又、室内熱交換器、室外熱交換器、圧縮
機、四方弁、膨張機構からなり、前記圧縮機の回転数を
制御する制御装置を備え、作動媒体として非共沸混合冷
媒を用いた空気調和機であって、前記室外熱交換器の入
口側及び出口側に冷媒温度検出用センサを備え、該冷媒
温度検出用センサにより検出した前記室外熱交換器が蒸
発器として作用するときの熱交換器おける入口及び出口
の冷媒温度を前記制御装置に入力し、前記制御装置によ
り圧縮機回転数を制御して前記室外熱交換器の入口と出
口温度を制御することを特徴とするものである。
Further, it comprises an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve and an expansion mechanism, and is equipped with a control device for controlling the number of revolutions of the compressor, and uses a non-azeotropic mixed refrigerant as a working medium. In the above air conditioner, a refrigerant temperature detecting sensor is provided on the inlet side and the outlet side of the outdoor heat exchanger, and when the outdoor heat exchanger detected by the refrigerant temperature detecting sensor acts as an evaporator. The inlet and outlet refrigerant temperatures in the heat exchanger are input to the controller, and the controller controls the compressor rotation speed to control the inlet and outlet temperatures of the outdoor heat exchanger. is there.

【0015】又、室内熱交換器、室外熱交換器、圧縮
機、四方弁、膨張機構からなり、前記圧縮機の回転数を
制御する制御装置を備え、作動媒体として非共沸混合冷
媒を用いた空気調和機であって、前記室外熱交換器の入
口側及び出口側に冷媒温度検出用センサを備え、該冷媒
温度検出用センサにより検出したが蒸発器として作用す
るときの前記室外熱交換器の入口側冷媒温度が出口冷媒
温度に比べて許容値より低いと判断されたときは前記制
御装置により圧縮機回転数を増す方向に制御することを
特徴とするものである。
Further, it comprises an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve and an expansion mechanism, and is equipped with a control device for controlling the number of revolutions of the compressor, and uses a non-azeotropic mixed refrigerant as a working medium. In the air conditioner, the outdoor heat exchanger is provided with a refrigerant temperature detecting sensor on the inlet side and the outlet side of the outdoor heat exchanger, and the outdoor heat exchanger is detected by the refrigerant temperature detecting sensor and acts as an evaporator. When it is determined that the inlet side refrigerant temperature is lower than the outlet side refrigerant temperature than the allowable value, the control device controls the compressor rotational speed to increase.

【0016】又、前記室内熱交換器の冷媒通路断面積を
室外熱交換器の冷媒通路断面積に比べて小さくなるよう
に設定したものである。又、前記室外熱交換器、室内熱
交換器が中間部にスリットを設けられたものである。
The cross-sectional area of the refrigerant passage of the indoor heat exchanger is set to be smaller than the cross-sectional area of the refrigerant passage of the outdoor heat exchanger. Further, the outdoor heat exchanger and the indoor heat exchanger are provided with slits in the middle part.

【0017】上記第3の目的を達成するために、本発明
の空気調和機は、室内熱交換器、室外熱交換器、圧縮
機、四方弁、膨張機構からなり、前記圧縮機の回転数を
制御する制御装置を備え、作動媒体として非共沸混合冷
媒を用いた空気調和機であって、前記室外熱交換器の出
口側に冷媒蒸発温度の検出用センサを備え、該センサに
より検出される冷媒温度が蒸発器として作用するときの
熱交換器の出口側スーパーヒート量の許容値より大きい
と判断されたときは冷媒漏れの警報を出力することを特
徴とするものである。
In order to achieve the third object, the air conditioner of the present invention comprises an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve and an expansion mechanism, and controls the rotation speed of the compressor. An air conditioner equipped with a control device for controlling and using a non-azeotropic mixed refrigerant as a working medium, comprising a sensor for detecting a refrigerant evaporation temperature on the outlet side of the outdoor heat exchanger, which is detected by the sensor. When it is determined that the refrigerant temperature is higher than the allowable value of the outlet side superheat amount of the heat exchanger when acting as an evaporator, a refrigerant leakage alarm is output.

【0018】[0018]

【作用】第1の目的を達成するために、本発明の空気調
和機は、上記のように冷媒質量流量が200〜400kg
/sとなるように前記室内熱交換器、室外熱交換器の通
路断面積を設定している、圧縮機回転数を上げて冷媒循
環流量を増すので、管内の冷媒質量速度が200〜40
0kg/s程度と高くなり、非共沸混合冷媒特有の凝縮
および蒸発過程における成分の偏りによって壁面に沿っ
て形成される伝熱阻害蒸気層と主流との混合が促進され
る結果、伝熱特性低下が抑えられて熱交換効率が良くな
り空気調和器の性能を大幅に向上できる。
In order to achieve the first object, the air conditioner of the present invention has a refrigerant mass flow rate of 200 to 400 kg as described above.
The passage cross-sectional areas of the indoor heat exchanger and the outdoor heat exchanger are set to be / s. Since the compressor rotation speed is increased to increase the refrigerant circulation flow rate, the refrigerant mass velocity in the pipe is 200 to 40.
It becomes as high as 0 kg / s, and as a result of promoting the mixing of the heat transfer impeding vapor layer formed along the wall surface with the main flow due to the uneven distribution of components in the condensation and evaporation processes peculiar to non-azeotropic refrigerants, the heat transfer characteristics The decrease is suppressed, the heat exchange efficiency is improved, and the performance of the air conditioner can be significantly improved.

【0019】第2の目的を達成するために、本発明の空
気調和機は、上記のように構成しているので、冷媒質量
速度が高くなることによって室外熱交換器が蒸発器とし
て作用する暖房運転時には蒸発圧力損失が増えるので、
熱交換器入口圧力が上がり蒸発温度が上昇して熱交換器
表面と空気温度との温度差が小さくなる。この結果低外
気温時には、温度差に基づく着霜量が少なく抑えられる
ので、非共沸混合冷媒を用いた空気調和機の低外気温時
の暖房性能を大幅に向上できる。
In order to achieve the second object, since the air conditioner of the present invention is constructed as described above, the heating in which the outdoor heat exchanger acts as an evaporator due to the increase of the mass velocity of the refrigerant. Since the evaporation pressure loss increases during operation,
The heat exchanger inlet pressure rises and the evaporation temperature rises, and the temperature difference between the heat exchanger surface and the air temperature decreases. As a result, the frost formation amount based on the temperature difference can be suppressed at a low outdoor temperature, so that the heating performance of the air conditioner using the non-azeotropic mixed refrigerant at a low outdoor temperature can be significantly improved.

【0020】第3の目的を達成するために、本発明の空
気調和機は、上記のように構成しているので、冷媒が漏
れて非共沸混合冷媒の混合割合が、大きくずれてもス−
パ−ヒ−ト量により検出でき、これを警報あるいは表示
することにより、性能低下の大きい運転を防止できる。
In order to achieve the third object, the air conditioner of the present invention is constructed as described above, so that even if the refrigerant leaks and the mixing ratio of the non-azeotropic mixed refrigerant greatly deviates, −
It can be detected based on the amount of part heat, and by warning or displaying this, it is possible to prevent an operation with a large deterioration in performance.

【0021】[0021]

【実施例】以下、本発明の一実施例を図1ないし図5に
基づいて説明する。図1は本実施例に係るヒ−トポンプ
型の空気調和器の冷凍サイクル構成図、図2は室外熱交
換器の側面図、図3は室内熱交換器5の側面図、図4は
管内を流れる冷媒の質量速度を変えたときの凝縮熱伝達
率の変化を示す図、図5は冷凍サイクル内を循環してい
る冷媒の状態変化をTS線図上で模式的に示した図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 is a side view of an outdoor heat exchanger, FIG. 3 is a side view of an indoor heat exchanger 5, and FIG. 4 is a pipe interior. FIG. 5 is a diagram showing changes in the condensation heat transfer coefficient when the mass velocity of the flowing refrigerant is changed, and FIG. 5 is a diagram schematically showing changes in the state of the refrigerant circulating in the refrigeration cycle on the TS diagram.

【0022】図1に示すように冷凍サイクルは、インバ
ータ駆動の圧縮機を搭載した冷媒圧縮機1、四方弁2、
室外熱交換器3、減圧器4および室内熱交換器5を冷媒
配管で接続して内部を冷媒が循環するように構成されて
いる。冷媒圧縮機1は、チャンバに内包された例えばD
Cブラシレスモータなどの可変速モータ1aによって駆
動される。暖房運転時の冷媒の流れ方向は破線の矢印1
9(冷房運転時の冷媒の流れ方向は実線の矢印18で示
される)で示されるが、その時の室外熱交換器3の冷媒
入口位置には温度センサ101が、冷媒出口位置には温
度センサ102が各々設けられており、室外ユニット2
00内には外気温を検出するための温度センサ103が
設けられている。これらの温度センサ101、102、
103の出力は制御装置100に入力されており、この
制御装置100により圧縮機1の回転数をフィードバッ
ク制御するように構成されている。なお、温度センサ1
01及び102の代わりに圧力センサ(図示せず)を設
け、その検出した圧力値から冷媒物性値により換算して
温度を求めてもよい。
As shown in FIG. 1, the refrigeration cycle includes a refrigerant compressor 1 equipped with a compressor driven by an inverter, a four-way valve 2,
The outdoor heat exchanger 3, the pressure reducer 4, and the indoor heat exchanger 5 are connected by a refrigerant pipe so that the refrigerant circulates inside. The refrigerant compressor 1 includes, for example, D contained in a chamber.
It is driven by a variable speed motor 1a such as a C brushless motor. The flow direction of the refrigerant during heating operation is indicated by the broken arrow 1.
9 (the direction of the refrigerant flow during the cooling operation is indicated by a solid arrow 18), the temperature sensor 101 is located at the refrigerant inlet position of the outdoor heat exchanger 3 at that time, and the temperature sensor 102 is located at the refrigerant outlet position. Outdoor unit 2
In 00, a temperature sensor 103 for detecting the outside air temperature is provided. These temperature sensors 101, 102,
The output of 103 is input to the control device 100, and the control device 100 is configured to perform feedback control of the rotation speed of the compressor 1. The temperature sensor 1
A pressure sensor (not shown) may be provided instead of 01 and 102, and the detected pressure value may be converted into a refrigerant physical property value to obtain the temperature.

【0023】室外熱交換器3は、図2に示す構造となっ
ている。図2において、矢印20は熱交換器3に対する
空気の通過方向を示す。8は所定の間隔をおいて並置さ
れた複数の伝熱フィンで、伝熱フィン8は、図2に示す
ように中間部には分離するスリット80が設けられ、こ
のスリット80を挟んで、伝熱管挿入用の円孔の列が長
手方向に沿って穿たれている。9は、この伝熱フィン8
に直角に円孔に挿入接合された内部を冷媒が流動する冷
媒管、10は冷媒管を接続するベンドで、このベンド1
0によって接続された伝熱管9群によって、U字型の冷
媒回路が上下に2回路構成されており、熱交換器3の入
口、出口に設けられたY字型の冷媒分流器12によって
夫々の回路に冷媒を分流させる。
The outdoor heat exchanger 3 has the structure shown in FIG. In FIG. 2, an arrow 20 indicates the passage direction of air with respect to the heat exchanger 3. Reference numeral 8 denotes a plurality of heat transfer fins juxtaposed at predetermined intervals. The heat transfer fin 8 is provided with a slit 80 at a middle portion thereof as shown in FIG. A row of circular holes for inserting the heat tubes is drilled along the longitudinal direction. 9 is this heat transfer fin 8
A refrigerant pipe through which the refrigerant flows inside the circular hole inserted and joined at a right angle to 10 is a bend connecting the refrigerant pipes.
Two groups of U-shaped refrigerant circuits are vertically configured by the group of heat transfer tubes 9 connected by 0, and Y-shaped refrigerant diverters 12 provided at the inlet and outlet of the heat exchanger 3 respectively Split the refrigerant in the circuit.

【0024】室内熱交換器5は、図3に示す構造となっ
ている。図3において、矢印21は熱交換器5に対する
空気の通過方向を示す。図3において図2と符号が同じ
ものは図2と共通のものであり説明を省略する。熱交換
器5の中間部には冷媒を分流させるT字型冷媒分流器1
1が配置されており、このT字型冷媒分流器11を介し
て熱交換器内部ではU字型冷媒回路が上下に2回路構成
されている。なお、通常室外熱交換器の伝熱管は、室内
伝熱管より太いものが使われている。
The indoor heat exchanger 5 has a structure shown in FIG. In FIG. 3, the arrow 21 indicates the passage direction of air to the heat exchanger 5. 3 that are the same as those in FIG. 2 are the same as those in FIG. 2 and will not be described. A T-shaped refrigerant distributor 1 for distributing the refrigerant is provided in the middle of the heat exchanger 5.
1 is arranged, and two U-shaped refrigerant circuits are vertically arranged inside the heat exchanger via the T-shaped refrigerant distributor 11. In addition, the heat transfer tube of the outdoor heat exchanger is usually thicker than the indoor heat transfer tube.

【0025】室内熱交換器5および室外熱交換器3にお
いて、2回路合わせた冷媒通路断面積は、圧縮機回転数
が定格能力回転数に設定されたとき管内冷媒質量速度G
が比較的大きく、例えばG=200〜400kg/s程
度であって、蒸発器として作用するときの冷媒通路圧損
が、図2に示す熱交換器出入口間での蒸発温度上昇量を
打ち消す程度となるように設定されていれば良く、この
条件を満足できるように、パス数や伝熱管の内径を設定
している。
In the indoor heat exchanger 5 and the outdoor heat exchanger 3, the refrigerant passage cross-sectional area in which the two circuits are combined is such that when the compressor speed is set to the rated capacity speed, the pipe refrigerant mass speed G
Is relatively large, for example, G = 200 to 400 kg / s, and the pressure loss of the refrigerant passage when acting as an evaporator is such that the increase in evaporation temperature between the inlet and outlet of the heat exchanger shown in FIG. 2 is canceled out. The number of passes and the inner diameter of the heat transfer tube are set so that this condition can be satisfied.

【0026】パス数や伝熱管の内径をこのように設定す
る理由は、次の理由による。管内を流れる冷媒の質量速
度を変えたときの凝縮熱伝達率の変化を図4に示す。図
4には単一冷媒としてはHFC32(ハイドロフルオロ
カ−ボン22の略)とHFC134aを用い、非共沸混
合冷媒としてはHFC32とHFC134aを質量分率
を30/70wt%の割合で混合した非共沸混合冷媒
(HFC32/HFC134a)を用いた場合を示して
いる。平滑管の場合、単一冷媒HFC134aの凝縮熱
伝達率は、図4から分かるように全体的に質量速度Gの
減少に従って低下し、質量速度が200kg/s以下になる
とほぼ一定になるのに対して、非共沸混合冷媒の場合
は、直線的に低下する傾向が認められる。
The reason for setting the number of passes and the inner diameter of the heat transfer tube in this way is as follows. FIG. 4 shows changes in the condensation heat transfer coefficient when the mass velocity of the refrigerant flowing in the pipe is changed. In FIG. 4, HFC32 (abbreviation of hydrofluorocarbon 22) and HFC134a are used as a single refrigerant, and HFC32 and HFC134a are mixed as a non-azeotropic mixed refrigerant at a mass fraction of 30/70 wt%. The case where an azeotropic mixed refrigerant (HFC32 / HFC134a) is used is shown. In the case of a smooth tube, the condensation heat transfer coefficient of the single refrigerant HFC134a decreases as the mass velocity G decreases as shown in FIG. 4, and becomes almost constant when the mass velocity becomes 200 kg / s or less. In the case of a non-azeotropic mixed refrigerant, a linear decrease is recognized.

【0027】これに対して、溝付管の場合、単一冷媒H
FC32、HFC134aの凝縮熱伝達率は、質量速度
によらずほぼ一定の値となっているのに対して、非共沸
混合冷媒の凝縮熱伝達率は、図4から分かるように質量
速度の減少にともなって大幅な低下がみられる。
On the other hand, in the case of the grooved tube, the single refrigerant H
The condensation heat transfer coefficients of FC32 and HFC134a are almost constant regardless of the mass velocity, whereas the condensation heat transfer coefficient of the non-azeotropic mixed refrigerant decreases as the mass velocity decreases. As a result, a significant decrease is seen.

【0028】このように非共沸混合冷媒の熱伝達率が単
一冷媒の場合に比べて、特に質量速度が小さいところで
大幅に低下するのは、非共沸混合冷媒では凝縮過程にお
いて沸点の高い凝縮液膜を囲むように生じた沸点の低い
冷媒蒸気層が、管中心部で発達してしまい凝縮熱伝達率
が顕著に低下するからであり、質量速度を上げて管内流
れを乱すことによって高い熱伝達率が得られることを示
している。
As described above, the heat transfer coefficient of the non-azeotropic mixed refrigerant is greatly reduced as compared with the case of a single refrigerant, especially at a small mass velocity, because the non-azeotropic mixed refrigerant has a high boiling point in the condensation process. This is because the low-boiling-point refrigerant vapor layer that surrounds the condensed liquid film develops in the center of the tube, and the condensation heat transfer coefficient decreases significantly, which is high by increasing the mass velocity and disturbing the flow in the tube. It shows that the heat transfer coefficient can be obtained.

【0029】図4に示す結果から、従来の単一冷媒の場
合は、質量速度が200kg/s以下にしても熱伝達率
の低下は僅かであり、むしろ質量速度をこれより小さく
設定することによって圧力損失が抑えられて熱交換効率
が改善されるため、従来は、質量速度が大略200kg
/s以下になるように冷媒通路断面積が設定されてい
る。
From the results shown in FIG. 4, in the case of the conventional single refrigerant, even if the mass velocity is 200 kg / s or less, the decrease in the heat transfer coefficient is slight, and rather, by setting the mass velocity smaller than this. Since the pressure loss is suppressed and the heat exchange efficiency is improved, the conventional mass velocity is about 200 kg.
The cross-sectional area of the refrigerant passage is set so as to be not more than / s.

【0030】ところが非共沸混合冷媒の場合は、従来の
単一冷媒とは違って質量速度を下げると熱伝達率が大幅
に低下してしまうので熱交換効率は逆に低下してしまう
ため、熱交換効率を改善するためには、従来の単一冷媒
を用いた空気調和機での質量速度(大略200kg/s以
下)より大きく設定することが必要である。しかし、冷
媒質量速度が高くなると熱伝達率の改善される一方で、
圧力損失が増加して悪影響も生じるので大略400kg
/sが上限となり、本実施例では200〜400kg/
sに設定するのが好ましい。
However, in the case of a non-azeotropic mixed refrigerant, unlike the conventional single refrigerant, when the mass velocity is reduced, the heat transfer coefficient is significantly reduced, and therefore the heat exchange efficiency is also reduced. In order to improve the heat exchange efficiency, it is necessary to set the mass velocity larger than the mass velocity (roughly 200 kg / s or less) in an air conditioner using a conventional single refrigerant. However, while increasing the mass velocity of the refrigerant improves the heat transfer coefficient,
Since the pressure loss increases and adverse effects occur, approximately 400 kg
/ S is the upper limit, and in this embodiment, 200 to 400 kg /
It is preferable to set to s.

【0031】次に、以上のように構成された本実施例の
空気調和機の作動について説明する。まず、冷房運転の
場合について説明する。冷房運転時には、圧縮機1から
吐出される高温高圧の冷媒ガスは実線矢印18で示すよ
うに、四方弁2を通って凝縮器として作用する室外側熱
交換器3へ送られ、室外ファン6によって送風された空
気によって冷され、高圧、低温の冷媒となり、減圧器4
によって断熱膨張され低圧、低温の冷媒となって蒸発器
として作用する室内側熱交換器5へ流入し、室内ファン
7によって送風された空気によって加熱されて蒸発した
後、四方弁2を通って圧縮機1に戻り再び圧縮されて循
環する。この時冷却された空気を室内に放出して冷房す
る。
Next, the operation of the air conditioner of the present embodiment constructed as above will be described. First, the case of the cooling operation will be described. During the cooling operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is sent to the outdoor heat exchanger 3 acting as a condenser through the four-way valve 2 as shown by the solid arrow 18, and is then discharged by the outdoor fan 6. It is cooled by the blown air to become high-pressure and low-temperature refrigerant, and the pressure reducer 4
Is adiabatically expanded into a low-pressure and low-temperature refrigerant, flows into the indoor heat exchanger 5 that acts as an evaporator, is heated by the air blown by the indoor fan 7 and evaporates, and then is compressed through the four-way valve 2. It returns to the machine 1 and is compressed again and circulated. At this time, the cooled air is discharged into the room for cooling.

【0032】冷房運転の場合、圧縮機1から吐出された
高温高圧のガス冷媒18は、入口パイプ16を通って室
外熱交換器へ流入する。室外熱交換器へ流入した冷媒
は、Y字型の冷媒分流器12を介して上下2つのU字型
の冷媒回路内を分流する。この時、凝縮器内の非共沸混
合冷媒は、単一冷媒とは違って混合比によって決まる露
点温度まで冷却されると、沸点の高い冷媒成分の凝縮が
始まり、凝縮の進行につれて沸点の低い冷媒成分の凝縮
割合が多くなり、ついには混合比によって決まる液相温
度まで冷却されて全て凝縮する。したがって、U字型の
冷媒回路を構成している伝熱管内での冷媒凝縮温度は伝
熱管内を通過する間にかなり低下する。このため、スリ
ット80を挟む風上側の伝熱管と風下側伝熱管との間の
温度差を生じるが伝熱フィンの風上側半部分及び風下側
半部分とをスリット80によって熱的に分離した構成と
したので、フィンを介して両伝熱管での不必要な熱移動
現象が生じるのを防ぐことができるので、凝縮器として
の熱交換性能が改善される。
In the cooling operation, the high-temperature and high-pressure gas refrigerant 18 discharged from the compressor 1 flows into the outdoor heat exchanger through the inlet pipe 16. The refrigerant that has flowed into the outdoor heat exchanger is divided into two upper and lower U-shaped refrigerant circuits via the Y-shaped refrigerant distributor 12. At this time, unlike the single refrigerant, when the non-azeotropic mixed refrigerant in the condenser is cooled to the dew point temperature determined by the mixing ratio, condensation of the refrigerant component with a high boiling point begins, and the boiling point decreases as the condensation progresses. The condensation ratio of the refrigerant components increases, and finally the liquid components are cooled to the liquidus temperature determined by the mixing ratio and all are condensed. Therefore, the refrigerant condensing temperature in the heat transfer tube forming the U-shaped refrigerant circuit drops considerably while passing through the heat transfer tube. Therefore, a temperature difference occurs between the windward side heat transfer tube and the leeward side heat transfer tube that sandwich the slit 80, but the windward half portion and the leeward side half portion of the heat transfer fin are thermally separated by the slit 80. Therefore, it is possible to prevent an unnecessary heat transfer phenomenon in both heat transfer tubes from occurring via the fins, so that the heat exchange performance as the condenser is improved.

【0033】凝縮液化された冷媒は、減圧器4を通って
膨張し低温低圧の霧状の気液2相状態の冷媒となって蒸
発器として作用する室内熱交換器5へ流入する。室内熱
交換器中央部に配置された冷媒入口パイプ11から流入
した気液2相状態の冷媒は、熱交換器内に設けられたT
字型分流器11を介して上下2方向に分流し、U字型の
冷媒回路を構成している伝熱管群内へ流入する。蒸発器
として作用する室内熱交換器内では、単一冷媒とは違っ
て沸点の低い冷媒成分の多い液相の冷媒が蒸発し、さら
に加熱されると沸点の高い液冷媒成分も蒸発するように
なり、混合比によって決まる露点温度まで加熱されると
全て気相状態の冷媒となる。
The condensed and liquefied refrigerant expands through the pressure reducer 4 and becomes a low-temperature low-pressure atomized gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 5 which functions as an evaporator. The refrigerant in the gas-liquid two-phase state that has flowed in from the refrigerant inlet pipe 11 arranged in the center of the indoor heat exchanger is provided in the heat exchanger.
The flow is split into two in the upper and lower directions via the V-shaped flow distributor 11, and flows into the heat transfer tube group forming the U-shaped refrigerant circuit. In the indoor heat exchanger that acts as an evaporator, unlike a single refrigerant, the liquid-phase refrigerant with many low-boiling-point refrigerant components evaporates, and when heated, the liquid-boiling refrigerant component with high-boiling point also evaporates. When heated to the dew point temperature determined by the mixing ratio, the refrigerant in the vapor phase is entirely formed.

【0034】このように非共沸混合冷媒は、単一冷媒と
は違って凝縮あるいは蒸発の過程で成分の偏りが起こる
ため、質量速度が比較的小さく設定されている従来の室
内、室外熱交換器では、熱伝達率が大幅に低下してしま
う。
As described above, the non-azeotropic mixed refrigerant, unlike the single refrigerant, causes the components to be biased in the process of condensation or evaporation, so that the conventional indoor / outdoor heat exchange in which the mass velocity is set to be relatively small. In the vessel, the heat transfer coefficient will be greatly reduced.

【0035】また、図5に一点鎖線で示すように、蒸発
器として作用する室内熱交換器出入口(図5中にCDで
示す)間で冷媒の蒸発温度はかなり上昇する。図5は、
冷凍サイクル内を循環している冷媒の状態変化を示す。
図5において横軸は冷媒のエントロピS、縦軸は温度T
を示している。ここで、Tcは凝縮器内圧力に対応した
凝縮温度であり、Teは蒸発器内圧力に対応した蒸発温
度である。又、A、Bは各々凝縮器として作用する熱交
換器の入口、出口を、C、Dは各々蒸発器として作用す
る熱交換器の入口、出口を示す。図5中の破線及び一点
鎖線は従来の空気調和機に於ける冷媒の状態変化を示し
ており、破線は単一冷媒HCFC22を用いた場合、一
点鎖線は非共沸混合冷媒を用いた場合である。本実施例
の非共沸混合冷媒を用いた空気調和機の場合は、実線で
示されている。
Further, as shown by the alternate long and short dash line in FIG. 5, the evaporation temperature of the refrigerant rises considerably between the indoor heat exchanger inlet and outlet (indicated by CD in FIG. 5) which functions as an evaporator. Figure 5
The change of the state of the refrigerant circulating in the refrigeration cycle is shown.
In FIG. 5, the horizontal axis represents the entropy S of the refrigerant, and the vertical axis represents the temperature T.
Is shown. Here, Tc is the condensation temperature corresponding to the internal pressure of the condenser, and Te is the evaporation temperature corresponding to the internal pressure of the evaporator. Further, A and B respectively indicate the inlet and outlet of the heat exchanger acting as a condenser, and C and D respectively indicate the inlet and outlet of the heat exchanger acting as an evaporator. The broken line and the alternate long and short dash line in FIG. 5 show changes in the state of the refrigerant in the conventional air conditioner, the dashed line indicates the case of using the single refrigerant HCFC22, and the alternate long and short dashed line indicates the case of using the non-azeotropic mixed refrigerant. is there. The case of the air conditioner using the non-azeotropic mixed refrigerant of the present embodiment is shown by the solid line.

【0036】本実施例の室内熱交換器5は前記したよう
に、冷媒通路断面積を、管内冷媒質量速度Gが比較的大
きく、例えばG=200〜400kg/s程度となるよ
うに設定してあるので、図4から分かるように、高い熱
伝達率が得られサイクル効率が改善されるとともに、蒸
発器として作用するときの冷媒通路圧損が、冷媒質量速
度Gが200kg/s以下に設定されている従来の熱交換器
に比べて大きくなる。このため蒸発器入口温度が上がり
入口蒸発温度も上昇するので図5に実線で示すように、
熱交換器出入口(図5中にCDで示す)間で冷媒の蒸発
温度はほぼ一定となる。したがって、冷房時の吐気温度
の分布も一様になり室内ユニットの吹出しグリル等への
露付きや、水滴の飛び出し等の問題を生じない。
As described above, in the indoor heat exchanger 5 of this embodiment, the cross-sectional area of the refrigerant passage is set so that the in-pipe refrigerant mass velocity G is relatively large, for example, G = 200 to 400 kg / s. Therefore, as can be seen from FIG. 4, a high heat transfer coefficient is obtained, the cycle efficiency is improved, and the refrigerant passage pressure loss when acting as an evaporator is set so that the refrigerant mass velocity G is 200 kg / s or less. It is larger than the conventional heat exchanger. As a result, the evaporator inlet temperature rises and the inlet evaporation temperature rises, as shown by the solid line in FIG.
The evaporation temperature of the refrigerant is almost constant between the inlet and outlet of the heat exchanger (indicated by CD in FIG. 5). Therefore, the distribution of the exhaled air temperature during cooling is uniform, and there are no problems such as dew condensation on the blowout grill of the indoor unit or splashing of water drops.

【0037】次に暖房運転時の動作について説明する。
暖房時には四方弁2が切り替えられて冷媒の流れ方向が
冷房運転時とは反対方向となり図1に示すように冷房運
転時とは反対に室内熱交換器は凝縮器として、室外熱交
換器は蒸発器として作用する。すなわち、暖房運転時に
は、圧縮機1から吐出される高温高圧の冷媒ガスは破線
矢印19で示すように、四方弁2を通って凝縮器として
作用する室内熱交換器5へ送られ、室内ファン7によっ
て送風された空気によって冷され、高圧、低温の冷媒と
なり、減圧器4によって断熱膨張され低圧、低温の冷媒
となって蒸発器として作用する室外側熱交換器3へ流入
し、室外ファン6によって送風された空気によって加熱
されて蒸発した後、四方弁2を通って圧縮機1に戻り再
び圧縮されて循環する。この時加熱された空気を室内に
放出して暖房する。
Next, the operation during the heating operation will be described.
During heating, the four-way valve 2 is switched so that the flow direction of the refrigerant is opposite to that in the cooling operation, as shown in Fig. 1. Contrary to the cooling operation, the indoor heat exchanger serves as a condenser and the outdoor heat exchanger evaporates. Acts as a container. That is, during the heating operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is sent to the indoor heat exchanger 5 acting as a condenser through the four-way valve 2 as shown by a dashed arrow 19, and the indoor fan 7 Is cooled by the air blown by the air to become a high-pressure, low-temperature refrigerant, adiabatically expanded by the pressure reducer 4 and becomes a low-pressure, low-temperature refrigerant, which flows into the outdoor heat exchanger 3 acting as an evaporator, and is then cooled by the outdoor fan 6. After being heated by the blown air and evaporated, it returns to the compressor 1 through the four-way valve 2 and is compressed again and circulated. At this time, the heated air is released into the room for heating.

【0038】圧縮機1から吐出された高温高圧のガス冷
媒19は、入口パイプ14を通って室内熱交換器5へ流
入する。室内熱交換器へ流入した冷媒は、Y字型の冷媒
分流器12を介して上下2つのU字型冷媒回路内を分流
する。冷媒回路内の非共沸混合冷媒は、室内空気と熱交
換されることによって混合比によって決まる露点温度ま
で冷却されると、沸点の高い冷媒成分の多い凝縮が始ま
る。凝縮の進行につれて沸点の低い冷媒成分の凝縮割合
が増え、ついには混合比によって決まる液相温度まで冷
却されて全て凝縮する。したがって、U字型の冷媒回路
を構成している伝熱管内での冷媒凝縮温度は伝熱管内を
通過する間にかなり低下する。このため、冷房運転時の
室外熱交換器と同じようにスリット80を挟む風上側の
伝熱管と風下側伝熱管との間の温度差を生じるが伝熱フ
ィンの風上側半部分及び風下側半部分とをスリット80
によって熱的に分離した構成としているので、フィンを
介して両伝熱管での不必要な熱移動現象が生じるのを防
ぐことができ、凝縮器としての熱交換性能が改善され
る。2つのU字型の冷媒回路を通って凝縮された冷媒
は、T字型の冷媒分流器11を介して再び合流して質量
速度を増しながら伝熱管内でさらに冷却され過冷却液冷
媒となって出口パイプ13から流出する。このように、
合流して質量速度が上がることにより管内熱伝達率が改
善されるので凝縮器としての熱交換性能がさらに改善さ
れる。
The high-temperature and high-pressure gas refrigerant 19 discharged from the compressor 1 flows into the indoor heat exchanger 5 through the inlet pipe 14. The refrigerant that has flowed into the indoor heat exchanger splits in the upper and lower two U-shaped refrigerant circuits via the Y-shaped refrigerant distributor 12. When the non-azeotropic mixed refrigerant in the refrigerant circuit is cooled to the dew point temperature determined by the mixing ratio by exchanging heat with the room air, condensation with a large amount of refrigerant component having a high boiling point starts. As the condensation proceeds, the rate of condensation of the refrigerant component having a low boiling point increases, and finally, the refrigerant is cooled to the liquidus temperature determined by the mixing ratio and all is condensed. Therefore, the refrigerant condensing temperature in the heat transfer tube forming the U-shaped refrigerant circuit drops considerably while passing through the heat transfer tube. Therefore, similar to the outdoor heat exchanger during the cooling operation, a temperature difference occurs between the windward heat transfer tube and the leeward heat transfer tube that sandwich the slit 80. However, the windward half and the leeward half of the heat transfer fins are generated. Slit the part 80
Since it is configured to be thermally separated by the above, it is possible to prevent an unnecessary heat transfer phenomenon in both heat transfer tubes via the fins, and improve the heat exchange performance as the condenser. The refrigerant condensed through the two U-shaped refrigerant circuits merges again through the T-shaped refrigerant distributor 11 to increase the mass velocity and is further cooled in the heat transfer tube to become a supercooled liquid refrigerant. Flows out from the outlet pipe 13. in this way,
The heat transfer coefficient in the tube is improved by the merging and the increase of the mass velocity, so that the heat exchange performance as the condenser is further improved.

【0039】室内熱交換器を出た液冷媒は、減圧器4を
通って膨張して低温低圧の霧状の気液2相状態の冷媒と
なって蒸発器として作用する室外熱交換器5に流入す
る。室外熱交換器中央部に配置された冷媒入口パイプ1
7から流入した気液2相状態の冷媒は、Y字型の冷媒分
流器12を介して上下2つのU字型の冷媒回路内を分流
する。このとき蒸発器として作用する室外熱交換器内で
は、空気による加熱によって最初は沸点の低い冷媒成分
が多い液相の冷媒が蒸発し、さらに加熱されると沸点の
高い液冷媒成分も蒸発するようになり、混合比によって
決まる露点温度まで加熱されると全て気相冷媒となる。
The liquid refrigerant exiting the indoor heat exchanger expands through the pressure reducer 4 to become a low-temperature low-pressure atomized refrigerant in a gas-liquid two-phase state to the outdoor heat exchanger 5 acting as an evaporator. Inflow. Refrigerant inlet pipe 1 arranged in the central part of the outdoor heat exchanger
The gas-liquid two-phase refrigerant that has flowed in from 7 is divided into two upper and lower U-shaped refrigerant circuits via the Y-shaped refrigerant distributor 12. At this time, in the outdoor heat exchanger that acts as an evaporator, the refrigerant in the liquid phase having a large amount of the refrigerant component with a low boiling point evaporates initially by heating with air, and when further heated, the liquid refrigerant component with a high boiling point also evaporates. Then, when heated to the dew point temperature determined by the mixing ratio, all become the vapor phase refrigerant.

【0040】なお、暖房運転の場合も凝縮あるいは蒸発
の過程で成分の偏りが起こるという管内凝縮および蒸発
の熱伝達メカニズムは変わらないので、質量速度が比較
的小さく、G=200kg/s程度以下に設定されている従
来の室内、室外熱交換器では、熱伝達率が大幅に低下し
てしまう。また、図5に一点鎖線で示すように、蒸発器
として作用する室外熱交換器は入口部の蒸発温度が最も
低く、出口に向かって蒸発温度が上昇するようになる。
本実施例の室内熱交換器5、室外熱交換器3は前記した
ように、管内冷媒質量速度Gが比較的大きく、例えばG
=200〜400kg/s程度となるように冷媒通路断
面積を設定してあり、図4に示されるように高い熱伝達
率が得られるので、凝縮器、蒸発器としての室内外熱交
換器の性能が大幅に改善される。
In the heating operation as well, the heat transfer mechanism of condensation and evaporation in the tube, in which the components are biased in the process of condensation or evaporation, does not change, so the mass velocity is relatively small, and G = 200 kg / s or less. In the conventional indoor and outdoor heat exchangers that have been set, the heat transfer coefficient is significantly reduced. Further, as shown by the alternate long and short dash line in FIG. 5, the outdoor heat exchanger acting as an evaporator has the lowest evaporation temperature at the inlet portion, and the evaporation temperature rises toward the outlet.
As described above, the indoor heat exchanger 5 and the outdoor heat exchanger 3 of this embodiment have a relatively large in-pipe refrigerant mass velocity G, for example, G
= 200 to 400 kg / s, the refrigerant passage cross-sectional area is set to obtain a high heat transfer coefficient as shown in FIG. Performance is greatly improved.

【0041】上記冷媒質量速度Gを満足するためには、
室内熱交換器、室外熱交換器の冷媒通路断面積As(m
2)は、以下のように定格能力Q(kW)と質量速度G
との関係式である次式を用いて設定することができる。
In order to satisfy the above refrigerant mass velocity G,
Refrigerant passage cross-sectional area As (m) of the indoor heat exchanger and the outdoor heat exchanger
2 ) is the rated capacity Q (kW) and mass velocity G as follows.
It can be set by using the following equation which is a relational expression with.

【0042】 Q=As×G×γ×(1+C) (1) ここで、γ(J/kg)は冷媒の潜熱、Cは凝縮器出入
口部での冷媒顕熱変化成分と潜熱の比であり、定数Cの
値は通常0.3〜0.4である。又、潜熱γの値は、従
来の冷媒HCFC22の場合、約160kJ/kgであ
り、HFC32、HFC134a、HFC125等の冷
媒を2種類又は3種類混合した非共沸混合冷媒の場合は
大略180kJ/kgであることから、本実施例におい
ては、定格能力当りの冷媒通路断面積As/Qは、次の
ように設定するのが好ましい。すなわち、1/(400
×180×1.4)〜1/(200×180×1.3)
の範囲である0.1〜2.14(cm2/kW)に設定
することが好ましい。
Q = As × G × γ × (1 + C) (1) where γ (J / kg) is the latent heat of the refrigerant, and C is the ratio of the sensible heat change component of the refrigerant at the inlet and outlet of the condenser to the latent heat. The value of the constant C is usually 0.3 to 0.4. The value of latent heat γ is about 160 kJ / kg in the case of the conventional refrigerant HCFC22, and about 180 kJ / kg in the case of a non-azeotropic mixed refrigerant obtained by mixing two or three kinds of refrigerants such as HFC32, HFC134a, and HFC125. Therefore, in this embodiment, it is preferable to set the refrigerant passage cross-sectional area As / Q per rated capacity as follows. That is, 1 / (400
× 180 × 1.4) to 1 / (200 × 180 × 1.3)
It is preferable to set it in the range of 0.1 to 2.14 (cm 2 / kW).

【0043】蒸発器として作用する室外熱交換器3は、
冷媒通路圧損が従来に比べて大きく蒸発器入口圧力が上
がり蒸発温度も高くなるので冷媒流れ方向に沿う蒸発温
度の上昇が打ち消される。この結果、図5に実線で示す
ように室外熱交換器出入口(図5中にCDで示す)間で
の冷媒蒸発温度Teはほぼ一定となる。冷媒蒸発温度T
eがほぼ一定になっているので、暖房時のフィン温度も
熱交換器全体にわたって大略一様になり、従来のように
温度が低いところに偏って生じた着霜による目詰まりに
よって暖房能力が急激に低下してしまう等の問題を生じ
ない。
The outdoor heat exchanger 3 acting as an evaporator is
The refrigerant passage pressure loss is larger than in the conventional case, and the evaporator inlet pressure rises and the evaporation temperature also rises, so that the increase in the evaporation temperature along the refrigerant flow direction is canceled out. As a result, as shown by the solid line in FIG. 5, the refrigerant evaporation temperature Te between the outdoor heat exchanger inlet and outlet (indicated by CD in FIG. 5) becomes substantially constant. Refrigerant evaporation temperature T
Since e is almost constant, the fin temperature during heating is also almost uniform over the entire heat exchanger, and the heating capacity is abruptly increased due to clogging caused by frost that is unevenly distributed in low temperature areas as in the past. It does not cause problems such as a decrease in

【0044】なお、本実施例において室内熱交換器は、
室外熱交換器に比べて蒸発器として動作するときの作動
圧力が高く、圧力損失に対する限界質量速度も高くなる
ので冷媒通路断面積としては室内熱交換器の通路断面積
を小さく設定してもよい。
In this embodiment, the indoor heat exchanger is
The operating pressure when operating as an evaporator is higher than that of an outdoor heat exchanger, and the critical mass velocity for pressure loss is also high, so the passage cross-sectional area of the indoor heat exchanger may be set small as the refrigerant passage cross-sectional area. .

【0045】又、本実施例は少なくとも定格能力発生時
に、着霜による能力低下や管内熱伝達率の低下等による
能力低下等を防止して効率の良い運転ができるように、
熱交換器の通路断面積や圧縮機の回転数を設定して比較
的大きい管内冷媒質量速度を確保できれば良く、圧縮機
回転数は運転中一定でもよいものである。
Further, in the present embodiment, at least when the rated capacity is generated, the capacity deterioration due to frost formation, the capacity deterioration due to the decrease of the heat transfer coefficient in the pipe, etc. are prevented so that the efficient operation can be performed.
It suffices that a relatively large in-tube refrigerant mass velocity can be secured by setting the passage cross-sectional area of the heat exchanger and the rotation speed of the compressor, and the rotation speed of the compressor may be constant during operation.

【0046】本発明の第2の実施例を図6により説明す
る。図6は本実施例に係わる運転制御方法であるフロー
チャートを示す図である。
The second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing a flowchart of the operation control method according to this embodiment.

【0047】本実施例においてもサイクル構成、室内熱
交換器、室外熱交換器は図1から図3に示す実施例と同
様に構成されているが、本実施例では、暖房運転時に蒸
発器として作用する室外熱交換器3の冷媒入口温度Tc
1、出口温度Tc2が大略同じになるように冷媒循環流
量を制御するものである。
Also in this embodiment, the cycle structure, the indoor heat exchanger and the outdoor heat exchanger are the same as those of the embodiment shown in FIGS. 1 to 3, but in this embodiment, the evaporator is used during the heating operation. Refrigerant inlet temperature Tc of the acting outdoor heat exchanger 3
1. The refrigerant circulation flow rate is controlled so that the outlet temperature Tc2 is approximately the same.

【0048】本実施例において運転制御方法は次のよう
に行う。室外熱交換器3の冷媒入口温度Tc1、出口温
度Tc2を温度センサ101、102を用いて測定す
る。温度センサ101、102としては例えばサーミス
タ温度センサが用いられており、冷媒出口温度Tc2
は、圧縮機吸入冷媒温度がほぼ飽和温度となるように、
制御器(図示せず)を介して膨張弁4の開度を制御する
ことによってほぼ飽和温度に保たれている。このように
して測定された冷媒入口温度Tc1が、出口温度Tc2
の許容値より低ければ、図1に示すインバータ制御装置
100から回転数可変速モータに信号が送られ圧縮機1
の回転数を上げて冷媒循環流量を増やす。
In this embodiment, the operation control method is performed as follows. The refrigerant inlet temperature Tc1 and the outlet temperature Tc2 of the outdoor heat exchanger 3 are measured using the temperature sensors 101 and 102. As the temperature sensors 101 and 102, for example, thermistor temperature sensors are used, and the refrigerant outlet temperature Tc2
So that the compressor suction refrigerant temperature is almost saturated temperature,
By controlling the opening degree of the expansion valve 4 via a controller (not shown), the temperature is maintained substantially at the saturation temperature. The refrigerant inlet temperature Tc1 measured in this way is equal to the outlet temperature Tc2.
If it is lower than the allowable value of, the inverter control device 100 shown in FIG.
To increase the refrigerant circulation flow rate.

【0049】このように制御することにより、冷媒質量
速度が増し圧力損失が増えるので、冷媒流れ方向に沿う
蒸発温度上昇が打ち消される。また、冷媒質量速度が増
したことによって管内熱伝達率が改善されるとともに熱
交換器の温度が全体的にほぼ一様になり、低外気温時の
着霜が抑えられ暖房能力が大幅に向上する。なお、本実
施例では、圧縮機吸入冷媒温度を介して間接的に冷媒出
口温度Tc2を制御しているが、冷媒出口温度Tc2を
直接制御するようにしてもよい。
By controlling in this way, the mass velocity of the refrigerant increases and the pressure loss increases, so that the rise in the evaporation temperature along the flow direction of the refrigerant is canceled out. In addition, the increase in the mass velocity of the refrigerant improves the heat transfer coefficient in the pipe and makes the temperature of the heat exchanger almost uniform over the entire surface, suppressing frost formation at low outside temperatures and significantly improving the heating capacity. To do. In this embodiment, the refrigerant outlet temperature Tc2 is indirectly controlled via the compressor intake refrigerant temperature, but the refrigerant outlet temperature Tc2 may be directly controlled.

【0050】本発明の第3の実施例を図7により説明す
る。図7は本実施例に係わる運転制御方法であるフロー
チャートを示す図である。
A third embodiment of the present invention will be described with reference to FIG. FIG. 7 is a diagram showing a flowchart that is the operation control method according to the present embodiment.

【0051】第2の実施例では、暖房負荷の大小にかか
わらず冷媒入口温度と出口が大略等しくなるように制御
していたのに対して、本実施例では外気温を検出し、外
気温度が大略5℃以下となって暖房負荷が大きいときに
暖房能力を発揮できるように圧縮機回転数を変えて冷媒
循環流量を制御したものである。
In the second embodiment, the refrigerant inlet temperature and the outlet are controlled to be substantially equal to each other regardless of the heating load, whereas in the present embodiment, the outside air temperature is detected and the outside air temperature is The refrigerant circulation flow rate is controlled by changing the number of revolutions of the compressor so that the heating capacity can be exhibited when the heating load is large at approximately 5 ° C. or less.

【0052】室外熱交換器3の周囲に配置した外気温度
センサ103を用いて外気温度を検出する。このとき、
外気温度と蒸発温度との温度差は通常7〜10℃であ
り、外気温が5〜6℃以下に低下するとフィン表面温度
も0℃以下となって空気中の水分がフィン表面に霜とな
って付着するようになる。ところが、非共沸混合冷媒を
用いた場合には、フィン表面温度が平均的には0℃であ
っても、従来の運転方法では冷媒流れ方向に沿う温度勾
配によって熱交換器入口部の温度が0℃以下になって、
局部的に着霜が進行して性能低下を生じるという問題が
あった。これに対して本実施例では、図7に示すよう
に、室外熱交換器3の周囲に設けられた外気温度センサ
103を用いて外気温度Toを測定する。外気温Toが
5℃以下になったら、さらに室外熱交換器3の冷媒入口
温度Tc1、出口温度Tc2を測定する。このようにし
て測定された冷媒入口温度Tc1と出口温度Tc2が大
略等しくなるように、図1に示すインバータ制御回路1
00から回転数可変速モータに信号を送り、圧縮機1の
回転数を上げて冷媒循環流量を増やす。
The outside air temperature is detected by using the outside air temperature sensor 103 arranged around the outdoor heat exchanger 3. At this time,
The temperature difference between the outside air temperature and the evaporation temperature is usually 7 to 10 ° C, and when the outside air temperature drops to 5 to 6 ° C or less, the fin surface temperature also becomes 0 ° C or less and the moisture in the air becomes frost on the fin surface. Will become attached. However, when a non-azeotropic mixed refrigerant is used, even if the fin surface temperature is 0 ° C. on average, in the conventional operation method, the temperature at the inlet of the heat exchanger is increased due to the temperature gradient along the refrigerant flow direction. Below 0 ° C,
There has been a problem that frost is locally formed and performance is deteriorated. On the other hand, in this embodiment, as shown in FIG. 7, the outside air temperature To is measured using the outside air temperature sensor 103 provided around the outdoor heat exchanger 3. When the outside air temperature To becomes 5 ° C. or lower, the refrigerant inlet temperature Tc1 and the outlet temperature Tc2 of the outdoor heat exchanger 3 are further measured. The inverter control circuit 1 shown in FIG. 1 is configured so that the refrigerant inlet temperature Tc1 and the outlet temperature Tc2 measured in this manner are approximately equal.
00, a signal is sent to the variable rotation speed motor to increase the rotation speed of the compressor 1 to increase the refrigerant circulation flow rate.

【0053】以上の制御により外気温度が5℃以下に低
下して暖房負荷が大きくなったとき、冷媒質量速度が増
して、冷媒流れ方向に沿う蒸発温度上昇が打ち消される
よう圧力損失を生じる。これによって管内熱伝達率が改
善されるとともに熱交換器の温度が全体的にほぼ一様に
なり、低外気温時の着霜が抑えられ暖房能力が大幅に向
上する。
By the above control, when the outside air temperature decreases to 5 ° C. or less and the heating load increases, the mass velocity of the refrigerant increases, and a pressure loss occurs so that the increase in the evaporation temperature along the refrigerant flow direction is canceled out. As a result, the heat transfer coefficient in the pipe is improved, the temperature of the heat exchanger is made almost uniform as a whole, and the frost formation at low outside air temperature is suppressed and the heating capacity is greatly improved.

【0054】上記した実施例では、熱交換器の出入口の
蒸発温度が略等しくなるように圧縮機回転数を制御する
ものであるが、熱交換器の出口に設けられた温度センサ
と圧力センサを用いて冷媒漏れを検出してもよい。この
場合、図1に示すように、冷媒入口位置には温度センサ
101が、冷媒出口位置には温度センサ102が各々設
けられるとともに、出口には圧力センサ(図示せず)が
設置されている。通常の運転時に熱交換器の出口圧力を
圧力センサにより検出し、その圧力から換算して冷媒の
飽和温度を求める。次に温度センサ102で検出した冷
媒温度との温度差として熱交換器の出口のス−パ−ヒ−
ト量を制御回路により求める。この求めたス−パ−ヒ−
ト量が所定値より大きければ、冷媒が漏れたと判断し
て、制御回路は警報信号あるいは表示するための信号を
生成し、警報あるいは表示を行うようになっている。
In the above-mentioned embodiment, the number of revolutions of the compressor is controlled so that the vaporization temperatures at the inlet and outlet of the heat exchanger are substantially equal, but the temperature sensor and the pressure sensor provided at the outlet of the heat exchanger are used. It may be used to detect refrigerant leakage. In this case, as shown in FIG. 1, a temperature sensor 101 is provided at the refrigerant inlet position, a temperature sensor 102 is provided at the refrigerant outlet position, and a pressure sensor (not shown) is provided at the outlet. During normal operation, the outlet pressure of the heat exchanger is detected by a pressure sensor, and the saturation temperature of the refrigerant is calculated by converting from that pressure. Next, as a temperature difference from the refrigerant temperature detected by the temperature sensor 102, the superheater at the outlet of the heat exchanger is used.
The control amount is calculated by the control circuit. This requested super heat
If the charge amount is larger than a predetermined value, it is determined that the refrigerant has leaked, and the control circuit generates an alarm signal or a signal for displaying and issues an alarm or display.

【0055】このようにすることにより、適正な冷媒の
混合割合から大きくずれた空気調和機の運転を防止で
き、性能が低下したまま運転することを防止できる。
By doing so, it is possible to prevent the operation of the air conditioner, which greatly deviates from the proper mixing ratio of the refrigerant, and to prevent the operation of the air conditioner while the performance is deteriorated.

【0056】以上説明したように、室内熱交換器、室外
熱交換器の冷媒通路断面積が、圧縮機回転数が定格能力
発生回転数に設定されたとき管内冷媒質量速度Gが比較
的大きく、例えばG=200〜400kg/s程度とな
るように設定されているので、凝縮あるいは蒸発の過程
での冷媒成分の偏りによる熱伝達率の大幅な低下が防止
できる。また、蒸発器として作用するときの冷媒通路圧
損が、熱交換器出入口間の沸点上昇を打ち消す程度とな
るように設定されているので熱交換器出入口間で冷媒の
蒸発温度はほぼ一定となる。
As described above, the refrigerant passage sectional areas of the indoor heat exchanger and the outdoor heat exchanger have a relatively large in-tube refrigerant mass velocity G when the compressor rotation speed is set to the rated capacity generation rotation speed, For example, since G is set to about 200 to 400 kg / s, it is possible to prevent a large decrease in heat transfer coefficient due to uneven distribution of the refrigerant components in the process of condensation or evaporation. Further, since the pressure loss of the refrigerant passage when acting as an evaporator is set so as to cancel out the boiling point rise between the heat exchanger inlet and outlet, the evaporation temperature of the refrigerant becomes substantially constant between the heat exchanger inlet and outlet.

【0057】したがって、冷房時の吐気温度の分布も一
様になり、室内ユニットの吹出しグリル等への露付き、
水滴の飛び出し等の問題や、低外気温時に室外熱交換器
へ局部的な着霜を生じるという問題を生じないので、非
共沸混合冷媒用冷凍サイクルを有するヒートポンプ型の
空気調和器の性能が著しく向上する。
Therefore, the distribution of the exhaled air temperature during cooling becomes uniform, and the dew on the blowout grill of the indoor unit, etc.
The performance of a heat pump type air conditioner that has a refrigeration cycle for non-azeotropic mixed refrigerant does not occur because it does not cause problems such as water droplets popping out or the problem of localized frost formation on the outdoor heat exchanger at low outdoor temperatures. Remarkably improved.

【0058】なお、図4から分かるように、非共沸混合
冷媒の性能変化は平滑管においても溝付管においても同
様に生じるので、平滑管を用いても溝付管をはじめとす
る内面加工管において奏するものと同様な効果を発揮す
ることができる。
As can be seen from FIG. 4, the performance change of the non-azeotropic mixed refrigerant occurs in the smooth pipe and the grooved pipe in the same manner. Therefore, even if the smooth pipe is used, the inner surface processing including the grooved pipe is processed. It is possible to exert the same effect as that achieved in the tube.

【0059】[0059]

【発明の効果】以上説明したように、本発明によれば、
室内熱交換器、室外熱交換器の冷媒通路断面積が、圧縮
機回転数が定格能力発生回転数に設定されたとき管内冷
媒質量速度Gが比較的大きく、例えばG=200〜50
0kg/s程度となるように設定されているので、凝縮ある
いは蒸発の過程での冷媒成分の偏りによる熱伝達率の大
幅な低下が防止できる。
As described above, according to the present invention,
The refrigerant passage cross-sectional areas of the indoor heat exchanger and the outdoor heat exchanger have a relatively large in-pipe refrigerant mass velocity G when the compressor rotation speed is set to the rated capacity generation rotation speed, for example, G = 200 to 50.
Since it is set to be about 0 kg / s, it is possible to prevent a large decrease in the heat transfer coefficient due to the imbalance of the refrigerant components in the process of condensation or evaporation.

【0060】また、蒸発器として作用するときの冷媒通
路圧損が、熱交換器出入口間の沸点上昇を打ち消す程度
となるように設定されているので熱交換器出入口間で冷
媒の蒸発温度はほぼ一定となる。したがって、冷房時の
吐気温度の分布も一様になり室内ユニットの吹出しグリ
ル等への露付き、水滴の飛び出し等の問題や、低外気温
時に室外熱交換器へ局部的な着霜を生じるという問題を
生じないので、非共沸混合冷媒用冷凍サイクルを有する
ヒートポンプ型の空気調和機の性能が著しく向上する。
Further, since the pressure loss of the refrigerant passage when acting as an evaporator is set so as to cancel out the boiling point rise between the heat exchanger inlet and outlet, the evaporation temperature of the refrigerant is substantially constant between the heat exchanger inlet and outlet. Becomes Therefore, the distribution of the exhaled air temperature during cooling will be uniform, and there will be problems such as dew on the blowout grill of the indoor unit, splashes of water droplets, and local frost formation on the outdoor heat exchanger at low outdoor temperatures. Since no problem occurs, the performance of the heat pump type air conditioner having the refrigeration cycle for non-azeotropic mixed refrigerant is significantly improved.

【0061】又、冷媒が漏れた場合でも、非共沸混合冷
媒の混合割合が大きくずれたまま運転することを防止で
きる。
Further, even when the refrigerant leaks, it is possible to prevent the operation with the mixing ratio of the non-azeotropic mixed refrigerant largely deviated.

【0062】[0062]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である空気調和機の冷凍サイ
クル構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner that is an embodiment of the present invention.

【図2】室外熱交換器の側面図である。FIG. 2 is a side view of the outdoor heat exchanger.

【図3】室内熱交換器の側面図である。FIG. 3 is a side view of the indoor heat exchanger.

【図4】冷凍サイクルを構成する内面溝付管及び平滑管
の凝縮熱伝達実験結果を示す図である。
FIG. 4 is a diagram showing a result of a condensation heat transfer experiment of an inner grooved tube and a smooth tube which constitute a refrigeration cycle.

【図5】空気調和機の冷凍サイクルTS線図である。FIG. 5 is a refrigeration cycle TS diagram of the air conditioner.

【図6】本発明の第2の実施例である運転制御のフロー
チャートを示す図である。
FIG. 6 is a diagram showing a flowchart of operation control which is a second embodiment of the present invention.

【図7】本発明の第3の実施例である運転制御のフロー
チャートを示す図である。
FIG. 7 is a diagram showing a flowchart of operation control according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、1a…可変速モータ、3…室外側熱交換
器、4…減圧器、5…室内側熱交換器、8…伝熱フィ
ン、9…内面溝付伝熱管、18…冷房時の冷媒流れ方向
を示す矢印、19…暖房時の冷媒流れ方向を示す矢印、
80…スリット部、100…インバータ制御装置、10
1、102、103…温度センサ、200…室内ユニッ
ト、201…室外ユニット。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 1a ... Variable speed motor, 3 ... Outdoor heat exchanger, 4 ... Decompressor, 5 ... Indoor heat exchanger, 8 ... Heat transfer fin, 9 ... Inner grooved heat transfer tube, 18 ... Cooling , An arrow indicating the refrigerant flow direction of 19 ... An arrow indicating the refrigerant flow direction during heating,
80 ... Slit part, 100 ... Inverter control device, 10
1, 102, 103 ... Temperature sensor, 200 ... Indoor unit, 201 ... Outdoor unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福島 敏彦 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小暮 博志 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所リビング機器事業部内 (72)発明者 松嶋 弘章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Fukushima 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Hiritsu Works Co., Ltd. Mechanical Research Laboratory (72) Hiroshi Kogure 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi, Ltd. (72) Inventor, Hiroaki Matsushima, 502, Kamidate-cho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなる空気調和機において、作動媒体
として非共沸混合冷媒を用いるとともに、冷媒質量流量
が200〜400kg/sとなるように前記室内熱交換
器、室外熱交換器の通路断面積を設定したことを特徴と
する空気調和機。
1. An air conditioner comprising an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, and an expansion mechanism, which uses a non-azeotropic mixed refrigerant as a working medium and has a refrigerant mass flow rate of 200 to 400 kg /. An air conditioner in which the passage cross-sectional areas of the indoor heat exchanger and the outdoor heat exchanger are set to be s.
【請求項2】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなる空気調和機において、作動媒体
として非共沸混合冷媒を用いるとともに、前記室外熱交
換器の入口側及び出口側に冷媒温度を検出するためのセ
ンサと、該センサの出力を入力して前記圧縮機の回転数
を制御する制御装置を備えたことを特徴とする空気調和
機。
2. An air conditioner comprising an indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve and an expansion mechanism, wherein a non-azeotropic mixed refrigerant is used as a working medium and the inlet side of the outdoor heat exchanger is used. An air conditioner comprising: a sensor for detecting the temperature of the refrigerant on the outlet side; and a control device for inputting the output of the sensor to control the rotation speed of the compressor.
【請求項3】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなり、前記圧縮機の回転数を制御す
る制御装置を備え、作動媒体として非共沸混合冷媒を用
いた空気調和機であって、前記室外熱交換器の入口側及
び出口側に冷媒温度検出用センサを備え、該冷媒温度検
出用センサにより検出した前記室外熱交換器が蒸発器と
して作用するときの熱交換器における入口及び出口の冷
媒温度を前記制御装置に入力し、前記制御装置により圧
縮機回転数を制御して前記室外熱交換器の入口と出口温
度を制御することを特徴とする空気調和機。
3. An indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, an expansion mechanism, a control device for controlling the rotation speed of the compressor, and a non-azeotropic mixed refrigerant as a working medium. In the above air conditioner, a refrigerant temperature detecting sensor is provided on the inlet side and the outlet side of the outdoor heat exchanger, and when the outdoor heat exchanger detected by the refrigerant temperature detecting sensor acts as an evaporator. An air conditioner characterized by inputting refrigerant temperatures at an inlet and an outlet in a heat exchanger to the control device, and controlling the compressor rotation speed by the control device to control the inlet and outlet temperatures of the outdoor heat exchanger. Machine.
【請求項4】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなり、前記圧縮機の回転数を制御す
る制御装置を備え、作動媒体として非共沸混合冷媒を用
いた空気調和機であって、前記室外熱交換器の入口側及
び出口側に冷媒温度検出用センサを備え、該冷媒温度検
出用センサにより検出したが蒸発器として作用するとき
の前記室外熱交換器の入口側冷媒温度が出口冷媒温度に
比べて許容値より低いと判断されたときは前記制御装置
により圧縮機回転数を増す方向に制御することを特徴と
する空気調和機。
4. An indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, an expansion mechanism, a control device for controlling the rotation speed of the compressor, and a non-azeotropic mixed refrigerant as a working medium. In the air conditioner, the outdoor heat exchanger is provided with a refrigerant temperature detecting sensor on the inlet side and the outlet side of the outdoor heat exchanger, and the outdoor heat exchanger is detected by the refrigerant temperature detecting sensor and acts as an evaporator. The air conditioner is characterized in that, when it is determined that the inlet side refrigerant temperature of is lower than the allowable value as compared with the outlet side refrigerant temperature, the control device controls in a direction of increasing the compressor rotation speed.
【請求項5】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなり、前記圧縮機の回転数を制御す
る制御装置を備え、作動冷媒として非共沸混合冷媒を用
いた空気調和機であって、前記室外熱交換器、室内熱交
換器は伝熱フィンと内面加工管である伝熱管から構成さ
れ、前記室外熱交換器が蒸発器として作用するときの定
格能力時の冷媒質量速度が200〜400kg/sとな
るように前記制御装置により圧縮機回転数を制御するこ
とを特徴とする空気調和機。
5. An indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, an expansion mechanism, a control device for controlling the number of revolutions of the compressor, and a non-azeotropic mixed refrigerant as a working refrigerant. In the air conditioner, the outdoor heat exchanger and the indoor heat exchanger are composed of heat transfer fins and heat transfer tubes that are inner surface processing tubes, and the outdoor heat exchanger has a rated capacity when acting as an evaporator. The air conditioner, wherein the control device controls the number of revolutions of the compressor so that the refrigerant mass velocity is 200 to 400 kg / s.
【請求項6】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなり、前記圧縮機の回転数を制御す
る制御装置を備え、作動媒体として非共沸混合冷媒を用
いた空気調和機であって、前記室内熱交換器、室外熱交
換器は伝熱フィンと内面加工管である伝熱管から構成さ
れ、前記室外熱交換器が蒸発器として作用するときの定
格能力当りの冷媒通路断面積が0.1〜0.21cm2
/kWとなるように管径、パス数を選定したことを特徴
とする空気調和機。
6. An indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, an expansion mechanism, a control device for controlling the rotation speed of the compressor, and a non-azeotropic mixed refrigerant as a working medium. In the air conditioner, the indoor heat exchanger and the outdoor heat exchanger are composed of heat transfer fins and heat transfer tubes that are inner surface processing tubes, and the rated capacity when the outdoor heat exchanger acts as an evaporator Has a refrigerant passage cross-sectional area of 0.1 to 0.21 cm 2.
An air conditioner characterized in that the pipe diameter and the number of passes are selected so that it becomes / kW.
【請求項7】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなり、前記圧縮機の回転数を制御す
る制御装置を備え、作動媒体として非共沸混合冷媒を用
いた空気調和機であって、前記熱交換器は伝熱フィンと
内面加工管である伝熱管から構成され、管内冷媒質量速
度が比較的大きく、少なくとも蒸発器として作用すると
きの定格能力時の冷媒入口蒸発温度が出口蒸発温度と許
容された範囲内になるように、冷媒通路断面積を設定し
たことを特徴とする空気調和機。
7. An indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, an expansion mechanism, a control device for controlling the rotation speed of the compressor, and a non-azeotropic mixed refrigerant as a working medium. In the air conditioner, the heat exchanger is composed of heat transfer fins and a heat transfer tube that is an inner surface processing tube, the refrigerant mass velocity in the tube is relatively large, and at least the refrigerant at the rated capacity when acting as an evaporator is used. An air conditioner having a refrigerant passage cross-sectional area set so that an inlet evaporation temperature is within an allowable range of an outlet evaporation temperature.
【請求項8】室内熱交換器、室外熱交換器、圧縮機、四
方弁、膨張機構からなり、前記圧縮機の回転数を制御す
る制御装置を備え、作動媒体として非共沸混合冷媒を用
いた空気調和機であって、前記室外熱交換器の出口側に
冷媒蒸発温度の検出用センサを備え、該センサにより検
出される冷媒温度が蒸発器として作用するときの熱交換
器の出口側スーパーヒート量の許容値より大きいと判断
されたときは冷媒漏れの警報を出力することを特徴とす
る空気調和機。
8. An indoor heat exchanger, an outdoor heat exchanger, a compressor, a four-way valve, an expansion mechanism, a control device for controlling the rotation speed of the compressor, and a non-azeotropic mixed refrigerant as a working medium. In the above air conditioner, a sensor for detecting a refrigerant evaporation temperature is provided on the outlet side of the outdoor heat exchanger, and the outlet side superheater of the heat exchanger when the refrigerant temperature detected by the sensor acts as an evaporator. An air conditioner that outputs a refrigerant leak alarm when it is determined that the heat amount is larger than the allowable value.
【請求項9】前記室内熱交換器の冷媒通路断面積を室外
熱交換器の冷媒通路断面積に比べて小さくなるように設
定した請求項1から8のいずれか記載の空気調和機。
9. The air conditioner according to claim 1, wherein the cross sectional area of the refrigerant passage of the indoor heat exchanger is set smaller than the cross sectional area of the refrigerant passage of the outdoor heat exchanger.
【請求項10】前記室外熱交換器、室内熱交換器が中間
部にスリットを設けられたものである請求項1から8の
いずれかに記載の空気調和機。
10. The air conditioner according to claim 1, wherein the outdoor heat exchanger and the indoor heat exchanger are provided with a slit in an intermediate portion.
JP09411493A 1993-04-21 1993-04-21 Air conditioner Expired - Fee Related JP3298225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09411493A JP3298225B2 (en) 1993-04-21 1993-04-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09411493A JP3298225B2 (en) 1993-04-21 1993-04-21 Air conditioner

Publications (2)

Publication Number Publication Date
JPH06307725A true JPH06307725A (en) 1994-11-01
JP3298225B2 JP3298225B2 (en) 2002-07-02

Family

ID=14101415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09411493A Expired - Fee Related JP3298225B2 (en) 1993-04-21 1993-04-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP3298225B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015999A (en) * 2003-08-01 2004-01-15 Matsushita Electric Ind Co Ltd Motor-driven compressor
JP2012102979A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature adjusting device and thermo-hygrostat
WO2022215108A1 (en) * 2021-04-05 2022-10-13 三菱電機株式会社 Refrigeration cycle device
WO2023281656A1 (en) * 2021-07-07 2023-01-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015999A (en) * 2003-08-01 2004-01-15 Matsushita Electric Ind Co Ltd Motor-driven compressor
JP2012102979A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature adjusting device and thermo-hygrostat
WO2022215108A1 (en) * 2021-04-05 2022-10-13 三菱電機株式会社 Refrigeration cycle device
WO2023281656A1 (en) * 2021-07-07 2023-01-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
JP3298225B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP2979926B2 (en) Air conditioner
JP4358832B2 (en) Refrigeration air conditioner
KR100958399B1 (en) Hvac system with powered subcooler
KR100248683B1 (en) Cooling apparatus
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2012193897A (en) Refrigeration cycle device
JP2009133624A (en) Refrigerating/air-conditioning device
JP6479181B2 (en) Air conditioner
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
US20010037649A1 (en) Air conditioner using flammable refrigerant
JPH09145187A (en) Air conditioner
JP2000249479A (en) Heat exchanger
US6668569B1 (en) Heat pump apparatus
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
KR100502283B1 (en) Air conditioning system
JPH09145076A (en) Heat exchanger
JPH06307725A (en) Air conditioner
JP6765538B2 (en) Refrigeration equipment and operation method of refrigeration equipment
JP2012237518A (en) Air conditioner
JPH06194000A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JPH07127955A (en) Refrigerating cycle device
JP2003194427A (en) Cooling device
JPH08178445A (en) Heat pump type air conditioner
JPH06307738A (en) Condenser for non-azeotrope reefrigerant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees