JPH06307738A - Condenser for non-azeotrope reefrigerant - Google Patents

Condenser for non-azeotrope reefrigerant

Info

Publication number
JPH06307738A
JPH06307738A JP5094113A JP9411393A JPH06307738A JP H06307738 A JPH06307738 A JP H06307738A JP 5094113 A JP5094113 A JP 5094113A JP 9411393 A JP9411393 A JP 9411393A JP H06307738 A JPH06307738 A JP H06307738A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
condensation
heat transfer
azeotropic mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5094113A
Other languages
Japanese (ja)
Inventor
Masaaki Ito
正昭 伊藤
Mari Uchida
麻理 内田
Mitsuo Kudo
光夫 工藤
Hiroaki Matsushima
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5094113A priority Critical patent/JPH06307738A/en
Publication of JPH06307738A publication Critical patent/JPH06307738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To dissolve a provlem wherein at a freezing cycle using a non- azeotrope refrigerant, when a conventional condenser is used, complete liquefaction is impossible, the size of a comdenser is increased, energy efficiency is lowered, and the generation of refrigerant noise in an expansion valve is increased. CONSTITUTION:Refrigerant gas flows in through a refrigerant entrance 5 and liquefied refrigerant gas flows out through a refrigerant outlet 6. A condenser is a cross fin tube-type heatexchanger wherein a heat-transfer pipe 1 is extended through a fin 2. A high performance fin 3 is used in the vicinity of the refrigerant outlet 6, completion of condensation of a non-azeotrope refigerant is hastened, and the size of the condenser remains same as that of a conventional single refrigerant. As the result of condensation in the vicinity of the condensation completion point of the non-azeotrope refrigerant being promoted, the size of a condenser is same as that of a single refrigerant, lowering of COPis prevented, and the generation of refrigerant noise by an expansion valve is reduced effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2種類以上の冷媒を混
ぜ合わせた非共沸混合冷媒を作動媒体とする冷房専用空
調機の室外ユニット内に設置される凝縮器、あるいは冷
暖房兼用空調機の室内または室外に設置される熱交換器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser installed in an outdoor unit of an air conditioner exclusively for cooling, which uses a non-azeotropic mixed refrigerant obtained by mixing two or more kinds of refrigerants, or an air conditioner for both heating and cooling. The present invention relates to a heat exchanger installed indoors or outdoors.

【0002】[0002]

【従来の技術】現在のルームエアコンやパッケージエア
コンに用いられているクロスフィンチューブ形熱交換器
の凝縮器に関して、非共沸混合冷媒を用いるために特別
に工夫した従来例は見られない。
2. Description of the Related Art Regarding the condenser of the cross fin tube type heat exchanger used in the present room air conditioners and package air conditioners, there is no conventional example in which the non-azeotropic mixed refrigerant is specially devised.

【0003】しかし、バイナリー発電システムに用いら
れるプレート式熱交換器に関しては、特開平4−298
606号公報に示されるような公知例がある。特開平4
−298606号公報に記載のプレート式熱交換器にお
いては、高沸点成分濃度の高い液を凝縮器入口より噴射
して、低沸点成分ガスの凝縮を促進させようとするもの
である。このような大きなシステムでは、噴射装置のよ
うな付加的機能をつけることもできるが、本発明で対象
としているエアコンでは、噴射装置を付けることは困難
である。
However, regarding the plate type heat exchanger used in the binary power generation system, Japanese Patent Laid-Open No. 4-298.
There is a known example as shown in Japanese Patent No. 606. Japanese Patent Laid-Open No. Hei 4
In the plate heat exchanger described in JP-A-298606, a liquid having a high concentration of a high boiling point component is injected from a condenser inlet to promote the condensation of the low boiling point component gas. In such a large system, an additional function such as an injection device can be added, but it is difficult to add the injection device in the air conditioner targeted by the present invention.

【0004】さらに、特公平4−29842号公報によ
れば、凝縮器で凝縮しきらなかった成分を気液分離器に
よって分離し、このガスをもう一度凝縮器の入口に戻す
ことが明らかにされている。しかしこれも、発電システ
ム中の凝縮器に関する工夫であって、これをそのまま空
調機用凝縮器に適用するのは難しい。
Further, according to Japanese Patent Publication No. 4-29842, it is clarified that the components which are not completely condensed in the condenser are separated by the gas-liquid separator and this gas is returned to the inlet of the condenser again. There is. However, this is also a device related to the condenser in the power generation system, and it is difficult to apply this as it is to the condenser for the air conditioner.

【0005】[0005]

【発明が解決しようとする課題】上記したように、特開
平4−298606号公報、特公平4−29842号公
報に示される従来技術では、エアコン用の凝縮器に適用
することは困難なものであった。エアコン用の凝縮器に
おいては、非共沸混合冷媒の凝縮過程について次に述べ
るように、問題点があった。
As described above, the conventional techniques disclosed in Japanese Patent Laid-Open No. 4-298606 and Japanese Patent Publication No. 4-29842 are difficult to apply to a condenser for an air conditioner. there were. The condenser for an air conditioner has a problem as described below regarding the condensation process of the non-azeotropic mixed refrigerant.

【0006】図6は、2成分系の気液平衡線図を示す図
であるが、あるモル成分比の蒸気は、温度が低下する
と、図6中に示される点Aで凝縮を開始する。ところが
凝縮液の成分は、BDを経過し、高沸点のモル成分比が
高くなっている。反対に蒸気で残る成分は、ACを通る
ので、低沸点のモル成分比が高くなっている。つまり、
凝縮しにくい低沸点成分は、凝縮が進むにつれて、濃く
なり、ますます凝縮しにくくなることが分かる。
FIG. 6 is a diagram showing a vapor-liquid equilibrium diagram of a two-component system. A vapor having a certain molar component ratio starts to condense at a point A shown in FIG. 6 when the temperature decreases. However, the components of the condensate have passed through BD and have a high molar component ratio of high boiling point. On the other hand, the component remaining in the vapor passes through AC, so that the low boiling point molar component ratio is high. That is,
It can be seen that the low boiling point component that is difficult to condense becomes thicker as the condensation proceeds, and it becomes more difficult to condense.

【0007】さらに、凝縮開始点Aと、凝縮完了点Dで
は温度差があり、凝縮温度が次第に低下していく。図7
は、凝縮器内の冷媒流れ方向を横軸にとり、縦軸に温度
をとって、冷媒温度の変化を表わした図である。混合冷
媒は、図7中にaで示されるように凝縮が進行すると、
温度が低下していく傾向がある。これに対し、単一冷媒
では、圧力が一定な限り凝縮完了点まで同一温度を保っ
ている。その結果、冷却空気温度をcとすると、凝縮完
了点では、混合冷媒と冷却空気との温度差は、ΔTaに
なるが、単一冷媒と冷却空気との温度差はΔTbであ
る。ΔTaはΔTbより小さいので、混合冷媒の凝縮器
としての性能は低下し、必要な凝縮器の寸法が大きくな
るという第1の問題点がある。
Further, there is a temperature difference between the condensation start point A and the condensation completion point D, and the condensation temperature gradually decreases. Figure 7
FIG. 4 is a diagram showing changes in the refrigerant temperature, with the horizontal axis representing the refrigerant flow direction in the condenser and the vertical axis representing temperature. When the mixed refrigerant is condensed as shown by a in FIG. 7,
The temperature tends to decrease. On the other hand, with a single refrigerant, the same temperature is maintained until the condensation completion point as long as the pressure is constant. As a result, assuming that the cooling air temperature is c, the temperature difference between the mixed refrigerant and the cooling air is ΔTa at the condensation completion point, but the temperature difference between the single refrigerant and the cooling air is ΔTb. Since ΔTa is smaller than ΔTb, there is a first problem that the performance of the mixed refrigerant as a condenser is reduced and the required size of the condenser is increased.

【0008】第2の問題点は、図8に示すように、凝縮
が進行するにつれて、潜熱が次第に大きくなっていくこ
とである。単一冷媒の潜熱は、凝縮開始から完了するま
で、一定(図8中に直線bで示す)である。これに対
し、混合冷媒では、凝縮する気相の成分がACのように
変化し、それに伴って、潜熱が大きくなる方向に変化す
る。潜熱が大きくなるということは、より多くの熱を奪
わないと凝縮が進まないことを意味する。第1の問題で
述べたように、温度差が小さいところで、潜熱が大きく
なるので、なお必要な凝縮器寸法が大きくなる。
The second problem is that, as shown in FIG. 8, the latent heat gradually increases as the condensation progresses. The latent heat of a single refrigerant is constant (indicated by a straight line b in FIG. 8) from the start of condensation to completion. On the other hand, in the mixed refrigerant, the condensed gas phase component changes like AC, and accordingly, the latent heat increases. The larger latent heat means that the condensation does not proceed unless more heat is taken. As described in the first problem, since the latent heat becomes large where the temperature difference is small, the size of the condenser still required becomes large.

【0009】第3の問題点は、図9に示すように、凝縮
完了点近傍で熱伝達率が急激に低下することである。特
に液域になってからの熱伝達率は著しく小さく、サブク
ール(以下、過冷却度ともいう)をとるために、必要な
凝縮器寸法は、かなり大きくなる。しかも、液の中に残
った低沸点成分の蒸気はなかなか消えず、いつまでも気
泡まじりの液となっていることが多い。これがそのまま
膨張弁に到ると、大きな冷媒音を発生する原因となる。
The third problem is that, as shown in FIG. 9, the heat transfer coefficient sharply decreases near the condensation completion point. In particular, the heat transfer coefficient in the liquid region is extremely small, and the size of the condenser required for subcooling (hereinafter, also referred to as supercooling degree) is considerably large. Moreover, the low-boiling-point vapor remaining in the liquid does not easily disappear, and in many cases, it is a liquid containing bubbles forever. When this reaches the expansion valve as it is, it causes a large refrigerant noise.

【0010】以上述べてきたように、温度差が小さい、
潜熱が大きい、熱伝達率が小さいという3つの原因によ
って、非共沸混合冷媒の凝縮器では、なかなか凝縮が完
了せず、凝縮を完了させて、ある程度のサブクールをつ
けるためには、単一冷媒に比べて約10%程度の凝縮器
の寸法増大が必要であると試算されている。
As described above, the temperature difference is small,
Due to the three causes of large latent heat and small heat transfer coefficient, in the condenser of non-azeotropic mixed refrigerant, it is difficult to complete the condensation, and in order to complete the condensation and give a certain amount of subcool, a single refrigerant is required. It is estimated that the size of the condenser needs to be increased by about 10% compared with the above.

【0011】本発明の目的は、非共沸混合冷媒を用いた
場合でもクロスフィンチューブ形熱交換器の凝縮器に適
用することのできる非共沸混合冷媒用凝縮器を提供する
ことにある。
An object of the present invention is to provide a condenser for a non-azeotropic mixed refrigerant which can be applied to a condenser of a cross fin tube type heat exchanger even when a non-azeotropic mixed refrigerant is used.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の非共沸混合冷媒用凝縮器は、2種類以上の
冷媒を混ぜ合わせた非共沸混合冷媒を用いた冷凍サイク
ルの凝縮器であって、乾き度の高い冷媒上流側のフィン
より、乾き度の低い冷媒下流側のフィンを高性能のフィ
ンで構成したことを特徴とするものである。
In order to achieve the above object, a condenser for a non-azeotropic mixed refrigerant of the present invention is a refrigeration cycle using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants are mixed. In the condenser, the fins on the downstream side of the refrigerant having a lower dryness than the fins on the upstream side of the refrigerant having a higher dryness are constituted by high-performance fins.

【0013】又、2種類以上の冷媒を混ぜ合わせた非共
沸混合冷媒を用いた冷凍サイクルの凝縮器であって、乾
き度の高い冷媒上流側の伝熱管より、乾き度の低い冷媒
下流側の伝熱管をより直径の小さな伝熱管で構成したこ
とを特徴とするものである。
A condenser of a refrigeration cycle using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants are mixed, wherein the heat transfer tube on the upstream side of the refrigerant having a high degree of dryness has a downstream side of the refrigerant having a low degree of dryness. It is characterized in that the heat transfer tube of is composed of a heat transfer tube having a smaller diameter.

【0014】[0014]

【作用】上記のように構成しているので、非共沸混合冷
媒凝縮器の凝縮完了点付近で、低沸点冷媒の凝縮がなか
なか完了せず、いつまでも気泡として残ってしまうとい
う従来の課題に対して、第1の手段では、凝縮器の冷媒
下流側、すなわち凝縮完了点付近のフィンを高性能フィ
ン3として、凝縮完了を促進させているので、冷却空気
との温度差が小さくなっても、十分な交換熱量を確保す
ることができ、凝縮完了点を早めることができる。その
結果、単一冷媒の場合と同じ大きさの凝縮器で凝縮を完
了させることができる。
With the above-mentioned configuration, the low boiling point refrigerant does not easily complete its condensation near the condensation completion point of the non-azeotropic mixed refrigerant condenser, and it remains as bubbles forever. In the first means, the fin downstream of the condenser, that is, the fin near the condensation completion point is used as the high-performance fin 3 to accelerate the completion of condensation, so that even if the temperature difference from the cooling air becomes small, A sufficient amount of heat for exchange can be secured, and the condensation completion point can be advanced. As a result, condensation can be completed with a condenser of the same size as in the case of a single refrigerant.

【0015】又、第2の手段では、凝縮器の冷媒下流
側、すなわち凝縮完了点付近の冷媒側熱伝達率を向上さ
せるために、細径伝熱管4を凝縮完了点付近に使用し、
凝縮完了を促進させているので、流速が大きくなるため
に、図9に示した凝縮熱伝達率αsおよび液の熱伝達率
αlが向上して、凝縮完了点が早くなり、残り易い低沸
点成分の気泡も、細径管によって生じる高流速と撹拌作
用によって、早く凝縮液となることができる。
In the second means, the small diameter heat transfer tube 4 is used near the condensation completion point in order to improve the heat transfer coefficient on the refrigerant downstream side of the condenser, that is, near the condensation completion point.
Since the completion of the condensation is promoted, the flow velocity is increased, so that the condensation heat transfer coefficient αs and the liquid heat transfer coefficient αl shown in FIG. 9 are improved, the condensation completion point is accelerated, and the low boiling point component which is likely to remain The bubbles can also quickly become a condensate due to the high flow rate and stirring action generated by the small diameter tube.

【0016】[0016]

【実施例】以下、本発明の非共沸混合冷媒凝縮器をルー
ムエアコン、あるいはパッケージエアコンに適用した場
合を一例にとり、本発明の実施例ついて説明する。
Embodiments of the present invention will be described below by taking the case where the non-azeotropic mixed refrigerant condenser of the present invention is applied to a room air conditioner or a package air conditioner as an example.

【0017】本発明の第1の実施例を図1により説明す
る。図1は、本実施例の非共沸混合冷媒凝縮器正面図で
ある。
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a front view of the non-azeotropic mixed refrigerant condenser of the present embodiment.

【0018】図1に示すように、非共沸混合冷媒のガス
は、フィン2を設けられた伝熱管1内を冷媒入口5から
流入し、液化して冷媒出口6から流出する。これに対し
冷却空気はほぼフィン2に沿うように、すなわち、伝熱
管1に垂直に流れている(図示せず)。冷媒入口5から
流入した過熱ガスは、フィン2の間を流れる冷却空気に
より次第に冷却され、飽和域に到る。飽和域では、非共
沸混合冷媒であるため、図7のaで示すように次第に温
度が低下しながら凝縮が進行していく。凝縮完了時の冷
却空気との温度差は、単一冷媒の場合ΔTbであるが、
非共沸混合冷媒の場合は、ΔTaに減ってしまう。
As shown in FIG. 1, the gas of the non-azeotropic mixed refrigerant flows into the heat transfer tube 1 provided with the fins 2 from the refrigerant inlet 5, is liquefied and flows out from the refrigerant outlet 6. On the other hand, the cooling air flows almost along the fins 2, that is, perpendicular to the heat transfer tubes 1 (not shown). The superheated gas flowing from the refrigerant inlet 5 is gradually cooled by the cooling air flowing between the fins 2 and reaches the saturation region. In the saturation region, since the refrigerant is a non-azeotropic mixed refrigerant, the condensation proceeds while the temperature gradually decreases as shown by a in FIG. The temperature difference from the cooling air at the time of completion of condensation is ΔTb in the case of a single refrigerant,
In the case of a non-azeotropic mixed refrigerant, it decreases to ΔTa.

【0019】さらに図8に示すように、凝縮が進行する
につれて、潜熱が増加する傾向がある。単一冷媒の場合
には、凝縮開始点から、凝縮完了点までは潜熱は一定
(図8中にbで示す)であるが、非共沸混合冷媒の場合
には、aで示すように潜熱が次第に大きくなる。この原
因は、図6に示すように、凝縮が進行するにつれて、気
相のモル成分比がACの上、すなわち曲線gの上のよう
に変化するからである。
Further, as shown in FIG. 8, the latent heat tends to increase as the condensation progresses. In the case of a single refrigerant, the latent heat is constant (indicated by b in FIG. 8) from the condensation start point to the condensation completion point, but in the case of a non-azeotropic mixed refrigerant, the latent heat is indicated by a. Will gradually increase. This is because, as shown in FIG. 6, as the condensation progresses, the molar component ratio of the gas phase changes above AC, that is, above the curve g.

【0020】さらに図9に示すように、冷媒側の熱伝達
率の低下が考えられる。凝縮が進行するにつれ、液量が
多くなり、流速が小さくなるため、凝縮域でも熱伝達率
はαsのように低下するが、凝縮が完了し液域になると
さらに熱伝達率はαlまで低下する。
Further, as shown in FIG. 9, the heat transfer coefficient on the refrigerant side may be decreased. As the condensation progresses, the amount of liquid increases and the flow velocity decreases, so the heat transfer coefficient decreases like αs even in the condensation region, but when the condensation is completed and becomes the liquid region, the heat transfer coefficient further decreases to αl. .

【0021】このような3つの要因により、非共沸混合
冷媒は、単一冷媒より凝縮しにくく、凝縮完了点が冷媒
流れ方向の下流側にずれる傾向がある。図10は、横軸
に凝縮部伝熱管長さ、縦軸に乾き度をとって、非共沸混
合冷媒(図10中にaで示す)と単一冷媒(図10中に
bで示す)の変化を示す。非共沸混合冷媒の方が、乾き
度0となるまでに必要な伝熱管長が長くなっている。す
なわち必要な凝縮器の寸法は大きくなってしまう。
Due to these three factors, the non-azeotropic mixed refrigerant is less likely to be condensed than the single refrigerant, and the condensation completion point tends to shift to the downstream side in the refrigerant flow direction. 10. In FIG. 10, the horizontal axis represents the heat transfer tube length of the condenser, and the vertical axis represents the dryness. The non-azeotropic mixed refrigerant (denoted by a in FIG. 10) and the single refrigerant (denoted by b in FIG. 10). Shows the change of. The non-azeotropic mixed refrigerant requires a longer heat transfer tube length until the dryness becomes zero. That is, the required size of the condenser becomes large.

【0022】これを解決するために本実施例の非共沸混
合冷媒用凝縮器では、図1に示すように、冷媒上流側で
は通常のフィン2を用い、冷媒下流側では高性能フィン
3を用いている。すべてのフィンを高性能フィン3で構
成することも考えられるが、高性能フィンは通常通風抵
抗も増大し、その結果騒音も大きくなるという欠点があ
る。また、この凝縮器を、ヒートポンプの室外熱交換器
として用いた場合、冬期の暖房運転時には、フィンに着
霜することがある。高性能フィンには、霜が付着し易
く、霜による目詰りが起こり易いという欠点があるため
組み合わせるのが好ましい。以上のことから、本実施例
では、図1に示すように高性能フィン3を用いる範囲を
冷媒下流側の必要最小限度の領域に限定している。
In order to solve this, in the condenser for non-azeotropic mixed refrigerant of this embodiment, as shown in FIG. 1, the normal fins 2 are used on the upstream side of the refrigerant and the high-performance fins 3 are used on the downstream side of the refrigerant. I am using. Although it is conceivable to configure all the fins with the high-performance fins 3, the high-performance fins usually have a drawback that ventilation resistance also increases, and as a result, noise also increases. Further, when this condenser is used as an outdoor heat exchanger of a heat pump, the fins may be frosted during the heating operation in winter. It is preferable to combine high-performance fins because frost easily adheres to the high-performance fins and clogging due to frost easily occurs. From the above, in this embodiment, as shown in FIG. 1, the range in which the high-performance fins 3 are used is limited to the minimum required area on the downstream side of the refrigerant.

【0023】本発明の第2の実施例を図2から図4によ
り説明する。図2は、本実施例の非共沸混合冷媒凝縮器
正面図、図3、図4はそれぞれ伝熱管の横断面図であ
る。
A second embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a front view of the non-azeotropic mixed refrigerant condenser of the present embodiment, and FIGS. 3 and 4 are horizontal cross-sectional views of the heat transfer tubes.

【0024】本実施例の非共沸混合冷媒用凝縮器におい
ては、図2に示すように、冷媒入口側は、通常の径の伝
熱管1とし、冷媒出口付近のみ、細径管4を用いたこと
を特徴としている。これらの伝熱管は、平滑管でも良い
が、図3、図4に示すような内面溝付管を用いることが
望ましい。図3、図4において、1が通常の径の内面溝
付管であり、4がそれよりも細径の細径内面溝付管であ
る。
In the condenser for non-azeotropic mixed refrigerant of this embodiment, as shown in FIG. 2, the heat transfer tube 1 having a normal diameter is used on the refrigerant inlet side, and the small diameter tube 4 is used only near the refrigerant outlet. It is characterized by having been. Although these heat transfer tubes may be smooth tubes, it is desirable to use tubes with inner grooves as shown in FIGS. 3 and 4. In FIGS. 3 and 4, 1 is an inner grooved tube having a normal diameter, and 4 is a small diameter inner grooved tube having a smaller diameter.

【0025】その理由を図9を用いて説明する。凝縮開
始点近傍では、ガスの占める割合が多く流速が高いた
め、細径管にすると圧力損失が増大するので、通常の伝
熱管1とし、凝縮完了点付近になると液の占める割合が
増大し、流速も小さくなるので、細径管4にすることに
より、凝縮熱伝達率αs、液域の単相流熱伝達率αlを
向上させることができる。液域に近い領域では、細径管
にしてもまだ流速が低いので、圧力損失が増大すること
を気にする必要はない。
The reason will be described with reference to FIG. In the vicinity of the condensation start point, the gas occupies a large proportion and the flow velocity is high. Therefore, the pressure loss increases when a small-diameter tube is used. Since the flow velocity is also reduced, the condensation heat transfer coefficient αs and the single-phase flow heat transfer coefficient αl in the liquid region can be improved by using the small diameter tube 4. In the region close to the liquid region, the flow velocity is still low even with a small-diameter pipe, so there is no need to worry about the increase in pressure loss.

【0026】以上述べたように、第1の実施例、第2の
実施例のように構成することにより、非共沸混合冷媒の
凝縮器の性能が向上し、単一冷媒とほぼ同一の大きさの
凝縮器で、所定のサブクールを得ることができる。
As described above, by configuring as in the first and second embodiments, the performance of the non-azeotropic mixed refrigerant condenser is improved, and the size of the condenser is almost the same as that of a single refrigerant. The desired subcool can be obtained with the Sano condenser.

【0027】図5は、本発明の第3の実施例であり、パ
イプ列を2列に配管して凝縮器を構成してもよく、上記
した実施例と同様の効果を得ることができる。
FIG. 5 shows a third embodiment of the present invention, in which a pipe array may be provided in two rows to form a condenser, and the same effects as those of the above-described embodiments can be obtained.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、非
共沸混合冷媒の凝縮過程において、凝縮完了点近傍での
凝縮性能を改善でき、単一冷媒とほぼ同一の体積で所定
のサブクールを得ることができるようになった。
As described above, according to the present invention, in the condensation process of a non-azeotropic mixed refrigerant, it is possible to improve the condensation performance in the vicinity of the completion point of condensation, and it is possible to obtain a predetermined refrigerant with a volume substantially the same as that of a single refrigerant. You can get subcool.

【0029】その結果、主として、凝縮器の体積を単一
冷媒の場合と同じに押えることができるので、ユニット
の寸法を大きくしないで済む効果がある、サイクル全体
の効率(COPともいう)を低下させないで済む効果が
挙げられる。
As a result, the volume of the condenser can be suppressed to the same level as in the case of using a single refrigerant, so that the size of the unit need not be increased, and the efficiency of the entire cycle (also referred to as COP) is reduced. The effect is that you do not have to do.

【0030】さらに二次的効果としては、膨張弁前で十
分なサブクール(過冷却度)を得ることができるので、
膨張弁で発生する冷媒音を小さくできるという利点を得
ることができる効果がある。
As a secondary effect, a sufficient subcool (supercooling degree) can be obtained before the expansion valve.
There is an effect that it is possible to obtain the advantage that the refrigerant noise generated in the expansion valve can be reduced.

【0031】[0031]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である非共沸混合冷媒用
凝縮器の正面図である。
FIG. 1 is a front view of a condenser for a non-azeotropic mixed refrigerant which is a first embodiment of the present invention.

【図2】本発明の第2の実施例である非共沸混合冷媒用
凝縮器の正面図である。
FIG. 2 is a front view of a non-azeotropic mixed refrigerant condenser according to a second embodiment of the present invention.

【図3】図2に示す伝熱管1の横断面図である。3 is a cross-sectional view of the heat transfer tube 1 shown in FIG.

【図4】図2に示す細径伝熱管4の横断面図である。4 is a cross-sectional view of the small diameter heat transfer tube 4 shown in FIG.

【図5】本発明の第3の実施例である非共沸混合冷媒用
凝縮器の側面図である。
FIG. 5 is a side view of a non-azeotropic mixed refrigerant condenser according to a third embodiment of the present invention.

【図6】非共沸混合冷媒の気液平衡線図である。FIG. 6 is a vapor-liquid equilibrium diagram of a non-azeotropic mixed refrigerant.

【図7】凝縮器内冷媒流れ方向の冷媒温度変化を示す図
である。
FIG. 7 is a diagram showing a refrigerant temperature change in a refrigerant flow direction in a condenser.

【図8】凝縮部長さに沿った冷媒の潜熱の変化を示す図
である。
FIG. 8 is a diagram showing changes in the latent heat of the refrigerant along the length of the condensation section.

【図9】凝縮部長さに沿った冷媒熱伝達率の変化を示す
図である。
FIG. 9 is a diagram showing changes in the heat transfer coefficient of the refrigerant along the length of the condenser.

【図10】凝縮部伝熱管長さに沿った乾き度の変化を示
す図である。
FIG. 10 is a diagram showing a change in dryness along a length of a heat transfer tube of a condenser.

【符号の説明】[Explanation of symbols]

1…伝熱管、2…フィン、3…高性能フィン、4…細径
伝熱管、5…冷媒ガス入口、6…冷媒液出口、7…冷却
空気入口、8…冷却空気出口。
DESCRIPTION OF SYMBOLS 1 ... Heat transfer tube, 2 ... Fin, 3 ... High performance fin, 4 ... Small diameter heat transfer tube, 5 ... Refrigerant gas inlet, 6 ... Refrigerant liquid outlet, 7 ... Cooling air inlet, 8 ... Cooling air outlet.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F25B 1/00 395 A 8919−3L (72)発明者 松嶋 弘章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number for FI FI technical display location F25B 1/00 395 A 8919-3L (72) Inventor Hiroaki Matsushima 502 Kitsutachi-cho, Tsuchiura-shi, Ibaraki Hitate Co., Ltd. Machinery Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2種類以上の冷媒を混ぜ合わせた非共沸混
合冷媒を用いた冷凍サイクルの凝縮器であって、乾き度
の高い冷媒上流側のフィンより、乾き度の低い冷媒下流
側のフィンを高性能のフィンで構成したことを特徴とす
る非共沸混合冷媒用凝縮器。
1. A condenser of a refrigeration cycle using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants are mixed, wherein the fins on the upstream side of the refrigerant having a high dryness are more downstream than those on the downstream side of the refrigerant having a lower dryness. A condenser for a non-azeotropic mixed refrigerant, characterized in that the fins are composed of high-performance fins.
【請求項2】2種類以上の冷媒を混ぜ合わせた非共沸混
合冷媒を用いた冷凍サイクルの凝縮器であって、乾き度
の高い冷媒上流側の伝熱管より、乾き度の低い冷媒下流
側の伝熱管をより直径の小さな伝熱管で構成したことを
特徴とする非共沸混合冷媒用凝縮器。
2. A condenser of a refrigeration cycle using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants are mixed, the refrigerant having a lower dryness than the heat transfer tube on the upstream side of the refrigerant having a higher dryness. A condenser for a non-azeotropic mixed refrigerant, characterized in that the heat transfer tube of is composed of a heat transfer tube having a smaller diameter.
JP5094113A 1993-04-21 1993-04-21 Condenser for non-azeotrope reefrigerant Pending JPH06307738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5094113A JPH06307738A (en) 1993-04-21 1993-04-21 Condenser for non-azeotrope reefrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5094113A JPH06307738A (en) 1993-04-21 1993-04-21 Condenser for non-azeotrope reefrigerant

Publications (1)

Publication Number Publication Date
JPH06307738A true JPH06307738A (en) 1994-11-01

Family

ID=14101388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5094113A Pending JPH06307738A (en) 1993-04-21 1993-04-21 Condenser for non-azeotrope reefrigerant

Country Status (1)

Country Link
JP (1) JPH06307738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200857A (en) * 1995-01-20 1996-08-06 Sanden Corp Refrigerator
KR100431347B1 (en) * 2002-01-10 2004-05-12 삼성전자주식회사 Wire condensor
JP2007232365A (en) * 2007-05-08 2007-09-13 Mitsubishi Electric Corp Air conditioner
JPWO2021205536A1 (en) * 2020-04-07 2021-10-14
WO2021214832A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200857A (en) * 1995-01-20 1996-08-06 Sanden Corp Refrigerator
KR100431347B1 (en) * 2002-01-10 2004-05-12 삼성전자주식회사 Wire condensor
JP2007232365A (en) * 2007-05-08 2007-09-13 Mitsubishi Electric Corp Air conditioner
JP4710869B2 (en) * 2007-05-08 2011-06-29 三菱電機株式会社 Air conditioner
JPWO2021205536A1 (en) * 2020-04-07 2021-10-14
WO2021205536A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Refrigeration cycle device
WO2021214832A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device
JPWO2021214832A1 (en) * 2020-04-20 2021-10-28

Similar Documents

Publication Publication Date Title
JP2979926B2 (en) Air conditioner
US7832231B2 (en) Multichannel evaporator with flow separating manifold
EP1031801A2 (en) Heat exchanger
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
KR100248683B1 (en) Cooling apparatus
CN100494814C (en) Condenser
JPH09145187A (en) Air conditioner
Song et al. Experimental study on improved performance of an automotive CO2 air conditioning system with an evaporative gas cooler
JPH06307738A (en) Condenser for non-azeotrope reefrigerant
CN218001685U (en) Heat exchanger combined module adopting thin-diameter fin tube type heat exchanger in supercooling heat release section
JPH06194000A (en) Air conditioner
JP3286038B2 (en) Air conditioner
KR100883600B1 (en) Air conditioner
JPH06281293A (en) Heat exchanger
JPH07127955A (en) Refrigerating cycle device
JP3298225B2 (en) Air conditioner
JP3758310B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
CN215336763U (en) Frequency conversion air conditioner
JP2002022307A (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
WO2023013347A1 (en) Refrigeration cycle device
EP4350252A1 (en) Heat exchanger, air conditioner outdoor unit equipped with heat exchanger, and air conditioner equipped with air conditioner outdoor unit
CN209819947U (en) Air source heat pump system with defrosting function