WO2021205536A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021205536A1
WO2021205536A1 PCT/JP2020/015651 JP2020015651W WO2021205536A1 WO 2021205536 A1 WO2021205536 A1 WO 2021205536A1 JP 2020015651 W JP2020015651 W JP 2020015651W WO 2021205536 A1 WO2021205536 A1 WO 2021205536A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
inflow
heat transfer
outflow
Prior art date
Application number
PCT/JP2020/015651
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/015651 priority Critical patent/WO2021205536A1/en
Priority to EP20930077.1A priority patent/EP4134601A4/en
Priority to JP2022513738A priority patent/JP7341326B2/en
Publication of WO2021205536A1 publication Critical patent/WO2021205536A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • HFO1123 is known as a refrigerant having a low global warming potential (GWP: Global Warming Potential) (low GWP refrigerant).
  • GWP Global Warming Potential
  • HFO1123 has a property of causing a disproportionation reaction (autolysis reaction) and is flammable.
  • Patent Document 1 discloses a refrigeration cycle apparatus in which a non-azeotropic mixed refrigerant containing R32, CF3I, and HFO1123 is sealed.
  • each weight ratio of R32, CF3I, and HFO1123 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus is specified.
  • HFO1123 is mixed with CF3I and R32, the disproportionation reaction of HFO1123 is suppressed, the temperature gradient of the non-azeotropic mixed refrigerant is suppressed, and the performance deterioration is suppressed.
  • the magnitude relationship of the densities of R32, CF3I, and HFO1123 changes depending on whether they are in the liquid phase state or the gas phase state.
  • the density of CF3I is higher than that of R32 and HFO1123, respectively.
  • the density of CF3I is lower than the density of R32 and HFO1123, respectively. Therefore, in a non-azeotropic mixed refrigerant containing R32, CF3I, and HFO1123, CF3I is less likely to mix with R32 and HFO1123.
  • CF3I When CF3I is not sufficiently mixed with R32 and HFO1123, CF3I is less likely to contribute to the action of suppressing the disproportionation reaction of HFO1123, and the contribution of CF3I to the action is greater than the contribution of R32 to the action. It gets lower.
  • a main object of the present disclosure is the disproportionation reaction of a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having a characteristic of causing a disproportionation reaction because the refrigerant having a characteristic of causing a disproportionation reaction is easily mixed. It is an object of the present invention to provide a refrigerating cycle apparatus in which the occurrence of the above is less likely to occur and the deterioration of the performance is suppressed.
  • the refrigeration cycle device is a refrigeration cycle device in which a non-azeotropic mixed refrigerant is used.
  • the refrigeration cycle device is in series with the compressor, the flow path switching section, the first inflow / outflow section and the second inflow / outflow section where the non-azeotropic mixed refrigerant flows in / out, and the first inflow / outflow section and the second inflow / outflow section. It is provided with a first heat exchanger including a first pipe portion and a second pipe portion connected to the above and through which a non-azeotropic mixed refrigerant flows, a decompression device, and a second heat exchanger.
  • the non-azeotropic mixed refrigerant includes a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having no characteristic of causing a disproportionation reaction.
  • the flow path switching section has a first state in which the non-azeotropic mixed refrigerant flows through the compressor, the first heat exchanger, the decompression device, and the second heat exchanger in the order described, and a first state in which the non-azeotropic mixed refrigerant flows. Switches from the second state, which flows in the opposite direction.
  • the non-azeotropic mixed refrigerant flows in the first heat exchanger in the order of the first inflow / outflow portion, the first pipe portion, the second pipe portion, and the second inflow / outflow portion.
  • the non-azeotropic mixed refrigerant flows in the first heat exchanger in the order of the second inflow / outflow portion, the second pipe portion, the first pipe portion, and the first inflow / outflow portion.
  • the first pipe portion has a first inner peripheral surface on which irregularities are formed.
  • the second pipe portion has a second inner peripheral surface on which irregularities are formed.
  • the area expansion ratio of the first inner peripheral surface of the first pipe portion is higher than the area expansion ratio of the second inner peripheral surface of the second pipe portion.
  • the refrigeration cycle apparatus is in the middle of heat exchange between the first refrigerant circuit in which the first refrigerant circulates, the second refrigerant circuit in which the second refrigerant circulates, and the first refrigerant and the second refrigerant. Equipped with a heat exchanger.
  • the first refrigerant circuit includes a compressor that compresses the first refrigerant, a flow path switching section, a third heat exchanger that exchanges heat between the first refrigerant and air, and a depressurization that reduces the pressure of the first refrigerant. It includes an apparatus and a first flow path through which a first refrigerant passes in an intermediate heat exchanger.
  • the first refrigerant is a non-azeotropic mixed refrigerant containing a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having a characteristic of not causing a disproportionation reaction.
  • the intermediate heat exchanger includes a fifth inflow / outflow section and a sixth inflow / outflow section in which the first refrigerant flows in and out of the first flow path.
  • the fifth inflow / outflow section is arranged above the sixth inflow / outflow section.
  • the first state in which the non-azeotropic mixed refrigerant flows through the compressor, the third heat exchanger, the decompression device, and the intermediate heat exchanger in the order described in this description, and the first state in which the non-azeotropic mixed refrigerant flows are Switch to the second state that flows in the opposite direction.
  • the first state the non-azeotropic mixed refrigerant flows in the intermediate heat exchanger from the fifth inflow / outflow portion toward the sixth inflow / outflow portion.
  • the second state the non-azeotropic mixed refrigerant flows in the intermediate heat exchanger from the sixth inflow / outflow portion toward the fifth inflow / outflow portion.
  • a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having a characteristic of causing a disproportionation reaction are likely to be mixed, and the disproportionation reaction of a refrigerant having a characteristic of causing a disproportionation reaction is carried out. It is possible to provide a refrigeration cycle apparatus that is less likely to occur and whose performance deterioration is suppressed.
  • FIG. It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the upper heat transfer tube of the heat exchanger shown in FIG.
  • FIG. It is sectional drawing of the lower heat transfer tube of the heat exchanger shown in FIG.
  • It is a partial cross-sectional view of the upper heat transfer tube of the 1st modification of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view of the lower heat transfer tube of the 1st modification of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. 1 It is a partial cross-sectional view of the upper heat transfer tube of the 2nd modification of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. 2nd modification of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. 2nd modification of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. 2 It is a figure which shows the modification of the heat exchanger of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view of the upper heat transfer tube of the 3rd modification of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view of the lower heat transfer tube of the 3rd modification of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. 1 It is a partial cross-sectional view of the upper heat transfer tube of the 4th modification of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. 2 is a partial cross-sectional view of the lower heat transfer tube of the 4th modification of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 2. It is a figure which shows the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 2.
  • a mixed refrigerant of a liquid phase containing R32, CF3I, HFO1123, and an incompatible oil and having a liquid temperature of 10 ° C. flows in a circular tube having a smooth inner peripheral surface and extending in the horizontal direction, respectively.
  • a mixed refrigerant of a liquid phase containing R32, CF3I, HFO1123, and an incompatible oil and having a liquid temperature of 60 ° C. flows in a circular tube having a smooth inner peripheral surface and extending in the horizontal direction, respectively.
  • the refrigeration cycle device 100 is configured as, for example, a RAC (Room Air Conditioner). As shown in FIG. 1, the refrigeration cycle device 100 includes an outdoor unit 110 and an indoor unit 120.
  • the outdoor unit 110 includes a compressor 1, a four-way valve 2 (flow path switching unit), an outdoor heat exchanger 3 (first heat exchanger), an expansion valve 4A (pressure reducing device), and an expansion valve 4B (pressure reducing device). ),
  • the receiver 5 (refrigerant container), the control device 10, the outdoor fan 11, and the temperature sensor 13.
  • the indoor unit 120 includes an indoor heat exchanger 6 (second heat exchanger) and an indoor fan 12.
  • R32 difluoromethane (CH 2 F 2 )
  • CF 3I trifluoroiodomethane (CF 3 I)
  • a mixed refrigerant is used.
  • the weight ratio of R32 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is, for example, 43 wt% or less.
  • the weight ratio of CF3I in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is, for example, equal to or less than the weight ratio of R32.
  • the weight ratio of HFO1123 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is, for example, 14 wt% or more. From the viewpoint of suppressing the disproportionation reaction, when the weight ratio of HFO1123 is 60 wt% or more, the weight ratio of CF3I is preferably 2 wt% or more, more preferably about 5 wt%.
  • the weight ratio of HFO1123 when the weight ratio of HFO1123 is 60 wt% or more, the weight ratio of CF3I is 2 wt% or more and 5 wt% or less.
  • the disproportionation reaction of HFO1123 is suppressed when the weight ratio of CF3I is more than 2 wt%, and the disproportionation reaction of HFO1123 when the weight ratio of CF3I is about 5 wt%. Is sufficiently suppressed.
  • Weight ratio of R32 so that the regulations on refrigerants (for example, Montreal Protocol or F-gas regulations) are satisfied even if the amount of non-azeotropic mixed refrigerant used increases with the increase in the number of refrigeration cycle devices shipped. It is desirable to further reduce GWP by setting 30 wt% or less.
  • the GWP of R32 is 675, the GWP of CF3I is about 0.4, and the GWP of HFO1123 is about 0.3.
  • the GWP of the non-azeotropic mixed refrigerant is lower than the GWP of R32.
  • the standard boiling points of R32, CF3I, and HFOR1123 are ⁇ 52 ° C., ⁇ 22 ° C., and ⁇ 59 ° C., respectively. Due to the different boiling points of each, the concentration distribution described later occurs in the non-azeotropic mixed refrigerant of the gas phase.
  • the total weight ratio of HFO1123, R32 and CF3I in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is preferably 99.5 wt% or more, more preferably 99.7 wt% or more. Most preferably, it is 99.9 wt% or more.
  • an incompatible oil that is incompatible with the non-azeotropic mixed refrigerant is used as the lubricating oil.
  • the incompatible oil comprises at least one selected from the group consisting of, for example, alkylbenzene oils, mineral oils, naphthalene mineral oils and polyalphaolefin oils.
  • the four-way valve 2 has a first port connected to the discharge port of the compressor 1, a second port connected to the suction port of the compressor 1 via the receiver 5, and an upper outflow of the outdoor heat exchanger 3. It has a third port connected to the inlet 3A and a fourth port connected to the upper inflow / outflow section 6A of the indoor heat exchanger 6.
  • the four-way valve 2 has a first state in which the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 6 acts as an evaporator, and the indoor heat exchanger 6 acts as a condenser and the outdoor heat exchanger 3 evaporates. It is formed to switch between the second state, which acts as a vessel. The first state is realized during the cooling operation and the second state is realized during the heating operation.
  • the outdoor heat exchanger 3 is, for example, a fin tube heat exchanger.
  • the outdoor heat exchanger 3 includes an upper inflow / outflow section 3A (first inflow / outflow section) and a lower inflow / outflow section 3B (second inflow / outflow section), and an upper inflow / outflow section 3A and a lower inflow / outflow section 3B.
  • a plurality of upper heat transfer tubes 31A (first tube section) and a plurality of lower heat transfer tubes 31B (second tube section) connected in series with each other were connected to each upper heat transfer tube 31A and each lower heat transfer tube 31B. It has a plurality of fins 32.
  • the upper inflow / outflow section 3A is arranged above the lower inflow / outflow section 3B.
  • the upper inflow / outflow portion 3A is connected to the third port of the four-way valve 2 via an extension pipe.
  • the lower inflow / outflow portion 3B is connected to the expansion valve 4A.
  • Each of the plurality of upper heat transfer tubes 31A is arranged above each of the plurality of lower heat transfer tubes 31B.
  • Each of the plurality of upper heat transfer tubes 31A is arranged above the center of the outdoor heat exchanger 3 in, for example, the vertical direction A.
  • Each of the plurality of lower heat transfer tubes 31B is arranged below the center of the outdoor heat exchanger 3 in, for example, the vertical direction A.
  • Each upper heat transfer tube 31A and each lower heat transfer tube 31B extends along a direction B intersecting the vertical direction A.
  • One end of the direction B of the upper heat transfer tube 31A arranged at the lowermost position among the plurality of upper heat transfer tubes 31A is, for example, one end of the direction B of the lower heat transfer tube 31B arranged at the uppermost position among the plurality of lower heat transfer tubes 31B. Is connected in series via a bent portion 31C.
  • One end of each of the upper heat transfer tubes 31A other than the lowermost upper heat transfer tube 31A arranged in the direction B of the plurality of upper heat transfer tubes 31A is connected in series with each other via the bent portion 31C.
  • One end of the direction B of each of the lower heat transfer tubes 31B other than the lower heat transfer tube 31B arranged at the uppermost of the plurality of lower heat transfer tubes 31B is connected in series with each other via the bent portion 31C.
  • the upper inflow / outflow section 3A, the plurality of upper heat transfer tubes 31A, the plurality of lower heat transfer tubes 31B, and the lower inflow / outflow section 3B are connected in series in the order described.
  • the plurality of fins 32 are arranged side by side at intervals in the direction B.
  • Each of the plurality of upper heat transfer tubes 31A and the plurality of lower heat transfer tubes 31B penetrates each fin 32.
  • the indoor heat exchanger 6 is, for example, a fin tube heat exchanger.
  • the indoor heat exchanger 6 includes an upper inflow / outflow section 6A (third inflow / outflow section) and a lower inflow / outflow section 6B (fourth inflow / outflow section) through which the non-azeotropic mixed refrigerant flows in and out, and an upper inflow / outflow section 6A and a lower inflow / outflow section 6B.
  • a plurality of upper heat transfer tubes 61A (third tube section) and a plurality of lower heat transfer tubes 61B (fourth tube section) connected in series with each other were connected to each upper heat transfer tube 61A and each lower heat transfer tube 61B. It has a plurality of fins 62.
  • the upper inflow / outflow section 6A is arranged above the lower inflow / outflow section 6B.
  • the upper inflow / outflow portion 6A is connected to the fourth port of the four-way valve 2 via an extension pipe.
  • the lower inflow / outflow portion 6B is connected to the expansion valve 4B via an extension pipe.
  • Each of the plurality of upper heat transfer tubes 61A is arranged above each of the plurality of lower heat transfer tubes 61B.
  • Each of the plurality of upper heat transfer tubes 61A is arranged above the center of the indoor heat exchanger 6 in, for example, the vertical direction A.
  • Each of the plurality of lower heat transfer tubes 61B is arranged below the center of the indoor heat exchanger 6 in, for example, the vertical direction A.
  • Each upper heat transfer tube 61A and each lower heat transfer tube 61B extend along a direction B intersecting the vertical direction A.
  • One end of the direction B of the upper heat transfer tube 61A arranged at the lowermost position among the plurality of upper heat transfer tubes 61A is, for example, one end of the direction B of the lower heat transfer tube 61B arranged at the uppermost position among the plurality of lower heat transfer tubes 61. Is connected in series via a bent portion 61C.
  • One end of each of the upper heat transfer tubes 61A other than the lowermost upper heat transfer tube 61A arranged in the direction B of the plurality of upper heat transfer tubes 61A is connected in series with each other via a bent portion 61C.
  • each of the lower heat transfer tubes 61B other than the lower heat transfer tube 61B arranged at the uppermost of the plurality of lower heat transfer tubes 61B in the direction B is connected in series with each other via the bent portion 61C.
  • the upper inflow / outflow section 6A, the plurality of upper heat transfer tubes 61A, the plurality of lower heat transfer tubes 61B, and the lower inflow / outflow section 6B are connected in series in the order described.
  • the plurality of fins 62 are arranged side by side at intervals in the direction B.
  • Each of the plurality of upper heat transfer tubes 61A and the plurality of lower heat transfer tubes 61B penetrates each fin 62.
  • each upper heat transfer tube 31A and each lower heat transfer tube 31B are configured as circular tubes.
  • each upper heat transfer tube 31A has a first inner peripheral surface 33A in which irregularities are formed.
  • the first inner peripheral surface 33A is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the upper heat transfer tube 31A.
  • a plurality of first groove portions 34A are formed on the first inner peripheral surface 33A.
  • the configurations of the first groove portions 34A are, for example, equal to each other.
  • the first groove portions 34A are arranged so as to be spaced apart from each other in the circumferential direction of the upper heat transfer tube 31A.
  • Each first groove portion 34A extends spirally with respect to the central axis O of the upper heat transfer tube 31A.
  • the width of each of the first groove portions 34A in the circumferential direction is formed so as to become narrower toward the outer circumference in the radial direction of the upper heat transfer tube 31A, for example.
  • each lower heat transfer tube 31B has a second inner peripheral surface 33B on which irregularities are formed.
  • the second inner peripheral surface 33B is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the lower heat transfer tube 31B.
  • a plurality of second groove portions 34B are formed on the second inner peripheral surface 33B.
  • the configurations of the second groove portions 34B are, for example, equal to each other.
  • the second groove portions 34B are arranged so as to be spaced apart from each other in the circumferential direction of the lower heat transfer tube 31B.
  • Each second groove 34B extends spirally with respect to the central axis O of the lower heat transfer tube 31B.
  • the width of each of the second groove portions 34B in the circumferential direction is formed so as to become narrower toward the outer circumference of the lower heat transfer tube 31B in the radial direction, for example.
  • each upper heat transfer tube 31A is the same as the outer shape of each lower heat transfer tube 31B, for example.
  • the outer diameter of each upper heat transfer tube 31A is equal to, for example, the outer diameter of each lower heat transfer tube 31B.
  • the inner diameter of each upper heat transfer tube 31A is equal to, for example, the inner diameter of each lower heat transfer tube 31B.
  • the area of each of the first inner peripheral surface 33A of the upper heat transfer tube 31A and the second inner peripheral surface 33B of the lower heat transfer tube 31B is equal to the inner diameter of the first inner peripheral surface 33A and the second inner peripheral surface 33B, but the groove portion. Is larger than the area of the inner peripheral surface where is not formed. In other words, the area expansion ratio of the first inner peripheral surface 33A of the upper heat transfer tube 31A and the second inner peripheral surface 33B of the lower heat transfer tube 31B is 1 or more.
  • the area expansion ratios of the first inner peripheral surface 33A and the second inner peripheral surface 33B are the same as the inner diameters of the first inner peripheral surface 33A and the second inner peripheral surface 33B when the lengths in the directions B are equal to each other and the inner diameter is the same as the inner diameter of the first inner peripheral surface 33A and the second inner peripheral surface 33B.
  • the ratio is based on the area of the inner peripheral surface that is equal but has no groove.
  • the area expansion rate of the first inner peripheral surface 33A of the upper heat transfer tube 31A (first tube portion) is higher than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B (second tube portion).
  • the number of rows of the first groove portion 34A is defined as the number of the first groove portions 34A arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the upper heat transfer tube 31A. ..
  • the number of rows of the second groove portion 34B is defined as the number of the second groove portions 34B arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the lower heat transfer tube 31B. ..
  • the number of rows of the first groove portion 34A is larger than the number of rows of the second groove portion 34B.
  • the width of each first groove portion 34A in the circumferential direction is narrower than the width of each second groove portion 34B in the circumferential direction.
  • the first inner peripheral surface of the upper heat transfer tube 31A is due to the above-mentioned magnitude relationship of the number of rows between the first groove portion 34A and the second groove portion 34B.
  • the above magnitude relationship of the area expansion ratio between 33A and the second inner peripheral surface 33B of the lower heat transfer tube 31B is realized.
  • each first groove 34A (details will be described later) is equal to, for example, the depth of each second groove 34B.
  • the lead angle of each first groove 34A (details will be described later) is, for example, equal to the lead angle of each second groove 34B.
  • the tube wall thickness of each upper heat transfer tube 31A (details will be described later) is, for example, equal to the tube wall thickness of each lower heat transfer tube 31B.
  • each upper heat transfer tube 61A and each lower heat transfer tube 61B are configured as circular tubes.
  • each upper heat transfer tube 61A has a third inner peripheral surface 63A in which irregularities are formed.
  • the inner peripheral surface 63A is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the upper heat transfer tube 61A.
  • a plurality of groove portions 64A are formed on the third inner peripheral surface 63A.
  • the configurations of the grooves 64A are, for example, equal to each other.
  • the groove portions 64A are arranged so as to be spaced apart from each other in the circumferential direction of the upper heat transfer tube 61A.
  • Each groove portion 64A is spirally formed with respect to the central axis O of the upper heat transfer tube 61A.
  • the width of each groove 64A in the circumferential direction is formed so as to become narrower toward the outer circumference of the upper heat transfer tube 61A in the radial direction, for example.
  • each lower heat transfer tube 61B has a fourth inner peripheral surface 63B in which irregularities are formed.
  • the fourth inner peripheral surface 63B is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the lower heat transfer tube 61B.
  • a plurality of groove portions 64B are formed on the fourth inner peripheral surface 63B.
  • the configurations of the grooves 64B are, for example, equal to each other.
  • the groove portions 64B are arranged so as to be spaced apart from each other in the circumferential direction of the lower heat transfer tube 61B.
  • Each groove portion 64B is formed in a spiral shape with respect to the central axis O of the lower heat transfer tube 61B.
  • the width of each groove 64B in the circumferential direction is formed so as to become narrower toward the outer circumference of the lower heat transfer tube 61B in the radial direction, for example.
  • each upper heat transfer tube 61A is the same as the outer shape of each lower heat transfer tube 61B, for example.
  • the outer diameter of each upper heat transfer tube 61A is equal to, for example, the outer diameter of each lower heat transfer tube 61B.
  • the inner diameter of each upper heat transfer tube 61A is equal to, for example, the inner diameter of each lower heat transfer tube 61B.
  • Each area of the third inner peripheral surface 63A of the upper heat transfer tube 61A and the fourth inner peripheral surface 63B of the lower heat transfer tube 61B has an inner diameter equal to the inner diameter of the third inner peripheral surface 63A and the fourth inner peripheral surface 63B, but has a groove portion. Is larger than the area of the inner peripheral surface where is not formed. In other words, the area expansion ratio of the third inner peripheral surface 63A of the upper heat transfer tube 61A and the fourth inner peripheral surface 63B of the lower heat transfer tube 61B is 1 or more.
  • the area expansion ratios of the third inner peripheral surface 63A and the fourth inner peripheral surface 63B are such that the inner diameter is equal to the inner diameter of the third inner peripheral surface 63A and the fourth inner peripheral surface 63B, but the groove portion is not formed. It is a ratio based on the area of the surface.
  • the area expansion rate of the third inner peripheral surface 63A of the upper heat transfer tube 61A (third tube portion) is higher than the area expansion rate of the fourth inner peripheral surface 63B of the lower heat transfer tube 61B (fourth tube portion).
  • the number of grooves 64A is defined as the number of grooves 64A arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the upper heat transfer tube 61A.
  • the number of grooves 64B is defined as the number of grooves 64B arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the lower heat transfer tube 61B.
  • the number of rows of the groove portion 64A is larger than the number of rows of the groove portion 64B.
  • the width of each groove portion 64A in the circumferential direction is narrower than the width of each groove portion 64B in the circumferential direction.
  • the third inner peripheral surface 63A and the lower heat transfer tube of the upper heat transfer tube 61A depend on the size relationship between the groove portion 64A and the groove portion 64B.
  • the magnitude relationship of the area expansion ratio with the fourth inner peripheral surface 63B of 61B is realized.
  • each first groove 34A (details will be described later) is equal to, for example, the depth of each second groove 34B.
  • the lead angle of each first groove 34A (details will be described later) is, for example, equal to the lead angle of each second groove 34B.
  • the tube wall thickness of each upper heat transfer tube 31A (details will be described later) is, for example, equal to the tube wall thickness of each lower heat transfer tube 31B.
  • the control device 10 controls the drive frequency of the compressor 1 so that the temperature inside the indoor unit 120 acquired by a temperature sensor (not shown) becomes a desired temperature (for example, a temperature set by the user). 1 controls the amount of refrigerant discharged per unit time.
  • the control device 10 controls the opening degrees of the expansion valves 4A and 4B so that the degree of superheating or the degree of supercooling of the non-azeotropic mixed refrigerant is within a desired range.
  • the control device 10 controls the amount of air blown per unit time of the outdoor fan 11 and the indoor fan 12.
  • the control device 10 acquires the discharge temperature Td of the non-azeotropic mixed refrigerant discharged from the compressor 1 from the temperature sensor 13.
  • the control device 10 controls the four-way valve 2 to switch the circulation direction of the non-azeotropic mixed refrigerant.
  • the control device 10 controls the four-way valve 2 to switch between cooling operation (first state) and heating operation (second state).
  • the non-azeotropic mixed refrigerant includes the compressor 1, the four-way valve 2, the outdoor heat exchanger 3 expansion valve 4A, the receiver 5, the expansion valve 4B, the indoor heat exchanger 6, the four-way valve 2, and the receiver 5. It circulates in this order of description. A part of the non-azeotropic mixed refrigerant flowing into the receiver 5 from the expansion valve 4A is separated into a liquid phase non-azeotropic mixed refrigerant and a gas phase non-azeotropic mixed refrigerant, and is stored in the receiver 5.
  • the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 6 acts as an evaporator.
  • the non-azeotropic mixed refrigerant flows and condenses inside the outdoor heat exchanger 3 in the order of the upper inflow / outflow section 3A, the plurality of upper heat transfer tubes 31A, the plurality of lower heat transfer tubes 31B, and the lower inflow / outflow section 3B.
  • a gas-phase non-azeotropic mixed refrigerant mainly flows through the upper inflow / outflow portion 3A and the plurality of upper heat transfer tubes 31A.
  • a liquid-phase non-azeotropic mixed refrigerant mainly flows through the plurality of lower heat transfer tubes 31B and the lower inflow / outflow portion 3B.
  • the non-azeotropic mixed refrigerant flows and evaporates inside the indoor heat exchanger 6 in the order of the lower inflow / outflow section 6B, the plurality of lower heat transfer tubes 61B, the plurality of upper heat transfer tubes 61A, and the upper inflow / outflow section 6A. ..
  • a gas-liquid two-phase non-azeotropic mixed refrigerant mainly flows through the lower inflow / outflow portion 3B and the plurality of lower heat transfer tubes 31B.
  • a vapor-phase non-azeotropic mixed refrigerant mainly flows through the plurality of upper heat transfer tubes 31A and the upper inflow / outflow portion 6A.
  • the non-azeotropic mixed refrigerant includes the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4B, the receiver 5, the expansion valve 4A, the indoor heat exchanger 6, the four-way valve 2, and the receiver 5. , Circulate in this order of description.
  • a part of the non-azeotropic mixed refrigerant flowing into the receiver 5 from the expansion valve 4B is separated into a liquid phase non-azeotropic mixed refrigerant and a gas phase non-azeotropic mixed refrigerant, and is stored in the receiver 5.
  • the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 6 acts as an evaporator.
  • the non-azeotropic mixed refrigerant flows and condenses inside the indoor heat exchanger 6 in the order of the upper inflow / outflow section 6A, the plurality of upper heat transfer tubes 61A, the plurality of lower heat transfer tubes 61B, and the lower inflow / outflow section 6B.
  • a gas-phase non-azeotropic mixed refrigerant mainly flows through the upper inflow / outflow portion 6A and the plurality of upper heat transfer tubes 61A.
  • a liquid-phase non-azeotropic mixed refrigerant mainly flows through the plurality of lower heat transfer tubes 61B and the lower inflow / outflow portion 6B.
  • the non-azeotropic mixed refrigerant flows and evaporates inside the outdoor heat exchanger 3 in the order of the lower inflow / outflow section 3B, the plurality of lower heat transfer tubes 31B, the plurality of upper heat transfer tubes 31A, and the upper inflow / outflow section 3A. ..
  • a gas-liquid two-phase non-azeotropic mixed refrigerant mainly flows through the lower inflow / outflow portion 3B and the plurality of lower heat transfer tubes 31B.
  • a gas-phase non-azeotropic mixed refrigerant mainly flows through the plurality of upper heat transfer tubes 31A and the upper inflow / outflow portion 3A.
  • Table 1 shows the densities of R32, CF3I, HFO1123, and alkylbenzene oils as an example of incompatible oils.
  • 16 to 18 are schematic views showing a state in which the mixed refrigerants of R32, CF3I, HFO1123, and the incompatible oil flow in a circular tube extending in the horizontal direction and having a smooth inner peripheral surface. ..
  • FIG. 16 is a schematic view showing a state of the mixed refrigerant having a liquid phase and a temperature of 10 ° C.
  • FIG. 17 is a schematic view showing a state of the mixed refrigerant having a liquid phase and a temperature of 60 ° C.
  • FIGS. 16 to 18 is a schematic view showing the state of the mixed refrigerant in the gas phase. As shown in Table 1 and FIGS. 16 to 18, the magnitude relationship of the densities of R32, CF3I, and HFO1123 varies depending on whether they are in the liquid phase state or the gas phase state.
  • each refrigerant When each refrigerant is in a liquid phase state, the magnitude relationship of each density when the temperature of each refrigerant is 10 ° C. is equal to the magnitude relationship of each density when the temperature of each refrigerant is 60 ° C.
  • the density of CF3I When each refrigerant is in a liquid phase state, the density of CF3I is higher than the density of R32 and HFO1123, and the densities of R32 and HFO1123 are equal, regardless of the temperature of each refrigerant.
  • each refrigerant When each refrigerant is in a liquid phase state, the magnitude relationship between the densities of each refrigerant and the incompatible oil changes depending on whether the temperature is 10 ° C or 60 ° C. ..
  • the density of each refrigerant When each of the refrigerants is in a liquid phase state and the temperature of each refrigerant and the incompatible oil is 10 ° C., the density of each refrigerant is higher than the density of the incompatible oil.
  • the densities of R32 and HFO1123 are lower than the density of the incompatible oil, but the density of CF3I. Is higher than the density of incompatible oils.
  • each refrigerant When each refrigerant is in the gas phase state, the magnitude relationship of each density when the temperature of each refrigerant is 10 ° C. is equal to the magnitude relationship of each density when the temperature of each refrigerant is 60 ° C.
  • the density of CF3I When each refrigerant is in the gas phase, the density of CF3I is lower than the density of R32 and HFO1123, and the density of HFO1123 is higher than the density of R32, regardless of the temperature of each refrigerant.
  • the non-azeotropic mixed refrigerant is difficult to be agitated and CF3I is difficult to mix with HFO1123.
  • the contribution of CF3I to the action of suppressing the disproportionation reaction of HFO1123 is lower than the contribution of R32 to the action.
  • the refrigeration cycle device 100 since the upper heat transfer tube 31A and the lower heat transfer tube 31B of the outdoor heat exchanger 3 each have a first groove portion 34A and a second groove portion 34B, refrigeration as the above comparative example is performed.
  • the non-azeotropic mixed refrigerant is more likely to be agitated than the cycle device.
  • the area expansion rate of the first inner peripheral surface 33A of the upper heat transfer tube 31A is higher than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B, so that the non-azeotropic mixed refrigerant is used. It is easier to stir in the upper heat transfer tube 31A than in the lower heat transfer tube 31B.
  • a non-azeotropic mixed refrigerant in a gas phase state in which R32 is likely to be distributed between CF3I and HFO1123 flows through the upper heat transfer tube 31A. Since the non-azeotropic mixed refrigerant flowing through the upper heat transfer tube 31A is easily agitated as described above, CF3I, HFO1123, and R32 distributed between the two are easily agitated, and CF3I is easily mixed with HFO1123.
  • CF3I is more likely to be mixed with R32 and HFO1123 than in the refrigeration cycle apparatus as the comparative example, so that the disproportionation reaction of HFO1123 is less likely to occur, and the performance deterioration is suppressed.
  • each of the upper heat transfer tube 61A and the lower heat transfer tube 61B of the indoor heat exchanger 6 has a groove portion 64A and a groove portion 64B, as compared with the refrigeration cycle device as the above comparative example, Non-azeotropic mixed refrigerant is easily agitated.
  • the area expansion rate of the inner peripheral surface of the upper heat transfer tube 61A is higher than the area expansion rate of the inner peripheral surface of the lower heat transfer tube 61B, so that the non-azeotropic mixed refrigerant is higher than the lower heat transfer tube 61B. It is easily agitated in the upper heat transfer tube 61A.
  • the non-azeotropic mixed refrigerant in the gas phase in which R32 is likely to be distributed between CF3I and HFO1123 flows through the upper heat transfer tube 61A, so that R32 is agitated.
  • CF3I can be easily mixed with HFO1123.
  • CF3I is more likely to be mixed with R32 and HFO1123 than in the refrigeration cycle apparatus as the comparative example, so that the disproportionation reaction of HFO1123 is less likely to occur, and the performance deterioration is suppressed.
  • the refrigeration cycle apparatus 100 when the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B is equal to the area expansion rate of the first inner peripheral surface 33A of the upper heat transfer tube 31A, the lower heat transfer tube 61B Compared with the case where the area expansion ratio of the fourth inner peripheral surface 63B is equal to the area expansion ratio of the third inner peripheral surface 63A of the upper heat transfer tube 61A, the outdoor heat exchanger 3 and the indoor heat exchanger 6 as a whole The pressure loss of the non-co-boiling mixed refrigerant is reduced. Therefore, in the refrigeration cycle apparatus 100, the performance deterioration is suppressed more effectively.
  • the area expansion rate of the inner peripheral surface of the upper heat transfer tube 31A increases the area expansion of the inner peripheral surface of the lower heat transfer tube 31B only because the number of the first groove portions 34A is larger than the number of the second groove portions 34B. It is larger than the rate, but it is not limited to this.
  • the magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 31A and the lower heat transfer tube 31B is the magnitude relationship of at least one of the number, depth, and lead angle of the first groove portion 34A and the second groove portion 34B. It may be realized by.
  • FIGS. 5 and 6 the magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 31A and the lower heat transfer tube 31B is realized by the magnitude relationship of the depths of the first groove portion 34A and the second groove portion 34B.
  • a first modification of the refrigeration cycle apparatus 100 is shown.
  • the depth H1 of the first groove portion 34A includes the virtual line L1 extending the first inner peripheral surface 33A and the inner surface of the first groove portion 34A at the center of the first groove portion 34A in the circumferential direction. Defined as the distance between. The depth H1 of each first groove 34A is equal to each other.
  • the depth H2 of the second groove portion 34B includes the virtual line L2 extending the second inner peripheral surface 33B and the inner surface of the second groove portion 34B at the center of the second groove portion 34B in the circumferential direction. Defined as the distance between. The depth H2 of each second groove 34B is equal to each other.
  • the depth H1 of the first groove portion 34A is deeper than the depth H2 of the second groove portion 34B.
  • the first inner peripheral surface 33A of the upper heat transfer tube 31A The area expansion rate of the lower heat transfer tube 31B is larger than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B.
  • only one first groove portion 34A may be formed in the upper heat transfer tube 31A, and only one second groove portion 34B may be formed in the lower heat transfer tube 31B.
  • the lead angle ⁇ 1 of the first groove portion 34A is such that the extending direction of the first groove portion 34A is relative to the central axis O of the upper heat transfer tube 31A in the cross section along the central axis of the upper heat transfer tube 31A. It is defined as the angle formed by.
  • the lead angles ⁇ 1 of the first groove portions 34A are equal to each other.
  • the lead angle ⁇ 2 of the second groove portion 34B is such that the extending direction of the second groove portion 34B is relative to the central axis O of the lower heat transfer tube 31B in the cross section along the central axis of the lower heat transfer tube 31B. It is defined as the angle formed by.
  • the lead angles ⁇ 2 of the second groove portions 34B are equal to each other.
  • each first groove portion 34A is larger than the lead angle ⁇ 2 of each second groove portion 34B.
  • the first inner peripheral surface 33A of the upper heat transfer tube 31A The area expansion rate is larger than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B.
  • only one first groove portion 34A may be formed in the upper heat transfer tube 31A, and only one second groove portion 34B may be formed in the lower heat transfer tube 31B.
  • two of the first embodiment, the first modification, and the second modification may be combined, or the first, first modification, and second modification of the first embodiment and the second modification may be combined. All of the examples may be combined.
  • the number of first groove portions 34A is larger than the number of second groove portions 34B
  • the lead angle ⁇ 1 of each first groove portion 34A is larger than the lead angle ⁇ 2 of each second groove portion 34B
  • the lead of each first groove portion 34A is larger than the lead angle ⁇ 2 of each second groove portion 34B.
  • the magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 61A and the lower heat transfer tube 61B is at least the number, depth, and lead angle of the groove portions 64A and the groove portions 64B. It may be realized by any of the magnitude relations.
  • each of the upper heat transfer tube 31A, the lower heat transfer tube 31B, the upper heat transfer tube 61A, and the lower heat transfer tube 61B is configured as a circular tube, but the present invention is not limited to this.
  • each of the upper heat transfer tube 31A, the lower heat transfer tube 31B, the upper heat transfer tube 61A, and the lower heat transfer tube 61B may be configured as a flat tube.
  • the outer shape of the upper heat transfer tube 31A is the same as the outer shape of the lower heat transfer tube 31B.
  • the tube wall thickness W of the upper heat transfer tube 31A is equal to, for example, the tube wall thickness W of the lower heat transfer tube 31B.
  • the upper heat transfer tube 31A and the lower heat transfer tube 31B are formed with at least one of at least one wall portion for partitioning the internal space into a plurality of minute spaces and at least one unevenness facing the internal space.
  • the area expansion ratios of the upper heat transfer tube 31A and the lower heat transfer tube 31B are the same as those of the upper heat transfer tube 31A and the lower heat transfer tube 31B in the length and the tube wall thickness in the direction B, but the wall portion and the unevenness are formed. It is defined as a ratio based on the area of the inner peripheral surface that is not used.
  • a plurality of wall portions 38A, 38B, 68A, 68B are formed in the upper heat transfer tube 31A and the lower heat transfer tube 31B.
  • the number of wall portions 38A, 68A formed in the upper heat transfer tube 31A is, for example, the number of wall portions 38B, 68B formed in the lower heat transfer tube 31B (in other words, the number of minute spaces).
  • the upper heat transfer tube 31A and the lower heat transfer tube 31B face, for example, a plurality of wall portions 38A, 38B, 68A, 68B and each minute space partitioned by each wall portion.
  • a plurality of irregularities 39A, 39B, 69A, 69B are formed.
  • Each wall portion and each unevenness extends along the direction in which the upper heat transfer tube 31A extends.
  • the number of irregularities 39A and 69A formed on the upper heat transfer tube 31A is larger than the number of irregularities 39B and 69B formed on the lower heat transfer tube 31B, for example.
  • the number of wall portions 38A and 68A is the same as the number of wall portions 38B and 68B formed on the lower heat transfer tube 31B, for example. There may be, but there may be more.
  • each of the outdoor heat exchanger 3 and the indoor heat exchanger 6 of the refrigeration cycle device 100 is configured as a fin tube heat exchanger, but the present invention is not limited thereto. As shown in FIG. 9, each of the outdoor heat exchanger 3 and the indoor heat exchanger 6 may be configured as a corrugated heat exchanger.
  • the outdoor heat exchanger 3 configured as a corrugated heat exchanger has an upper header 35A (first header) connected to an upper inflow / outflow portion 3A (first inflow / outflow portion) and a lower inflow / outflow portion.
  • a plurality of heat transfer tubes 36 connected between the lower header 35B (second header) connected to 3B (second inflow / outflow portion), the upper header 35A and the lower header 35B, and extending along the vertical direction A, and a plurality of heat transfer tubes 36.
  • the upper header 35A is arranged above the lower header 35B.
  • the upper header 35A is connected to each upper end of the plurality of heat transfer tubes 36.
  • the lower header 35B is connected to each lower end of the plurality of heat transfer tubes 36.
  • the upper header 35A and the lower header 35B distribute the non-azeotropic mixed refrigerant to the plurality of heat transfer tubes 36, or join the non-azeotropic mixed refrigerants that have flowed through the plurality of heat transfer tubes 36.
  • the upper header 35A and the lower header 35B extend along a direction B intersecting the vertical direction A.
  • the area expansion ratio of the inner peripheral surface of the upper header 35A is higher than the area expansion ratio of the inner peripheral surface of the lower header 35B.
  • the outdoor heat exchanger 6 configured as a corrugated heat exchanger has an upper header 65A (third header) connected to an upper inflow / outflow portion 6A (third inflow / outflow portion) and a lower inflow / outflow portion.
  • a plurality of heat transfer tubes 66 connected between the lower header 65B (fourth header) connected to 6B (second inflow / outflow portion), the upper header 65A and the lower header 65B, and extending along the vertical direction A, and a plurality of heat transfer tubes 66.
  • the upper header 65A is arranged above the lower header 65B.
  • the upper header 65A is connected to each upper end of the plurality of heat transfer tubes 66.
  • the lower header 65B is connected to each lower end of the plurality of heat transfer tubes 66.
  • the upper header 65A and the lower header 65B distribute the non-azeotropic mixed refrigerant to the plurality of heat transfer tubes 66, or join the non-azeotropic mixed refrigerants flowing through the plurality of heat transfer tubes 66.
  • the upper header 65A and the lower header 65B extend along a direction B intersecting the vertical direction A.
  • the upper header 65A has an inner peripheral surface (first inner peripheral surface) on which irregularities are formed.
  • the lower header 65B has an inner peripheral surface (second inner peripheral surface) on which irregularities are formed.
  • the area expansion ratio of the inner peripheral surface (first inner peripheral surface) of the upper header 65A is higher than the area expansion ratio of the inner peripheral surface (second inner peripheral surface) of the lower header 65B.
  • the upper header 35A and the upper header 65A have the same configurations as the upper heat transfer tube 31A and the upper heat transfer tube 61A as the first tube portion shown in each of FIGS. 3, 5, and 7.
  • the lower header 35B and the lower header 65B have the same configurations as the lower heat transfer tube 31B and the lower heat transfer tube 61B as the second tube portion shown in FIGS. 4, 6, and 8, respectively.
  • one of the outdoor heat exchanger 3 and the indoor heat exchanger 6 is the fin tube heat exchanger shown in FIG. 2, and the other of the outdoor heat exchanger 3 and the indoor heat exchanger 6 is FIG. It may be a corrugated heat exchanger shown in.
  • the outdoor heat exchanger 3 or the indoor heat exchanger 6 is used as a conventional heat exchanger. It may be configured.
  • the area expansion ratio of the first inner peripheral surface of the upper heat transfer tube 31A of the outdoor heat exchanger 3 is higher than the area expansion ratio of the second inner peripheral surface of the lower heat transfer tube 31B, and the upper heat transfer tube 61A of the indoor heat exchanger 6
  • the area expansion ratio of the third inner peripheral surface of the lower heat transfer tube 61B may be equal to the area expansion ratio of the fourth inner peripheral surface of the lower heat transfer tube 61B.
  • the area expansion ratio of the inner peripheral surface of the upper heat transfer tube 61A of the indoor heat exchanger 6 is higher than the area expansion ratio of the inner peripheral surface of the lower heat transfer tube 61B, and the inside of the upper heat transfer tube 31A of the outdoor heat exchanger 3
  • the area expansion rate of the peripheral surface may be equal to the area expansion rate of the inner peripheral surface of the lower heat transfer tube 31B.
  • the refrigeration cycle device 100 includes a first refrigerant circuit 130 in which the first refrigerant circulates, and a second refrigerant circuit 140 in which the second refrigerant circulates.
  • the first refrigerant circuit 130 corresponds to an "outdoor cycle", a "heat source side cycle” or a "primary circuit”.
  • the second refrigerant circuit 140 corresponds to an "indoor side cycle", a "utilization side cycle” or a "secondary circuit”.
  • the first refrigerant circuit 130 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 (third heat exchanger), an expansion device 4, and a first flow path H1 of an intermediate heat exchanger 7.
  • the first refrigerant is a non-azeotropic mixed refrigerant whose GWP is reduced by mixing R32, CF3I, and HFO1123.
  • the first refrigerant has a configuration equivalent to that of the non-azeotropic mixed refrigerant according to the first embodiment.
  • the second refrigerant is a refrigerant having a lower combustion lower limit concentration as compared with the first refrigerant, and is, for example, a CF3I single refrigerant or a mixed refrigerant such as R466A containing CF3I.
  • the compressor 1 compresses and discharges the first refrigerant.
  • the compressor 1 has the same configuration as the compressor 1 in the first embodiment.
  • the four-way valve 2 switches the flow path of the first refrigerant.
  • the four-way valve 2 has a first port connected to the discharge port of the compressor 1, a second port connected to the suction port of the compressor 1, and a third port connected to the outdoor heat exchanger 3. And a fourth port connected to the lower inflow / outflow portion 7B of the intermediate heat exchanger 7.
  • the four-way valve 2 switches the flow path of the first refrigerant discharged from the compressor 1.
  • the four-way valve 2 forms a flow path from the compressor 1 to the outdoor heat exchanger 3.
  • the four-way valve 2 forms a flow path from the compressor 1 to the intermediate heat exchanger 7.
  • the expansion device 4 decompresses and expands the refrigerant passing through the inside to obtain a low-temperature and low-pressure refrigerant.
  • an electronic expansion valve can be used as the expansion device 4, for example, an electronic expansion valve can be used.
  • the second refrigerant circuit 140 includes the second flow path H2 of the intermediate heat exchanger 7, the pump 150, and the indoor temperature control units 160, 170, 180.
  • the indoor temperature control units 160, 170, 180 are connected in parallel to each other.
  • the pump 150 is configured so that the direction of rotation can be switched in the forward and reverse directions.
  • the pump 150 guides the second refrigerant in the liquid state from the pump 150 to the indoor heat exchangers 161, 171, 181 during the cooling operation, and the second refrigerant in the liquid state from the pump 150 to the second intermediate heat exchanger 7 during the heating operation.
  • the circulation direction of the second refrigerant is switched so as to lead to the flow path H2.
  • the indoor temperature control unit 160 includes an indoor heat exchanger 161 (fourth heat exchanger), a fan for sending indoor air to the indoor heat exchanger 161 (not shown), and a flow rate for adjusting the flow rate of the second refrigerant. Includes a regulating valve 162.
  • the indoor heat exchanger 161 exchanges heat between the second refrigerant and the indoor air.
  • the indoor temperature control unit 170 includes an indoor heat exchanger 171, a fan (not shown) for sending indoor air to the indoor heat exchanger 171 and a flow rate adjusting valve 172 for adjusting the flow rate of the second refrigerant.
  • the indoor heat exchanger 171 exchanges heat between the second refrigerant and the indoor air.
  • the indoor temperature control unit 180 includes an indoor heat exchanger 181 and a fan (not shown) for sending indoor air to the indoor heat exchanger 181 and a flow rate adjusting valve 182 for adjusting the flow rate of the second refrigerant.
  • the indoor heat exchanger 181 exchanges heat between the second refrigerant and the indoor air.
  • an air conditioner having three indoor temperature control units is given as an example, but the number of indoor temperature control units is not particularly limited.
  • FIG. 15 is a schematic side view of the intermediate heat exchanger 7.
  • the structure shown by the broken line shows the main internal structure related to the first flow path H1 in the intermediate heat exchanger 7.
  • the intermediate heat exchanger 7 is configured as a plate heat exchanger.
  • the intermediate heat exchanger 7 includes a plurality of heat transfer plates 71 laminated in the direction B intersecting the vertical direction A.
  • a plurality of first flow paths H1 and a plurality of second flow paths H2 are alternately arranged in the direction B between the plurality of heat transfer plates 71.
  • Each of the plurality of heat transfer plates 71 is formed with an upper through hole connected in the direction B and arranged relatively upward, and a lower through hole connected in the direction B and arranged below the upper through hole.
  • the main internal structure of the intermediate heat exchanger 7 related to the second flow path H2 is the same as the main internal structure of the intermediate heat exchanger 7 related to the first flow path H1.
  • intermediate heat exchanger 7 heat exchange is performed between the first refrigerant flowing through each of the first flow paths H1 and the second refrigerant flowing through each of the second flow paths H2.
  • the intermediate heat exchanger 7 is connected to the first refrigerant circuit 130 and the second refrigerant circuit 140 so that, for example, the first flow path H1 and the second flow path H2 are countercurrent.
  • the intermediate heat exchanger 7 has an upper inflow / outflow section 7A (fifth inflow / outflow section) and a lower inflow / outflow section 7B (sixth inflow / outflow section) in which the first refrigerant flows in and out of the first flow path H1, and a second flow path H2. 2
  • the upper inflow / outflow section 7C and the lower inflow / outflow section 7D through which the refrigerant flows in and out are further included.
  • the upper inflow / outflow portion 7A is arranged above the lower inflow / outflow portion 7B.
  • the upper inflow / outflow portion 7A is connected to the upper distribution region 72A in the direction B.
  • the lower inflow / outflow portion 7B is connected to the lower distribution region 72B in the direction B.
  • the upper inflow / outflow portion 7C is arranged above the lower inflow / outflow portion 7D.
  • the upper inflow / outflow section 7A is connected to the expansion device 4.
  • the lower inflow / outflow portion 7B is connected to the fourth port of the four-way valve 2.
  • the upper inflow / outflow portion 7C is connected to the pump 150.
  • the lower inflow / outflow section 7D is connected to the indoor heat exchangers 161, 171, 181.
  • the second refrigerant circulating in the second refrigerant circuit 140 is cooled by the first refrigerant circulating in the first refrigerant circuit 130 during the cooling operation.
  • the first refrigerant circulating in the first refrigerant circuit 130 heats the second refrigerant circulating in the second refrigerant circuit 140.
  • the relatively low temperature gas-liquid two-phase first refrigerant evaporates while flowing from the upper side to the lower side in the first flow path H1 of the intermediate heat exchanger 7, and changes to the gas phase.
  • the first refrigerant in the gas phase condenses while flowing from the lower side to the upper side in the first flow path H1 of the intermediate heat exchanger 7, and changes into a liquid phase.
  • the control device 10 controls the overall operation of the refrigeration cycle device 101.
  • the control device 10 is shown to be attached to the compressor 1, the expansion device 4, the pump 150, the flow control valves 152, 172, 182, and the heat exchangers 3, 161, 171 and 181 according to the outputs of the pressure sensor, the temperature sensor and the like. Do not control the rotation speed of the fan.
  • the control device 10 switches the circulation direction of the first refrigerant in the first refrigerant circuit 130 by the four-way valve 2 in the refrigerant operation and the heating operation. In conjunction with this, the control device 10 exchanges heat with the first refrigerant in a countercurrent flow in the intermediate heat exchanger 7, and causes the second refrigerant circuit to be overcooled at the suction port of the pump 150. The rotation direction of the pump 150 of 140 is switched.
  • ⁇ Effect> In a refrigeration cycle apparatus as a comparative example including an intermediate heat exchanger in which a relatively low temperature gas-liquid two-phase first refrigerant flows from the bottom to the top during cooling operation, the first refrigerant flowing in the lower distribution region is used.
  • R32, CF3I, HFO1123, and incompatible oils are more likely to be distributed as shown in FIG. 16, and CF3I is more likely to be distributed below R32 and HFO1123.
  • the flowability (fluidity) of CF3I is hindered by the plate portion located below the lower through hole in each heat transfer plate.
  • R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. 18, and CF3I is likely to be distributed above R32 and HFO1123.
  • the fluidity of CF3I is impeded by the plate portion located above the upper through hole in each heat transfer plate.
  • R32, CF3I, HFO1123, and the incompatible oil are easily distributed as shown in FIG. 18 in the first refrigerant flowing through the upper distribution region, and CF3I Is more likely to be distributed above R32 and HFO1123.
  • the fluidity of CF3I is impeded by the plate portion located above the upper through hole in each heat transfer plate.
  • R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. 17, and CF3I is likely to be distributed below R32 and HFO1123.
  • the flowability (fluidity) of CF3I is hindered by the plate portion located below the lower through hole in each heat transfer plate.
  • the first refrigerant of the gas-liquid two-phase at a relatively low temperature flows through the intermediate heat exchanger 7, the upper inflow / outflow portion 7A, the upper distribution region 72A, and each first flow path. It flows in the order of H1, the lower distribution area 72B, and the lower inflow / outflow portion 7B. Therefore, in the first refrigerant flowing through the upper distribution region 72A, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed below R32 and HFO1123 in the upper distribution region 72A.
  • R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed above R32 and HFO1123 in the lower distribution region 72B.
  • the first refrigerant in the gas phase having a relatively high temperature enters the intermediate heat exchanger 7, the lower inflow / outflow portion 7B, the lower distribution region 72B, each first flow path H1, and the upper distribution. It flows in the order of region 72A and upper inflow / outflow portion 7A. Therefore, in the first refrigerant flowing through the lower distribution region 72B, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed above R32 and HFO1123 in the lower distribution region 72B.
  • R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed below R32 and HFO1123 in the upper distribution region 72A.
  • the fluidity of CF3I in the first refrigerant in the intermediate heat exchanger 7 is higher than that in the refrigeration cycle device according to the above comparative example. Since the fluidity of CF3I in the intermediate heat exchanger 7 is high, CF3I is easily mixed with HFO1123, so that the disproportionation reaction of HFO1123 is unlikely to occur, and the deterioration of performance is suppressed.
  • the fluidity of CF3I in the upper distribution region 72A arranged on the upstream side of each first flow path H1 is higher during the cooling operation than in the refrigeration cycle device according to the above comparative example.
  • the fluidity of CF3I in the lower distribution region 72B arranged on the upstream side of each first flow path H1 is high. Therefore, in the refrigeration cycle device 101, there is less variation in the flow rate of CF3I flowing through each of the first flow paths H1 as compared with the refrigeration cycle device according to the above comparative example.
  • the refrigeration cycle devices 100 and 101 are not limited to RAC.
  • the uses and capacities of the refrigeration cycle devices 100, 101 can be set arbitrarily.

Abstract

This refrigeration cycle device (100) comprises: a compressor; a four-way valve; a first heat exchanger (3) including a first outflow/inflow section (3A) and a second outflow/inflow section (3B) into and out of which a non-azeotropic mixed refrigerant flows, and first pipe sections (31A) and second pipe sections (32A) that are serially connected to each other between the first outflow/inflow section and the second outflow/inflow section and through which the non-azeotropic mixed refrigerant flows; a decompression device; and a second heat exchanger (6). The non-azeotropic mixed refrigerant includes a refrigerant which has the property of causing a disproportionation reaction and a refrigerant which does not have the property of causing a disproportionation reaction. The four-way valve switches between a first state in which the non-azeotropic mixed refrigerant flows through the compressor, the first heat exchanger, the decompression device, and the second heat exchanger in this order and a second state in which the non-azeotropic mixed refrigerant flows through these components in the opposite direction from when in the first state. When in the first state, the non-azeotropic mixed refrigerant flows through the first outflow/inflow sections, the first pipe sections, the second pipe sections, and the second outflow/inflow section in this order within the first heat exchanger. When in the second state, the non-azeotropic mixed refrigerant flows through the second outflow/inflow section, the second pipe sections, the first pipe sections, and the first outflow/inflow section in this order within the first heat exchanger. The area expansion rate of first inner circumferential surfaces in the first pipe sections is higher than the area expansion rate of second inner circumferential surfaces in the second pipe sections.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 HFO1123は、地球温暖化係数(GWP:Global Warming Potential)が低い冷媒(低GWP冷媒)として知られている。一方で、HFO1123は不均化反応(自己分解反応)が生じる特性を有し、かつ燃性を有している。 HFO1123 is known as a refrigerant having a low global warming potential (GWP: Global Warming Potential) (low GWP refrigerant). On the other hand, HFO1123 has a property of causing a disproportionation reaction (autolysis reaction) and is flammable.
 国際公開第2020/003494号(特許文献1)には、R32、CF3I、およびHFO1123を含む非共沸混合冷媒が封止された冷凍サイクル装置が開示されている。特許文献1の冷凍サイクル装置では、冷凍サイクル装置に封止された状態の非共沸混合冷媒におけるR32、CF3I、およびHFO1123の各重量比率が特定されている。これにより、HFO1123がCF3IおよびR32と混ざり合って、HFO1123の不均化反応が抑制されるとともに、非共沸混合冷媒の温度勾配が抑制され、性能低下が抑制されている。 International Publication No. 2020/003494 (Patent Document 1) discloses a refrigeration cycle apparatus in which a non-azeotropic mixed refrigerant containing R32, CF3I, and HFO1123 is sealed. In the refrigeration cycle apparatus of Patent Document 1, each weight ratio of R32, CF3I, and HFO1123 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus is specified. As a result, HFO1123 is mixed with CF3I and R32, the disproportionation reaction of HFO1123 is suppressed, the temperature gradient of the non-azeotropic mixed refrigerant is suppressed, and the performance deterioration is suppressed.
国際公開第2020/003494号International Publication No. 2020/003494
 R32、CF3I、およびHFO1123の各々の密度の大小関係は、各々が液相状態にあるときと気相状態にあるときとで、変化する。各々が液相状態にあるとき、CF3Iの密度は、R32およびHFO1123の各密度より高い。一方、各々が気相状態にあるとき、CF3Iの密度は、R32およびHFO1123の各密度より低い。そのため、R32、CF3I、およびHFO1123を含む非共沸混合冷媒において、CF3Iは、R32およびHFO1123と混ざりにくい。CF3IがR32およびHFO1123と十分に混ざっていない状態では、CF3IはHFO1123の不均化反応を抑制する作用に寄与しにくく、当該作用へのCF3Iの寄与度は当該作用へのR32の寄与度よりも低くなる。 The magnitude relationship of the densities of R32, CF3I, and HFO1123 changes depending on whether they are in the liquid phase state or the gas phase state. When each is in a liquid phase state, the density of CF3I is higher than that of R32 and HFO1123, respectively. On the other hand, when each is in the gas phase, the density of CF3I is lower than the density of R32 and HFO1123, respectively. Therefore, in a non-azeotropic mixed refrigerant containing R32, CF3I, and HFO1123, CF3I is less likely to mix with R32 and HFO1123. When CF3I is not sufficiently mixed with R32 and HFO1123, CF3I is less likely to contribute to the action of suppressing the disproportionation reaction of HFO1123, and the contribution of CF3I to the action is greater than the contribution of R32 to the action. It gets lower.
 本開示の主たる目的は、不均化反応が生じる特性を有する冷媒と不均化反応が生じる特性を有さない冷媒とが混ざりやすく、不均化反応が生じる特性を有する冷媒の不均化反応が生じにくく、性能低下が抑制された冷凍サイクル装置を提供することにある。 A main object of the present disclosure is the disproportionation reaction of a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having a characteristic of causing a disproportionation reaction because the refrigerant having a characteristic of causing a disproportionation reaction is easily mixed. It is an object of the present invention to provide a refrigerating cycle apparatus in which the occurrence of the above is less likely to occur and the deterioration of the performance is suppressed.
 本開示に係る冷凍サイクル装置は、非共沸混合冷媒が使用される冷凍サイクル装置である。冷凍サイクル装置は、圧縮機と、流路切り替え部と、非共沸混合冷媒が流出入する第1流出入部および第2流出入部と、第1流出入部と第2流出入部との間に互いに直列に接続されており非共沸混合冷媒が流れる第1管部および第2管部とを含む第1熱交換器と、減圧装置と、第2熱交換器とを備える。非共沸混合冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含む。流路切り替え部は、非共沸混合冷媒が圧縮機、第1熱交換器、減圧装置、および第2熱交換器をこの記載順に流れる第1状態と、非共沸混合冷媒が第1状態とは逆向きに流れる第2状態とを切り替える。第1状態では、非共沸混合冷媒が第1熱交換器内を第1流出入部、第1管部、第2管部、および第2流出入部の順に流れる。第2状態では、非共沸混合冷媒が第1熱交換器内を第2流出入部、第2管部、第1管部、および第1流出入部の順に流れる。第1管部は、凹凸が形成された第1内周面を有している。第2管部は、凹凸が形成された第2内周面を有している。第1管部の第1内周面の面積拡大率は、第2管部の第2内周面の面積拡大率よりも高い。 The refrigeration cycle device according to the present disclosure is a refrigeration cycle device in which a non-azeotropic mixed refrigerant is used. The refrigeration cycle device is in series with the compressor, the flow path switching section, the first inflow / outflow section and the second inflow / outflow section where the non-azeotropic mixed refrigerant flows in / out, and the first inflow / outflow section and the second inflow / outflow section. It is provided with a first heat exchanger including a first pipe portion and a second pipe portion connected to the above and through which a non-azeotropic mixed refrigerant flows, a decompression device, and a second heat exchanger. The non-azeotropic mixed refrigerant includes a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having no characteristic of causing a disproportionation reaction. The flow path switching section has a first state in which the non-azeotropic mixed refrigerant flows through the compressor, the first heat exchanger, the decompression device, and the second heat exchanger in the order described, and a first state in which the non-azeotropic mixed refrigerant flows. Switches from the second state, which flows in the opposite direction. In the first state, the non-azeotropic mixed refrigerant flows in the first heat exchanger in the order of the first inflow / outflow portion, the first pipe portion, the second pipe portion, and the second inflow / outflow portion. In the second state, the non-azeotropic mixed refrigerant flows in the first heat exchanger in the order of the second inflow / outflow portion, the second pipe portion, the first pipe portion, and the first inflow / outflow portion. The first pipe portion has a first inner peripheral surface on which irregularities are formed. The second pipe portion has a second inner peripheral surface on which irregularities are formed. The area expansion ratio of the first inner peripheral surface of the first pipe portion is higher than the area expansion ratio of the second inner peripheral surface of the second pipe portion.
 本開示に係る冷凍サイクル装置は、第1冷媒が循環する第1冷媒回路と、第2冷媒が循環する第2冷媒回路と、第1冷媒と第2冷媒との間で熱交換が行われる中間熱交換器とを備える。第1冷媒回路は、第1冷媒を圧縮する圧縮機と、流路切り替え部と、第1冷媒と空気との間で熱交換が行われる第3熱交換器と、第1冷媒を減圧する減圧装置と、中間熱交換器において、第1冷媒が通過する第1流路とを含む。第2冷媒回路は、第2冷媒を昇圧し搬送するポンプと、中間熱交換器において、第2冷媒が通過する第2流路と、第2冷媒と空気との間で熱交換が行われる第4熱交換器とを含む。第1冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含む非共沸混合冷媒である。中間熱交換器は、第1冷媒が第1流路に流出入する第5流出入部および第6流出入部を含む。第5流出入部は、第6流出入部よりも上方に配置されている。流路切り替え部は、非共沸混合冷媒が圧縮機、第3熱交換器、減圧装置、および中間熱交換器をこの記載順に流れる第1状態と、非共沸混合冷媒が第1状態とは逆向きに流れる第2状態とを切り替える。第1状態では、非共沸混合冷媒が中間熱交換器内を第5流出入部から第6流出入部に向かって流れる。第2状態では、非共沸混合冷媒が中間熱交換器内を第6流出入部から第5流出入部に向かって流れる。 The refrigeration cycle apparatus according to the present disclosure is in the middle of heat exchange between the first refrigerant circuit in which the first refrigerant circulates, the second refrigerant circuit in which the second refrigerant circulates, and the first refrigerant and the second refrigerant. Equipped with a heat exchanger. The first refrigerant circuit includes a compressor that compresses the first refrigerant, a flow path switching section, a third heat exchanger that exchanges heat between the first refrigerant and air, and a depressurization that reduces the pressure of the first refrigerant. It includes an apparatus and a first flow path through which a first refrigerant passes in an intermediate heat exchanger. In the second refrigerant circuit, heat exchange is performed between the pump that boosts and conveys the second refrigerant, the second flow path through which the second refrigerant passes in the intermediate heat exchanger, and the second refrigerant and air. Includes 4 heat exchangers. The first refrigerant is a non-azeotropic mixed refrigerant containing a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having a characteristic of not causing a disproportionation reaction. The intermediate heat exchanger includes a fifth inflow / outflow section and a sixth inflow / outflow section in which the first refrigerant flows in and out of the first flow path. The fifth inflow / outflow section is arranged above the sixth inflow / outflow section. In the flow path switching section, the first state in which the non-azeotropic mixed refrigerant flows through the compressor, the third heat exchanger, the decompression device, and the intermediate heat exchanger in the order described in this description, and the first state in which the non-azeotropic mixed refrigerant flows are Switch to the second state that flows in the opposite direction. In the first state, the non-azeotropic mixed refrigerant flows in the intermediate heat exchanger from the fifth inflow / outflow portion toward the sixth inflow / outflow portion. In the second state, the non-azeotropic mixed refrigerant flows in the intermediate heat exchanger from the sixth inflow / outflow portion toward the fifth inflow / outflow portion.
 本開示によれば、不均化反応が生じる特性を有する冷媒と不均化反応が生じる特性を有さない冷媒とが混ざりやすく、不均化反応が生じる特性を有する冷媒の不均化反応が生じにくく、性能低下が抑制された冷凍サイクル装置を提供できる。 According to the present disclosure, a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having a characteristic of causing a disproportionation reaction are likely to be mixed, and the disproportionation reaction of a refrigerant having a characteristic of causing a disproportionation reaction is carried out. It is possible to provide a refrigeration cycle apparatus that is less likely to occur and whose performance deterioration is suppressed.
実施の形態1に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の熱交換器を示す図である。It is a figure which shows the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 図2に示される熱交換器の上部伝熱管の断面図である。It is sectional drawing of the upper heat transfer tube of the heat exchanger shown in FIG. 図2に示される熱交換器の下部伝熱管の断面図である。It is sectional drawing of the lower heat transfer tube of the heat exchanger shown in FIG. 実施の形態1に係る冷凍サイクル装置の第1変形例の上部伝熱管の部分断面図である。It is a partial cross-sectional view of the upper heat transfer tube of the 1st modification of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第1変形例の下部伝熱管の部分断面図である。It is a partial cross-sectional view of the lower heat transfer tube of the 1st modification of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第2変形例の上部伝熱管の部分断面図である。It is a partial cross-sectional view of the upper heat transfer tube of the 2nd modification of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第2変形例の下部伝熱管の部分断面図である。It is a partial cross-sectional view of the lower heat transfer tube of the 2nd modification of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の熱交換器の変形例を示す図である。It is a figure which shows the modification of the heat exchanger of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第3変形例の上部伝熱管の部分断面図である。It is a partial cross-sectional view of the upper heat transfer tube of the 3rd modification of the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第3変形例の下部伝熱管の部分断面図である。It is a partial cross-sectional view of the lower heat transfer tube of the 3rd modification of the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第4変形例の上部伝熱管の部分断面図である。It is a partial cross-sectional view of the upper heat transfer tube of the 4th modification of the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の第4変形例の下部伝熱管の部分断面図である。It is a partial cross-sectional view of the lower heat transfer tube of the 4th modification of the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 2. 実施の形態2に係る冷凍サイクル装置の熱交換器を示す図である。It is a figure which shows the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 2. R32、CF3I、HFO1123、および非相溶油を含み液温が10℃である液相の混合冷媒が、平滑な内周面を有しかつ水平方向に延在する円管内を流れるときの、各成分の分布を示す模式図である。When a mixed refrigerant of a liquid phase containing R32, CF3I, HFO1123, and an incompatible oil and having a liquid temperature of 10 ° C. flows in a circular tube having a smooth inner peripheral surface and extending in the horizontal direction, respectively. It is a schematic diagram which shows the distribution of a component. R32、CF3I、HFO1123、および非相溶油を含み液温が60℃である液相の混合冷媒が、平滑な内周面を有しかつ水平方向に延在する円管内を流れるときの、各成分の分布を示す模式図である。When a mixed refrigerant of a liquid phase containing R32, CF3I, HFO1123, and an incompatible oil and having a liquid temperature of 60 ° C. flows in a circular tube having a smooth inner peripheral surface and extending in the horizontal direction, respectively. It is a schematic diagram which shows the distribution of a component. R32、CF3I、HFO1123、および非相溶油を含む気相の混合冷媒が平滑な内周面を有しかつ水平方向に延在する円管内を流れるときの、各成分の分布のしやすさを示す模式図である。Ease of distribution of each component when the mixed refrigerant of the gas phase containing R32, CF3I, HFO1123, and incompatible oil flows through a circular tube having a smooth inner peripheral surface and extending in the horizontal direction. It is a schematic diagram which shows.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the drawings below, the same or corresponding parts are given the same reference number and the explanation is not repeated.
 実施の形態1.
 実施の形態1に係る冷凍サイクル装置100は、例えばRAC(Room Air Conditioner)として構成されている。図1に示されるように、冷凍サイクル装置100は、室外機110と、室内機120とを備える。室外機110は、圧縮機1と、四方弁2(流路切替部)と、室外熱交換器3(第1熱交換器)と、膨張弁4A(減圧装置)と、膨張弁4B(減圧装置)と、レシーバ5(冷媒容器)と、制御装置10と、室外ファン11と、温度センサ13とを含む。室内機120は、室内熱交換器6(第2熱交換器)と、室内ファン12とを含む。
Embodiment 1.
The refrigeration cycle device 100 according to the first embodiment is configured as, for example, a RAC (Room Air Conditioner). As shown in FIG. 1, the refrigeration cycle device 100 includes an outdoor unit 110 and an indoor unit 120. The outdoor unit 110 includes a compressor 1, a four-way valve 2 (flow path switching unit), an outdoor heat exchanger 3 (first heat exchanger), an expansion valve 4A (pressure reducing device), and an expansion valve 4B (pressure reducing device). ), The receiver 5 (refrigerant container), the control device 10, the outdoor fan 11, and the temperature sensor 13. The indoor unit 120 includes an indoor heat exchanger 6 (second heat exchanger) and an indoor fan 12.
 冷凍サイクル装置100には、R32(ジフルオロメタン(CH22))、CF3I(トリフルオロヨードメタン(CF3I))、およびHFO1123(トリフルオロエチレン(CF=CHF))を含む非共沸混合冷媒が使用される。 Refrigeration cycle device 100 includes non-azeotropic boiling including R32 (difluoromethane (CH 2 F 2 )), CF 3I (trifluoroiodomethane (CF 3 I)), and HFO 1123 (trifluoroethylene (CF 2 = CHF)). A mixed refrigerant is used.
 冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるR32の重量比率は、例えば43wt%以下である。冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるCF3Iの重量比率は、例えばR32の重量比率以下である。冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるHFO1123の重量比率は、例えば14wt%以上である。不均化反応を抑制する観点から、HFO1123の重量比率が60wt%以上であるときには、CF3Iの重量比率は、好ましくは2wt%以上であり、より好ましくは5wt%程度である。つまり、HFO1123の重量比率が60wt%以上であるときには、CF3Iの重量比率は、2wt%以上5wt%以下である。HFO1123の重量比率が60wt%以上であるときには、CF3Iの重量比率が2wt%よりも多いとHFO1123の不均化反応が抑制され、CF3Iの重量比率が5wt%程度であればHFO1123の不均化反応が十分に抑制される。例えば、HFO1123,R32,およびCF3I間の重量比率は、HFO1123:R32:CF3I=65wt%:30wt%:5wt%である。冷凍サイクル装置100の出荷台数の増加に伴い、非共沸混合冷媒の使用量が増加した場合でも、冷媒に関する規制(例えばモントリオール議定書、あるいはF-gas規制)が満たされるように、R32の重量比率を30wt%以下として、GWPをより低減することが望ましい。R32のGWPは675、CF3IのGWPは約0.4、HFO1123のGWPは約0.3である。上記非共沸混合冷媒のGWPは、R32のGWPよりも低い。 The weight ratio of R32 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is, for example, 43 wt% or less. The weight ratio of CF3I in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is, for example, equal to or less than the weight ratio of R32. The weight ratio of HFO1123 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is, for example, 14 wt% or more. From the viewpoint of suppressing the disproportionation reaction, when the weight ratio of HFO1123 is 60 wt% or more, the weight ratio of CF3I is preferably 2 wt% or more, more preferably about 5 wt%. That is, when the weight ratio of HFO1123 is 60 wt% or more, the weight ratio of CF3I is 2 wt% or more and 5 wt% or less. When the weight ratio of HFO1123 is 60 wt% or more, the disproportionation reaction of HFO1123 is suppressed when the weight ratio of CF3I is more than 2 wt%, and the disproportionation reaction of HFO1123 when the weight ratio of CF3I is about 5 wt%. Is sufficiently suppressed. For example, the weight ratio between HFO1123, R32, and CF3I is HFO1123: R32: CF3I = 65 wt%: 30 wt%: 5 wt%. Weight ratio of R32 so that the regulations on refrigerants (for example, Montreal Protocol or F-gas regulations) are satisfied even if the amount of non-azeotropic mixed refrigerant used increases with the increase in the number of refrigeration cycle devices shipped. It is desirable to further reduce GWP by setting 30 wt% or less. The GWP of R32 is 675, the GWP of CF3I is about 0.4, and the GWP of HFO1123 is about 0.3. The GWP of the non-azeotropic mixed refrigerant is lower than the GWP of R32.
 R32、CF3I、およびHFOR1123の標準沸点は、それぞれ-52℃、-22℃、および-59℃である。このようにそれぞれの沸点が違うことによって、気相の非共沸混合冷媒において後述する濃度分布が生じる。 The standard boiling points of R32, CF3I, and HFOR1123 are −52 ° C., −22 ° C., and −59 ° C., respectively. Due to the different boiling points of each, the concentration distribution described later occurs in the non-azeotropic mixed refrigerant of the gas phase.
 なお、冷凍サイクル装置100に封止された状態の非共沸混合冷媒におけるHFO1123、R32およびCF3Iの各重量比率の合計は、好ましくは99.5wt%以上であり、より好ましくは99.7wt%以上であり、最も好ましくは99.9wt%以上である。 The total weight ratio of HFO1123, R32 and CF3I in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus 100 is preferably 99.5 wt% or more, more preferably 99.7 wt% or more. Most preferably, it is 99.9 wt% or more.
 なお、GWPの低減が妨げられない範囲で、非共沸混合冷媒は、R32、CF3I、およびHFO1123以外の冷媒(例えば、R1234yf(2,3,3,3-テトラフルオロプロペン(CF3CF=CH2))、R1234ze(E)(トランス-1,3,3,3-テトラフルオロプロペン(trans-CF3CH=CHF)、R290(プロパン(C38))、CO2(二酸化炭素)、またはR1132(トランス-1,2ジフルオロエチレン)を含んでもよい。R1132は不均化反応(自己分解反応)が生じる特性を有している。 As long as the reduction of GWP is not hindered, the non-cobo-boiling mixed refrigerant is a refrigerant other than R32, CF3I, and HFO1123 (for example, R1234yf (for example, 2,3,3,3-tetrafluoropropene (CF 3 CF = CH)). 2 )), R1234ze (E) (trans-1,3,3,3-tetrafluoropropene (trans-CF 3 CH = CHF), R290 (propane (C 3 H 8 )), CO 2 (carbon dioxide), Alternatively, it may contain R1132 (trans-1,2, difluoroethylene). R1132 has a property of causing an disproportionate reaction (self-decomposition reaction).
 圧縮機1には、潤滑油として、非共沸混合冷媒に相溶しない非相溶油が使用される。非相溶油は、例えばアルキルベンゼン油、鉱油、ナフタレン系鉱油およびポリアルファオレフィン油からなる群から選択される少なくとも1つを含む。 For the compressor 1, an incompatible oil that is incompatible with the non-azeotropic mixed refrigerant is used as the lubricating oil. The incompatible oil comprises at least one selected from the group consisting of, for example, alkylbenzene oils, mineral oils, naphthalene mineral oils and polyalphaolefin oils.
 四方弁2は、圧縮機1の吐出口と接続されている第1ポートと、レシーバ5を介して圧縮機1の吸入口と接続されている第2ポートと、室外熱交換器3の上部流出入部3Aに接続されている第3ポートと、室内熱交換器6の上部流出入部6Aに接続されている第4ポートとを有している。四方弁2は、室外熱交換器3が凝縮器として作用し室内熱交換器6が蒸発器として作用する第1状態と、室内熱交換器6が凝縮器として作用し室外熱交換器3が蒸発器として作用する第2状態とを切り替えるように形成されている。第1状態は冷房運転時に実現され、第2状態は暖房運転時に実現される。 The four-way valve 2 has a first port connected to the discharge port of the compressor 1, a second port connected to the suction port of the compressor 1 via the receiver 5, and an upper outflow of the outdoor heat exchanger 3. It has a third port connected to the inlet 3A and a fourth port connected to the upper inflow / outflow section 6A of the indoor heat exchanger 6. The four-way valve 2 has a first state in which the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 6 acts as an evaporator, and the indoor heat exchanger 6 acts as a condenser and the outdoor heat exchanger 3 evaporates. It is formed to switch between the second state, which acts as a vessel. The first state is realized during the cooling operation and the second state is realized during the heating operation.
 図2に示されるように、室外熱交換器3は、例えばフィンチューブ熱交換器である。室外熱交換器3は、非共沸混合冷媒が流出入する上部流出入部3A(第1流出入部)および下部流出入部3B(第2流出入部)と、上部流出入部3Aと下部流出入部3Bとの間に互いに直列に接続された複数の上部伝熱管31A(第1管部)および複数の下部伝熱管31B(第2管部)と、各上部伝熱管31Aおよび各下部伝熱管31Bと接続された複数のフィン32とを有している。 As shown in FIG. 2, the outdoor heat exchanger 3 is, for example, a fin tube heat exchanger. The outdoor heat exchanger 3 includes an upper inflow / outflow section 3A (first inflow / outflow section) and a lower inflow / outflow section 3B (second inflow / outflow section), and an upper inflow / outflow section 3A and a lower inflow / outflow section 3B. A plurality of upper heat transfer tubes 31A (first tube section) and a plurality of lower heat transfer tubes 31B (second tube section) connected in series with each other were connected to each upper heat transfer tube 31A and each lower heat transfer tube 31B. It has a plurality of fins 32.
 上部流出入部3Aは、下部流出入部3Bよりも上方に配置されている。上部流出入部3Aは、延長配管を介して四方弁2の第3ポートと接続されている。下部流出入部3Bは、膨張弁4Aと接続されている。複数の上部伝熱管31Aの各々は、複数の下部伝熱管31Bの各々よりも上方に配置されている。複数の上部伝熱管31Aの各々は、例えば上下方向Aにおいて室外熱交換器3の中心よりも上方に配置されている。複数の下部伝熱管31Bの各々は、例えば上下方向Aにおいて室外熱交換器3の中心よりも下方に配置されている。各上部伝熱管31Aおよび各下部伝熱管31Bは、上下方向Aと交差する方向Bに沿って延びている。 The upper inflow / outflow section 3A is arranged above the lower inflow / outflow section 3B. The upper inflow / outflow portion 3A is connected to the third port of the four-way valve 2 via an extension pipe. The lower inflow / outflow portion 3B is connected to the expansion valve 4A. Each of the plurality of upper heat transfer tubes 31A is arranged above each of the plurality of lower heat transfer tubes 31B. Each of the plurality of upper heat transfer tubes 31A is arranged above the center of the outdoor heat exchanger 3 in, for example, the vertical direction A. Each of the plurality of lower heat transfer tubes 31B is arranged below the center of the outdoor heat exchanger 3 in, for example, the vertical direction A. Each upper heat transfer tube 31A and each lower heat transfer tube 31B extends along a direction B intersecting the vertical direction A.
 複数の上部伝熱管31Aのうち最も下方に配置された上部伝熱管31Aの方向Bの一端は、例えば、複数の下部伝熱管31Bのうち最も上方に配置された下部伝熱管31Bの方向Bの一端と屈曲部31Cを介して直列に接続されている。複数の上部伝熱管31Aのうち最も下方に配置された上部伝熱管31A以外の各上部伝熱管31Aの方向Bの一端は、屈曲部31Cを介して互いに直列に接続されている。複数の下部伝熱管31Bのうち最も上方に配置された下部伝熱管31B以外の各下部伝熱管31Bの方向Bの一端は、屈曲部31Cを介して互いに直列に接続されている。室外熱交換器3において、上部流出入部3A、複数の上部伝熱管31A、複数の下部伝熱管31B、および下部流出入部3Bは、この記載順に直列に接続されている。 One end of the direction B of the upper heat transfer tube 31A arranged at the lowermost position among the plurality of upper heat transfer tubes 31A is, for example, one end of the direction B of the lower heat transfer tube 31B arranged at the uppermost position among the plurality of lower heat transfer tubes 31B. Is connected in series via a bent portion 31C. One end of each of the upper heat transfer tubes 31A other than the lowermost upper heat transfer tube 31A arranged in the direction B of the plurality of upper heat transfer tubes 31A is connected in series with each other via the bent portion 31C. One end of the direction B of each of the lower heat transfer tubes 31B other than the lower heat transfer tube 31B arranged at the uppermost of the plurality of lower heat transfer tubes 31B is connected in series with each other via the bent portion 31C. In the outdoor heat exchanger 3, the upper inflow / outflow section 3A, the plurality of upper heat transfer tubes 31A, the plurality of lower heat transfer tubes 31B, and the lower inflow / outflow section 3B are connected in series in the order described.
 複数のフィン32は、方向Bにおいて互いに間隔を隔てて並んで配置されている。複数の上部伝熱管31Aおよび複数の下部伝熱管31Bの各々は各フィン32を貫通している。 The plurality of fins 32 are arranged side by side at intervals in the direction B. Each of the plurality of upper heat transfer tubes 31A and the plurality of lower heat transfer tubes 31B penetrates each fin 32.
 図2に示されるように、室内熱交換器6は、例えばフィンチューブ熱交換器である。室内熱交換器6は、非共沸混合冷媒が流出入する上部流出入部6A(第3流出入部)および下部流出入部6B(第4流出入部)と、上部流出入部6Aと下部流出入部6Bとの間に互いに直列に接続された複数の上部伝熱管61A(第3管部)および複数の下部伝熱管61B(第4管部)と、各上部伝熱管61Aおよび各下部伝熱管61Bと接続された複数のフィン62とを有している。 As shown in FIG. 2, the indoor heat exchanger 6 is, for example, a fin tube heat exchanger. The indoor heat exchanger 6 includes an upper inflow / outflow section 6A (third inflow / outflow section) and a lower inflow / outflow section 6B (fourth inflow / outflow section) through which the non-azeotropic mixed refrigerant flows in and out, and an upper inflow / outflow section 6A and a lower inflow / outflow section 6B. A plurality of upper heat transfer tubes 61A (third tube section) and a plurality of lower heat transfer tubes 61B (fourth tube section) connected in series with each other were connected to each upper heat transfer tube 61A and each lower heat transfer tube 61B. It has a plurality of fins 62.
 上部流出入部6Aは、下部流出入部6Bよりも上方に配置されている。上部流出入部6Aは、延長配管を介して四方弁2の第4ポートと接続されている。下部流出入部6Bは、延長配管を介して膨張弁4Bと接続されている。複数の上部伝熱管61Aの各々は、複数の下部伝熱管61Bの各々よりも上方に配置されている。複数の上部伝熱管61Aの各々は、例えば上下方向Aにおいて室内熱交換器6の中心よりも上方に配置されている。複数の下部伝熱管61Bの各々は、例えば上下方向Aにおいて室内熱交換器6の中心よりも下方に配置されている。各上部伝熱管61Aおよび各下部伝熱管61Bは、上下方向Aと交差する方向Bに沿って延びている。 The upper inflow / outflow section 6A is arranged above the lower inflow / outflow section 6B. The upper inflow / outflow portion 6A is connected to the fourth port of the four-way valve 2 via an extension pipe. The lower inflow / outflow portion 6B is connected to the expansion valve 4B via an extension pipe. Each of the plurality of upper heat transfer tubes 61A is arranged above each of the plurality of lower heat transfer tubes 61B. Each of the plurality of upper heat transfer tubes 61A is arranged above the center of the indoor heat exchanger 6 in, for example, the vertical direction A. Each of the plurality of lower heat transfer tubes 61B is arranged below the center of the indoor heat exchanger 6 in, for example, the vertical direction A. Each upper heat transfer tube 61A and each lower heat transfer tube 61B extend along a direction B intersecting the vertical direction A.
 複数の上部伝熱管61Aのうち最も下方に配置された上部伝熱管61Aの方向Bの一端は、例えば、複数の下部伝熱管61のうち最も上方に配置された下部伝熱管61Bの方向Bの一端と屈曲部61Cを介して直列に接続されている。複数の上部伝熱管61Aのうち最も下方に配置された上部伝熱管61A以外の各上部伝熱管61Aの方向Bの一端は、屈曲部61Cを介して互いに直列に接続されている。複数の下部伝熱管61Bのうち最も上方に配置された下部伝熱管61B以外の各下部伝熱管61Bの方向Bの一端は、屈曲部61Cを介して互いに直列に接続されている。室内熱交換器6において、上部流出入部6A、複数の上部伝熱管61A、複数の下部伝熱管61B、および下部流出入部6Bは、この記載順に直列に接続されている。 One end of the direction B of the upper heat transfer tube 61A arranged at the lowermost position among the plurality of upper heat transfer tubes 61A is, for example, one end of the direction B of the lower heat transfer tube 61B arranged at the uppermost position among the plurality of lower heat transfer tubes 61. Is connected in series via a bent portion 61C. One end of each of the upper heat transfer tubes 61A other than the lowermost upper heat transfer tube 61A arranged in the direction B of the plurality of upper heat transfer tubes 61A is connected in series with each other via a bent portion 61C. One end of each of the lower heat transfer tubes 61B other than the lower heat transfer tube 61B arranged at the uppermost of the plurality of lower heat transfer tubes 61B in the direction B is connected in series with each other via the bent portion 61C. In the indoor heat exchanger 6, the upper inflow / outflow section 6A, the plurality of upper heat transfer tubes 61A, the plurality of lower heat transfer tubes 61B, and the lower inflow / outflow section 6B are connected in series in the order described.
 複数のフィン62は、方向Bにおいて互いに間隔を隔てて並んで配置されている。複数の上部伝熱管61Aおよび複数の下部伝熱管61Bの各々は各フィン62を貫通している。 The plurality of fins 62 are arranged side by side at intervals in the direction B. Each of the plurality of upper heat transfer tubes 61A and the plurality of lower heat transfer tubes 61B penetrates each fin 62.
 図3および図4に示されるように、各上部伝熱管31Aおよび各下部伝熱管31Bは、円管として構成されている。 As shown in FIGS. 3 and 4, each upper heat transfer tube 31A and each lower heat transfer tube 31B are configured as circular tubes.
 図3に示されるように、各上部伝熱管31Aは、凹凸が形成された第1内周面33Aを有している。第1内周面33Aは、上部伝熱管31Aの内部を流れる非共沸混合冷媒と接する面である。第1内周面33Aには、複数の第1溝部34Aが形成されている。各第1溝部34Aの構成は、例えば互いに等しい。各第1溝部34Aは、上部伝熱管31Aの周方向において互いに間隔を隔てて配置されている。各第1溝部34Aは、上部伝熱管31Aの中心軸Oに対して螺旋状に延在している。各第1溝部34Aの上記周方向の幅は、例えば上部伝熱管31Aの径方向の外周に向かうにつれて狭くなるように形成されている。 As shown in FIG. 3, each upper heat transfer tube 31A has a first inner peripheral surface 33A in which irregularities are formed. The first inner peripheral surface 33A is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the upper heat transfer tube 31A. A plurality of first groove portions 34A are formed on the first inner peripheral surface 33A. The configurations of the first groove portions 34A are, for example, equal to each other. The first groove portions 34A are arranged so as to be spaced apart from each other in the circumferential direction of the upper heat transfer tube 31A. Each first groove portion 34A extends spirally with respect to the central axis O of the upper heat transfer tube 31A. The width of each of the first groove portions 34A in the circumferential direction is formed so as to become narrower toward the outer circumference in the radial direction of the upper heat transfer tube 31A, for example.
 図4に示されるように、各下部伝熱管31Bは、凹凸が形成された第2内周面33Bを有している。第2内周面33Bは、下部伝熱管31Bの内部を流れる非共沸混合冷媒と接する面である。第2内周面33Bには、複数の第2溝部34Bが形成されている。各第2溝部34Bの構成は、例えば互いに等しい。各第2溝部34Bは、下部伝熱管31Bの周方向において互いに間隔を隔てて配置されている。各第2溝部34Bは、下部伝熱管31Bの中心軸Oに対して螺旋状に延在している。各第2溝部34Bの上記周方向の幅は、例えば下部伝熱管31Bの径方向の外周に向かうにつれて狭くなるように形成されている。 As shown in FIG. 4, each lower heat transfer tube 31B has a second inner peripheral surface 33B on which irregularities are formed. The second inner peripheral surface 33B is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the lower heat transfer tube 31B. A plurality of second groove portions 34B are formed on the second inner peripheral surface 33B. The configurations of the second groove portions 34B are, for example, equal to each other. The second groove portions 34B are arranged so as to be spaced apart from each other in the circumferential direction of the lower heat transfer tube 31B. Each second groove 34B extends spirally with respect to the central axis O of the lower heat transfer tube 31B. The width of each of the second groove portions 34B in the circumferential direction is formed so as to become narrower toward the outer circumference of the lower heat transfer tube 31B in the radial direction, for example.
 各上部伝熱管31Aの外形は、例えば各下部伝熱管31Bの外形と同一である。各上部伝熱管31Aの外径は、例えば各下部伝熱管31Bの外径に等しい。各上部伝熱管31Aの内径は、例えば各下部伝熱管31Bの内径に等しい。 The outer shape of each upper heat transfer tube 31A is the same as the outer shape of each lower heat transfer tube 31B, for example. The outer diameter of each upper heat transfer tube 31A is equal to, for example, the outer diameter of each lower heat transfer tube 31B. The inner diameter of each upper heat transfer tube 31A is equal to, for example, the inner diameter of each lower heat transfer tube 31B.
 上部伝熱管31Aの第1内周面33Aおよび下部伝熱管31Bの第2内周面33Bの各面積は、上記内径が第1内周面33Aおよび第2内周面33Bの内径と等しいが溝部が形成されていない内周面の面積よりも大きい。言い換えると、上部伝熱管31Aの第1内周面33Aおよび下部伝熱管31Bの第2内周面33Bの各面積拡大率は、1以上である。第1内周面33Aおよび第2内周面33Bの各面積拡大率とは、方向Bの長さが互いに等しく、かつ上記内径が第1内周面33Aおよび第2内周面33Bの内径と等しいが溝部が形成されていない内周面の面積を基準とした、比率である。 The area of each of the first inner peripheral surface 33A of the upper heat transfer tube 31A and the second inner peripheral surface 33B of the lower heat transfer tube 31B is equal to the inner diameter of the first inner peripheral surface 33A and the second inner peripheral surface 33B, but the groove portion. Is larger than the area of the inner peripheral surface where is not formed. In other words, the area expansion ratio of the first inner peripheral surface 33A of the upper heat transfer tube 31A and the second inner peripheral surface 33B of the lower heat transfer tube 31B is 1 or more. The area expansion ratios of the first inner peripheral surface 33A and the second inner peripheral surface 33B are the same as the inner diameters of the first inner peripheral surface 33A and the second inner peripheral surface 33B when the lengths in the directions B are equal to each other and the inner diameter is the same as the inner diameter of the first inner peripheral surface 33A and the second inner peripheral surface 33B. The ratio is based on the area of the inner peripheral surface that is equal but has no groove.
 上部伝熱管31A(第1管部)の第1内周面33Aの面積拡大率は、下部伝熱管31B(第2管部)の第2内周面33Bの面積拡大率よりも高い。図3に示されるように、第1溝部34Aの条数は、上部伝熱管31Aの上記軸方向に垂直な断面において上記周方向に並んで配置されている第1溝部34Aの数と定義される。図4に示されるように、第2溝部34Bの条数は、下部伝熱管31Bの上記軸方向に垂直な断面において上記周方向に並んで配置されている第2溝部34Bの数と定義される。第1溝部34Aの条数は、第2溝部34Bの条数よりも多い。言い換えると、上記周方向における各第1溝部34Aの幅は、上記周方向における各第2溝部34Bの幅よりも狭い。図3および図4に示される上部伝熱管31Aおよび下部伝熱管31Bでは、第1溝部34Aおよび第2溝部34Bとの間の条数の上記大小関係により、上部伝熱管31Aの第1内周面33Aおよび下部伝熱管31Bの第2内周面33Bとの間の面積拡大率の上記大小関係が実現されている。 The area expansion rate of the first inner peripheral surface 33A of the upper heat transfer tube 31A (first tube portion) is higher than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B (second tube portion). As shown in FIG. 3, the number of rows of the first groove portion 34A is defined as the number of the first groove portions 34A arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the upper heat transfer tube 31A. .. As shown in FIG. 4, the number of rows of the second groove portion 34B is defined as the number of the second groove portions 34B arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the lower heat transfer tube 31B. .. The number of rows of the first groove portion 34A is larger than the number of rows of the second groove portion 34B. In other words, the width of each first groove portion 34A in the circumferential direction is narrower than the width of each second groove portion 34B in the circumferential direction. In the upper heat transfer tube 31A and the lower heat transfer tube 31B shown in FIGS. 3 and 4, the first inner peripheral surface of the upper heat transfer tube 31A is due to the above-mentioned magnitude relationship of the number of rows between the first groove portion 34A and the second groove portion 34B. The above magnitude relationship of the area expansion ratio between 33A and the second inner peripheral surface 33B of the lower heat transfer tube 31B is realized.
 この場合、各第1溝部34Aの深さ(詳細は後述する)は、例えば各第2溝部34Bの深さと等しい。各第1溝部34Aのリード角(詳細は後述する)は、例えば各第2溝部34Bのリード角と等しい。各上部伝熱管31Aの管肉厚(詳細は後述する)は、例えば各下部伝熱管31Bの管肉厚と等しい。 In this case, the depth of each first groove 34A (details will be described later) is equal to, for example, the depth of each second groove 34B. The lead angle of each first groove 34A (details will be described later) is, for example, equal to the lead angle of each second groove 34B. The tube wall thickness of each upper heat transfer tube 31A (details will be described later) is, for example, equal to the tube wall thickness of each lower heat transfer tube 31B.
 図3および図4に示されるように、各上部伝熱管61Aおよび各下部伝熱管61Bは、円管として構成されている。 As shown in FIGS. 3 and 4, each upper heat transfer tube 61A and each lower heat transfer tube 61B are configured as circular tubes.
 図3に示されるように、各上部伝熱管61Aは、凹凸が形成された第3内周面63Aを有している。内周面63Aは、上部伝熱管61Aの内部を流れる非共沸混合冷媒と接する面である。第3内周面63Aには、複数の溝部64Aが形成されている。各溝部64Aの構成は、例えば互いに等しい。各溝部64Aは、上部伝熱管61Aの周方向において互いに間隔を隔てて配置されている。各溝部64Aは、上部伝熱管61Aの中心軸Oに対して螺旋状に形成されている。各溝部64Aの上記周方向の幅は、例えば上部伝熱管61Aの径方向の外周に向かうにつれて狭くなるように形成されている。 As shown in FIG. 3, each upper heat transfer tube 61A has a third inner peripheral surface 63A in which irregularities are formed. The inner peripheral surface 63A is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the upper heat transfer tube 61A. A plurality of groove portions 64A are formed on the third inner peripheral surface 63A. The configurations of the grooves 64A are, for example, equal to each other. The groove portions 64A are arranged so as to be spaced apart from each other in the circumferential direction of the upper heat transfer tube 61A. Each groove portion 64A is spirally formed with respect to the central axis O of the upper heat transfer tube 61A. The width of each groove 64A in the circumferential direction is formed so as to become narrower toward the outer circumference of the upper heat transfer tube 61A in the radial direction, for example.
 図4に示されるように、各下部伝熱管61Bは、凹凸が形成された第4内周面63Bを有している。第4内周面63Bは、下部伝熱管61Bの内部を流れる非共沸混合冷媒と接する面である。第4内周面63Bには、複数の溝部64Bが形成されている。各溝部64Bの構成は、例えば互いに等しい。各溝部64Bは、下部伝熱管61Bの周方向において互いに間隔を隔てて配置されている。各溝部64Bは、下部伝熱管61Bの中心軸Oに対して螺旋状に形成されている。各溝部64Bの上記周方向の幅は、例えば下部伝熱管61Bの径方向の外周に向かうにつれて狭くなるように形成されている。 As shown in FIG. 4, each lower heat transfer tube 61B has a fourth inner peripheral surface 63B in which irregularities are formed. The fourth inner peripheral surface 63B is a surface in contact with the non-azeotropic mixed refrigerant flowing inside the lower heat transfer tube 61B. A plurality of groove portions 64B are formed on the fourth inner peripheral surface 63B. The configurations of the grooves 64B are, for example, equal to each other. The groove portions 64B are arranged so as to be spaced apart from each other in the circumferential direction of the lower heat transfer tube 61B. Each groove portion 64B is formed in a spiral shape with respect to the central axis O of the lower heat transfer tube 61B. The width of each groove 64B in the circumferential direction is formed so as to become narrower toward the outer circumference of the lower heat transfer tube 61B in the radial direction, for example.
 各上部伝熱管61Aの外形は、例えば各下部伝熱管61Bの外形と同一である。各上部伝熱管61Aの外径は、例えば各下部伝熱管61Bの外径に等しい。各上部伝熱管61Aの内径は、例えば各下部伝熱管61Bの内径に等しい。 The outer shape of each upper heat transfer tube 61A is the same as the outer shape of each lower heat transfer tube 61B, for example. The outer diameter of each upper heat transfer tube 61A is equal to, for example, the outer diameter of each lower heat transfer tube 61B. The inner diameter of each upper heat transfer tube 61A is equal to, for example, the inner diameter of each lower heat transfer tube 61B.
 上部伝熱管61Aの第3内周面63Aおよび下部伝熱管61Bの第4内周面63Bの各面積は、上記内径が第3内周面63Aおよび第4内周面63Bの内径と等しいが溝部が形成されていない内周面の面積よりも大きい。言い換えると、上部伝熱管61Aの第3内周面63Aおよび下部伝熱管61Bの第4内周面63Bの各面積拡大率は、1以上である。第3内周面63Aおよび第4内周面63Bの各面積拡大率とは、上記内径が第3内周面63Aおよび第4内周面63Bの内径と等しいが溝部が形成されていない内周面の面積を基準とした、比率である。 Each area of the third inner peripheral surface 63A of the upper heat transfer tube 61A and the fourth inner peripheral surface 63B of the lower heat transfer tube 61B has an inner diameter equal to the inner diameter of the third inner peripheral surface 63A and the fourth inner peripheral surface 63B, but has a groove portion. Is larger than the area of the inner peripheral surface where is not formed. In other words, the area expansion ratio of the third inner peripheral surface 63A of the upper heat transfer tube 61A and the fourth inner peripheral surface 63B of the lower heat transfer tube 61B is 1 or more. The area expansion ratios of the third inner peripheral surface 63A and the fourth inner peripheral surface 63B are such that the inner diameter is equal to the inner diameter of the third inner peripheral surface 63A and the fourth inner peripheral surface 63B, but the groove portion is not formed. It is a ratio based on the area of the surface.
 上部伝熱管61A(第3管部)の第3内周面63Aの面積拡大率は、下部伝熱管61B(第4管部)の第4内周面63Bの面積拡大率よりも高い。図3に示されるように、溝部64Aの条数は、上部伝熱管61Aの上記軸方向に垂直な断面において上記周方向に並んで配置されている溝部64Aの数と定義される。図4に示されるように、溝部64Bの条数は、下部伝熱管61Bの上記軸方向に垂直な断面において上記周方向に並んで配置されている溝部64Bの数と定義される。溝部64Aの条数は、溝部64Bの条数よりも多い。言い換えると、上記周方向における各溝部64Aの幅は、上記周方向における各溝部64Bの幅よりも狭い。図3および図4に示される上部伝熱管61Aおよび下部伝熱管61Bでは、溝部64Aおよび溝部64Bとの間の条数の大小関係により、上部伝熱管61Aの第3内周面63Aおよび下部伝熱管61Bの第4内周面63Bとの間の面積拡大率の大小関係が実現されている。 The area expansion rate of the third inner peripheral surface 63A of the upper heat transfer tube 61A (third tube portion) is higher than the area expansion rate of the fourth inner peripheral surface 63B of the lower heat transfer tube 61B (fourth tube portion). As shown in FIG. 3, the number of grooves 64A is defined as the number of grooves 64A arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the upper heat transfer tube 61A. As shown in FIG. 4, the number of grooves 64B is defined as the number of grooves 64B arranged side by side in the circumferential direction in the cross section perpendicular to the axial direction of the lower heat transfer tube 61B. The number of rows of the groove portion 64A is larger than the number of rows of the groove portion 64B. In other words, the width of each groove portion 64A in the circumferential direction is narrower than the width of each groove portion 64B in the circumferential direction. In the upper heat transfer tube 61A and the lower heat transfer tube 61B shown in FIGS. 3 and 4, the third inner peripheral surface 63A and the lower heat transfer tube of the upper heat transfer tube 61A depend on the size relationship between the groove portion 64A and the groove portion 64B. The magnitude relationship of the area expansion ratio with the fourth inner peripheral surface 63B of 61B is realized.
 この場合、各第1溝部34Aの深さ(詳細は後述する)は、例えば各第2溝部34Bの深さと等しい。各第1溝部34Aのリード角(詳細は後述する)は、例えば各第2溝部34Bのリード角と等しい。各上部伝熱管31Aの管肉厚(詳細は後述する)は、例えば各下部伝熱管31Bの管肉厚と等しい。 In this case, the depth of each first groove 34A (details will be described later) is equal to, for example, the depth of each second groove 34B. The lead angle of each first groove 34A (details will be described later) is, for example, equal to the lead angle of each second groove 34B. The tube wall thickness of each upper heat transfer tube 31A (details will be described later) is, for example, equal to the tube wall thickness of each lower heat transfer tube 31B.
 制御装置10は、圧縮機1の駆動周波数を制御することにより、不図示の温度センサによって取得する室内機120内の温度が所望の温度(例えばユーザによって設定された温度)となるように圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置10は、非共沸混合冷媒の過熱度または過冷却度が所望の範囲の値となるように膨張弁4A,4Bの開度を制御する。制御装置10は、室外ファン11および室内ファン12の単位時間当たりの送風量を制御する。制御装置10は、温度センサ13から圧縮機1から吐出される非共沸混合冷媒の吐出温度Tdを取得する。制御装置10は、四方弁2を制御して、非共沸混合冷媒の循環方向を切り替える。 The control device 10 controls the drive frequency of the compressor 1 so that the temperature inside the indoor unit 120 acquired by a temperature sensor (not shown) becomes a desired temperature (for example, a temperature set by the user). 1 controls the amount of refrigerant discharged per unit time. The control device 10 controls the opening degrees of the expansion valves 4A and 4B so that the degree of superheating or the degree of supercooling of the non-azeotropic mixed refrigerant is within a desired range. The control device 10 controls the amount of air blown per unit time of the outdoor fan 11 and the indoor fan 12. The control device 10 acquires the discharge temperature Td of the non-azeotropic mixed refrigerant discharged from the compressor 1 from the temperature sensor 13. The control device 10 controls the four-way valve 2 to switch the circulation direction of the non-azeotropic mixed refrigerant.
 制御装置10は、四方弁2を制御して、冷房運転(第1状態)と暖房運転(第2状態)とを切り替える。 The control device 10 controls the four-way valve 2 to switch between cooling operation (first state) and heating operation (second state).
 冷房運転において、非共沸混合冷媒は、圧縮機1、四方弁2、室外熱交換器3膨張弁4A、レシーバ5、膨張弁4B、室内熱交換器6、四方弁2、およびレシーバ5を、この記載順に循環する。膨張弁4Aからレシーバ5に流入した非共沸混合冷媒の一部は、液相の非共沸混合冷媒と気相の非共沸混合冷媒とに分離し、レシーバ5に貯留される。冷房運転において、室外熱交換器3は凝縮器として作用し、室内熱交換器6は蒸発器として作用する。 In the cooling operation, the non-azeotropic mixed refrigerant includes the compressor 1, the four-way valve 2, the outdoor heat exchanger 3 expansion valve 4A, the receiver 5, the expansion valve 4B, the indoor heat exchanger 6, the four-way valve 2, and the receiver 5. It circulates in this order of description. A part of the non-azeotropic mixed refrigerant flowing into the receiver 5 from the expansion valve 4A is separated into a liquid phase non-azeotropic mixed refrigerant and a gas phase non-azeotropic mixed refrigerant, and is stored in the receiver 5. In the cooling operation, the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 6 acts as an evaporator.
 冷房運転において、非共沸混合冷媒は、室外熱交換器3の内部を、上部流出入部3A、複数の上部伝熱管31A、複数の下部伝熱管31B、および下部流出入部3Bの順に流れて凝縮する。上部流出入部3Aおよび複数の上部伝熱管31Aには、主に気相の非共沸混合冷媒が流れる。複数の下部伝熱管31Bおよび下部流出入部3Bには、主に液相の非共沸混合冷媒が流れる。 In the cooling operation, the non-azeotropic mixed refrigerant flows and condenses inside the outdoor heat exchanger 3 in the order of the upper inflow / outflow section 3A, the plurality of upper heat transfer tubes 31A, the plurality of lower heat transfer tubes 31B, and the lower inflow / outflow section 3B. .. A gas-phase non-azeotropic mixed refrigerant mainly flows through the upper inflow / outflow portion 3A and the plurality of upper heat transfer tubes 31A. A liquid-phase non-azeotropic mixed refrigerant mainly flows through the plurality of lower heat transfer tubes 31B and the lower inflow / outflow portion 3B.
 冷房運転において、非共沸混合冷媒は、室内熱交換器6の内部を、下部流出入部6B、複数の下部伝熱管61B、複数の上部伝熱管61A、および上部流出入部6Aの順に流れて蒸発する。下部流出入部3Bおよび複数の下部伝熱管31Bには、主に気液二相の非共沸混合冷媒が流れる。複数の上部伝熱管31Aおよび上部流出入部6Aには、主に気相の非共沸混合冷媒が流れる。 In the cooling operation, the non-azeotropic mixed refrigerant flows and evaporates inside the indoor heat exchanger 6 in the order of the lower inflow / outflow section 6B, the plurality of lower heat transfer tubes 61B, the plurality of upper heat transfer tubes 61A, and the upper inflow / outflow section 6A. .. A gas-liquid two-phase non-azeotropic mixed refrigerant mainly flows through the lower inflow / outflow portion 3B and the plurality of lower heat transfer tubes 31B. A vapor-phase non-azeotropic mixed refrigerant mainly flows through the plurality of upper heat transfer tubes 31A and the upper inflow / outflow portion 6A.
 暖房運転において、非共沸混合冷媒は、圧縮機1、四方弁2、室外熱交換器3、膨張弁4B、レシーバ5、膨張弁4A、室内熱交換器6、四方弁2、およびレシーバ5を、この記載順に循環する。膨張弁4Bからレシーバ5に流入した非共沸混合冷媒の一部は、液相の非共沸混合冷媒と気相の非共沸混合冷媒とに分離し、レシーバ5に貯留される。暖房運転において、室外熱交換器3は凝縮器として作用し、室内熱交換器6は蒸発器として作用する。 In the heating operation, the non-azeotropic mixed refrigerant includes the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4B, the receiver 5, the expansion valve 4A, the indoor heat exchanger 6, the four-way valve 2, and the receiver 5. , Circulate in this order of description. A part of the non-azeotropic mixed refrigerant flowing into the receiver 5 from the expansion valve 4B is separated into a liquid phase non-azeotropic mixed refrigerant and a gas phase non-azeotropic mixed refrigerant, and is stored in the receiver 5. In the heating operation, the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 6 acts as an evaporator.
 暖房運転において、非共沸混合冷媒は、室内熱交換器6の内部を、上部流出入部6A、複数の上部伝熱管61A、複数の下部伝熱管61B、および下部流出入部6Bの順に流れて凝縮する。上部流出入部6Aおよび複数の上部伝熱管61Aには、主に気相の非共沸混合冷媒が流れる。複数の下部伝熱管61Bおよび下部流出入部6Bには、主に液相の非共沸混合冷媒が流れる。 In the heating operation, the non-azeotropic mixed refrigerant flows and condenses inside the indoor heat exchanger 6 in the order of the upper inflow / outflow section 6A, the plurality of upper heat transfer tubes 61A, the plurality of lower heat transfer tubes 61B, and the lower inflow / outflow section 6B. .. A gas-phase non-azeotropic mixed refrigerant mainly flows through the upper inflow / outflow portion 6A and the plurality of upper heat transfer tubes 61A. A liquid-phase non-azeotropic mixed refrigerant mainly flows through the plurality of lower heat transfer tubes 61B and the lower inflow / outflow portion 6B.
 暖房運転において、非共沸混合冷媒は、室外熱交換器3の内部を、下部流出入部3B、複数の下部伝熱管31B、複数の上部伝熱管31A、および上部流出入部3Aの順に流れて蒸発する。下部流出入部3Bおよび複数の下部伝熱管31Bには、主に気液二相の非共沸混合冷媒が流れる。複数の上部伝熱管31Aおよび上部流出入部3Aには、主に気相の非共沸混合冷媒が流れる。 In the heating operation, the non-azeotropic mixed refrigerant flows and evaporates inside the outdoor heat exchanger 3 in the order of the lower inflow / outflow section 3B, the plurality of lower heat transfer tubes 31B, the plurality of upper heat transfer tubes 31A, and the upper inflow / outflow section 3A. .. A gas-liquid two-phase non-azeotropic mixed refrigerant mainly flows through the lower inflow / outflow portion 3B and the plurality of lower heat transfer tubes 31B. A gas-phase non-azeotropic mixed refrigerant mainly flows through the plurality of upper heat transfer tubes 31A and the upper inflow / outflow portion 3A.
 <作用効果>
 表1は、R32、CF3I、HFO1123、および非相溶油の一例としてアルキルベンゼン油の各密度を示す。図16~図18は、R32、CF3I、HFO1123、および上記非相溶油の混合冷媒が水平方向に延在しかつ内周面が平滑である円管内を流れるときの状態を示す模式図である。図16は、液相でありかつ温度が10℃である上記混合冷媒の状態を示す模式図である。図17は、液相でありかつ温度が60℃である上記混合冷媒の状態を示す模式図である。図18は、気相の上記混合冷媒の状態を示す模式図である。表1および図16~図18に示されるように、R32、CF3I、およびHFO1123の各々の密度の大小関係は、各々が液相状態にあるときと気相状態にあるときとで、変化する。
<Effect>
Table 1 shows the densities of R32, CF3I, HFO1123, and alkylbenzene oils as an example of incompatible oils. 16 to 18 are schematic views showing a state in which the mixed refrigerants of R32, CF3I, HFO1123, and the incompatible oil flow in a circular tube extending in the horizontal direction and having a smooth inner peripheral surface. .. FIG. 16 is a schematic view showing a state of the mixed refrigerant having a liquid phase and a temperature of 10 ° C. FIG. 17 is a schematic view showing a state of the mixed refrigerant having a liquid phase and a temperature of 60 ° C. FIG. 18 is a schematic view showing the state of the mixed refrigerant in the gas phase. As shown in Table 1 and FIGS. 16 to 18, the magnitude relationship of the densities of R32, CF3I, and HFO1123 varies depending on whether they are in the liquid phase state or the gas phase state.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各冷媒が液相状態にあるとき、各冷媒の温度が10℃であるときの各密度の大小関係は、各冷媒の温度が60℃であるときの各密度の大小関係と等しい。各冷媒が液相状態にあるとき、各冷媒の温度によらず、CF3Iの密度はR32およびHFO1123の各密度より高く、かつR32およびHFO1123の各密度は等しい。 When each refrigerant is in a liquid phase state, the magnitude relationship of each density when the temperature of each refrigerant is 10 ° C. is equal to the magnitude relationship of each density when the temperature of each refrigerant is 60 ° C. When each refrigerant is in a liquid phase state, the density of CF3I is higher than the density of R32 and HFO1123, and the densities of R32 and HFO1123 are equal, regardless of the temperature of each refrigerant.
 各冷媒が液相状態にあるとき、各冷媒と非相溶油との密度の大小関係は、各々の温度が10℃であるときと、各々の温度が60℃であるときとで、変化する。上記各冷媒が液相状態にありかつ各冷媒および上記非相溶油の各温度が10℃であるとき、各冷媒の密度は非相溶油の密度よりも高い。一方、上記各冷媒が液相状態にありかつ各冷媒および上記非相溶油の各温度が60℃であるとき、R32およびHFO1123の各密度は非相溶油の密度より低いが、CF3Iの密度は非相溶油の密度よりも高い。 When each refrigerant is in a liquid phase state, the magnitude relationship between the densities of each refrigerant and the incompatible oil changes depending on whether the temperature is 10 ° C or 60 ° C. .. When each of the refrigerants is in a liquid phase state and the temperature of each refrigerant and the incompatible oil is 10 ° C., the density of each refrigerant is higher than the density of the incompatible oil. On the other hand, when each of the refrigerants is in a liquid phase state and the temperature of each refrigerant and the incompatible oil is 60 ° C., the densities of R32 and HFO1123 are lower than the density of the incompatible oil, but the density of CF3I. Is higher than the density of incompatible oils.
 つまり、図16および図17に示されるように、非共沸混合冷媒が液相状態にあるときには、その温度によらず、CF3Iは、R32、HFO1123、および非相溶油よりも下方に分布しやすい。図16に示されるように、非共沸混合冷媒が液相状態にありかつその温度が10℃であるときには、CF3IはHFO1123およびR32と接するように分布しやすい。図17に示されるように、非共沸混合冷媒が液相状態にありかつその温度が60℃であるときには、上下方向AにおいてCF3IとHFO1123との間に非相溶油が分布しやすい。 That is, as shown in FIGS. 16 and 17, when the non-azeotropic mixed refrigerant is in the liquid phase state, CF3I is distributed below R32, HFO1123, and the incompatible oil regardless of its temperature. Cheap. As shown in FIG. 16, when the non-azeotropic mixed refrigerant is in a liquid phase state and its temperature is 10 ° C., CF3I tends to be distributed so as to be in contact with HFO1123 and R32. As shown in FIG. 17, when the non-azeotropic mixed refrigerant is in a liquid phase state and its temperature is 60 ° C., the incompatible oil is likely to be distributed between CF3I and HFO1123 in the vertical direction A.
 各冷媒が気相状態にあるとき、各冷媒の温度が10℃であるときの各密度の大小関係は、各冷媒の温度が60℃であるときの各密度の大小関係と等しい。各冷媒が気相状態にあるとき、各冷媒の温度によらず、CF3Iの密度はR32およびHFO1123の各密度より低く、かつHFO1123の密度はR32の密度よりも高い。 When each refrigerant is in the gas phase state, the magnitude relationship of each density when the temperature of each refrigerant is 10 ° C. is equal to the magnitude relationship of each density when the temperature of each refrigerant is 60 ° C. When each refrigerant is in the gas phase, the density of CF3I is lower than the density of R32 and HFO1123, and the density of HFO1123 is higher than the density of R32, regardless of the temperature of each refrigerant.
 つまり、図18に示されるように、非共沸混合冷媒が気相状態にあるときには、その温度によらず、CF3Iは、R32、HFO1123、および非相溶油よりも上方に分布しやすい。非共沸混合冷媒が気相状態にあるときには、上下方向AにおいてCF3IとHFO1123との間にR32が分布しやすい。 That is, as shown in FIG. 18, when the non-azeotropic mixed refrigerant is in the gas phase state, CF3I tends to be distributed above R32, HFO1123, and the incompatible oil regardless of the temperature. When the non-azeotropic mixed refrigerant is in the gas phase state, R32 is likely to be distributed between CF3I and HFO1123 in the vertical direction A.
 そのため、例えば各熱交換器の伝熱管の内周面が平滑な面として構成されている比較例としての冷凍サイクル装置では、非共沸混合冷媒が撹拌されにくく、CF3IがHFO1123と混合しにくいため、HFO1123の不均化反応を抑制する作用へのCF3Iの寄与度は、当該作用へのR32の寄与度よりも低くなる。 Therefore, for example, in a refrigeration cycle device as a comparative example in which the inner peripheral surface of the heat transfer tube of each heat exchanger is configured as a smooth surface, the non-azeotropic mixed refrigerant is difficult to be agitated and CF3I is difficult to mix with HFO1123. , The contribution of CF3I to the action of suppressing the disproportionation reaction of HFO1123 is lower than the contribution of R32 to the action.
 これに対し、冷凍サイクル装置100では、室外熱交換器3の上部伝熱管31Aおよび下部伝熱管31Bの各々が第1溝部34Aおよび第2溝部34Bを有しているため、上記比較例としての冷凍サイクル装置と比べて、非共沸混合冷媒が撹拌されやすい。 On the other hand, in the refrigeration cycle device 100, since the upper heat transfer tube 31A and the lower heat transfer tube 31B of the outdoor heat exchanger 3 each have a first groove portion 34A and a second groove portion 34B, refrigeration as the above comparative example is performed. The non-azeotropic mixed refrigerant is more likely to be agitated than the cycle device.
 さらに、冷凍サイクル装置100では、上部伝熱管31Aの第1内周面33Aの面積拡大率は下部伝熱管31Bの第2内周面33Bの面積拡大率よりも高いため、非共沸混合冷媒は下部伝熱管31Bにおいてよりも上部伝熱管31Aにおいて撹拌されやすい。 Further, in the refrigeration cycle apparatus 100, the area expansion rate of the first inner peripheral surface 33A of the upper heat transfer tube 31A is higher than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B, so that the non-azeotropic mixed refrigerant is used. It is easier to stir in the upper heat transfer tube 31A than in the lower heat transfer tube 31B.
 例えば室外熱交換器3が凝縮器として作用する冷房運転時には、CF3IとHFO1123との間にR32が分布しやすい気相状態の非共沸混合冷媒が上部伝熱管31Aを流れる。上述のように上部伝熱管31Aを流れる非共沸混合冷媒は撹拌されやすいため、CF3I、HFO1123、および両者の間に分布したR32が撹拌されやすく、CF3IがHFO1123と混合しやすくなる。その結果、冷凍サイクル装置100では、上記比較例としての冷凍サイクル装置と比べて、CF3IがR32およびHFO1123と混ざりやすいため、HFO1123の不均化反応が生じにくく、性能低下が抑制されている。 For example, during the cooling operation in which the outdoor heat exchanger 3 acts as a condenser, a non-azeotropic mixed refrigerant in a gas phase state in which R32 is likely to be distributed between CF3I and HFO1123 flows through the upper heat transfer tube 31A. Since the non-azeotropic mixed refrigerant flowing through the upper heat transfer tube 31A is easily agitated as described above, CF3I, HFO1123, and R32 distributed between the two are easily agitated, and CF3I is easily mixed with HFO1123. As a result, in the refrigeration cycle apparatus 100, CF3I is more likely to be mixed with R32 and HFO1123 than in the refrigeration cycle apparatus as the comparative example, so that the disproportionation reaction of HFO1123 is less likely to occur, and the performance deterioration is suppressed.
 さらに、冷凍サイクル装置100では、室内熱交換器6の上部伝熱管61Aおよび下部伝熱管61Bの各々が溝部64Aおよび溝部64Bを有しているため、上記比較例としての冷凍サイクル装置と比べて、非共沸混合冷媒が撹拌されやすい。 Further, in the refrigeration cycle device 100, since each of the upper heat transfer tube 61A and the lower heat transfer tube 61B of the indoor heat exchanger 6 has a groove portion 64A and a groove portion 64B, as compared with the refrigeration cycle device as the above comparative example, Non-azeotropic mixed refrigerant is easily agitated.
 さらに、冷凍サイクル装置100では、上部伝熱管61Aの内周面の面積拡大率は下部伝熱管61Bの内周面の面積拡大率よりも高いため、非共沸混合冷媒は下部伝熱管61Bよりも上部伝熱管61Aにおいて撹拌されやすい。 Further, in the refrigeration cycle apparatus 100, the area expansion rate of the inner peripheral surface of the upper heat transfer tube 61A is higher than the area expansion rate of the inner peripheral surface of the lower heat transfer tube 61B, so that the non-azeotropic mixed refrigerant is higher than the lower heat transfer tube 61B. It is easily agitated in the upper heat transfer tube 61A.
 例えば室内熱交換器6が凝縮器として作用する暖房運転時には、CF3IとHFO1123との間にR32が分布しやすい気相状態の非共沸混合冷媒が上部伝熱管61Aを流れるため、R32が撹拌されてCF3IがHFO1123と混合しやすくなる。その結果、冷凍サイクル装置100では、上記比較例としての冷凍サイクル装置と比べて、CF3IがR32およびHFO1123と混ざりやすいため、HFO1123の不均化反応が生じにくく、性能低下が抑制されている。 For example, during the heating operation in which the indoor heat exchanger 6 acts as a condenser, the non-azeotropic mixed refrigerant in the gas phase in which R32 is likely to be distributed between CF3I and HFO1123 flows through the upper heat transfer tube 61A, so that R32 is agitated. CF3I can be easily mixed with HFO1123. As a result, in the refrigeration cycle apparatus 100, CF3I is more likely to be mixed with R32 and HFO1123 than in the refrigeration cycle apparatus as the comparative example, so that the disproportionation reaction of HFO1123 is less likely to occur, and the performance deterioration is suppressed.
 また、冷凍サイクル装置100では、下部伝熱管31Bの第2内周面33Bの面積拡大率が上部伝熱管31Aの第1内周面33Aの面積拡大率と同等である場合、下部伝熱管61Bの第4内周面63Bの面積拡大率が上部伝熱管61Aの第3内周面63Aの面積拡大率と同等である場合、と比べて、室外熱交換器3および室内熱交換器6の全体での非共沸混合冷媒の圧力損失が低減されている。そのため、冷凍サイクル装置100では、性能低下がより効果的に抑制されている。 Further, in the refrigeration cycle apparatus 100, when the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B is equal to the area expansion rate of the first inner peripheral surface 33A of the upper heat transfer tube 31A, the lower heat transfer tube 61B Compared with the case where the area expansion ratio of the fourth inner peripheral surface 63B is equal to the area expansion ratio of the third inner peripheral surface 63A of the upper heat transfer tube 61A, the outdoor heat exchanger 3 and the indoor heat exchanger 6 as a whole The pressure loss of the non-co-boiling mixed refrigerant is reduced. Therefore, in the refrigeration cycle apparatus 100, the performance deterioration is suppressed more effectively.
 <変形例>
 冷凍サイクル装置100では、第1溝部34Aの数が第2溝部34Bの数よりも多いことのみによって、上部伝熱管31Aの内周面の面積拡大率が下部伝熱管31Bの内周面の面積拡大率よりも大きくされているが、これに限られるものではない。上部伝熱管31Aと下部伝熱管31Bとの間の内周面の面積拡大率の大小関係は、第1溝部34Aおよび第2溝部34Bの数、深さ、およびリード角の少なくともいずれかの大小関係によって、実現されていてもよい。
<Modification example>
In the refrigeration cycle apparatus 100, the area expansion rate of the inner peripheral surface of the upper heat transfer tube 31A increases the area expansion of the inner peripheral surface of the lower heat transfer tube 31B only because the number of the first groove portions 34A is larger than the number of the second groove portions 34B. It is larger than the rate, but it is not limited to this. The magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 31A and the lower heat transfer tube 31B is the magnitude relationship of at least one of the number, depth, and lead angle of the first groove portion 34A and the second groove portion 34B. It may be realized by.
 図5および図6は、上部伝熱管31Aと下部伝熱管31Bとの間の内周面の面積拡大率の大小関係が第1溝部34Aおよび第2溝部34Bの深さの大小関係によって実現されている冷凍サイクル装置100の第1の変形例を示している。 In FIGS. 5 and 6, the magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 31A and the lower heat transfer tube 31B is realized by the magnitude relationship of the depths of the first groove portion 34A and the second groove portion 34B. A first modification of the refrigeration cycle apparatus 100 is shown.
 図5に示されるように、第1溝部34Aの深さH1は、第1溝部34Aの上記周方向の中心における、第1内周面33Aを延長した仮想線L1と第1溝部34Aの内面との間の距離と定義される。各第1溝部34Aの深さH1は、互いに等しい。 As shown in FIG. 5, the depth H1 of the first groove portion 34A includes the virtual line L1 extending the first inner peripheral surface 33A and the inner surface of the first groove portion 34A at the center of the first groove portion 34A in the circumferential direction. Defined as the distance between. The depth H1 of each first groove 34A is equal to each other.
 図6に示されるように、第2溝部34Bの深さH2は、第2溝部34Bの上記周方向の中心における、第2内周面33Bを延長した仮想線L2と第2溝部34Bの内面との間の距離と定義される。各第2溝部34Bの深さH2は、互いに等しい。 As shown in FIG. 6, the depth H2 of the second groove portion 34B includes the virtual line L2 extending the second inner peripheral surface 33B and the inner surface of the second groove portion 34B at the center of the second groove portion 34B in the circumferential direction. Defined as the distance between. The depth H2 of each second groove 34B is equal to each other.
 上記第1変形例では、第1溝部34Aの深さH1は、第2溝部34Bの深さH2よりも深い。この場合、第1溝部34Aの数が第2溝部34Bの数と等しく、第1溝部34Aのリード角が第2溝部34Bのリード角と等しくても、上部伝熱管31Aの第1内周面33Aの面積拡大率が下部伝熱管31Bの第2内周面33Bの面積拡大率よりも大きくなる。上記第1変形例では、1つの第1溝部34Aのみが上部伝熱管31Aに形成され、1つの第2溝部34Bのみが下部伝熱管31Bに形成されていてもよい。 In the first modification, the depth H1 of the first groove portion 34A is deeper than the depth H2 of the second groove portion 34B. In this case, even if the number of the first groove portions 34A is equal to the number of the second groove portions 34B and the lead angle of the first groove portion 34A is equal to the lead angle of the second groove portion 34B, the first inner peripheral surface 33A of the upper heat transfer tube 31A The area expansion rate of the lower heat transfer tube 31B is larger than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B. In the first modification, only one first groove portion 34A may be formed in the upper heat transfer tube 31A, and only one second groove portion 34B may be formed in the lower heat transfer tube 31B.
 図7および図8は、上部伝熱管31Aと下部伝熱管31Bとの間の内周面の面積拡大率の大小関係が第1溝部34Aおよび第2溝部34Bのリード角の大小関係によって実現されている冷凍サイクル装置100の第2の変形例を示している。 In FIGS. 7 and 8, the magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 31A and the lower heat transfer tube 31B is realized by the magnitude relationship of the lead angles of the first groove portion 34A and the second groove portion 34B. A second modification of the refrigeration cycle apparatus 100 is shown.
 図7に示されるように、第1溝部34Aのリード角θ1は、上部伝熱管31Aの中心軸に沿った断面において、第1溝部34Aの延在方向が上部伝熱管31Aの中心軸Oに対して成す角度と定義される。各第1溝部34Aのリード角θ1は、互いに等しい。 As shown in FIG. 7, the lead angle θ1 of the first groove portion 34A is such that the extending direction of the first groove portion 34A is relative to the central axis O of the upper heat transfer tube 31A in the cross section along the central axis of the upper heat transfer tube 31A. It is defined as the angle formed by. The lead angles θ1 of the first groove portions 34A are equal to each other.
 図8に示されるように、第2溝部34Bのリード角θ2は、下部伝熱管31Bの中心軸に沿った断面において、第2溝部34Bの延在方向が下部伝熱管31Bの中心軸Oに対して成す角度と定義される。各第2溝部34Bのリード角θ2は、互いに等しい。 As shown in FIG. 8, the lead angle θ2 of the second groove portion 34B is such that the extending direction of the second groove portion 34B is relative to the central axis O of the lower heat transfer tube 31B in the cross section along the central axis of the lower heat transfer tube 31B. It is defined as the angle formed by. The lead angles θ2 of the second groove portions 34B are equal to each other.
 第2変形例では、各第1溝部34Aのリード角θ1が、各第2溝部34Bのリード角θ2よりも大きい。この場合、第1溝部34Aの数が第2溝部34Bの数と等しく、第1溝部34Aの深さが第2溝部34Bの深さと等しくても、上部伝熱管31Aの第1内周面33Aの面積拡大率が下部伝熱管31Bの第2内周面33Bの面積拡大率よりも大きくなる。上記第2変形例では、1つの第1溝部34Aのみが上部伝熱管31Aに形成され、1つの第2溝部34Bのみが下部伝熱管31Bに形成されていてもよい。 In the second modification, the lead angle θ1 of each first groove portion 34A is larger than the lead angle θ2 of each second groove portion 34B. In this case, even if the number of the first groove portions 34A is equal to the number of the second groove portions 34B and the depth of the first groove portions 34A is equal to the depth of the second groove portions 34B, the first inner peripheral surface 33A of the upper heat transfer tube 31A The area expansion rate is larger than the area expansion rate of the second inner peripheral surface 33B of the lower heat transfer tube 31B. In the second modification, only one first groove portion 34A may be formed in the upper heat transfer tube 31A, and only one second groove portion 34B may be formed in the lower heat transfer tube 31B.
 なお、冷凍サイクル装置100では、実施の形態1、第1変形例、および第2変形例のうちの2つが組み合わされていてもよいし、実施の形態1、第1変形例、および第2変形例のうちの全てが組み合わされていてもよい。例えば、第1溝部34Aの数が第2溝部34Bの数よりも多く、各第1溝部34Aのリード角θ1が各第2溝部34Bのリード角θ2よりも大きく、かつ各第1溝部34Aのリード角θ1が、各第2溝部34Bのリード角θ2よりも大きくてもよい。 In the refrigeration cycle apparatus 100, two of the first embodiment, the first modification, and the second modification may be combined, or the first, first modification, and second modification of the first embodiment and the second modification may be combined. All of the examples may be combined. For example, the number of first groove portions 34A is larger than the number of second groove portions 34B, the lead angle θ1 of each first groove portion 34A is larger than the lead angle θ2 of each second groove portion 34B, and the lead of each first groove portion 34A. The angle θ1 may be larger than the lead angle θ2 of each second groove portion 34B.
 同様に、冷凍サイクル装置100では、上部伝熱管61Aと下部伝熱管61Bとの間の内周面の面積拡大率の大小関係が、溝部64Aおよび溝部64Bの数、深さ、およびリード角の少なくともいずれかの大小関係によって、実現されていてもよい。 Similarly, in the refrigeration cycle apparatus 100, the magnitude relationship of the area expansion ratio of the inner peripheral surface between the upper heat transfer tube 61A and the lower heat transfer tube 61B is at least the number, depth, and lead angle of the groove portions 64A and the groove portions 64B. It may be realized by any of the magnitude relations.
 また、冷凍サイクル装置100では、上部伝熱管31A,下部伝熱管31B、上部伝熱管61A、および下部伝熱管61Bの各々は円管として構成されているが、これに限られるものではない。図10~図13に示されるように、上部伝熱管31A、下部伝熱管31B、上部伝熱管61A、および下部伝熱管61Bの各々は、扁平管として構成されていていてもよい。上部伝熱管31Aの外形は下部伝熱管31Bの外形と同一である。上部伝熱管31Aの管肉厚Wは例えば下部伝熱管31Bの管肉厚Wと等しい。上部伝熱管31Aおよび下部伝熱管31Bには、内部空間を複数の微小空間に区画する少なくとも1つの壁部、および内部空間に面する少なくとも1つの凹凸、の少なくともいずれかが形成されている。この場合、上部伝熱管31Aおよび下部伝熱管31Bの各面積拡大率とは、方向Bの長さおよび管肉厚が上部伝熱管31Aおよび下部伝熱管31Bと等しいが、壁部および凹凸が形成されていない内周面の面積を基準とした、比率として定義される。 Further, in the refrigeration cycle device 100, each of the upper heat transfer tube 31A, the lower heat transfer tube 31B, the upper heat transfer tube 61A, and the lower heat transfer tube 61B is configured as a circular tube, but the present invention is not limited to this. As shown in FIGS. 10 to 13, each of the upper heat transfer tube 31A, the lower heat transfer tube 31B, the upper heat transfer tube 61A, and the lower heat transfer tube 61B may be configured as a flat tube. The outer shape of the upper heat transfer tube 31A is the same as the outer shape of the lower heat transfer tube 31B. The tube wall thickness W of the upper heat transfer tube 31A is equal to, for example, the tube wall thickness W of the lower heat transfer tube 31B. The upper heat transfer tube 31A and the lower heat transfer tube 31B are formed with at least one of at least one wall portion for partitioning the internal space into a plurality of minute spaces and at least one unevenness facing the internal space. In this case, the area expansion ratios of the upper heat transfer tube 31A and the lower heat transfer tube 31B are the same as those of the upper heat transfer tube 31A and the lower heat transfer tube 31B in the length and the tube wall thickness in the direction B, but the wall portion and the unevenness are formed. It is defined as a ratio based on the area of the inner peripheral surface that is not used.
 図10および図11に示されるように、上部伝熱管31Aおよび下部伝熱管31Bには、例えば複数の壁部38A,38B,68A,68Bが形成されている。上部伝熱管31Aに形成されている壁部38A,68Aの数(言い換えると微小空間の数)は、例えば下部伝熱管31Bに形成されている壁部38B,68Bの数(言い換えると微小空間の数)よりも多い。 As shown in FIGS. 10 and 11, for example, a plurality of wall portions 38A, 38B, 68A, 68B are formed in the upper heat transfer tube 31A and the lower heat transfer tube 31B. The number of wall portions 38A, 68A formed in the upper heat transfer tube 31A (in other words, the number of minute spaces) is, for example, the number of wall portions 38B, 68B formed in the lower heat transfer tube 31B (in other words, the number of minute spaces). ) More than.
 図12および図13に示されるように、上部伝熱管31Aおよび下部伝熱管31Bには、例えば複数の壁部38A,38B,68A,68Bと、各壁部によって区画された各微小空間に面する複数の凹凸39A,39B,69A,69Bが形成されている。各壁部および各凹凸は、上部伝熱管31Aが延在する方向に沿って延びている。上部伝熱管31Aに形成されている凹凸39A,69Aの数は、例えば下部伝熱管31Bに形成されている凹凸39B,69Bの数よりも多い。なお、図12および図13に示される上部伝熱管31Aおよび下部伝熱管31Bにおいて、壁部38A,68Aの数は、例えば下部伝熱管31Bに形成されている壁部38B,68Bの数と同じであってもよいが、これよりも多くてもよい。 As shown in FIGS. 12 and 13, the upper heat transfer tube 31A and the lower heat transfer tube 31B face, for example, a plurality of wall portions 38A, 38B, 68A, 68B and each minute space partitioned by each wall portion. A plurality of irregularities 39A, 39B, 69A, 69B are formed. Each wall portion and each unevenness extends along the direction in which the upper heat transfer tube 31A extends. The number of irregularities 39A and 69A formed on the upper heat transfer tube 31A is larger than the number of irregularities 39B and 69B formed on the lower heat transfer tube 31B, for example. In the upper heat transfer tube 31A and the lower heat transfer tube 31B shown in FIGS. 12 and 13, the number of wall portions 38A and 68A is the same as the number of wall portions 38B and 68B formed on the lower heat transfer tube 31B, for example. There may be, but there may be more.
 また、冷凍サイクル装置100の室外熱交換器3および室内熱交換器6の各々は、フィンチューブ熱交換器として構成されているが、これに限られるものではない。図9に示されるように、室外熱交換器3および室内熱交換器6の各々は、コルゲート熱交換器として構成されていてもよい。 Further, each of the outdoor heat exchanger 3 and the indoor heat exchanger 6 of the refrigeration cycle device 100 is configured as a fin tube heat exchanger, but the present invention is not limited thereto. As shown in FIG. 9, each of the outdoor heat exchanger 3 and the indoor heat exchanger 6 may be configured as a corrugated heat exchanger.
 図9に示されるように、コルゲート熱交換器として構成された室外熱交換器3は、上部流出入部3A(第1流出入部)に接続された上部ヘッダ35A(第1ヘッダ)と、下部流出入部3B(第2流出入部)に接続された下部ヘッダ35B(第2ヘッダ)と、上部ヘッダ35Aと下部ヘッダ35Bとの間に接続され上下方向Aに沿って延びる複数の伝熱管36と、複数のコルゲートフィン37とを含む。上部ヘッダ35Aは、下部ヘッダ35Bよりも上方に配置されている。上部ヘッダ35Aは、複数の伝熱管36の各上端と接続されている。下部ヘッダ35Bは、複数の伝熱管36の各下端と接続されている。上部ヘッダ35Aおよび下部ヘッダ35Bは、非共沸混合冷媒を複数の伝熱管36に分配し、または複数の伝熱管36を流れた非共沸混合冷媒を合流する。上部ヘッダ35Aおよび下部ヘッダ35Bは、上下方向Aと交差する方向Bに沿って延びている。上部ヘッダ35Aの内周面の面積拡大率は、下部ヘッダ35Bの内周面の面積拡大率よりも高い。 As shown in FIG. 9, the outdoor heat exchanger 3 configured as a corrugated heat exchanger has an upper header 35A (first header) connected to an upper inflow / outflow portion 3A (first inflow / outflow portion) and a lower inflow / outflow portion. A plurality of heat transfer tubes 36 connected between the lower header 35B (second header) connected to 3B (second inflow / outflow portion), the upper header 35A and the lower header 35B, and extending along the vertical direction A, and a plurality of heat transfer tubes 36. Includes corrugated fins 37. The upper header 35A is arranged above the lower header 35B. The upper header 35A is connected to each upper end of the plurality of heat transfer tubes 36. The lower header 35B is connected to each lower end of the plurality of heat transfer tubes 36. The upper header 35A and the lower header 35B distribute the non-azeotropic mixed refrigerant to the plurality of heat transfer tubes 36, or join the non-azeotropic mixed refrigerants that have flowed through the plurality of heat transfer tubes 36. The upper header 35A and the lower header 35B extend along a direction B intersecting the vertical direction A. The area expansion ratio of the inner peripheral surface of the upper header 35A is higher than the area expansion ratio of the inner peripheral surface of the lower header 35B.
 図9に示されるように、コルゲート熱交換器として構成された室外熱交換器6は、上部流出入部6A(第3流出入部)に接続された上部ヘッダ65A(第3ヘッダ)と、下部流出入部6B(第2流出入部)に接続された下部ヘッダ65B(第4ヘッダ)と、上部ヘッダ65Aと下部ヘッダ65Bとの間に接続され上下方向Aに沿って延びる複数の伝熱管66と、複数のコルゲートフィン67とを含む。上部ヘッダ65Aは、下部ヘッダ65Bよりも上方に配置されている。上部ヘッダ65Aは、複数の伝熱管66の各上端と接続されている。下部ヘッダ65Bは、複数の伝熱管66の各下端と接続されている。上部ヘッダ65Aおよび下部ヘッダ65Bは、非共沸混合冷媒を複数の伝熱管66に分配し、または複数の伝熱管66を流れた非共沸混合冷媒を合流する。上部ヘッダ65Aおよび下部ヘッダ65Bは、上下方向Aと交差する方向Bに沿って延びている。上部ヘッダ65Aは、凹凸が形成された内周面(第1内周面)を有している。下部ヘッダ65Bは、凹凸が形成された内周面(第2内周面)を有している。上部ヘッダ65Aの内周面(第1内周面)の面積拡大率は、下部ヘッダ65Bの内周面(第2内周面)の面積拡大率よりも高い。 As shown in FIG. 9, the outdoor heat exchanger 6 configured as a corrugated heat exchanger has an upper header 65A (third header) connected to an upper inflow / outflow portion 6A (third inflow / outflow portion) and a lower inflow / outflow portion. A plurality of heat transfer tubes 66 connected between the lower header 65B (fourth header) connected to 6B (second inflow / outflow portion), the upper header 65A and the lower header 65B, and extending along the vertical direction A, and a plurality of heat transfer tubes 66. Includes corrugated fins 67. The upper header 65A is arranged above the lower header 65B. The upper header 65A is connected to each upper end of the plurality of heat transfer tubes 66. The lower header 65B is connected to each lower end of the plurality of heat transfer tubes 66. The upper header 65A and the lower header 65B distribute the non-azeotropic mixed refrigerant to the plurality of heat transfer tubes 66, or join the non-azeotropic mixed refrigerants flowing through the plurality of heat transfer tubes 66. The upper header 65A and the lower header 65B extend along a direction B intersecting the vertical direction A. The upper header 65A has an inner peripheral surface (first inner peripheral surface) on which irregularities are formed. The lower header 65B has an inner peripheral surface (second inner peripheral surface) on which irregularities are formed. The area expansion ratio of the inner peripheral surface (first inner peripheral surface) of the upper header 65A is higher than the area expansion ratio of the inner peripheral surface (second inner peripheral surface) of the lower header 65B.
 上部ヘッダ35Aおよび上部ヘッダ65Aは、図3、図5、および図7の各々に示される第1管部としての上部伝熱管31Aおよび上部伝熱管61Aと同様の構成を備えている。下部ヘッダ35Bおよび下部ヘッダ65Bは、図4、図6、および図8の各々に示される第2管部としての下部伝熱管31Bおよび下部伝熱管61Bと同様の構成を備えている。 The upper header 35A and the upper header 65A have the same configurations as the upper heat transfer tube 31A and the upper heat transfer tube 61A as the first tube portion shown in each of FIGS. 3, 5, and 7. The lower header 35B and the lower header 65B have the same configurations as the lower heat transfer tube 31B and the lower heat transfer tube 61B as the second tube portion shown in FIGS. 4, 6, and 8, respectively.
 冷凍サイクル装置100では、室外熱交換器3および室内熱交換器6の一方が図2に示されるフィンチューブ熱交換器であって、室外熱交換器3および室内熱交換器6の他方が図9に示されるコルゲート熱交換器であってもよい。 In the refrigeration cycle apparatus 100, one of the outdoor heat exchanger 3 and the indoor heat exchanger 6 is the fin tube heat exchanger shown in FIG. 2, and the other of the outdoor heat exchanger 3 and the indoor heat exchanger 6 is FIG. It may be a corrugated heat exchanger shown in.
 また、冷凍サイクル装置100では、室外熱交換器3および室内熱交換器6の少なくとも一方が上記構成を備えている限りにおいて、室外熱交換器3または室内熱交換器6が従来の熱交換器として構成されていてもよい。例えば室外熱交換器3の上部伝熱管31Aの第1内周面の面積拡大率が下部伝熱管31Bの第2内周面の面積拡大率よりも高く、室内熱交換器6の上部伝熱管61Aの第3内周面の面積拡大率は下部伝熱管61Bの第4内周面の面積拡大率と等しくてもよい。また、例えば室内熱交換器6の上部伝熱管61Aの内周面の面積拡大率は下部伝熱管61Bの内周面の面積拡大率よりも高く、室外熱交換器3の上部伝熱管31Aの内周面の面積拡大率が下部伝熱管31Bの内周面の面積拡大率と等しくてもよい。 Further, in the refrigeration cycle apparatus 100, as long as at least one of the outdoor heat exchanger 3 and the indoor heat exchanger 6 has the above configuration, the outdoor heat exchanger 3 or the indoor heat exchanger 6 is used as a conventional heat exchanger. It may be configured. For example, the area expansion ratio of the first inner peripheral surface of the upper heat transfer tube 31A of the outdoor heat exchanger 3 is higher than the area expansion ratio of the second inner peripheral surface of the lower heat transfer tube 31B, and the upper heat transfer tube 61A of the indoor heat exchanger 6 The area expansion ratio of the third inner peripheral surface of the lower heat transfer tube 61B may be equal to the area expansion ratio of the fourth inner peripheral surface of the lower heat transfer tube 61B. Further, for example, the area expansion ratio of the inner peripheral surface of the upper heat transfer tube 61A of the indoor heat exchanger 6 is higher than the area expansion ratio of the inner peripheral surface of the lower heat transfer tube 61B, and the inside of the upper heat transfer tube 31A of the outdoor heat exchanger 3 The area expansion rate of the peripheral surface may be equal to the area expansion rate of the inner peripheral surface of the lower heat transfer tube 31B.
 実施の形態2.
 実施の形態2に係る冷凍サイクル装置100は、第1冷媒が循環する第1冷媒回路130と、第2冷媒が循環する第2冷媒回路140とを備える。第1冷媒回路130は、「室外側サイクル」、「熱源側サイクル」または「一次回路」に相当する。第2冷媒回路140は、「室内側サイクル」、「利用側サイクル」または「二次回路」に相当する。
Embodiment 2.
The refrigeration cycle device 100 according to the second embodiment includes a first refrigerant circuit 130 in which the first refrigerant circulates, and a second refrigerant circuit 140 in which the second refrigerant circulates. The first refrigerant circuit 130 corresponds to an "outdoor cycle", a "heat source side cycle" or a "primary circuit". The second refrigerant circuit 140 corresponds to an "indoor side cycle", a "utilization side cycle" or a "secondary circuit".
 第1冷媒回路130は、圧縮機1、四方弁2、室外熱交換器3(第3熱交換器)、膨張装置4、中間熱交換器7の第1流路H1を含む。 The first refrigerant circuit 130 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 (third heat exchanger), an expansion device 4, and a first flow path H1 of an intermediate heat exchanger 7.
 第1冷媒は、R32、CF3I、およびHFO1123が混合されることによってGWPが低減された非共沸混合冷媒である。第1冷媒は、実施の形態1における非共沸混合冷媒と同等の構成を備えている。第2冷媒は、燃焼下限濃度が第1冷媒と比べて低い冷媒であり、例えばCF3I単一冷媒またはCF3Iを含むR466A等の混合冷媒である。 The first refrigerant is a non-azeotropic mixed refrigerant whose GWP is reduced by mixing R32, CF3I, and HFO1123. The first refrigerant has a configuration equivalent to that of the non-azeotropic mixed refrigerant according to the first embodiment. The second refrigerant is a refrigerant having a lower combustion lower limit concentration as compared with the first refrigerant, and is, for example, a CF3I single refrigerant or a mixed refrigerant such as R466A containing CF3I.
 圧縮機1は、第1冷媒を圧縮して吐出する。圧縮機1は、実施の形態1における圧縮機1と同様の構成を備えている。 The compressor 1 compresses and discharges the first refrigerant. The compressor 1 has the same configuration as the compressor 1 in the first embodiment.
 四方弁2は、第1冷媒の流路を切り替える。四方弁2は、圧縮機1の吐出口と接続されている第1ポートと、圧縮機1の吸入口と接続されている第2ポートと、室外熱交換器3に接続されている第3ポートと、中間熱交換器7の下部流出入部7Bと接続されている第4ポートとを有している。四方弁2は、圧縮機1から吐出された第1冷媒の流路を切替える。図14において実線矢印で示す方向に第1冷媒を循環させる冷房運転時には、四方弁2は、圧縮機1から室外熱交換器3に向かう流路を形成する。一方、図14において破線矢印で示す方向に第1冷媒を循環させる暖房運転時には、四方弁2は、圧縮機1から中間熱交換器7に向かう流路を形成する。 The four-way valve 2 switches the flow path of the first refrigerant. The four-way valve 2 has a first port connected to the discharge port of the compressor 1, a second port connected to the suction port of the compressor 1, and a third port connected to the outdoor heat exchanger 3. And a fourth port connected to the lower inflow / outflow portion 7B of the intermediate heat exchanger 7. The four-way valve 2 switches the flow path of the first refrigerant discharged from the compressor 1. During the cooling operation in which the first refrigerant is circulated in the direction indicated by the solid arrow in FIG. 14, the four-way valve 2 forms a flow path from the compressor 1 to the outdoor heat exchanger 3. On the other hand, during the heating operation in which the first refrigerant is circulated in the direction indicated by the broken line arrow in FIG. 14, the four-way valve 2 forms a flow path from the compressor 1 to the intermediate heat exchanger 7.
 室外熱交換器3では、第1冷媒と室外の空気との間で熱交換が行われる。膨張装置4は、内部を通過する冷媒を減圧および膨張させて低温かつ低圧の冷媒にするものである。膨張装置4として、例えば、電子膨張弁を使用することができる。 In the outdoor heat exchanger 3, heat exchange is performed between the first refrigerant and the outdoor air. The expansion device 4 decompresses and expands the refrigerant passing through the inside to obtain a low-temperature and low-pressure refrigerant. As the expansion device 4, for example, an electronic expansion valve can be used.
 第2冷媒回路140は、中間熱交換器7の第2流路H2、ポンプ150、室内温調ユニット160,170,180を含む。室内温調ユニット160,170,180は、互いに並列的に接続されている。 The second refrigerant circuit 140 includes the second flow path H2 of the intermediate heat exchanger 7, the pump 150, and the indoor temperature control units 160, 170, 180. The indoor temperature control units 160, 170, 180 are connected in parallel to each other.
 ポンプ150は、回転方向を正逆可能に切替え可能に構成されている。ポンプ150は、冷房運転時には液状態の第2冷媒をポンプ150から室内熱交換器161,171,181へ導き、暖房運転時には液状態の第2冷媒をポンプ150から中間熱交換器7の第2流路H2へ導くように、第2冷媒の循環方向を切替える。 The pump 150 is configured so that the direction of rotation can be switched in the forward and reverse directions. The pump 150 guides the second refrigerant in the liquid state from the pump 150 to the indoor heat exchangers 161, 171, 181 during the cooling operation, and the second refrigerant in the liquid state from the pump 150 to the second intermediate heat exchanger 7 during the heating operation. The circulation direction of the second refrigerant is switched so as to lead to the flow path H2.
 室内温調ユニット160は、室内熱交換器161(第4熱交換器)と、室内空気を室内熱交換器161に送るためのファン(図示せず)と、第2冷媒の流量を調整する流量調整弁162とを含む。室内熱交換器161は、第2冷媒と室内空気との熱交換を行なう。 The indoor temperature control unit 160 includes an indoor heat exchanger 161 (fourth heat exchanger), a fan for sending indoor air to the indoor heat exchanger 161 (not shown), and a flow rate for adjusting the flow rate of the second refrigerant. Includes a regulating valve 162. The indoor heat exchanger 161 exchanges heat between the second refrigerant and the indoor air.
 室内温調ユニット170は、室内熱交換器171と、室内空気を室内熱交換器171に送るためのファン(図示せず)と、第2冷媒の流量を調整する流量調整弁172とを含む。室内熱交換器171は、第2冷媒と室内空気との熱交換を行なう。 The indoor temperature control unit 170 includes an indoor heat exchanger 171, a fan (not shown) for sending indoor air to the indoor heat exchanger 171 and a flow rate adjusting valve 172 for adjusting the flow rate of the second refrigerant. The indoor heat exchanger 171 exchanges heat between the second refrigerant and the indoor air.
 室内温調ユニット180は、室内熱交換器181と、室内空気を室内熱交換器181に送るためのファン(図示せず)と、第2冷媒の流量を調整する流量調整弁182とを含む。室内熱交換器181は、第2冷媒と室内空気との熱交換を行なう。 The indoor temperature control unit 180 includes an indoor heat exchanger 181 and a fan (not shown) for sending indoor air to the indoor heat exchanger 181 and a flow rate adjusting valve 182 for adjusting the flow rate of the second refrigerant. The indoor heat exchanger 181 exchanges heat between the second refrigerant and the indoor air.
 なお、本実施の形態においては3台の室内温調ユニットを有する空調装置を例に挙げているが、室内温調ユニットの台数は特に制限されない。 In the present embodiment, an air conditioner having three indoor temperature control units is given as an example, but the number of indoor temperature control units is not particularly limited.
 図15は、中間熱交換器7の側面模式図である。図15において、破線で示される構造は、中間熱交換器7において第1流路H1に係る主な内部構造を示す。図14および図15に示されるように、中間熱交換器7は、プレート式熱交換器として構成されている。中間熱交換器7は、上下方向Aと交差する方向Bに積層された複数の伝熱プレート71を含む。複数の伝熱プレート71の間には、複数の第1流路H1と複数の第2流路H2とが方向Bに交互に配置される。複数の伝熱プレート71の各々には、方向Bに連なりかつ相対的に上方に配置された上部貫通孔と、方向Bに連なりかつ上部貫通孔よりも下方に配置された下部貫通孔とが形成されている。中間熱交換器7の複数の上部貫通孔内には、方向Bに延びかつ各第1流路H1と連なる上部分配領域72Aが形成されている。中間熱交換器7の複数の下部貫通孔内には、方向Bに延びかつ各第1流路H1と連なる下部分配領域72Bが形成されている。 FIG. 15 is a schematic side view of the intermediate heat exchanger 7. In FIG. 15, the structure shown by the broken line shows the main internal structure related to the first flow path H1 in the intermediate heat exchanger 7. As shown in FIGS. 14 and 15, the intermediate heat exchanger 7 is configured as a plate heat exchanger. The intermediate heat exchanger 7 includes a plurality of heat transfer plates 71 laminated in the direction B intersecting the vertical direction A. A plurality of first flow paths H1 and a plurality of second flow paths H2 are alternately arranged in the direction B between the plurality of heat transfer plates 71. Each of the plurality of heat transfer plates 71 is formed with an upper through hole connected in the direction B and arranged relatively upward, and a lower through hole connected in the direction B and arranged below the upper through hole. Has been done. In the plurality of upper through holes of the intermediate heat exchanger 7, an upper distribution region 72A extending in the direction B and connecting with each first flow path H1 is formed. In the plurality of lower through holes of the intermediate heat exchanger 7, a lower distribution region 72B extending in the direction B and connecting with each first flow path H1 is formed.
 なお、中間熱交換器7において第2流路H2に係る主な内部構造は、中間熱交換器7において第1流路H1に係る主な内部構造と同等である。 The main internal structure of the intermediate heat exchanger 7 related to the second flow path H2 is the same as the main internal structure of the intermediate heat exchanger 7 related to the first flow path H1.
 中間熱交換器7では、各第1流路H1を流れる第1冷媒と各第2流路H2を流れる第2冷媒との間で熱交換が行なわれる。中間熱交換器7は、例えば第1流路H1と第2流路H2とが対向流となるように、第1冷媒回路130および第2冷媒回路140に接続されている。 In the intermediate heat exchanger 7, heat exchange is performed between the first refrigerant flowing through each of the first flow paths H1 and the second refrigerant flowing through each of the second flow paths H2. The intermediate heat exchanger 7 is connected to the first refrigerant circuit 130 and the second refrigerant circuit 140 so that, for example, the first flow path H1 and the second flow path H2 are countercurrent.
 中間熱交換器7は、第1流路H1に第1冷媒が流出入する上部流出入部7A(第5流出入部)および下部流出入部7B(第6流出入部)と、第2流路H2に第2冷媒が流出入する上部流出入部7Cおよび下部流出入部7Dとをさらに含む。上部流出入部7Aは、下部流出入部7Bよりも上方に配置されている。上部流出入部7Aは、方向Bにおいて上部分配領域72Aと連なっている。下部流出入部7Bは、方向Bにおいて下部分配領域72Bと連なっている。上部流出入部7Cは、下部流出入部7Dよりも上方に配置されている。 The intermediate heat exchanger 7 has an upper inflow / outflow section 7A (fifth inflow / outflow section) and a lower inflow / outflow section 7B (sixth inflow / outflow section) in which the first refrigerant flows in and out of the first flow path H1, and a second flow path H2. 2 The upper inflow / outflow section 7C and the lower inflow / outflow section 7D through which the refrigerant flows in and out are further included. The upper inflow / outflow portion 7A is arranged above the lower inflow / outflow portion 7B. The upper inflow / outflow portion 7A is connected to the upper distribution region 72A in the direction B. The lower inflow / outflow portion 7B is connected to the lower distribution region 72B in the direction B. The upper inflow / outflow portion 7C is arranged above the lower inflow / outflow portion 7D.
 上部流出入部7Aは、膨張装置4と接続されている。下部流出入部7Bは、四方弁2の上記第4ポートに接続されている。上部流出入部7Cは、ポンプ150に接続されている。下部流出入部7Dは、室内熱交換器161,171,181に接続されている。 The upper inflow / outflow section 7A is connected to the expansion device 4. The lower inflow / outflow portion 7B is connected to the fourth port of the four-way valve 2. The upper inflow / outflow portion 7C is connected to the pump 150. The lower inflow / outflow section 7D is connected to the indoor heat exchangers 161, 171, 181.
 冷凍サイクル装置101では、冷房運転時には第1冷媒回路130を循環する第1冷媒により、第2冷媒回路140を循環する第2冷媒が冷却される。一方、暖房運転時には第1冷媒回路130を循環する第1冷媒により、第2冷媒回路140を循環する第2冷媒が加熱される。 In the refrigerating cycle device 101, the second refrigerant circulating in the second refrigerant circuit 140 is cooled by the first refrigerant circulating in the first refrigerant circuit 130 during the cooling operation. On the other hand, during the heating operation, the first refrigerant circulating in the first refrigerant circuit 130 heats the second refrigerant circulating in the second refrigerant circuit 140.
 特に、冷房運転時には、比較的低温の気液二相の第1冷媒が中間熱交換器7の第1流路H1を上方から下方に流れながら蒸発して気相に変化する。暖房運転時には、気相の第1冷媒が中間熱交換器7の第1流路H1を下方から上方に流れながら凝縮して液相に変化する。 In particular, during the cooling operation, the relatively low temperature gas-liquid two-phase first refrigerant evaporates while flowing from the upper side to the lower side in the first flow path H1 of the intermediate heat exchanger 7, and changes to the gas phase. During the heating operation, the first refrigerant in the gas phase condenses while flowing from the lower side to the upper side in the first flow path H1 of the intermediate heat exchanger 7, and changes into a liquid phase.
 制御装置10は、冷凍サイクル装置101の全体の動作を制御する。制御装置10は、圧力センサ、温度センサ等の出力に応じて圧縮機1、膨張装置4,ポンプ150、流量調整弁152,172,182および熱交換器3、161、171、181に取り付けた図示しないファンの回転速度を制御する。 The control device 10 controls the overall operation of the refrigeration cycle device 101. The control device 10 is shown to be attached to the compressor 1, the expansion device 4, the pump 150, the flow control valves 152, 172, 182, and the heat exchangers 3, 161, 171 and 181 according to the outputs of the pressure sensor, the temperature sensor and the like. Do not control the rotation speed of the fan.
 制御装置10は、冷媒運転と暖房運転で、第1冷媒回路130の第1冷媒の循環方向を四方弁2により切替える。これに連動させて、制御装置10は、中間熱交換器7で第2冷媒が第1冷媒と対向流で熱交換し、ポンプ150の吸入口で過冷却状態となるように、第2冷媒回路140のポンプ150の回転方向を切替える。 The control device 10 switches the circulation direction of the first refrigerant in the first refrigerant circuit 130 by the four-way valve 2 in the refrigerant operation and the heating operation. In conjunction with this, the control device 10 exchanges heat with the first refrigerant in a countercurrent flow in the intermediate heat exchanger 7, and causes the second refrigerant circuit to be overcooled at the suction port of the pump 150. The rotation direction of the pump 150 of 140 is switched.
 <作用効果>
 冷房運転時に比較的低温の気液二相の第1冷媒が下方から上方に流れるように配置された中間熱交換器を備える比較例としての冷凍サイクル装置では、下部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図16に示されるように分布しやすく、CF3IはR32およびHFO1123よりも下方に分布しやすい。この場合、CF3Iの流れやすさ(流動性)は、各伝熱プレートにおいて下部貫通孔よりも下方に位置するプレート部分によって阻害される。また、上部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすく、CF3IはR32およびHFO1123よりも上方に分布しやすい。この場合、CF3Iの流動性は、各伝熱プレートにおいて上部貫通孔よりも上方に位置するプレート部分によって阻害される。
<Effect>
In a refrigeration cycle apparatus as a comparative example including an intermediate heat exchanger in which a relatively low temperature gas-liquid two-phase first refrigerant flows from the bottom to the top during cooling operation, the first refrigerant flowing in the lower distribution region is used. , R32, CF3I, HFO1123, and incompatible oils are more likely to be distributed as shown in FIG. 16, and CF3I is more likely to be distributed below R32 and HFO1123. In this case, the flowability (fluidity) of CF3I is hindered by the plate portion located below the lower through hole in each heat transfer plate. Further, in the first refrigerant flowing through the upper distribution region, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. 18, and CF3I is likely to be distributed above R32 and HFO1123. In this case, the fluidity of CF3I is impeded by the plate portion located above the upper through hole in each heat transfer plate.
 また、上記比較例としての冷凍サイクル装置の暖房運転時には、上部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすく、CF3IはR32およびHFO1123よりも上方に分布しやすい。この場合、CF3Iの流動性は、各伝熱プレートにおいて上部貫通孔よりも上方に位置するプレート部分によって阻害される。また、下部分配領域を流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図17に示されるように分布しやすく、CF3IはR32およびHFO1123よりも下方に分布しやすい。この場合、CF3Iの流れやすさ(流動性)は、各伝熱プレートにおいて下部貫通孔よりも下方に位置するプレート部分によって阻害される。 Further, during the heating operation of the refrigeration cycle apparatus as the comparative example, R32, CF3I, HFO1123, and the incompatible oil are easily distributed as shown in FIG. 18 in the first refrigerant flowing through the upper distribution region, and CF3I Is more likely to be distributed above R32 and HFO1123. In this case, the fluidity of CF3I is impeded by the plate portion located above the upper through hole in each heat transfer plate. Further, in the first refrigerant flowing through the lower distribution region, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. 17, and CF3I is likely to be distributed below R32 and HFO1123. In this case, the flowability (fluidity) of CF3I is hindered by the plate portion located below the lower through hole in each heat transfer plate.
 これに対し、冷凍サイクル装置101の冷房運転時には、比較的低温の気液二相の第1冷媒が、中間熱交換器7内を、上部流出入部7A、上部分配領域72A、各第1流路H1、下部分配領域72B、下部流出入部7Bの順に流れる。そのため、上部分配領域72Aを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図16に示されるように分布しやすい。つまり、CF3Iは、上部分配領域72A内において、R32およびHFO1123よりも下方に分布しやすい。さらに、下部分配領域72Bを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすい。つまり、CF3Iは、下部分配領域72B内において、R32およびHFO1123よりも上方に分布しやすい。 On the other hand, during the cooling operation of the refrigeration cycle device 101, the first refrigerant of the gas-liquid two-phase at a relatively low temperature flows through the intermediate heat exchanger 7, the upper inflow / outflow portion 7A, the upper distribution region 72A, and each first flow path. It flows in the order of H1, the lower distribution area 72B, and the lower inflow / outflow portion 7B. Therefore, in the first refrigerant flowing through the upper distribution region 72A, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed below R32 and HFO1123 in the upper distribution region 72A. Further, in the first refrigerant flowing through the lower distribution region 72B, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed above R32 and HFO1123 in the lower distribution region 72B.
 さらに、冷凍サイクル装置101の暖房運転時には、比較的高温の気相の第1冷媒が、中間熱交換器7内を、下部流出入部7B、下部分配領域72B、各第1流路H1、上部分配領域72A、上部流出入部7Aの順に流れる。そのため、下部分配領域72Bを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図18に示されるように分布しやすい。つまり、CF3Iは、下部分配領域72B内において、R32およびHFO1123よりも上方に分布しやすい。さらに、上部分配領域72Aを流れる第1冷媒において、R32、CF3I、HFO1123、および非相溶油は、図17に示されるように分布しやすい。つまり、CF3Iは、上部分配領域72A内において、R32およびHFO1123よりも下方に分布しやすい。 Further, during the heating operation of the refrigeration cycle device 101, the first refrigerant in the gas phase having a relatively high temperature enters the intermediate heat exchanger 7, the lower inflow / outflow portion 7B, the lower distribution region 72B, each first flow path H1, and the upper distribution. It flows in the order of region 72A and upper inflow / outflow portion 7A. Therefore, in the first refrigerant flowing through the lower distribution region 72B, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed above R32 and HFO1123 in the lower distribution region 72B. Further, in the first refrigerant flowing through the upper distribution region 72A, R32, CF3I, HFO1123, and the incompatible oil are likely to be distributed as shown in FIG. That is, CF3I tends to be distributed below R32 and HFO1123 in the upper distribution region 72A.
 そのため、冷凍サイクル装置101では、上記比較例に係る冷凍サイクル装置と比べて、中間熱交換器7内での第1冷媒中のCF3Iの流動性が高い。中間熱交換器7内でのCF3Iの流動性が高いため、CF3IはHFO1123と混ざりやすいため、HFO1123の不均化反応が生じにくく、性能低下が抑制されている。 Therefore, in the refrigeration cycle device 101, the fluidity of CF3I in the first refrigerant in the intermediate heat exchanger 7 is higher than that in the refrigeration cycle device according to the above comparative example. Since the fluidity of CF3I in the intermediate heat exchanger 7 is high, CF3I is easily mixed with HFO1123, so that the disproportionation reaction of HFO1123 is unlikely to occur, and the deterioration of performance is suppressed.
 また、冷凍サイクル装置101では、上記比較例に係る冷凍サイクル装置と比べて、冷房運転時には各第1流路H1よりも上流側に配置された上部分配領域72AでのCF3Iの流動性が高く、暖房運転時には各第1流路H1よりも上流側に配置された下部分配領域72BでのCF3Iの流動性が高い。そのため、冷凍サイクル装置101では、上記比較例に係る冷凍サイクル装置と比べて、各第1流路H1を流れるCF3Iの流量のばらつきが少ない。 Further, in the refrigeration cycle device 101, the fluidity of CF3I in the upper distribution region 72A arranged on the upstream side of each first flow path H1 is higher during the cooling operation than in the refrigeration cycle device according to the above comparative example. During the heating operation, the fluidity of CF3I in the lower distribution region 72B arranged on the upstream side of each first flow path H1 is high. Therefore, in the refrigeration cycle device 101, there is less variation in the flow rate of CF3I flowing through each of the first flow paths H1 as compared with the refrigeration cycle device according to the above comparative example.
 冷凍サイクル装置100,101は、RACに限られるものではない。冷凍サイクル装置100,101の用途および能力は、任意に設定され得る。 The refrigeration cycle devices 100 and 101 are not limited to RAC. The uses and capacities of the refrigeration cycle devices 100, 101 can be set arbitrarily.
 以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiment of the present invention has been described above, it is possible to modify the above-described embodiment in various ways. Moreover, the scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 圧縮機、2 四方弁、3,6,7,161,171,181 熱交換器、3A,6A,7A,7C 上部流出入部、3B,6B,7B,7D 下部流出入部、4,4A,4B 膨張装置、5 レシーバ、10 制御装置、11 室外ファン、12 室内ファン、13 温度センサ、31B,61B 下部伝熱管、31A,61A 上部伝熱管、31C,61C 屈曲部、32,62 フィン、33A,33B,63A,63B 内周面、34A,34B,64A,64B 溝部、35A,65A 上部ヘッダ、35B,65B 下部ヘッダ、36,66 伝熱管、37,67 コルゲートフィン、71 伝熱プレート、72A 上部分配領域、72B 下部分配領域、100,101 冷凍サイクル装置、110 室外機、120 室内機、130 第1冷媒回路、140 第2冷媒回路、150 ポンプ、152,162,172,182 流量調整弁、160,170,180 室内温調ユニット。 1 Compressor, 2 4-way valve, 3,6,7,161,171,181 Heat exchanger, 3A, 6A, 7A, 7C Upper inflow / outflow section, 3B, 6B, 7B, 7D Lower inflow / outflow section, 4,4A, 4B Inflator, 5 receiver, 10 control device, 11 outdoor fan, 12 indoor fan, 13 temperature sensor, 31B, 61B lower heat transfer tube, 31A, 61A upper heat transfer tube, 31C, 61C bent part, 32, 62 fins, 33A, 33B , 63A, 63B inner peripheral surface, 34A, 34B, 64A, 64B groove, 35A, 65A upper header, 35B, 65B lower header, 36,66 heat transfer tube, 37,67 corrugated fin, 71 heat transfer plate, 72A upper distribution area , 72B lower distribution area, 100,101 refrigeration cycle device, 110 outdoor unit, 120 indoor unit, 130 first refrigerant circuit, 140 second refrigerant circuit, 150 pump, 152,162,172,182 flow control valve, 160,170 , 180 Indoor temperature control unit.

Claims (10)

  1.  非共沸混合冷媒が使用される冷凍サイクル装置であって、
     圧縮機と、
     流路切り替え部と、
     前記非共沸混合冷媒が流出入する第1流出入部および第2流出入部と、前記第1流出入部と前記第2流出入部との間に互いに直列に接続されており前記非共沸混合冷媒が流れる第1管部および第2管部とを含む第1熱交換器と、
     減圧装置と、
     第2熱交換器とを備え、
     前記非共沸混合冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含み、
     前記流路切り替え部は、前記非共沸混合冷媒が前記圧縮機、前記第1熱交換器、前記減圧装置、および前記第2熱交換器をこの記載順に流れる第1状態と、前記非共沸混合冷媒が前記第1状態とは逆向きに流れる第2状態とを切り替え、
     前記第1状態では、前記非共沸混合冷媒が前記第1熱交換器内を前記第1流出入部、前記第1管部、前記第2管部、および前記第2流出入部の順に流れ、
     前記第2状態では、前記非共沸混合冷媒が前記第1熱交換器内を前記第2流出入部、前記第2管部、前記第1管部、および前記第1流出入部の順に流れ、
     前記第1管部は、凹凸が形成された第1内周面を有し、
     前記第2管部は、凹凸が形成された第2内周面を有し、
     前記第1管部の前記第1内周面の面積拡大率は、前記第2管部の前記第2内周面の面積拡大率よりも高い、冷凍サイクル装置。
    A refrigeration cycle device that uses a non-azeotropic mixed refrigerant.
    With a compressor,
    Flow path switching part and
    The first inflow / outflow section and the second inflow / outflow section through which the non-azeotropic mixed refrigerant flows in and out, and the first inflow / outflow section and the second inflow / outflow section are connected in series with each other, and the non-azeotropic mixed refrigerant is connected. A first heat exchanger including a flowing first pipe portion and a second pipe portion,
    Decompression device and
    Equipped with a second heat exchanger
    The non-azeotropic mixed refrigerant contains a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having no characteristic of causing a disproportionation reaction.
    The flow path switching unit includes a first state in which the non-azeotropic mixed refrigerant flows through the compressor, the first heat exchanger, the decompression device, and the second heat exchanger in the order described, and the non-azeotropic mixing refrigerant. Switching between the second state in which the mixed refrigerant flows in the opposite direction to the first state,
    In the first state, the non-azeotropic mixed refrigerant flows in the first heat exchanger in the order of the first inflow / outflow portion, the first pipe portion, the second pipe portion, and the second inflow / outflow portion.
    In the second state, the non-azeotropic mixed refrigerant flows in the first heat exchanger in the order of the second inflow / outflow portion, the second pipe portion, the first pipe portion, and the first inflow / outflow portion.
    The first pipe portion has a first inner peripheral surface on which irregularities are formed.
    The second pipe portion has a second inner peripheral surface on which irregularities are formed.
    A refrigeration cycle apparatus in which the area expansion ratio of the first inner peripheral surface of the first pipe portion is higher than the area expansion ratio of the second inner peripheral surface of the second pipe portion.
  2.  前記第1内周面には、螺旋状に延在する少なくとも1つの第1溝部が形成されており、 前記第2内周面には、螺旋状に延在する少なくとも1つの第2溝部が形成されており、
     前記少なくとも1つの第1溝部および前記少なくとも1つの第2溝部の数、深さ、およびリード角の少なくともいずれかについて、前記少なくとも1つの第1溝部は、前記少なくとも1つの第2溝部を超えている、請求項1に記載の冷凍サイクル装置。
    At least one first groove portion extending spirally is formed on the first inner peripheral surface, and at least one second groove portion extending spirally is formed on the second inner peripheral surface. Has been
    The at least one first groove exceeds the at least one second groove with respect to at least one of the number, depth, and lead angle of the at least one first groove and the at least one second groove. , The refrigeration cycle apparatus according to claim 1.
  3.  前記第2熱交換器は、前記非共沸混合冷媒が流出入する第3流出入部および第4流出入部と、前記第3流出入部と前記第4流出入部との間に配置されており前記非共沸混合冷媒が流れる第3管部および第4管部とを含み、
     前記第1状態では、前記非共沸混合冷媒が前記第2熱交換器内を前記第4流出入部、前記第4管部、前記第3管部、および前記第3流出入部の順に流れ、
     前記第2状態では、前記非共沸混合冷媒が前記第2熱交換器内を前記第3流出入部、前記第3管部、前記第4管部、および前記第4流出入部の順に流れ、
     前記第3管部は、凹凸が形成された第3内周面を有し、
     前記第4管部は、凹凸が形成された第4内周面を有し、
     前記第3管部の前記第3内周面の面積拡大率は、前記第4管部の前記第4内周面の面積拡大率よりも高い、請求項1または2に記載の冷凍サイクル装置。
    The second heat exchanger is arranged between the third inflow / outflow section and the fourth inflow / outflow section where the non-azeotropic mixed refrigerant flows in / out, and the third inflow / outflow section and the fourth inflow / outflow section, and the non-azeotropic mixed refrigerant flows in and out. Including the third pipe part and the fourth pipe part through which the azeotropic mixed refrigerant flows,
    In the first state, the non-azeotropic mixed refrigerant flows in the second heat exchanger in the order of the fourth inflow / outflow portion, the fourth pipe portion, the third pipe portion, and the third inflow / outflow portion.
    In the second state, the non-azeotropic mixed refrigerant flows in the second heat exchanger in the order of the third inflow / outflow portion, the third pipe portion, the fourth pipe portion, and the fourth inflow / outflow portion.
    The third pipe portion has a third inner peripheral surface on which irregularities are formed.
    The fourth pipe portion has a fourth inner peripheral surface on which irregularities are formed.
    The refrigeration cycle apparatus according to claim 1 or 2, wherein the area expansion ratio of the third inner peripheral surface of the third pipe portion is higher than the area expansion ratio of the fourth inner peripheral surface of the fourth pipe portion.
  4.  前記第1管部および前記第2管部は、上下方向と交差する方向に延びている、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the first pipe portion and the second pipe portion extend in a direction intersecting the vertical direction.
  5.  前記第1熱交換器は、前記第1管部および前記第2管部が伝熱管として構成されたフィンチューブ熱交換器である、請求項1~4のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the first heat exchanger is a fin tube heat exchanger in which the first tube portion and the second tube portion are configured as heat transfer tubes. ..
  6.  前記第1熱交換器は、上端および下端を有し上下方向に沿って延びる伝熱管をさらに含み、
     前記第1熱交換器および前記第2熱交換器の各々は、前記第1管部が前記伝熱管の前記上端と接続されている第1ヘッダとして構成されており、かつ前記第2管部が前記伝熱管の前記下端と接続されている第2ヘッダとして構成されたコルゲート熱交換器である、請求項1~4のいずれか1項に記載の冷凍サイクル装置。
    The first heat exchanger further includes a heat transfer tube having upper and lower ends and extending in the vertical direction.
    Each of the first heat exchanger and the second heat exchanger is configured as a first header in which the first tube portion is connected to the upper end of the heat transfer tube, and the second tube portion is The refrigeration cycle apparatus according to any one of claims 1 to 4, which is a corrugated heat exchanger configured as a second header connected to the lower end of the heat transfer tube.
  7.  第1冷媒が循環する第1冷媒回路と、
     第2冷媒が循環する第2冷媒回路と、
     前記第1冷媒と前記第2冷媒との間で熱交換が行われる中間熱交換器とを備え、
     前記第1冷媒回路は、
     前記第1冷媒を圧縮する圧縮機と、
     流路切り替え部と、
     前記第1冷媒と空気との間で熱交換が行われる第3熱交換器と、
     前記第1冷媒を減圧する減圧装置と、
     前記中間熱交換器において、前記第1冷媒が通過する第1流路とを含み、
     前記第2冷媒回路は、
     前記第2冷媒を昇圧し搬送するポンプと、
     前記中間熱交換器において、前記第2冷媒が通過する第2流路と、
     前記第2冷媒と空気との間で熱交換が行われる第4熱交換器とを含み、
     前記第1冷媒は、不均化反応が生じる特性を有する冷媒と、不均化反応が生じる特性を有さない冷媒とを含む非共沸混合冷媒であり、
     前記中間熱交換器は、前記第1冷媒が前記第1流路に流出入する第5流出入部および第6流出入部を含み、
     前記第5流出入部は、前記第6流出入部よりも上方に配置されており、
     前記流路切り替え部は、前記非共沸混合冷媒が前記圧縮機、前記第3熱交換器、前記減圧装置、および前記中間熱交換器をこの記載順に流れる第1状態と、前記非共沸混合冷媒が前記第1状態とは逆向きに流れる第2状態とを切り替え、
     前記第1状態では、前記非共沸混合冷媒が前記中間熱交換器内を前記第5流出入部から前記第6流出入部に向かって流れ、
     前記第2状態では、前記非共沸混合冷媒が前記中間熱交換器内を前記第6流出入部から前記第5流出入部に向かって流れる、冷凍サイクル装置。
    The first refrigerant circuit in which the first refrigerant circulates,
    The second refrigerant circuit in which the second refrigerant circulates,
    It is provided with an intermediate heat exchanger in which heat exchange is performed between the first refrigerant and the second refrigerant.
    The first refrigerant circuit is
    A compressor that compresses the first refrigerant and
    Flow path switching part and
    A third heat exchanger in which heat is exchanged between the first refrigerant and air,
    A decompression device that decompresses the first refrigerant and
    In the intermediate heat exchanger, the first flow path through which the first refrigerant passes is included.
    The second refrigerant circuit is
    A pump that boosts and conveys the second refrigerant,
    In the intermediate heat exchanger, the second flow path through which the second refrigerant passes and
    Including a fourth heat exchanger in which heat exchange is performed between the second refrigerant and air.
    The first refrigerant is a non-azeotropic mixed refrigerant containing a refrigerant having a characteristic of causing a disproportionation reaction and a refrigerant having no characteristic of causing a disproportionation reaction.
    The intermediate heat exchanger includes a fifth inflow / outflow portion and a sixth inflow / outflow portion through which the first refrigerant flows in and out of the first flow path.
    The fifth inflow / outflow section is arranged above the sixth inflow / outflow section.
    The flow path switching unit includes the first state in which the non-azeotropic mixed refrigerant flows through the compressor, the third heat exchanger, the depressurizing device, and the intermediate heat exchanger in the order described, and the non-azeotropic mixing. Switching between the second state in which the refrigerant flows in the opposite direction to the first state,
    In the first state, the non-azeotropic mixed refrigerant flows in the intermediate heat exchanger from the fifth inflow / outflow section toward the sixth inflow / outflow section.
    In the second state, the refrigeration cycle apparatus in which the non-azeotropic mixed refrigerant flows in the intermediate heat exchanger from the sixth inflow / outflow portion toward the fifth inflow / outflow portion.
  8.  前記中間熱交換器は、上下方向と交差する方向に積層された複数の伝熱プレートを含むプレート式熱交換器である、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein the intermediate heat exchanger is a plate type heat exchanger including a plurality of heat transfer plates stacked in a direction intersecting the vertical direction.
  9.  前記非共沸混合冷媒は、R32と、CF3Iと、HFO1123とを含む、請求項1~8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the non-azeotropic mixed refrigerant contains R32, CF3I, and HFO1123.
  10.  前記冷凍サイクル装置に封止された状態の前記非共沸混合冷媒における前記HFO1123の重量比率は、60wt%以上であり、
     前記冷凍サイクル装置に封止された状態の前記非共沸混合冷媒における前記CF3Iの重量比率は、2wt%以上5wt%以下である、請求項9に記載の冷凍サイクル装置。
    The weight ratio of the HFO 1123 in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus is 60 wt% or more.
    The refrigeration cycle apparatus according to claim 9, wherein the weight ratio of the CF3I in the non-azeotropic mixed refrigerant sealed in the refrigeration cycle apparatus is 2 wt% or more and 5 wt% or less.
PCT/JP2020/015651 2020-04-07 2020-04-07 Refrigeration cycle device WO2021205536A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/015651 WO2021205536A1 (en) 2020-04-07 2020-04-07 Refrigeration cycle device
EP20930077.1A EP4134601A4 (en) 2020-04-07 2020-04-07 Refrigeration cycle device
JP2022513738A JP7341326B2 (en) 2020-04-07 2020-04-07 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015651 WO2021205536A1 (en) 2020-04-07 2020-04-07 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021205536A1 true WO2021205536A1 (en) 2021-10-14

Family

ID=78023057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015651 WO2021205536A1 (en) 2020-04-07 2020-04-07 Refrigeration cycle device

Country Status (3)

Country Link
EP (1) EP4134601A4 (en)
JP (1) JP7341326B2 (en)
WO (1) WO2021205536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095260A1 (en) * 2021-11-25 2023-06-01 三菱電機株式会社 Air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281293A (en) * 1993-03-31 1994-10-07 Toshiba Corp Heat exchanger
JPH06307738A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Condenser for non-azeotrope reefrigerant
JP2001221537A (en) * 2000-02-14 2001-08-17 Sanyo Electric Co Ltd Cooling system
WO2015140887A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
JP2017116242A (en) * 2015-12-26 2017-06-29 株式会社コロナ Heat pump apparatus
WO2019193712A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Air conditioning device
WO2020003494A1 (en) 2018-06-29 2020-01-02 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203734A1 (en) 2012-03-09 2013-09-12 Kiekert Ag Lock for a flap or door
JP6281293B2 (en) 2014-01-22 2018-02-21 株式会社リコー Image forming apparatus
JP6141514B2 (en) * 2014-03-07 2017-06-07 三菱電機株式会社 Refrigeration cycle equipment
JPWO2015140886A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281293A (en) * 1993-03-31 1994-10-07 Toshiba Corp Heat exchanger
JPH06307738A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Condenser for non-azeotrope reefrigerant
JP2001221537A (en) * 2000-02-14 2001-08-17 Sanyo Electric Co Ltd Cooling system
WO2015140887A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
JP2017116242A (en) * 2015-12-26 2017-06-29 株式会社コロナ Heat pump apparatus
WO2019193712A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Air conditioning device
WO2020003494A1 (en) 2018-06-29 2020-01-02 三菱電機株式会社 Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095260A1 (en) * 2021-11-25 2023-06-01 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPWO2021205536A1 (en) 2021-10-14
JP7341326B2 (en) 2023-09-08
EP4134601A1 (en) 2023-02-15
EP4134601A4 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
KR0142506B1 (en) Airconditioner employing non-azeotrope refrigerant
US6571575B1 (en) Air conditioner using inflammable refrigerant
CN109477669B (en) Heat exchanger and refrigeration cycle device provided with same
WO2000052396A1 (en) Refrigerating device
JP2009257740A (en) Refrigerating apparatus
WO2016059696A1 (en) Refrigeration cycle device
JP2006242529A (en) Heat transfer pipe
JP4118254B2 (en) Refrigeration equipment
JP2018162900A (en) Heat exchanger and air conditioner including the same
WO2021205536A1 (en) Refrigeration cycle device
JP2009222360A (en) Heat exchanger
JP5646257B2 (en) Refrigeration cycle equipment
JP6611335B2 (en) Heat exchanger and air conditioner
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6415600B2 (en) Refrigeration cycle equipment
WO2017150221A1 (en) Heat exchanger and air conditioner
JPWO2021205536A5 (en)
WO2021176651A1 (en) Heat exchanger and air conditioner
WO2019021364A1 (en) Refrigeration device and refrigeration device operation method
JP7184897B2 (en) refrigeration cycle equipment
WO2016016999A1 (en) Refrigeration cycle device
WO2020235030A1 (en) Heat exchanger and refrigeration cycle device using same
JP2015158303A (en) heat exchanger and refrigeration cycle device
WO2024042575A1 (en) Heat exchanger, and refrigeration cycle device
WO2021075075A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020930077

Country of ref document: EP

Effective date: 20221107