WO2022215108A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022215108A1
WO2022215108A1 PCT/JP2021/014458 JP2021014458W WO2022215108A1 WO 2022215108 A1 WO2022215108 A1 WO 2022215108A1 JP 2021014458 W JP2021014458 W JP 2021014458W WO 2022215108 A1 WO2022215108 A1 WO 2022215108A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
temperature
heat
pressure loss
Prior art date
Application number
PCT/JP2021/014458
Other languages
French (fr)
Japanese (ja)
Inventor
端之 松下
仁隆 門脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023512502A priority Critical patent/JPWO2022215108A1/ja
Priority to PCT/JP2021/014458 priority patent/WO2022215108A1/en
Publication of WO2022215108A1 publication Critical patent/WO2022215108A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device that air-conditions a space to be air-conditioned.
  • the present disclosure has been made in view of the problems in the conventional technology described above, and provides a refrigeration cycle device that can suppress a decrease in capacity and an increase in the size of a heat exchanger even when a non-azeotropic refrigerant mixture is used. intended to provide
  • a refrigeration cycle device is a refrigeration cycle device including a refrigerant circuit in which a non-azeotropic refrigerant mixture circulates, the refrigeration cycle device including a heat exchanger for exchanging heat between the non-azeotropic refrigerant mixture and a fluid, The heat exchanger is added with pressure loss so that the refrigerant outlet temperature, which is the refrigerant temperature on the outlet side, is lowered by a set amount.
  • a pressure drop is added to the heat exchanger such that the refrigerant outlet temperature is reduced by a set amount, thereby making the heat exchanger more efficient than if no pressure drop was added to the heat exchanger.
  • Ability can be increased. Therefore, even when a non-azeotropic mixed refrigerant is used, it is possible to suppress a decrease in capacity and an increase in the size of the heat exchanger.
  • FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to Embodiment 1.
  • FIG. FIG. 2 is a Mollier diagram showing temperature characteristics of a non-azeotropic refrigerant mixture and a single-phase refrigerant; 4 is a graph for explaining the temperature of a non-azeotropic refrigerant mixture in a heat exchanger; 4 is a graph for explaining the relationship between the pressure loss in the heat exchanger and the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature.
  • Embodiment 1 A refrigeration cycle apparatus according to Embodiment 1 will be described.
  • FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to Embodiment 1.
  • an air conditioner 100 as a refrigeration cycle device includes a heat source unit 10 having a refrigerant circuit and a utilization side unit 20 having a utilization side circuit.
  • the heat source unit 10 includes a compressor 11 , a heat medium heat exchanger 12 , an expansion device 13 , an evaporator 14 , a fan 15 , an inlet temperature sensor 16 and an outlet temperature sensor 17 .
  • a refrigerant circuit in which the refrigerant circulates is formed by connecting the compressor 11, the heat medium heat exchanger 12, the expansion device 13, and the evaporator 14 with refrigerant pipes.
  • a non-azeotropic mixed refrigerant is used as the refrigerant flowing through the refrigerant circuit.
  • the non-azeotropic refrigerant mixture is, for example, a mixture of a low-pressure refrigerant such as HFO refrigerant and a high-pressure refrigerant such as R32.
  • the compressor 11 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant.
  • the compressor 11 is, for example, an inverter compressor or the like whose capacity, which is the amount of refrigerant delivered per unit time, is controlled by changing the operating frequency.
  • the heat medium heat exchanger 12 exchanges heat between the refrigerant flowing through the refrigerant circuit connected to the refrigerant-side passage and the heat medium flowing through the later-described heat medium circuit connected to the heat medium-side passage.
  • the heat medium heat exchanger 12 functions as a condenser that radiates the heat of the refrigerant to the heat medium to condense the refrigerant.
  • the expansion device 13 is, for example, an expansion valve, and reduces the pressure of the refrigerant to expand it.
  • the expansion device 13 is composed of, for example, a valve such as an electronic expansion valve whose opening degree can be controlled.
  • the evaporator 14 exchanges heat between the air supplied by the fan 15 and the refrigerant. Specifically, the evaporator 14 evaporates the refrigerant and cools the air with the heat of vaporization.
  • the fan 15 is driven by a motor (not shown) and supplies air to the evaporator 14 .
  • the rotation speed of the fan 15 is controlled by a control device (not shown) to adjust the amount of air blown to the evaporator 14 .
  • the inlet temperature sensor 16 is provided on the refrigerant inlet side of the evaporator 14 and detects the refrigerant inlet temperature, which is the temperature of the refrigerant flowing into the evaporator 14 .
  • the outlet temperature sensor 17 is provided on the refrigerant outlet side of the evaporator 14 and detects the refrigerant outlet temperature, which is the temperature of the refrigerant flowing out of the evaporator 14 .
  • the user unit 20 includes a primary pump 21 , a tank 22 , a secondary pump 23 and a load 24 .
  • a heat medium circulates in the use-side circuit that constitutes the use-side unit 20, and is composed of a primary-side heat medium circuit and a secondary-side heat medium circuit.
  • a primary side heat medium circuit in which the heat medium circulates is formed by connecting the primary side pump 21, the heat medium heat exchanger 12 of the heat source unit 10, and the tank 22 by piping.
  • a secondary heat medium circuit in which the heat medium circulates is formed by connecting the secondary pump 23, the tank 22, and the load 24 by piping. Water or brine, for example, is used as the heat medium circulating in the primary heat medium circuit and the secondary heat medium circuit.
  • the primary-side pump 21 is driven by a motor (not shown) to send out the heat medium flowing out of the tank 22 and supply it to the heat-medium-side passage of the heat-medium heat exchanger 12 .
  • the primary side pump 21 circulates the heat medium in the primary side heat medium circuit.
  • the tank 22 receives the heated heat medium that has been heat-exchanged with the refrigerant in the heat medium heat exchanger 12, and stores the heat medium that has flowed in.
  • the secondary-side pump 23 is driven by a motor (not shown) to send out the heat medium flowing out of the tank 22 and supply it to the load 24 .
  • the secondary-side pump 23 circulates the heat medium in the secondary-side heat medium circuit.
  • the load 24 is a device using heat supplied by a heat transfer medium. As the load 24, for example, air conditioners, floor heating equipment, hot water supply equipment, and the like are used.
  • the refrigerant that has flowed out of the heat medium heat exchanger 12 is decompressed and expanded by the expansion device 13 and flows out of the expansion device 13 .
  • the refrigerant that has flowed out of the expansion device 13 flows into the evaporator 14 .
  • the refrigerant that has flowed into the evaporator 14 exchanges heat with air, absorbs heat, evaporates, and flows out of the evaporator 14 .
  • Refrigerant that has flowed out of the evaporator 14 is sucked into the compressor 11 . Thereafter, the refrigerant repeats the circulation described above.
  • the heat medium flows out from the tank 22 by driving the primary-side pump 21 .
  • the heat medium that has flowed out of the tank 22 flows into the heat medium heat exchanger 12 .
  • the heat medium that has flowed into the heat medium heat exchanger 12 is heated by exchanging heat with the refrigerant and flows out of the heat medium heat exchanger 12 .
  • the heat medium that has flowed out of the heat medium heat exchanger 12 flows into the tank 22 and is stored in the tank 22 .
  • the heat medium flows out from the tank 22 by driving the secondary pump 23 .
  • the heat medium flowing out of the tank 22 flows into the load 24 .
  • the heat medium flowing into the load 24 is used as heat by the load 24 and flows out from the load 24 .
  • the heat medium flowing out of the load 24 flows into the tank 22 . Thereafter, the heat medium repeats the above-described circulation in the primary side heat medium circuit and the secondary side heat medium circuit.
  • Equation (1) The capacity of the heat exchanger will be explained. In general, the capacity of a heat exchanger can be expressed using Equation (1).
  • Q represents heat exchange capacity [kW] and A represents heat transfer area [m 2 ].
  • K indicates the heat transfer rate [W/(m 2 ⁇ K)], and ⁇ T indicates the logarithmic average temperature difference.
  • Q A ⁇ K ⁇ T (1)
  • Equation (2) the logarithmic mean temperature difference ⁇ T can be expressed using Equation (2).
  • ⁇ Ta the difference between the outside air temperature and the refrigerant temperature on the inlet side of the heat exchanger, and is calculated based on Equation (3).
  • ⁇ Tb the difference between the outside air temperature and the refrigerant temperature on the outlet side of the heat exchanger, and is calculated based on Equation (4).
  • ⁇ T ( ⁇ Ta ⁇ Tb)/(ln( ⁇ Ta/ ⁇ Tb)) (2)
  • ⁇ Ta Outside air temperature - Refrigerant inlet temperature (3)
  • ⁇ Tb Outside air temperature - Refrigerant outlet temperature (4)
  • the capacity Q of the heat exchanger decreases as the logarithmic mean temperature difference ⁇ T decreases when the values of the heat transfer area A and the heat transfer rate K are predetermined.
  • the capacity of the heat exchanger in order to keep the capacity of the heat exchanger constant regardless of the value of the logarithmic mean temperature difference ⁇ T, as the logarithmic mean temperature difference ⁇ T decreases, the product of the heat transfer area A and the heat transfer coefficient K, “A ⁇ You need to increase the value of K. Therefore, the heat exchanger is enlarged.
  • Embodiment 1 a non-azeotropic refrigerant mixture of a low-pressure refrigerant and a high-pressure refrigerant is used as the refrigerant flowing through the refrigerant circuit of the heat source unit 10 . Therefore, consider the case where a non-azeotropic refrigerant mixture flows through such a heat exchanger.
  • FIG. 2 is a Mollier diagram showing the temperature characteristics of a non-azeotropic mixed refrigerant and a single-phase refrigerant.
  • the solid line indicates the temperature line of the non-azeotropic refrigerant mixture
  • the dashed line indicates the temperature line of the single-phase refrigerant.
  • the temperature line of the non-azeotropic refrigerant mixture has a temperature gradient due to the phase change due to the high and low pressure difference, unlike the single-phase refrigerant.
  • FIG. 3 is a graph for explaining the temperature of the non-azeotropic refrigerant mixture in the heat exchanger.
  • the horizontal axis indicates the position in the direction of refrigerant flow in the heat exchanger
  • the vertical axis indicates the temperature of the non-azeotropic refrigerant mixture.
  • “Inlet” indicates a position on the refrigerant inlet side of the heat exchanger, for example, the position where the inlet temperature sensor 16 is provided in the evaporator 14 in the first embodiment.
  • outlet indicates a position on the refrigerant outlet side of the heat exchanger, for example, in the evaporator 14 in the first embodiment, indicates a position where the outlet temperature sensor 17 is provided.
  • the temperature of the non-azeotropic refrigerant mixture flowing through the heat exchanger changes as shown by straight line A indicated by the solid line. That is, in this example, the refrigerant inlet temperature when the non-azeotropic mixed refrigerant flows into the heat exchanger is 0 [°C], and the refrigerant outlet temperature when it flows out of the heat exchanger is 7 [°C].
  • pressure loss is intentionally added to the evaporator 14, which is a heat exchanger, in order to suppress a decrease in capacity and an increase in size of the evaporator 14.
  • the evaporator 14 is added with a set amount of pressure loss by changing the pipe diameter of the evaporator 14, the number of paths, the flow velocity of the refrigerant flowing through the pipe, and the like. That is, pressure loss is added to the evaporator 14 by determining at least one of the pipe diameter, the number of paths, and the flow velocity of the refrigerant.
  • the pressure loss of the evaporator 14 increases as the pipe diameter decreases. Further, in a state in which the pipe diameter of the evaporator 14 and the flow rate of refrigerant flowing through the pipe are not changed, the flow rate of refrigerant flowing through one pipe increases as the number of paths is reduced. Therefore, the pressure loss of the evaporator 14 increases. Furthermore, in a state in which the pipe diameter and the number of paths of the evaporator 14 are not changed, the pressure loss of the evaporator 14 increases as the flow rate of the refrigerant flowing through the pipe increases. In this case, the refrigerant flow rate can be increased by increasing the rotation speed of the inverter of the compressor 11 to make the operating frequency of the compressor 11 higher than the current operating frequency.
  • FIG. 4 is a graph for explaining the relationship between the pressure loss in the heat exchanger and the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature.
  • the horizontal axis indicates the pressure loss of the heat exchanger
  • the vertical axis indicates the inlet/outlet temperature difference, which is the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature in the heat exchanger.
  • the line X in FIG. 4 shows the relationship between the pressure loss and the inlet/outlet temperature difference when the temperature drop ⁇ Tm of the refrigerant temperature on the outlet side of the heat exchanger is taken as the first drop temperature.
  • the first lowered temperature is 3[°C].
  • a line Y indicates the relationship between the pressure loss and the inlet/outlet temperature difference when the lowered temperature ⁇ Tm is the second lowered temperature.
  • the second lowered temperature is 5 [° C.] higher than the first lowered temperature.
  • the first lowered temperature and the second lowered temperature are not limited to this example, and can be appropriately changed as necessary.
  • the hatched area surrounded by lines X and Y is an area where the performance of the heat exchanger can be sufficiently exhibited and the logarithmic average temperature difference ⁇ T can be increased.
  • the pressure loss is equal to or greater than the pressure loss amount when the refrigerant outlet temperature decrease amount is the first decrease temperature, and the pressure loss when the refrigerant outlet temperature decrease amount is the high second decrease temperature. It is formed so that it becomes less than the amount.
  • the logarithmic average temperature difference ⁇ T can be increased, and the decrease in capacity and increase in size of the heat exchanger can be suppressed. It should be noted that this hatched area changes as appropriate according to the specifications and required performance of the heat exchanger.
  • the present disclosure is not limited to the first embodiment described above, and various modifications and applications are possible without departing from the gist of the present disclosure.
  • the air conditioner 100 is used as an example of a refrigeration cycle device, but the refrigeration cycle device is not limited to this, and any refrigeration cycle device may be used as long as it has a refrigerant circuit through which a refrigerant circulates.

Abstract

A refrigeration cycle device provided with a refrigerant circuit that circulates a non-azeotropic refrigerant mixture therethrough, the refrigeration cycle device comprising a heat exchanger that exchanges heat between the non-azeotropic refrigerant mixture and fluid. A pressure loss is added to the heat exchanger so that the refrigerant outlet temperature, which is the refrigerant temperature on the outlet side, is reduced by a set amount.

Description

冷凍サイクル装置refrigeration cycle equipment
 本開示は、空調対象空間の空気調和を行う冷凍サイクル装置に関するものである。 The present disclosure relates to a refrigeration cycle device that air-conditions a space to be air-conditioned.
 近年、環境対策として低GWP(Global Warming Potential;地球温暖化係数)冷媒であるHFO冷媒等が使用されている。しかし、HFO冷媒等の低圧冷媒を単独で使用した場合には、熱交換器の能力が著しく低下する。そのため、低圧冷媒を使用する際には、R32等の高圧冷媒と混合した非共沸混合冷媒として使用される(例えば、特許文献1参照)。 In recent years, low GWP (Global Warming Potential) refrigerants such as HFO refrigerants have been used as environmental measures. However, when a low-pressure refrigerant such as HFO refrigerant is used alone, the performance of the heat exchanger is significantly reduced. Therefore, when using a low-pressure refrigerant, it is used as a non-azeotropic mixed refrigerant mixed with a high-pressure refrigerant such as R32 (see, for example, Patent Document 1).
国際公開第2018/025305号WO2018/025305
 ところで、非共沸混合冷媒を使用する場合には、低GWPを維持するために高圧冷媒の混合量が限られること、ならびに、高低圧差による相変化から熱交換器の能力低下および大型化が避けられないという課題があった。 By the way, when a non-azeotropic mixed refrigerant is used, the amount of high-pressure refrigerant mixed is limited in order to maintain a low GWP, and the phase change due to the high and low pressure difference prevents a decrease in the capacity of the heat exchanger and an increase in size. There was a problem that it could not be
 本開示は、上記従来の技術における課題に鑑みてなされたものであって、非共沸混合冷媒を使用した場合でも、熱交換器の能力低下および大型化を抑制することができる冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made in view of the problems in the conventional technology described above, and provides a refrigeration cycle device that can suppress a decrease in capacity and an increase in the size of a heat exchanger even when a non-azeotropic refrigerant mixture is used. intended to provide
 本開示に係る冷凍サイクル装置は、非共沸混合冷媒が循環する冷媒回路備えた冷凍サイクル装置であって、前記非共沸混合冷媒と流体との間で熱交換を行う熱交換器を備え、前記熱交換器は、出口側の冷媒温度である冷媒出口温度が設定量だけ低下するように圧力損失が付加されているものである。 A refrigeration cycle device according to the present disclosure is a refrigeration cycle device including a refrigerant circuit in which a non-azeotropic refrigerant mixture circulates, the refrigeration cycle device including a heat exchanger for exchanging heat between the non-azeotropic refrigerant mixture and a fluid, The heat exchanger is added with pressure loss so that the refrigerant outlet temperature, which is the refrigerant temperature on the outlet side, is lowered by a set amount.
 本開示によれば、冷媒出口温度が設定量だけ低下するように、熱交換器に圧力損失が付加されていることにより、熱交換器に圧力損失が付加されていない場合よりも熱交換器の能力を上昇させることができる。そのため、非共沸混合冷媒を使用した場合でも、熱交換器の能力低下および大型化を抑制することができる。 According to the present disclosure, a pressure drop is added to the heat exchanger such that the refrigerant outlet temperature is reduced by a set amount, thereby making the heat exchanger more efficient than if no pressure drop was added to the heat exchanger. Ability can be increased. Therefore, even when a non-azeotropic mixed refrigerant is used, it is possible to suppress a decrease in capacity and an increase in the size of the heat exchanger.
実施の形態1に係る空気調和装置の構成の一例を示す回路図である。1 is a circuit diagram showing an example of the configuration of an air conditioner according to Embodiment 1. FIG. 非共沸混合冷媒および単相冷媒の温度特性を示すモリエル線図である。FIG. 2 is a Mollier diagram showing temperature characteristics of a non-azeotropic refrigerant mixture and a single-phase refrigerant; 熱交換器における非共沸混合冷媒の温度について説明するためのグラフである。4 is a graph for explaining the temperature of a non-azeotropic refrigerant mixture in a heat exchanger; 熱交換器における圧力損失と、冷媒出口温度および冷媒入口温度の温度差との関係について説明するためのグラフである。4 is a graph for explaining the relationship between the pressure loss in the heat exchanger and the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature.
 以下、本開示の実施の形態について、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
実施の形態1.
 本実施の形態1に係る冷凍サイクル装置について説明する。
Embodiment 1.
A refrigeration cycle apparatus according to Embodiment 1 will be described.
[空気調和システムの構成]
 図1は、本実施の形態1に係る空気調和装置の構成の一例を示す回路図である。図1に示すように、冷凍サイクル装置としての空気調和装置100は、冷媒回路を有する熱源ユニット10と、利用側回路を有する利用側ユニット20を備えている。
[Configuration of air conditioning system]
FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to Embodiment 1. FIG. As shown in FIG. 1, an air conditioner 100 as a refrigeration cycle device includes a heat source unit 10 having a refrigerant circuit and a utilization side unit 20 having a utilization side circuit.
(熱源ユニット10)
 熱源ユニット10は、圧縮機11、熱媒体熱交換器12、絞り装置13、蒸発器14、ファン15、入口温度センサ16および出口温度センサ17を備えている。圧縮機11、熱媒体熱交換器12、絞り装置13および蒸発器14が冷媒配管で接続されることにより、冷媒が循環する冷媒回路が形成されている。また、本実施の形態1では、冷媒回路を流れる冷媒として、非共沸混合冷媒が用いられている。非共沸混合冷媒は、例えば、HFO冷媒等の低圧冷媒と、R32等の高圧冷媒とを混合したものである。
(Heat source unit 10)
The heat source unit 10 includes a compressor 11 , a heat medium heat exchanger 12 , an expansion device 13 , an evaporator 14 , a fan 15 , an inlet temperature sensor 16 and an outlet temperature sensor 17 . A refrigerant circuit in which the refrigerant circulates is formed by connecting the compressor 11, the heat medium heat exchanger 12, the expansion device 13, and the evaporator 14 with refrigerant pipes. Further, in Embodiment 1, a non-azeotropic mixed refrigerant is used as the refrigerant flowing through the refrigerant circuit. The non-azeotropic refrigerant mixture is, for example, a mixture of a low-pressure refrigerant such as HFO refrigerant and a high-pressure refrigerant such as R32.
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの冷媒の送出量である容量が制御されるインバータ圧縮機等からなる。 The compressor 11 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant. The compressor 11 is, for example, an inverter compressor or the like whose capacity, which is the amount of refrigerant delivered per unit time, is controlled by changing the operating frequency.
 熱媒体熱交換器12は、冷媒側流路に接続された冷媒回路を流れる冷媒と、熱媒体側流路に接続された後述する熱媒体回路を流れる熱媒体との間で熱交換を行う。熱媒体熱交換器12は、冷媒の熱を熱媒体に放熱して冷媒を凝縮させる凝縮器として機能する。絞り装置13は、例えば膨張弁であり、冷媒を減圧して膨張させる。絞り装置13は、例えば、電子式膨張弁などの開度の制御を行うことができる弁で構成される。 The heat medium heat exchanger 12 exchanges heat between the refrigerant flowing through the refrigerant circuit connected to the refrigerant-side passage and the heat medium flowing through the later-described heat medium circuit connected to the heat medium-side passage. The heat medium heat exchanger 12 functions as a condenser that radiates the heat of the refrigerant to the heat medium to condense the refrigerant. The expansion device 13 is, for example, an expansion valve, and reduces the pressure of the refrigerant to expand it. The expansion device 13 is composed of, for example, a valve such as an electronic expansion valve whose opening degree can be controlled.
 蒸発器14は、ファン15によって供給される空気と冷媒との間で熱交換を行う。具体的には、蒸発器14は、冷媒を蒸発させ、その際の気化熱により空気を冷却する。ファン15は、図示しないモータによって駆動され、蒸発器14に対して空気を供給する。ファン15の回転数は、図示しない制御装置によって制御されることにより、蒸発器14に対する送風量が調整される。 The evaporator 14 exchanges heat between the air supplied by the fan 15 and the refrigerant. Specifically, the evaporator 14 evaporates the refrigerant and cools the air with the heat of vaporization. The fan 15 is driven by a motor (not shown) and supplies air to the evaporator 14 . The rotation speed of the fan 15 is controlled by a control device (not shown) to adjust the amount of air blown to the evaporator 14 .
 入口温度センサ16は、蒸発器14の冷媒入口側に設けられ、蒸発器14に流入する冷媒の温度である冷媒入口温度を検出する。出口温度センサ17は、蒸発器14の冷媒出口側に設けられ、蒸発器14から流出する冷媒の温度である冷媒出口温度を検出する。 The inlet temperature sensor 16 is provided on the refrigerant inlet side of the evaporator 14 and detects the refrigerant inlet temperature, which is the temperature of the refrigerant flowing into the evaporator 14 . The outlet temperature sensor 17 is provided on the refrigerant outlet side of the evaporator 14 and detects the refrigerant outlet temperature, which is the temperature of the refrigerant flowing out of the evaporator 14 .
(利用側ユニット20)
 利用側ユニット20は、一次側ポンプ21、タンク22、二次側ポンプ23および負荷24を備えている。利用側ユニット20を構成する利用側回路は、熱媒体が循環するものであり、一次側熱媒体回路および二次側熱媒体回路で構成されている。一次側ポンプ21、熱源ユニット10の熱媒体熱交換器12およびタンク22が配管で接続されることにより、熱媒体が循環する一次側熱媒体回路が形成されている。また、二次側ポンプ23、タンク22および負荷24が配管で接続されることにより、熱媒体が循環する二次側熱媒体回路が形成されている。一次側熱媒体回路および二次側熱媒体回路を循環する熱媒体としては、例えば、水またはブラインが用いられる。
(Using side unit 20)
The user unit 20 includes a primary pump 21 , a tank 22 , a secondary pump 23 and a load 24 . A heat medium circulates in the use-side circuit that constitutes the use-side unit 20, and is composed of a primary-side heat medium circuit and a secondary-side heat medium circuit. A primary side heat medium circuit in which the heat medium circulates is formed by connecting the primary side pump 21, the heat medium heat exchanger 12 of the heat source unit 10, and the tank 22 by piping. A secondary heat medium circuit in which the heat medium circulates is formed by connecting the secondary pump 23, the tank 22, and the load 24 by piping. Water or brine, for example, is used as the heat medium circulating in the primary heat medium circuit and the secondary heat medium circuit.
 一次側ポンプ21は、図示しないモータによって駆動され、タンク22から流出した熱媒体を送出し、熱媒体熱交換器12の熱媒体側流路に供給する。このように、一次側ポンプ21は、一次側熱媒体回路の熱媒体を循環させる。タンク22は、熱媒体熱交換器12で冷媒と熱交換された、温められた熱媒体が流入し、流入した熱媒体を蓄える。 The primary-side pump 21 is driven by a motor (not shown) to send out the heat medium flowing out of the tank 22 and supply it to the heat-medium-side passage of the heat-medium heat exchanger 12 . Thus, the primary side pump 21 circulates the heat medium in the primary side heat medium circuit. The tank 22 receives the heated heat medium that has been heat-exchanged with the refrigerant in the heat medium heat exchanger 12, and stores the heat medium that has flowed in.
 二次側ポンプ23は、図示しないモータによって駆動され、タンク22から流出した熱媒体を送出し、負荷24に供給する。このように、二次側ポンプ23は、二次側熱媒体回路の熱媒体を循環させる。負荷24は、熱媒体によって供給される熱を用いた機器である。負荷24として、例えば、空調機器、床暖房および給湯機器等が用いられる。 The secondary-side pump 23 is driven by a motor (not shown) to send out the heat medium flowing out of the tank 22 and supply it to the load 24 . Thus, the secondary-side pump 23 circulates the heat medium in the secondary-side heat medium circuit. The load 24 is a device using heat supplied by a heat transfer medium. As the load 24, for example, air conditioners, floor heating equipment, hot water supply equipment, and the like are used.
[空気調和装置100の動作]
 次に、このように構成された空気調和装置100の動作について説明する。まず、熱源ユニット10において、冷媒回路を流れる冷媒は、圧縮機11によって圧縮されて吐出される。圧縮機11から吐出された冷媒は、熱媒体熱交換器12に流入する。熱媒体熱交換器12に流入した冷媒は、一次側熱媒体回路を流れる熱媒体と熱交換して放熱しながら凝縮することによって熱媒体を加熱し、熱媒体熱交換器12から流出する。
[Operation of air conditioner 100]
Next, the operation of the air conditioner 100 configured in this manner will be described. First, in the heat source unit 10, the refrigerant flowing through the refrigerant circuit is compressed by the compressor 11 and discharged. Refrigerant discharged from the compressor 11 flows into the heat medium heat exchanger 12 . The refrigerant that has flowed into the heat medium heat exchanger 12 heats the heat medium by condensing while exchanging heat with the heat medium flowing through the primary heat medium circuit and releasing heat, and flows out of the heat medium heat exchanger 12 .
 熱媒体熱交換器12から流出した冷媒は、絞り装置13によって減圧および膨張され、絞り装置13から流出する。絞り装置13から流出した冷媒は、蒸発器14に流入する。蒸発器14に流入した冷媒は、空気と熱交換して吸熱および蒸発し、蒸発器14から流出する。蒸発器14から流出した冷媒は、圧縮機11へ吸入される。そして、以下、冷媒は上述した循環を繰り返す。 The refrigerant that has flowed out of the heat medium heat exchanger 12 is decompressed and expanded by the expansion device 13 and flows out of the expansion device 13 . The refrigerant that has flowed out of the expansion device 13 flows into the evaporator 14 . The refrigerant that has flowed into the evaporator 14 exchanges heat with air, absorbs heat, evaporates, and flows out of the evaporator 14 . Refrigerant that has flowed out of the evaporator 14 is sucked into the compressor 11 . Thereafter, the refrigerant repeats the circulation described above.
 一方、利用側ユニット20において、一次側ポンプ21の駆動により、タンク22から熱媒体が流出する。タンク22から流出した熱媒体は、熱媒体熱交換器12に流入する。熱媒体熱交換器12に流入した熱媒体は、冷媒と熱交換して加熱され、熱媒体熱交換器12から流出する。熱媒体熱交換器12から流出した熱媒体は、タンク22に流入し、タンク22に蓄えられる。 On the other hand, in the user-side unit 20 , the heat medium flows out from the tank 22 by driving the primary-side pump 21 . The heat medium that has flowed out of the tank 22 flows into the heat medium heat exchanger 12 . The heat medium that has flowed into the heat medium heat exchanger 12 is heated by exchanging heat with the refrigerant and flows out of the heat medium heat exchanger 12 . The heat medium that has flowed out of the heat medium heat exchanger 12 flows into the tank 22 and is stored in the tank 22 .
 また、二次側ポンプ23の駆動により、タンク22から熱媒体が流出する。タンク22から流出した熱媒体は、負荷24に流入する。負荷24に流入した熱媒体は、負荷24によって熱が利用され、負荷24から流出する。負荷24から流出した熱媒体は、タンク22に流入する。そして、以下、熱媒体は、一次側熱媒体回路および二次側熱媒体回路において上述した循環を繰り返す。 Also, the heat medium flows out from the tank 22 by driving the secondary pump 23 . The heat medium flowing out of the tank 22 flows into the load 24 . The heat medium flowing into the load 24 is used as heat by the load 24 and flows out from the load 24 . The heat medium flowing out of the load 24 flows into the tank 22 . Thereafter, the heat medium repeats the above-described circulation in the primary side heat medium circuit and the secondary side heat medium circuit.
[熱交換器の能力]
 熱交換器の能力について説明する。一般に、熱交換器の能力は、式(1)を用いて表すことができる。式(1)において、Qは熱交換能力[kW]を示し、Aは伝熱面積[m]を示す。また、Kは熱通過率[W/(m・K)]を示し、ΔTは対数平均温度差を示す。
  Q=A×K×ΔT ・・・(1)
[Capacity of heat exchanger]
The capacity of the heat exchanger will be explained. In general, the capacity of a heat exchanger can be expressed using Equation (1). In formula (1), Q represents heat exchange capacity [kW] and A represents heat transfer area [m 2 ]. K indicates the heat transfer rate [W/(m 2 ·K)], and ΔT indicates the logarithmic average temperature difference.
Q=A×K×ΔT (1)
 また、対数平均温度差ΔTは、式(2)を用いて表すことができる。式(2)において、ΔTaは外気温度と熱交換器における入口側の冷媒温度との差であり、式(3)に基づき算出される。ΔTbは外気温度と熱交換器における出口側の冷媒温度との差であり、式(4)に基づき算出される。
 ΔT=(ΔTa-ΔTb)/(ln(ΔTa/ΔTb)) ・・・(2)
  ΔTa=外気温度-冷媒入口温度 ・・・(3)
  ΔTb=外気温度-冷媒出口温度 ・・・(4)
Also, the logarithmic mean temperature difference ΔT can be expressed using Equation (2). In Equation (2), ΔTa is the difference between the outside air temperature and the refrigerant temperature on the inlet side of the heat exchanger, and is calculated based on Equation (3). ΔTb is the difference between the outside air temperature and the refrigerant temperature on the outlet side of the heat exchanger, and is calculated based on Equation (4).
ΔT=(ΔTa−ΔTb)/(ln(ΔTa/ΔTb)) (2)
ΔTa = Outside air temperature - Refrigerant inlet temperature (3)
ΔTb = Outside air temperature - Refrigerant outlet temperature (4)
 式(2)に示す関係から、熱交換器は、伝熱面積Aおよび熱通過率Kの値が予め決定されている場合、対数平均温度差ΔTが小さくなるに従って能力Qが低下する。一方、対数平均温度差ΔTの値によらず熱交換器の能力を一定にするには、対数平均温度差ΔTが小さくなるに従って、伝熱面積Aおよび熱通過率Kの積である「A×K」の値を大きくする必要がある。そのため、熱交換器は大型化してしまう。 From the relationship shown in formula (2), the capacity Q of the heat exchanger decreases as the logarithmic mean temperature difference ΔT decreases when the values of the heat transfer area A and the heat transfer rate K are predetermined. On the other hand, in order to keep the capacity of the heat exchanger constant regardless of the value of the logarithmic mean temperature difference ΔT, as the logarithmic mean temperature difference ΔT decreases, the product of the heat transfer area A and the heat transfer coefficient K, “A × You need to increase the value of K. Therefore, the heat exchanger is enlarged.
 ここで、本実施の形態1では、熱源ユニット10の冷媒回路を流れる冷媒として、低圧冷媒と高圧冷媒とを混合した非共沸混合冷媒が用いられている。そのため、このような熱交換器に非共沸混合冷媒が流れる場合について考える。 Here, in Embodiment 1, a non-azeotropic refrigerant mixture of a low-pressure refrigerant and a high-pressure refrigerant is used as the refrigerant flowing through the refrigerant circuit of the heat source unit 10 . Therefore, consider the case where a non-azeotropic refrigerant mixture flows through such a heat exchanger.
 図2は、非共沸混合冷媒および単相冷媒の温度特性を示すモリエル線図である。図2において、実線は非共沸混合冷媒の温度線を示し、破線は単相冷媒の温度線を示す。図2に示すように、非共沸混合冷媒の温度線は、高低圧差による相変化から、単相冷媒と異なり温度勾配を有する。 FIG. 2 is a Mollier diagram showing the temperature characteristics of a non-azeotropic mixed refrigerant and a single-phase refrigerant. In FIG. 2, the solid line indicates the temperature line of the non-azeotropic refrigerant mixture, and the dashed line indicates the temperature line of the single-phase refrigerant. As shown in FIG. 2, the temperature line of the non-azeotropic refrigerant mixture has a temperature gradient due to the phase change due to the high and low pressure difference, unlike the single-phase refrigerant.
 図3は、熱交換器における非共沸混合冷媒の温度について説明するためのグラフである。図3において、横軸は熱交換器における冷媒流れ方向の位置を示し、縦軸は非共沸混合冷媒の温度を示す。「入口」は、熱交換器における冷媒入口側の位置を示し、例えば、本実施の形態1における蒸発器14では、入口温度センサ16が設けられた位置を示す。また、「出口」は、熱交換器における冷媒出口側の位置を示し、例えば、本実施の形態1における蒸発器14では、出口温度センサ17が設けられた位置を示す。 FIG. 3 is a graph for explaining the temperature of the non-azeotropic refrigerant mixture in the heat exchanger. In FIG. 3, the horizontal axis indicates the position in the direction of refrigerant flow in the heat exchanger, and the vertical axis indicates the temperature of the non-azeotropic refrigerant mixture. "Inlet" indicates a position on the refrigerant inlet side of the heat exchanger, for example, the position where the inlet temperature sensor 16 is provided in the evaporator 14 in the first embodiment. Further, "outlet" indicates a position on the refrigerant outlet side of the heat exchanger, for example, in the evaporator 14 in the first embodiment, indicates a position where the outlet temperature sensor 17 is provided.
 図3に示すように、熱交換器を流れる非共沸混合冷媒の温度は、実線で示す直線Aのように変化する。すなわち、この例では、非共沸混合冷媒が熱交換器に流入した際の冷媒入口温度が0[℃]であり、熱交換器から流出する際の冷媒出口温度は7[℃]となっている。 As shown in FIG. 3, the temperature of the non-azeotropic refrigerant mixture flowing through the heat exchanger changes as shown by straight line A indicated by the solid line. That is, in this example, the refrigerant inlet temperature when the non-azeotropic mixed refrigerant flows into the heat exchanger is 0 [°C], and the refrigerant outlet temperature when it flows out of the heat exchanger is 7 [°C]. there is
 ところで、熱交換器に圧力損失を付加すると、非共沸混合冷媒の温度は、図3の破線で示す曲線Bのように変化する。曲線Bのように、冷媒出口温度が例えばΔTmだけ低下すると、式(4)で表されるΔTbの値が圧力損失を付加しない場合と比較して大きくなる。そのため、式(2)で表される対数平均温度差ΔTが大きくなる。したがって、式(1)で表される熱交換器の能力Qが大きくなるため、熱交換器の能力低下および大型化を抑制することができる。 By the way, when pressure loss is applied to the heat exchanger, the temperature of the non-azeotropic refrigerant mixture changes as shown by curve B indicated by the dashed line in FIG. As indicated by curve B, when the refrigerant outlet temperature decreases by, for example, ΔTm, the value of ΔTb represented by equation (4) becomes larger than when pressure loss is not added. Therefore, the logarithmic average temperature difference ΔT represented by Equation (2) increases. Therefore, since the capacity Q of the heat exchanger represented by the formula (1) is increased, it is possible to suppress the reduction in capacity and the increase in the size of the heat exchanger.
 例えば、外気温度を8[℃]とし、非共沸混合冷媒の温度が図3の直線Aに示すように変化する場合、ΔTaおよびΔTbは、式(3)および式(4)に基づき、以下のように算出される。
  ΔTa=外気温度-冷媒入口温度=8-0=8[℃]
  ΔTb=外気温度-冷媒出口温度=8-7=1[℃]
For example, when the outside air temperature is 8 [° C.] and the temperature of the non-azeotropic refrigerant mixture changes as indicated by straight line A in FIG. is calculated as
ΔTa = Outside air temperature - Refrigerant inlet temperature = 8-0 = 8 [°C]
ΔTb = Outside air temperature - Refrigerant outlet temperature = 8-7 = 1 [°C]
 したがって、この場合の対数平均温度差ΔTは、式(2)に基づき、以下のように算出される。
  ΔT=(ΔTa-ΔTb)/(ln(ΔTa/ΔTb))
    =3.37[℃]
Therefore, the logarithmic average temperature difference ΔT in this case is calculated as follows based on Equation (2).
ΔT=(ΔTa−ΔTb)/(ln(ΔTa/ΔTb))
= 3.37 [°C]
 一方、外気温度を8[℃]とするとともに、冷媒出口温度を5[℃]とし、非共沸混合冷媒の温度が図3の直線Bに示すように変化する場合、ΔTaおよびΔTbは、式(3)および式(4)に基づき、以下のように算出される。
  ΔTa=外気温度-冷媒入口温度=8-0=8[℃]
  ΔTb=外気温度-冷媒出口温度=8-5=3[℃]
On the other hand, when the outside air temperature is 8 [° C.], the refrigerant outlet temperature is 5 [° C.], and the temperature of the non-azeotropic refrigerant mixture changes as indicated by the straight line B in FIG. Based on (3) and formula (4), it is calculated as follows.
ΔTa = Outside air temperature - Refrigerant inlet temperature = 8-0 = 8 [°C]
ΔTb = Outside air temperature - Refrigerant outlet temperature = 8-5 = 3 [°C]
 したがって、この場合の対数平均温度差ΔTは、式(2)に基づき、以下のように算出される。
  ΔT=(ΔTa-ΔTb)/(ln(ΔTa/ΔTb))
    =5.10[℃]
Therefore, the logarithmic average temperature difference ΔT in this case is calculated as follows based on Equation (2).
ΔT=(ΔTa−ΔTb)/(ln(ΔTa/ΔTb))
= 5.10 [°C]
 すなわち、非共沸混合冷媒の温度が直線Bのように変化した場合、対数平均温度差ΔTは、非共沸混合冷媒の温度が直線Aのように変化する場合と比較して大きくなる。 That is, when the temperature of the non-azeotropic refrigerant mixture changes as shown by straight line B, the logarithmic mean temperature difference ΔT is greater than when the temperature of the non-azeotropic refrigerant mixture changes as shown by straight line A.
 そこで、本実施の形態1では、熱交換器である蒸発器14の能力低下および大型化を抑制するため、蒸発器14に対して意図的に圧力損失を付加するようにする。具体的には、蒸発器14は、蒸発器14の配管径、パス数および管内を流れる冷媒の流速等を変更することにより、設定量だけ圧力損失が付加される。すなわち、蒸発器14は、配管径、パス数および冷媒の流速の少なくとも1つが決定されることにより、圧力損失が付加される。 Therefore, in Embodiment 1, pressure loss is intentionally added to the evaporator 14, which is a heat exchanger, in order to suppress a decrease in capacity and an increase in size of the evaporator 14. Specifically, the evaporator 14 is added with a set amount of pressure loss by changing the pipe diameter of the evaporator 14, the number of paths, the flow velocity of the refrigerant flowing through the pipe, and the like. That is, pressure loss is added to the evaporator 14 by determining at least one of the pipe diameter, the number of paths, and the flow velocity of the refrigerant.
 例えば、蒸発器14のパス数および管内を流れる冷媒流量を変化させない状態においては、配管径を小さくするほど、蒸発器14の圧力損失が大きくなる。また、蒸発器14の配管径および管内を流れる冷媒流量を変化させない状態においては、パス数を減らすほど1つの配管あたりに流れる冷媒流量が増加する。そのため、蒸発器14の圧力損失が大きくなる。さらに、蒸発器14の配管径およびパス数を変化させない状態においては、管内を流れる冷媒流量が増加するほど、蒸発器14の圧力損失が大きくなる。この場合には、圧縮機11のインバータの回転数を上げ、圧縮機11の運転周波数を現在の運転周波数よりも高くすることにより、冷媒流量を増加させることができる。 For example, in a state in which the number of paths of the evaporator 14 and the flow rate of refrigerant flowing through the pipe are not changed, the pressure loss of the evaporator 14 increases as the pipe diameter decreases. Further, in a state in which the pipe diameter of the evaporator 14 and the flow rate of refrigerant flowing through the pipe are not changed, the flow rate of refrigerant flowing through one pipe increases as the number of paths is reduced. Therefore, the pressure loss of the evaporator 14 increases. Furthermore, in a state in which the pipe diameter and the number of paths of the evaporator 14 are not changed, the pressure loss of the evaporator 14 increases as the flow rate of the refrigerant flowing through the pipe increases. In this case, the refrigerant flow rate can be increased by increasing the rotation speed of the inverter of the compressor 11 to make the operating frequency of the compressor 11 higher than the current operating frequency.
 図4は、熱交換器における圧力損失と、冷媒出口温度および冷媒入口温度の温度差との関係について説明するためのグラフである。図4において、横軸は熱交換器の圧力損失を示し、縦軸は熱交換器における冷媒出口温度と冷媒入口温度との温度差である出入口温度差を示す。 FIG. 4 is a graph for explaining the relationship between the pressure loss in the heat exchanger and the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature. In FIG. 4, the horizontal axis indicates the pressure loss of the heat exchanger, and the vertical axis indicates the inlet/outlet temperature difference, which is the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature in the heat exchanger.
 図4の線Xは、熱交換器の出口側における冷媒温度の低下温度ΔTmを第1低下温度とした場合の圧力損失と出入口温度差との関係を示す。この例において、第1低下温度は3[℃]である。また、線Yは、低下温度ΔTmを第2低下温度とした場合の圧力損失と出入口温度差との関係を示す。この例において、第2低下温度は、第1低下温度よりも高い5[℃]である。なお、第1低下温度および第2低下温度は、この例に限られず、必要に応じて適宜変更することができる。 The line X in FIG. 4 shows the relationship between the pressure loss and the inlet/outlet temperature difference when the temperature drop ΔTm of the refrigerant temperature on the outlet side of the heat exchanger is taken as the first drop temperature. In this example, the first lowered temperature is 3[°C]. A line Y indicates the relationship between the pressure loss and the inlet/outlet temperature difference when the lowered temperature ΔTm is the second lowered temperature. In this example, the second lowered temperature is 5 [° C.] higher than the first lowered temperature. In addition, the first lowered temperature and the second lowered temperature are not limited to this example, and can be appropriately changed as necessary.
 図4に示す例において、線Xと線Yとで囲まれた斜線で示す領域が、熱交換器の性能を十分に発揮することができるとともに、対数平均温度差ΔTを大きくすることができる領域である。すなわち、熱交換器は、圧力損失が冷媒出口温度の低下量を第1低下温度とした場合の圧力損失量以上であり、冷媒出口温度の低下量を高い第2低下温度とした場合の圧力損失量以下となるように形成されている。この斜線領域に圧力損失が含まれるように熱交換器が設けられることで、対数平均温度差ΔTを大きくすることができ、熱交換器の能力低下および大型化を抑制することができる。なお、この斜線領域は、熱交換器の仕様および必要とする性能に応じて適宜変化する。 In the example shown in FIG. 4, the hatched area surrounded by lines X and Y is an area where the performance of the heat exchanger can be sufficiently exhibited and the logarithmic average temperature difference ΔT can be increased. is. That is, in the heat exchanger, the pressure loss is equal to or greater than the pressure loss amount when the refrigerant outlet temperature decrease amount is the first decrease temperature, and the pressure loss when the refrigerant outlet temperature decrease amount is the high second decrease temperature. It is formed so that it becomes less than the amount. By providing the heat exchanger so that the pressure loss is included in the shaded area, the logarithmic average temperature difference ΔT can be increased, and the decrease in capacity and increase in size of the heat exchanger can be suppressed. It should be noted that this hatched area changes as appropriate according to the specifications and required performance of the heat exchanger.
 以上のように、本実施の形態1に係る空気調和装置100では、冷媒出口温度が設定量だけ低下するように、蒸発器14に圧力損失が付加されている。これにより、対数平均温度差ΔTが大きくなり、蒸発器14の能力Qを上昇させることができるため、非共沸混合冷媒を使用した場合でも、熱交換器の能力低下および大型化を抑制することができる。 As described above, in the air conditioner 100 according to Embodiment 1, pressure loss is added to the evaporator 14 so that the refrigerant outlet temperature is lowered by the set amount. As a result, the logarithmic average temperature difference ΔT increases, and the capacity Q of the evaporator 14 can be increased, so even when a non-azeotropic refrigerant mixture is used, it is possible to suppress a decrease in capacity and an increase in size of the heat exchanger. can be done.
 以上、本実施の形態1について説明したが、本開示は、上述した実施の形態1に限定されるものではなく、本開示要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、本実施の形態1では、冷凍サイクル装置として空気調和装置100を例にとって説明したが、これに限られず、冷媒が循環する冷媒回路を備えていれば、どのような冷凍サイクル装置でもよい。 Although the first embodiment has been described above, the present disclosure is not limited to the first embodiment described above, and various modifications and applications are possible without departing from the gist of the present disclosure. For example, in Embodiment 1, the air conditioner 100 is used as an example of a refrigeration cycle device, but the refrigeration cycle device is not limited to this, and any refrigeration cycle device may be used as long as it has a refrigerant circuit through which a refrigerant circulates.
 10 熱源ユニット、11 圧縮機、12 熱媒体熱交換器、13 絞り装置、14 蒸発器、15 ファン、16 入口温度センサ、17 出口温度センサ、20 利用側ユニット、21 一次側ポンプ、22 タンク、23 二次側ポンプ、24 負荷、100 空気調和装置。 10 heat source unit, 11 compressor, 12 heat medium heat exchanger, 13 expansion device, 14 evaporator, 15 fan, 16 inlet temperature sensor, 17 outlet temperature sensor, 20 user side unit, 21 primary side pump, 22 tank, 23 Secondary pump, 24 load, 100 air conditioner.

Claims (4)

  1.  非共沸混合冷媒が循環する冷媒回路備えた冷凍サイクル装置であって、
     前記非共沸混合冷媒と流体との間で熱交換を行う熱交換器を備え、
     前記熱交換器は、
     出口側の冷媒温度である冷媒出口温度が設定量だけ低下するように圧力損失が付加されている
    冷凍サイクル装置。
    A refrigeration cycle device including a refrigerant circuit in which a non-azeotropic refrigerant mixture circulates,
    A heat exchanger that exchanges heat between the non-azeotropic refrigerant mixture and the fluid,
    The heat exchanger is
    A refrigeration cycle device in which pressure loss is added so that the refrigerant outlet temperature, which is the refrigerant temperature on the outlet side, drops by a set amount.
  2.  前記熱交換器は、
     前記圧力損失が付加されるように、配管径、パス数および前記非共沸混合冷媒の流速の少なくとも1つが決定される
    請求項1に記載の冷凍サイクル装置。
    The heat exchanger is
    2. The refrigeration cycle apparatus according to claim 1, wherein at least one of a pipe diameter, number of paths, and flow velocity of said non-azeotropic refrigerant mixture is determined so as to add said pressure loss.
  3.  前記熱交換器は、
     前記圧力損失が前記冷媒出口温度の低下量を第1低下温度とした場合の圧力損失量以上であり、前記冷媒出口温度の低下量を高い第2低下温度とした場合の圧力損失量以下となるように形成されている
    請求項1または2に記載の冷凍サイクル装置。
    The heat exchanger is
    The pressure loss is equal to or greater than the pressure loss amount when the coolant outlet temperature decrease amount is the first decrease temperature, and is equal to or less than the pressure loss amount when the coolant outlet temperature decrease amount is the high second decrease temperature. 3. The refrigerating cycle apparatus according to claim 1 or 2, which is formed as described above.
  4.  前記熱交換器は、
     前記非共沸混合冷媒と空気との間で熱交換を行う蒸発器である
    請求項1~3のいずれか一項に記載の冷凍サイクル装置。
    The heat exchanger is
    The refrigeration cycle apparatus according to any one of claims 1 to 3, which is an evaporator that exchanges heat between the non-azeotropic refrigerant mixture and air.
PCT/JP2021/014458 2021-04-05 2021-04-05 Refrigeration cycle device WO2022215108A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023512502A JPWO2022215108A1 (en) 2021-04-05 2021-04-05
PCT/JP2021/014458 WO2022215108A1 (en) 2021-04-05 2021-04-05 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014458 WO2022215108A1 (en) 2021-04-05 2021-04-05 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022215108A1 true WO2022215108A1 (en) 2022-10-13

Family

ID=83546272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014458 WO2022215108A1 (en) 2021-04-05 2021-04-05 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JPWO2022215108A1 (en)
WO (1) WO2022215108A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307725A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307725A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
JPWO2022215108A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP5774225B2 (en) Air conditioner
JP5745651B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
WO2012070083A1 (en) Air conditioner
JP5328933B2 (en) Air conditioner
JP2008530498A (en) HVAC system with powered supercooler
WO2014083680A1 (en) Air conditioning device
JP3998024B2 (en) Heat pump floor heating air conditioner
WO2011089652A1 (en) Air conditioning-hot water supply combined system
JPWO2012081052A1 (en) Air conditioning and hot water supply complex system
JP6120943B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
WO2014083679A1 (en) Air conditioning device, and design method therefor
JP5752135B2 (en) Air conditioner
JP5312681B2 (en) Air conditioner
JPWO2019021464A1 (en) Air conditioner
WO2022215108A1 (en) Refrigeration cycle device
WO2017119138A1 (en) Air-conditioning device
JPWO2020174619A1 (en) Air conditioner
JP7343755B2 (en) refrigerant cycle system
JP6695033B2 (en) Heat pump device
JP6695034B2 (en) Heat pump device
JPWO2019026276A1 (en) Refrigeration cycle equipment
WO2022162864A1 (en) Air-conditioning device
WO2023119552A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935918

Country of ref document: EP

Kind code of ref document: A1