WO2017150221A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2017150221A1
WO2017150221A1 PCT/JP2017/005960 JP2017005960W WO2017150221A1 WO 2017150221 A1 WO2017150221 A1 WO 2017150221A1 JP 2017005960 W JP2017005960 W JP 2017005960W WO 2017150221 A1 WO2017150221 A1 WO 2017150221A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
heat transfer
refrigerant
connection pipe
Prior art date
Application number
PCT/JP2017/005960
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 葛山
青木 泰高
秀哲 立野井
将之 左海
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to AU2017227162A priority Critical patent/AU2017227162B2/en
Priority to EP17759690.5A priority patent/EP3376149B1/en
Priority to CN201780004388.4A priority patent/CN108291786A/en
Publication of WO2017150221A1 publication Critical patent/WO2017150221A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • the present application claims priority based on Japanese Patent Application No. 2016-038405 filed in Japan on February 29, 2016, the contents of which are incorporated herein by reference.
  • a heat exchanger for an air conditioner one having a plurality of heat transfer tubes extending in the horizontal direction is known.
  • a plurality of heat transfer tubes are arranged at intervals in the vertical direction.
  • Each heat transfer tube is provided with fins on the outer surface. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of headers extending in the vertical direction.
  • the refrigerant introduced into the first header of the pair of headers and circulated through the heat transfer tube to the second header is transferred to the second header. It is configured to return and return to the first header through the heat transfer tube again.
  • Patent Document 1 discloses a heat exchanger in which the connection pipe is connected to a lower portion of each region in a header into which a folded refrigerant is introduced.
  • the refrigerant introduced into one area in the header via the heat transfer tube is not necessarily vaporized, but a liquid phase refrigerant and a gas phase refrigerant. Are in a gas-liquid two-phase refrigerant state.
  • a gas-liquid two-phase refrigerant is introduced into the lower part of the other region in the header via the connection pipe, the liquid phase refrigerant component having a high density is difficult to reach the upper heat transfer pipe. Therefore, the refrigerant flowing through the upper heat transfer tube has a smaller liquid-phase refrigerant flow rate, and as a result, there is a problem that the desired performance of the heat exchanger cannot be obtained.
  • This invention is made
  • the heat exchanger includes a first heat transfer tube that extends in the horizontal direction and in which a refrigerant circulates and is arranged at intervals in the vertical direction, and a cylinder that extends in the vertical direction.
  • a first header portion in which one end of the plurality of first heat transfer tubes is connected in a communicating state, and a plurality of the first heat transfer tubes are arranged in a horizontal direction with a refrigerant flowing therein and spaced apart in the vertical direction.
  • the refrigerant having a large liquid phase content and a large density is provided below the first header part. It is introduced into the first connecting pipe connected to. Therefore, the refrigerant having a high density is supplied to the upper part of the second header part through the first connection pipe.
  • the refrigerant having a large gas phase content and a low density is introduced into the second connection pipe connected to the upper part of the first header part. The small refrigerant is supplied to the lower part of the second header portion through the second connection pipe.
  • the refrigerant having a large liquid phase falls from the upper part, and the refrigerant having a large gas phase is blown up from the lower part. Therefore, mixing of the liquid phase component and the gas phase component is promoted, and the refrigerant density is made uniform throughout the entire vertical direction in the second header portion. Accordingly, it is possible to equalize the refrigerant distribution supplied to the plurality of heat transfer tubes connected to the second header portion.
  • the heat exchanger divides the space in the second header part into a second upper region communicating with the first connection pipe and a second lower region communicating with the second connection pipe, and penetrates vertically. You may further provide the 2nd header partition plate in which the communicating hole was formed.
  • the liquid phase-rich refrigerant introduced from the upper part of the second header part temporarily stays in the second upper area.
  • the refrigerant having a large gas phase introduced from below the second header part blows up to the second upper region through the communication hole.
  • the gas phase component does not become excessive in the upper part in the second header portion, that is, the mixing of the gas phase component and the liquid phase component can be promoted.
  • the heat exchanger includes a first header partition that divides a space in the first header portion into a first lower region communicating with the first connection pipe and a first upper region communicating with the second connection pipe.
  • a plate may be further provided.
  • the refrigerant introduced into the first header portion via the first heat transfer tube may have a different gas-liquid ratio for each first heat transfer tube.
  • the amount of refrigerant introduced into the first header portion from the first heat transfer tube located above is larger, and the amount of liquid phase introduced into the first header portion from the first heat transfer tube located below is larger. Therefore, the first header part is divided into the first lower region and the second upper region by the first header partition plate to supply the lower and upper parts in the second header part via the first connection tube and the second connection tube. It is possible to stabilize the gas phase and liquid phase ratio of the refrigerant to be used. Furthermore, by adjusting the vertical position of the first header partition plate, the gas-liquid ratio and the flow rate of the refrigerant supplied to the lower part and the upper part in the second header part can be adjusted to desired values.
  • At least one of the first connection pipe and the second connection pipe may have a flat tube shape in which a plurality of flow paths are arranged with a space therebetween.
  • the heat exchanger includes a header
  • the header includes a cylindrical header main body extending in a vertical direction, and a main partition plate that divides the header main body vertically, and the first header The portion may be a portion below the main partition plate in the header body, and the second header portion may be a portion above the main partition plate in the header body.
  • first header part and the second header part By forming the first header part and the second header part through the main partition plate in one header, a heat exchanger having these first header part and second header part can be easily configured. Moreover, the oil component separated from the refrigerant is guided to the first header portion without being stored in the second header portion via the second connection pipe. As a result, the oil component can be mixed in the refrigerant again, so that the shortage of oil component from the refrigerant can be suppressed.
  • the air conditioner according to the second aspect of the present invention includes any one of the above heat exchangers.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention. It is a longitudinal cross-sectional view of the heat exchanger which concerns on 1st embodiment of this invention. It is a perspective view of the heat exchanger which concerns on 1st embodiment of this invention. It is a figure explaining the effect at the time of using the heat exchanger which concerns on 1st embodiment of this invention as an evaporator. It is a figure explaining the effect at the time of using the heat exchanger concerning a first embodiment of the present invention as a condenser. It is a perspective view of the heat exchanger which concerns on 2nd embodiment of this invention. It is a longitudinal cross-sectional view of the heat exchanger which concerns on 2nd embodiment of this invention.
  • the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and And a pipe 7 for connecting them.
  • the air conditioner 1 comprises the refrigerant circuit with the above elements.
  • the compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
  • the indoor heat exchanger 3 performs heat exchange between the refrigerant and the indoor air.
  • the indoor heat exchanger 3 is used as an evaporator during cooling operation and absorbs heat from the room, and is used as a condenser during heating operation and dissipates heat to the room.
  • the outdoor heat exchanger 5 performs heat exchange between the refrigerant and the outdoor air.
  • the expansion valve 4 reduces the pressure by expanding the high-pressure refrigerant liquefied by exchanging heat with the condenser.
  • the outdoor heat exchanger 5 is used as a condenser during the cooling operation and dissipates heat to the outside, and is used as an evaporator during the heating operation and absorbs heat from the outside.
  • the four-way valve 6 switches the direction in which the refrigerant flows between the heating operation and the cooling operation. Accordingly, during the cooling operation, the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3. On the other hand, during the heating operation, the refrigerant circulates in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.
  • the heat exchanger 10 includes a plurality of heat transfer tubes 20, a plurality of fins 23, a pair of headers 30, a first connection tube 55, and a second connection tube 56.
  • the heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow path through which the refrigerant flows is formed.
  • a plurality of such heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
  • each heat transfer tube 20 has a flat tubular shape, and a plurality of flow paths arranged in parallel in the horizontal direction perpendicular to the extending direction of the heat transfer tube 20 are formed inside the heat transfer tube 20. Yes.
  • the plurality of flow paths are arranged in parallel to each other.
  • the external shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is a flat shape with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.
  • the fins 23 are respectively disposed between the heat transfer tubes 20 arranged as described above.
  • the fins 23 of the present embodiment have a so-called corrugated shape that extends so as to alternately contact the adjacent heat transfer tubes 20 in the extending direction of the heat transfer tubes 20.
  • the shape of the fin 23 is not limited to this, and may be any shape as long as it is provided so as to protrude from the outer peripheral surface of the heat transfer tube 20.
  • the pair of headers 30 are provided at both ends of the plurality of heat transfer tubes 20 so as to sandwich the heat transfer tubes 20 from the extending direction of the heat transfer tubes 20.
  • One header of the pair of headers 30 is an entrance / exit header 40 that serves as an entrance / exit into the heat exchanger 10 for refrigerant from the outside.
  • the other header is a return side header 50 for returning the refrigerant in the heat exchanger 10.
  • the entrance / exit-side header 40 is a cylindrical member extending in the vertical direction, and has an upper end and a lower end closed.
  • the entrance / exit side header 40 is partitioned into two upper and lower regions by a partition plate 41.
  • a lower area partitioned by the partition plate 41 in the entrance / exit header 40 is a lower entrance / exit area 42, and an upper area is an upper entrance / exit area 43.
  • the lower entrance / exit area 42 and the upper entrance / exit area 43 are not in communication with each other in the entrance / exit header 40.
  • the lower entry / exit area 42 and the upper entry / exit area 43 are connected to the pipes 7 constituting the refrigerant circuit.
  • the heat transfer tube 20 connected in communication with the lower input / output region 42 is a first heat transfer tube 21, and an upper input / output region 43.
  • the heat transfer tube 20 connected in communication with the second heat transfer tube 22 is a second heat transfer tube 22.
  • the folded-back header 50 includes a header body 51 and a main partition plate 54.
  • the header main body 51 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed.
  • the main partition plate 54 is provided in the header body 51 and divides the space in the header body 51 into two upper and lower areas.
  • a portion below the main partition plate 54 of the header body 51 is a first header portion 52, and a portion above the main partition plate 54 of the header body 51 is a second header portion 53. That is, in this embodiment, the header main body 51 is partitioned by the main partition plate 54, so that the first header portion 52 and the second header portion 53 each having a space are formed in the folded-back header 50. Yes.
  • the first header portion 52 and the second header portion 53 constitute the folded-back header 50.
  • the first heat transfer tubes 21 are connected to the first header portion 52 so as to communicate with the inside of the first header portion 52, respectively.
  • the 2nd heat exchanger tube 22 is connected to the 2nd header part 53 so that it may be in a communication state with the inside of the 2nd header part 53, respectively.
  • the heat transfer tube 20 connected to the first header portion 52 is the first heat transfer tube 21
  • the heat transfer tube 20 connected to the second header portion 53 is the second heat transfer tube 22.
  • the second heat transfer tubes 22 are provided more than the first heat transfer tubes 21, but the present invention is not limited to this, and the first heat transfer tubes 21 are more than the second heat transfer tubes 22. It may be provided. Further, the same number of first heat transfer tubes 21 and second heat transfer tubes 22 may be provided.
  • the first connection pipe 55 is a tubular member having a flow path formed therein, and one end of the first connection pipe 55 is connected to the first header part 52 in communication with the inside of the first header part 52. The end is connected to the second header portion 53 in communication with the inside of the second header portion 53. More specifically, one end of the first connection pipe 55 is connected to the lower portion of the first header portion 52. On the other hand, the other end of the first connection pipe 55 is connected to the upper part of the second header portion 53.
  • one end of the first connection pipe 55 is connected to the first header part 52 of the first heat transfer pipe 21 located at the lowest position among the plurality of first heat transfer pipes 21 connected to the first header part 52. It is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction). Further, the other end of the first connection pipe 55 is connected to the second header part 53 of the second heat transfer pipe 22 located at the uppermost position among the plurality of second heat transfer pipes 22 connected to the second header part 53. It is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction).
  • the second connection pipe 56 is a tubular member having a flow path formed therein, and, like the first connection pipe 55, one end communicates with the inside of the first header portion 52 with respect to the first header portion 52. And the other end is connected to the second header portion 53 in communication with the inside of the second header portion 53.
  • the second connection pipe 56 has one end connected to the upper part in the first header part 52 and the other end connected to the upper part in the second header part 53.
  • one end of the second connection pipe 56 only needs to be connected to the first header portion 52 above one end of the first connection pipe 55. Further, the other end of the second connection pipe 56 only needs to be connected to the second header portion 53 below the other end of the first connection pipe 55.
  • one end of the second connection pipe 56 is connected to the first header part 52 of the first heat transfer pipe 21 located at the uppermost position among the plurality of first heat transfer pipes 21 connected to the first header part 52.
  • the other end of the second connection pipe 56 is connected to the second header part 53 of the second heat transfer pipe 22 located at the lowest position among the plurality of second heat transfer pipes 22 connected to the second header part 53. It is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction).
  • the heat exchanger 10 When the heat exchanger 10 is the indoor heat exchanger 3, it is used as an evaporator during the cooling operation of the air conditioner 1, and when the outdoor heat exchanger 5 is used, it evaporates during the heating operation of the air conditioner 1. It will be used as a container.
  • liquid-phase refrigerant is supplied from the pipe 7 to the lower inlet / outlet region 42 of the inlet / outlet header 40 shown in FIG.
  • This refrigerant is distributed and supplied into the plurality of first heat transfer tubes 21 in the lower entrance / exit region 42, and is evaporated by exchanging heat with the external atmosphere of the first heat transfer tubes 21 in the process of flowing through the first heat transfer tubes 21. Is prompted.
  • the refrigerant supplied from the first heat transfer tube 21 into the first header portion 52 of the folded-back header 50 is a gas-liquid mixture of a liquid phase and a gas phase due to a partial change from the liquid phase to the gas phase. It becomes a two-phase refrigerant.
  • the refrigerant having a large liquid phase content and a large density gathers under the first header section 52 due to gravity, and A refrigerant having a large phase and a low density gathers at the top of the first header portion 52.
  • the refrigerant having a high liquid phase content is introduced into the first connection pipe 55 connected to the lower portion of the first header section 52, and is introduced into the second header section 53 through the first connection pipe 55.
  • the refrigerant having a large gas phase content is introduced into the second connection pipe 56 connected to the upper portion of the first header section 52, and is introduced into the second header section 53 through the second connection pipe 56.
  • a refrigerant with a large liquid phase is supplied to the upper part in the second header part 53 to which the first connection pipe 55 is connected, and a refrigerant with a large liquid phase in the second header part 53 from the upper part toward the lower part. Will be poured down.
  • a refrigerant with a large gas phase content is supplied to the lower part in the second header part 53 to which the second connection pipe 56 is connected, and a refrigerant with a larger gas phase part from the lower part to the upper part in the second header part 53. Will blow up.
  • the refrigerant having a large gas phase content and the refrigerant having a large liquid phase content are mixed with each other, and the gas-liquid ratio of the refrigerant is made uniform as a whole in the second header portion 53.
  • coolant with which the gas-liquid ratio was equalized is supplied to the some 2nd heat exchanger tube 22 connected in the 2nd header part 53, respectively.
  • the refrigerant is promoted to evaporate again by exchanging heat with the external atmosphere of the second heat transfer tube 22 in the process of flowing through the second heat transfer tube 22.
  • the liquid phase remaining in the refrigerant changes into a gas phase in the second heat transfer tube 22, and the gas phase refrigerant is supplied to the upper entrance / exit region 43 of the inlet / outlet header 40.
  • the refrigerant is introduced into the pipe 7 from the upper entrance / exit area 43 and circulates in the refrigerant circuit.
  • the refrigerant having a high liquid phase content and a large density in the first header portion 52 is located above the second header portion 53 via the first connection pipe 55.
  • a refrigerant with a large gas phase content and a low density in the first header portion 52 is supplied from below the second header portion 53 via the second connection pipe 56. Therefore, the density of the refrigerant is reversed upside down in the first header portion 52 and the second header portion 53.
  • the refrigerant can be guided to the second heat transfer tube 22. Accordingly, it is possible to equalize the refrigerant distribution supplied to the plurality of heat transfer tubes 20 connected to the second header portion 53. As a result, the flow rate of the liquid refrigerant flowing through the second heat transfer tubes 22 is made uniform regardless of the upper and lower positions of the second heat transfer tubes 22, so that the performance deterioration of the heat exchanger 10 can be suppressed.
  • the heat exchanger 10 When the heat exchanger 10 is the indoor heat exchanger 3, it is used as a condenser during the heating operation of the air conditioner 1, and when the outdoor heat exchanger 5 is used, it is condensed during the cooling operation of the air conditioner 1. It will be used as a container.
  • a gas-phase refrigerant is supplied from the pipe 7 to the upper entrance / exit region 43 of the entrance / exit header 40 shown in FIG.
  • This refrigerant is distributed and supplied into the plurality of second heat transfer tubes 22 in the upper entrance / exit region 43, and condensed by exchanging heat with the external atmosphere of the second heat transfer tubes 22 in the process of flowing through the second heat transfer tubes 22. Is prompted.
  • the refrigerant supplied from the second heat transfer tube 22 into the second header portion 53 of the folded-back header 50 is partly changed from the gas phase to the liquid phase, so that the gas phase is a mixture of the liquid phase and the gas phase. It becomes a two-phase refrigerant.
  • the refrigerant having a large liquid phase content and a high density gathers under the second header portion 53 due to gravity
  • the refrigerant with a large gas phase content is introduced into the first connection pipe 55 connected to the upper part of the second header part 53 and introduced into the lower part of the first header part 52 through the first connection pipe 55.
  • the refrigerant having a large amount of liquid phase is introduced into the second connection pipe 56 connected to the lower part of the second header part 53 and introduced into the upper part of the first header part 52 through the second connection pipe 56.
  • the gas-liquid ratio of the refrigerant is made uniform as a whole in the first header portion 52 as in the second header portion 53 when the heat exchanger 10 is used as an evaporator. .
  • the flow rate of each of the plurality of first heat transfer tubes 21 to which the refrigerant is supplied from the first header portion 52 when the heat exchanger 10 is used as a condenser is the head difference (first transfer) of the first heat transfer tubes 21.
  • the cooling effect by each 1st heat exchanger tube 21 varies, the performance decline as the heat exchanger 10 whole will be caused.
  • the cooling effect in the first heat transfer tube 21 disposed above is small, so that the refrigerant cannot be sufficiently condensed.
  • positioned below is large, it will supercool a refrigerant
  • the gas-liquid ratio in the first header portion 52 is made uniform as described above, the inconvenience when the heat exchanger 10 is used as a condenser can be suppressed. .
  • the lower part in the folded-back header 50 is the first header part 52 and the upper part is the second header part 53. Therefore, the oil component separated from the refrigerant can be introduced into the first header portion 52 without staying in the lower portion of the second header portion 53 via the second connection pipe 56. As a result, the oil component is mixed with the refrigerant in the first header portion 52, so that it is possible to avoid the oil component from becoming extremely insufficient from the refrigerant when performing the refrigeration cycle in the refrigerant circuit.
  • the heat exchanger 60 which concerns on 2nd embodiment of this invention is demonstrated with reference to FIG.6 and FIG.7.
  • the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
  • the heat exchanger 60 of the second embodiment is different from the first embodiment in that the folded-back header 50 further includes a second header partition plate 61.
  • the second header partition 61 divides the space in the second header portion 53 into two upper and lower regions. Of these two regions, the lower region is a second lower region 63 and the upper region is a second upper region 64.
  • the second heat transfer tubes 22 communicate with the second lower region 63 and the second upper region 64, respectively.
  • the other end of the second connection pipe 56 communicates with the second lower region 63
  • the other end of the first connection pipe 55 communicates with the second upper region 64.
  • the second header partition plate 61 is formed with a communication hole 62 penetrating in the vertical direction.
  • the second lower region 63 and the second upper region 64 are in communication with each other in a part in the horizontal direction.
  • the second header partition plate 61 is stretched inward from the inner peripheral surface of the header body 51 so as to allow a part of the second lower region 63 and the second upper region 64 to communicate with each other in the horizontal direction. It is formed to take out.
  • the communication hole 62 may be formed at the center in the horizontal direction of the second header partition plate 61 or may be formed away from the center.
  • gas-liquid mixing in the second header portion 53 particularly when the heat exchanger 60 is used as an evaporator is the same as that of the first embodiment. More than the heat exchanger 10, it can carry out more effectively. That is, in the case of the heat exchanger 10 of the first embodiment, the refrigerant having a large gas phase supplied from the upper part of the second header part 53 and having a high density quickly falls to the lower part of the second header part 53 due to gravity. Therefore, the liquid phase may also increase at the lower part of the second header portion 53. In particular, it becomes more conspicuous when the amount of refrigerant supplied from the upper part of the second header portion 53 is large.
  • the refrigerant having a large liquid phase introduced from the upper part of the second header part 53 quickly moves to the lower part of the second header part 53 due to the presence of the second header partition plate 61. Without being temporarily retained in the second upper region 64. Furthermore, since the refrigerant having a large amount of gas phase introduced from below the second header portion 53 is blown up to the second upper region 64 through the communication hole 62, the gas phase component is stably stabilized in the second upper region 64. Can be supplied. Thereby, it is possible to suppress the liquid phase component from being excessive in the second lower region 63 in the second header portion 53 and to suppress the gas phase component from being excessive in the second upper region 64. Can do. This makes it possible to more efficiently promote the mixing of the gas phase / liquid phase components in the second header portion 53 as a whole.
  • one second header partition plate 61 is provided in the second header portion 53
  • a plurality of second header portions 53 are spaced apart in the vertical direction in the second header portion 53.
  • a header partition plate 61 may be provided.
  • the plurality of regions partitioned vertically are respectively connected to the second heat transfer tube 22.
  • the other end of the 2nd connecting pipe 56 is connected to the lowermost area
  • each 2nd header partition plate 61 when providing the several 2nd header partition plate 61, it is preferable that the communicating hole 62 formed in each 2nd header partition plate 61 is formed in the position which does not mutually overlap seeing from an up-down direction. Thereby, the liquid phase can be retained more effectively in each region, and gas-liquid mixing in each region can be performed more efficiently.
  • a heat exchanger 70 according to a third embodiment of the present invention will be described with reference to FIGS.
  • the heat exchanger 70 of the third embodiment is different from the first embodiment in that the folded-back header 50 further includes a first header partition plate 71.
  • the first header partition plate 71 divides the space in the first header portion 52 into two upper and lower regions. Of these two regions, the lower region is a first lower region 72 and the upper region is a first upper region 73.
  • the first heat transfer tubes 21 communicate with the first lower region 72 and the first upper region 73, respectively.
  • one end of the first connection pipe 55 is communicated with the first lower region 72
  • one end of the second connection pipe 56 is communicated with the first upper region 73.
  • the first lower region 72 and the first upper region 73 are not in communication within the first header portion 52.
  • the refrigerant introduced into the first header part 52 via the first heat transfer tube 21 may have a different gas / liquid ratio for each first heat transfer tube 21.
  • the refrigerant introduced into the first header portion 52 from the first heat transfer tube 21 positioned above has a larger amount of gas phase, and the first heat transfer tube 21 positioned below the first header portion 52.
  • the refrigerant introduced into the interior has more liquid phase. Therefore, the first header portion 52 is partitioned into the first lower region 72 and the first upper region 73 by the first header partition plate 71, so that the second header is connected via the first connection pipe 55 and the second connection pipe 56.
  • the gas phase and the liquid phase ratio of the refrigerant supplied to the lower part and the upper part in the part 53 can be stabilized. Further, by adjusting the vertical position of the first header partition plate 71, the gas-liquid ratio and the flow rate of the refrigerant supplied to the lower part and the upper part in the second header part 53 can be adjusted to desired values.
  • the effect in the case of using the heat exchanger 70 of 3rd embodiment as a condenser is demonstrated.
  • a refrigerant with a large amount of gas phase is supplied to the first lower region 72 in the first header portion 52, and a refrigerant with a large amount of liquid phase is supplied to the first upper region 73. Therefore, when the flow rate of the first heat transfer tube 21 located below among the plurality of first heat transfer tubes 21 is small and the cooling effect is relatively large due to the difference in the header 30 as described above, the first heat transfer tube 21 is circulated. Since the refrigerant has a large gas phase content, it can be appropriately condensed without supercooling the refrigerant.
  • the refrigerant flowing through the first heat transfer tube 21 is already present. There is no inconvenience because there is much condensed liquid phase. Therefore, the refrigerant can be more efficiently condensed as the heat exchanger 70 as a whole.
  • the heat exchanger 80 which concerns on 4th embodiment of this invention is demonstrated with reference to FIG.
  • the heat exchanger 80 of the fourth embodiment differs from the first to third embodiments in that the shapes of the first connecting pipe 81 and the second connecting pipe 82 are flat tubes as shown in FIG. To do.
  • the first connection pipe 81 and the second connection pipe 82 of the third embodiment are the same as those of the first connection pipe 81 and the second connection pipe 82 of the first to third embodiments. While being connected to the two header parts 53, it has the same structure as the heat transfer tube 20 of the first to third embodiments, that is, a plurality of flow paths arranged in one direction at intervals inside. It has a flat tubular shape. Therefore, compared with the first connecting pipe 81 and the second connecting pipe 82 of the first to third embodiments having a circular cross section, the first connecting pipe 81 and the second connecting pipe 82 of the third embodiment are circulated inside. A large amount of refrigerant can be ensured and pressure loss of the refrigerant can be reduced.
  • first header portion 52 and the second header portion 53 are formed integrally with the header body 51 of the folded-back header 50
  • the present invention is not limited to this, and the first header part 52 and the second header part 53 may be arranged independently of each other as in the first modification shown in FIG.
  • the first connecting pipe 55 and the second connecting pipe 56 are connected so that the first header portion 52 and the second header portion 53 are overlaid on each other.
  • the first header portion 52 and the second header portion 53 are arranged at the same vertical position, but may be arranged at different vertical positions.
  • the first header portion is configured so that the refrigerant returned to the inlet / outlet header 40 is supplied again to the return header 50 and then returned to the inlet / outlet header 40.
  • Two sets of 52 and the second header portion 53 may be provided in the return side header 50 and one set may be provided in the entrance / exit side header 40.
  • the heat exchanger 10 of this embodiment may be arrange
  • the first header portion 52 and the second header portion 53 that are adjacent to each other in the upper and lower sides are provided in the folded header 30, and the first header portion 52 and the second header portion 53 are provided.
  • the 1st header part 52 and the 2nd header part 53 may be provided so that may be pinched

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

A heat exchanger (10) is provided with: a plurality of first heat transfer tubes (21); a first header section (52); a plurality of second heat transfer tubes (22); a second header section (53); a first connecting tube (55); and a second connecting tube (56). The plurality of first heat transfer tubes (21) extend in the horizontal direction and are arranged with gaps therebetween in the vertical direction. One end of each of the plurality of first heat transfer tubes (21) is connected to the first header section (52) in a communicating state. The plurality of second heat transfer tubes (22) extend in the horizontal direction and are arranged with gaps therebetween in the vertical direction. One end of each of the plurality of second heat transfer tubes (22) is connected to the second header section (53) in a communicating state. The first connecting tube (55) connects a lower portion of the first header section (52) and an upper portion of the second header section (53). The second connecting tube (56) connects an upper portion of the first header section (52) and a lower portion of the second header section (53).

Description

熱交換器及び空気調和機Heat exchanger and air conditioner
 本発明は、熱交換器及び空気調和機に関する。
 本願は、2016年2月29日に、日本国に出願された特願2016-038405号に基づき優先権を主張し、この内容をここに援用する。
The present invention relates to a heat exchanger and an air conditioner.
The present application claims priority based on Japanese Patent Application No. 2016-038405 filed in Japan on February 29, 2016, the contents of which are incorporated herein by reference.
 空気調和機の熱交換器として、水平方向に延びる複数の伝熱管を備えているものが知られている。複数の伝熱管は、上下方向に間隔をあけて複数配置されている。各伝熱管は、外面にフィンが設けられている。複数の伝熱管の両端は、上下方向に延びる一対のヘッダにそれぞれ接続されている。このような熱交換器は、冷媒の流路長さを確保するため、一対のヘッダのうちの第一ヘッダに導入されて伝熱管を経て、第二ヘッダに流通した冷媒を、第二ヘッダで折り返し、再度伝熱管を経て第一ヘッダに戻すように構成されている。 As a heat exchanger for an air conditioner, one having a plurality of heat transfer tubes extending in the horizontal direction is known. A plurality of heat transfer tubes are arranged at intervals in the vertical direction. Each heat transfer tube is provided with fins on the outer surface. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of headers extending in the vertical direction. In such a heat exchanger, in order to secure the flow path length of the refrigerant, the refrigerant introduced into the first header of the pair of headers and circulated through the heat transfer tube to the second header is transferred to the second header. It is configured to return and return to the first header through the heat transfer tube again.
 第二ヘッダ、つまり折り返し側のヘッダ内は、このヘッダ内を上下方向に区画する仕切板によって複数の領域が区画されている。これによって、ヘッダ内の一の領域内に伝熱管を経て導入された冷媒は、接続管を介してヘッダ内の他の領域に導入された後に、他の領域に接続された複数の伝熱管を経由して出入口側の第一ヘッダに戻される。
 例えば、特許文献1には、折り返す冷媒が導入されるヘッダ内の各領域の下部に上記接続管が接続された熱交換器が開示されている。
In the second header, that is, the folded-back header, a plurality of regions are partitioned by a partition plate that partitions the header in the vertical direction. As a result, the refrigerant introduced into one area in the header via the heat transfer pipe is introduced into the other area in the header via the connection pipe, and then the plurality of heat transfer pipes connected to the other area are introduced. Via the first header on the entrance / exit side.
For example, Patent Document 1 discloses a heat exchanger in which the connection pipe is connected to a lower portion of each region in a header into which a folded refrigerant is introduced.
特許第5071597号公報Japanese Patent No. 5071597
 ところで、上記熱交換器を蒸発器として用いる場合、伝熱管を介してヘッダ内の一の領域に導入される冷媒は、その全てが気化しているとは限らず、液相冷媒と気相冷媒とが混在した気液二相冷媒の状態にある。このような気液二相冷媒が接続管を介してヘッダ内の他の領域の下部に導入された場合、密度の大きい液相冷媒分は上部の伝熱管まで到達し難くなる。そのため、上方の伝熱管を流れる冷媒程、液相冷媒流量が小さくなり、その結果、所望の熱交換器の性能を得られないという問題がある。 By the way, when the heat exchanger is used as an evaporator, the refrigerant introduced into one area in the header via the heat transfer tube is not necessarily vaporized, but a liquid phase refrigerant and a gas phase refrigerant. Are in a gas-liquid two-phase refrigerant state. When such a gas-liquid two-phase refrigerant is introduced into the lower part of the other region in the header via the connection pipe, the liquid phase refrigerant component having a high density is difficult to reach the upper heat transfer pipe. Therefore, the refrigerant flowing through the upper heat transfer tube has a smaller liquid-phase refrigerant flow rate, and as a result, there is a problem that the desired performance of the heat exchanger cannot be obtained.
 本発明は、このような課題に鑑みてなされたものであって、性能低下を抑制することができる熱交換器、及び、この熱交換器を用いた空気調和機を提供することを目的とする。 This invention is made | formed in view of such a subject, Comprising: It aims at providing the heat exchanger which can suppress a performance fall, and the air conditioner using this heat exchanger. .
 本発明は、上記課題を解決するため、以下の手段を採用している。
 即ち、本発明の第一態様に係る熱交換器は、水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第一伝熱管と、上下方向に延びる筒状をなし、複数の前記第一伝熱管の一端が連通状態で接続される第一ヘッダ部と、水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第二伝熱管と、複数の前記第二伝熱管の一端が連通状態で接続される第二ヘッダ部と、前記第一ヘッダ部の下部と前記第二ヘッダ部の上部とを接続する第一接続管と、前記第一ヘッダ部の上部と前記第二ヘッダ部の下部とを接続する第二接続管と、を備える。
The present invention employs the following means in order to solve the above problems.
That is, the heat exchanger according to the first aspect of the present invention includes a first heat transfer tube that extends in the horizontal direction and in which a refrigerant circulates and is arranged at intervals in the vertical direction, and a cylinder that extends in the vertical direction. A first header portion in which one end of the plurality of first heat transfer tubes is connected in a communicating state, and a plurality of the first heat transfer tubes are arranged in a horizontal direction with a refrigerant flowing therein and spaced apart in the vertical direction. A first connection for connecting a second heat transfer tube, a second header portion to which one ends of the plurality of second heat transfer tubes are connected in communication, a lower portion of the first header portion, and an upper portion of the second header portion A pipe, and a second connection pipe connecting the upper part of the first header part and the lower part of the second header part.
 このような熱交換器によれば、例えば第一伝熱管を介して第一ヘッダ部に導入された気液二相冷媒のうち液相分が多く密度の大きい冷媒が、第一ヘッダ部の下部に接続された第一接続管に導入される。そのため、密度の大きい冷媒は、第一接続管を介して第二ヘッダ部の上部に供給される。一方、第一ヘッダ部に導入された気液二相冷媒のうち気相分が多く密度の小さい冷媒は、第一ヘッダ部の上部に接続された第二接続管に導入される、そのため、密度の小さい冷媒は、第二接続管を介して第二ヘッダ部の下部に供給される。
 これにより、第二ヘッダ部内では、上部から液相分が多い冷媒が降り注ぎ、下部からは気相分が多い冷媒が吹き上げることになる。そのため、液相分及び気相分の混合が促進され、第二ヘッダ部内の上下方向全域で冷媒密度が均一化される。したがって、第二ヘッダ部に接続された複数の伝熱管に供給する冷媒分配の均等化を図ることができる。
According to such a heat exchanger, for example, among the gas-liquid two-phase refrigerant introduced into the first header part via the first heat transfer tube, the refrigerant having a large liquid phase content and a large density is provided below the first header part. It is introduced into the first connecting pipe connected to. Therefore, the refrigerant having a high density is supplied to the upper part of the second header part through the first connection pipe. On the other hand, among the gas-liquid two-phase refrigerant introduced into the first header part, the refrigerant having a large gas phase content and a low density is introduced into the second connection pipe connected to the upper part of the first header part. The small refrigerant is supplied to the lower part of the second header portion through the second connection pipe.
As a result, in the second header part, the refrigerant having a large liquid phase falls from the upper part, and the refrigerant having a large gas phase is blown up from the lower part. Therefore, mixing of the liquid phase component and the gas phase component is promoted, and the refrigerant density is made uniform throughout the entire vertical direction in the second header portion. Accordingly, it is possible to equalize the refrigerant distribution supplied to the plurality of heat transfer tubes connected to the second header portion.
 上記熱交換器は、前記第二ヘッダ部内の空間を、前記第一接続管と連通する第二上部領域と前記第二接続管と連通する第二下部領域とに区画するとともに、上下に貫通する連通孔が形成された第二ヘッダ仕切板をさらに備えていてもよい。 The heat exchanger divides the space in the second header part into a second upper region communicating with the first connection pipe and a second lower region communicating with the second connection pipe, and penetrates vertically. You may further provide the 2nd header partition plate in which the communicating hole was formed.
 これにより、第二ヘッダ部の上部から導入される液相分の多い冷媒が、第二上部領域に一時的に滞留することになる。一方で、第二ヘッダ部の下方から導入される気相分の多い冷媒は、連通孔を介して第二上部領域に吹き上げる。これによって、第二ヘッダ部内の上部において気相分が過剰となることはなく、即ち、気相分・液相分の混合促進を図ることができる。 Thereby, the liquid phase-rich refrigerant introduced from the upper part of the second header part temporarily stays in the second upper area. On the other hand, the refrigerant having a large gas phase introduced from below the second header part blows up to the second upper region through the communication hole. Thereby, the gas phase component does not become excessive in the upper part in the second header portion, that is, the mixing of the gas phase component and the liquid phase component can be promoted.
 上記熱交換器は、前記第一ヘッダ部内の空間を、前記第一接続管に連通する第一下部領域と、前記第二接続管に連通する第一上部領域とに区画する第一ヘッダ仕切板をさらに備えていてもよい。 The heat exchanger includes a first header partition that divides a space in the first header portion into a first lower region communicating with the first connection pipe and a first upper region communicating with the second connection pipe. A plate may be further provided.
 第一ヘッダ部内に第一伝熱管を経て導入される冷媒は、第一伝熱管毎に気液の割合が異なる場合がある。特に、上方に位置する第一伝熱管から第一ヘッダ部内に導入される冷媒程気相分が多く、下方に位置する第一伝熱管から第一ヘッダ部内に導入される冷媒程液相分が多い。そのため、第一ヘッダ仕切板によって第一ヘッダ部内を第一下部領域、第二上部領域に仕切ることによって、第一接続管、第二接続管を介して第二ヘッダ部内の下部、上部に供給される冷媒の気相、液相割合を安定させることができる。さらに、第一ヘッダ仕切板の上下方向位置を調整することで、第二ヘッダ部内の下部、上部に供給される冷媒の気液割合や流量を所望の値に調整することができる。 The refrigerant introduced into the first header portion via the first heat transfer tube may have a different gas-liquid ratio for each first heat transfer tube. In particular, the amount of refrigerant introduced into the first header portion from the first heat transfer tube located above is larger, and the amount of liquid phase introduced into the first header portion from the first heat transfer tube located below is larger. Therefore, the first header part is divided into the first lower region and the second upper region by the first header partition plate to supply the lower and upper parts in the second header part via the first connection tube and the second connection tube. It is possible to stabilize the gas phase and liquid phase ratio of the refrigerant to be used. Furthermore, by adjusting the vertical position of the first header partition plate, the gas-liquid ratio and the flow rate of the refrigerant supplied to the lower part and the upper part in the second header part can be adjusted to desired values.
 上記熱交換器では、前記第一接続管と前記第二接続管の少なくとも一方が、内部に互いに間隔をあけて複数配列された流路が形成された扁平管状をなしていてもよい。 In the above heat exchanger, at least one of the first connection pipe and the second connection pipe may have a flat tube shape in which a plurality of flow paths are arranged with a space therebetween.
 これによって、例えば第一接続管、第二接続管が断面円形状のものである場合に比べて、内部を流通する冷媒量を多く確保することができるとともに、冷媒の圧損を低減させることができる。 Thereby, for example, compared with the case where the first connection pipe and the second connection pipe have a circular cross section, it is possible to secure a large amount of refrigerant flowing through the inside and reduce the pressure loss of the refrigerant. .
 さらに、上記熱交換器では、ヘッダを備え、前記ヘッダが、上下方向に延びる筒状をなすヘッダ本体と、前記ヘッダ本体内を上下に区画する主仕切板と、を有し、前記第一ヘッダ部は、前記ヘッダ本体内であって、前記主仕切板の下方の部分であり、前記第二ヘッダ部は、前記ヘッダ本体内であって、前記主仕切板の上方の部分であってもよい。 Furthermore, the heat exchanger includes a header, and the header includes a cylindrical header main body extending in a vertical direction, and a main partition plate that divides the header main body vertically, and the first header The portion may be a portion below the main partition plate in the header body, and the second header portion may be a portion above the main partition plate in the header body. .
 一のヘッダ内に主仕切板を介して第一ヘッダ部及び第二ヘッダ部を形成することで、これら第一ヘッダ部及び第二ヘッダ部を有する熱交換器を容易に構成することができる。
 また、冷媒から分離した油分は、第二接続管を介して第二ヘッダ部内に貯留されることなく第一ヘッダ部に導かれる。これにより油分を再度冷媒中に混合させることができるため、冷媒からの油分不足を抑制することが可能となる。
By forming the first header part and the second header part through the main partition plate in one header, a heat exchanger having these first header part and second header part can be easily configured.
Moreover, the oil component separated from the refrigerant is guided to the first header portion without being stored in the second header portion via the second connection pipe. As a result, the oil component can be mixed in the refrigerant again, so that the shortage of oil component from the refrigerant can be suppressed.
 本発明の第二態様に係る空気調和機は、上記いずれかの熱交換器を備えることを特徴とする。 The air conditioner according to the second aspect of the present invention includes any one of the above heat exchangers.
 これによって、冷媒の不均一分配による熱交換性能の低下を抑制し、効率の高い空気調和機を提供することができる。 This makes it possible to suppress a decrease in heat exchange performance due to uneven distribution of the refrigerant and provide an efficient air conditioner.
 本発明の一態様における熱交換器及び空気調和機によれば、効率低下の抑制を図ることができる。 According to the heat exchanger and the air conditioner according to one aspect of the present invention, it is possible to suppress the decrease in efficiency.
本発明の第一実施形態に係る空気調和機の全体構成図である。1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention. 本発明の第一実施形態に係る熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る熱交換器を蒸発器として用いた場合の作用効果を説明する図である。It is a figure explaining the effect at the time of using the heat exchanger which concerns on 1st embodiment of this invention as an evaporator. 本発明の第一実施形態に係る熱交換器を凝縮器として用いた場合の作用効果を説明する図である。It is a figure explaining the effect at the time of using the heat exchanger concerning a first embodiment of the present invention as a condenser. 本発明の第二実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係る熱交換器を蒸発器として用いた場合の作用効果を説明する図である。It is a figure explaining the effect at the time of using the heat exchanger which concerns on 3rd embodiment of this invention as an evaporator. 本発明の第三実施形態に係る熱交換器を凝縮器として用いた場合の作用効果を説明する図である。It is a figure explaining the effect at the time of using the heat exchanger which concerns on 3rd embodiment of this invention as a condenser. 本発明の第四実施形態に係る熱交換器の第一接続管、第二接続管の斜視図である。It is a perspective view of the 1st connecting pipe and the 2nd connecting pipe of the heat exchanger which concerns on 4th embodiment of this invention. 本発明の実施形態の第一変形例に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on the 1st modification of embodiment of this invention. 本発明の実施形態の第二変形例に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on the 2nd modification of embodiment of this invention. 本発明の実施形態の第三変形例に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on the 3rd modification of embodiment of this invention. 本発明の実施形態の第四変形例に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on the 4th modification of embodiment of this invention.
 以下、本発明の第一実施形態に係る熱交換器を備えた空気調和機について図1~5を参照して説明する。
 図1に示すように、空気調和機1は、圧縮機2、室内熱交換器3(熱交換器10)、膨張弁4、室外熱交換器5(熱交換器10)、四方弁6、及び、これらを接続する配管7を備えている。空気調節機1は、以上の要素により、冷媒回路を構成している。
Hereinafter, an air conditioner including a heat exchanger according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and And a pipe 7 for connecting them. The air conditioner 1 comprises the refrigerant circuit with the above elements.
 圧縮機2は、冷媒を圧縮し、圧縮した冷媒を冷媒回路に供給する。
 室内熱交換器3は、冷媒と室内の空気との間で熱交換を行う。室内熱交換器3は、冷房運転時には蒸発器として用いられ室内から吸熱し、暖房運転時には凝縮器として用いられ室内へ放熱する。室外熱交換器5は、冷媒と室外の空気との間で熱交換を行う。
 膨張弁4は、凝縮器で熱交換をすることで液化した高圧の冷媒を膨張させることで低圧化する。
 室外熱交換器5は、冷房運転時には、凝縮器として用いられ室外へ放熱し、暖房運転時には、蒸発器として用いられ室外から吸熱する。
 四方弁6は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。これにより、冷房運転時には、冷媒が、圧縮機2、室外熱交換器5、膨張弁4及び室内熱交換器3の順に循環する。一方、暖房運転時には、冷媒が、圧縮機2、室内熱交換器3、膨張弁4及び室外熱交換器5、の順に循環する。
The compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
The indoor heat exchanger 3 performs heat exchange between the refrigerant and the indoor air. The indoor heat exchanger 3 is used as an evaporator during cooling operation and absorbs heat from the room, and is used as a condenser during heating operation and dissipates heat to the room. The outdoor heat exchanger 5 performs heat exchange between the refrigerant and the outdoor air.
The expansion valve 4 reduces the pressure by expanding the high-pressure refrigerant liquefied by exchanging heat with the condenser.
The outdoor heat exchanger 5 is used as a condenser during the cooling operation and dissipates heat to the outside, and is used as an evaporator during the heating operation and absorbs heat from the outside.
The four-way valve 6 switches the direction in which the refrigerant flows between the heating operation and the cooling operation. Accordingly, during the cooling operation, the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3. On the other hand, during the heating operation, the refrigerant circulates in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.
 次に、上記室内熱交換器3及び室外熱交換器5として用いられる熱交換器10について、図2~図5を参照して説明する。
 熱交換器10は、複数の伝熱管20、複数のフィン23、一対のヘッダ30、第一接続管55、及び第二接続管56を備える。
Next, the heat exchanger 10 used as the indoor heat exchanger 3 and the outdoor heat exchanger 5 will be described with reference to FIGS.
The heat exchanger 10 includes a plurality of heat transfer tubes 20, a plurality of fins 23, a pair of headers 30, a first connection tube 55, and a second connection tube 56.
 伝熱管20は、水平方向に直線状に延びる管状の部材であって、内部に冷媒が流通する流路が形成されている。このような伝熱管20は、上下方向に間隔をあけて複数が配列されており、互いに平行に配置されている。
 本実施形態では、各伝熱管20は扁平管状をなしており、伝熱管20の内部には、伝熱管20の延在方向に直交する水平方向に並設された複数の流路が形成されている。これら複数の流路は互いに平行に配列されている。これにより、伝熱管20の延在方向に直交する断面の外形は、伝熱管20の延在方向に直交する水平方向を長手方向とした扁平状になっている。
The heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow path through which the refrigerant flows is formed. A plurality of such heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
In the present embodiment, each heat transfer tube 20 has a flat tubular shape, and a plurality of flow paths arranged in parallel in the horizontal direction perpendicular to the extending direction of the heat transfer tube 20 are formed inside the heat transfer tube 20. Yes. The plurality of flow paths are arranged in parallel to each other. Thereby, the external shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is a flat shape with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.
 フィン23は、上記のように配列された伝熱管20の間にそれぞれ配置されている。本実施形態のフィン23は、各伝熱管20の延在方向に向かうにしたがって上下に隣り合う伝熱管20に交互に接触するように延びるいわゆるコルゲート状をなしている。なお、フィン23の形状はこれに限定されることはなく、伝熱管20の外周面から張り出すように設けられていれば、いかなる形状であってもよい。 The fins 23 are respectively disposed between the heat transfer tubes 20 arranged as described above. The fins 23 of the present embodiment have a so-called corrugated shape that extends so as to alternately contact the adjacent heat transfer tubes 20 in the extending direction of the heat transfer tubes 20. In addition, the shape of the fin 23 is not limited to this, and may be any shape as long as it is provided so as to protrude from the outer peripheral surface of the heat transfer tube 20.
 一対のヘッダ30は、複数の伝熱管20の両端に、これら伝熱管20の延在方向からこれら伝熱管20を挟み込むように設けられている。これら一対のヘッダ30のうちの一方のヘッダは、外部からの冷媒の熱交換器10内への出入り口となる出入口側ヘッダ40である。また、他方のヘッダは、熱交換器10内で冷媒が折り返すための折り返し側ヘッダ50である。 The pair of headers 30 are provided at both ends of the plurality of heat transfer tubes 20 so as to sandwich the heat transfer tubes 20 from the extending direction of the heat transfer tubes 20. One header of the pair of headers 30 is an entrance / exit header 40 that serves as an entrance / exit into the heat exchanger 10 for refrigerant from the outside. The other header is a return side header 50 for returning the refrigerant in the heat exchanger 10.
 出入口側ヘッダ40は、上下方向に延びる筒状の部材で、上端及び下端が閉塞されている。この出入口側ヘッダ40は、内部が仕切板41によって上下二つの領域に区画されている。出入口側ヘッダ40内における仕切板41によって区画された下方の領域は下部出入領域42とされ、上方の領域は上部出入領域43とされている。これら下部出入領域42と上部出入領域43とは出入口側ヘッダ40内で互いに非連通状態とされている。これら下部出入領域42及び上部出入領域43は、冷媒回路を構成する配管7がそれぞれ接続されている。
 ここで、出入口側ヘッダ40に接続された複数の伝熱管20のうち、下部出入領域42と連通状態で接続されている伝熱管20は、第一伝熱管21とされており、上部出入領域43と連通状態で接続されている伝熱管20は、第二伝熱管22とされている。
The entrance / exit-side header 40 is a cylindrical member extending in the vertical direction, and has an upper end and a lower end closed. The entrance / exit side header 40 is partitioned into two upper and lower regions by a partition plate 41. A lower area partitioned by the partition plate 41 in the entrance / exit header 40 is a lower entrance / exit area 42, and an upper area is an upper entrance / exit area 43. The lower entrance / exit area 42 and the upper entrance / exit area 43 are not in communication with each other in the entrance / exit header 40. The lower entry / exit area 42 and the upper entry / exit area 43 are connected to the pipes 7 constituting the refrigerant circuit.
Here, among the plurality of heat transfer tubes 20 connected to the inlet / outlet side header 40, the heat transfer tube 20 connected in communication with the lower input / output region 42 is a first heat transfer tube 21, and an upper input / output region 43. The heat transfer tube 20 connected in communication with the second heat transfer tube 22 is a second heat transfer tube 22.
 折り返し側ヘッダ50は、ヘッダ本体51及び主仕切板54を備えている。
 ヘッダ本体51は、上下方向に延びる筒状をなす部材であって、上端及び下端が閉塞されている。主仕切板54は、ヘッダ本体51内に設けられ、ヘッダ本体51内の空間を上下二つの領域に区画している。ヘッダ本体51の主仕切板54の下方の部分は第一ヘッダ部52とされており、ヘッダ本体51の主仕切板54の上方の部分は第二ヘッダ部53とされている。即ち、本実施形態では、ヘッダ本体51内が主仕切板54によって区画されることで、折り返し側ヘッダ50に、それぞれ内部に空間を有する第一ヘッダ部52及び第二ヘッダ部53が形成されている。換言すれば、第一ヘッダ部52及び第二ヘッダ部53によって折り返し側ヘッダ50が構成されている。
The folded-back header 50 includes a header body 51 and a main partition plate 54.
The header main body 51 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed. The main partition plate 54 is provided in the header body 51 and divides the space in the header body 51 into two upper and lower areas. A portion below the main partition plate 54 of the header body 51 is a first header portion 52, and a portion above the main partition plate 54 of the header body 51 is a second header portion 53. That is, in this embodiment, the header main body 51 is partitioned by the main partition plate 54, so that the first header portion 52 and the second header portion 53 each having a space are formed in the folded-back header 50. Yes. In other words, the first header portion 52 and the second header portion 53 constitute the folded-back header 50.
 第一伝熱管21は、それぞれ第一ヘッダ部52内と連通状態となるように第一ヘッダ部52に接続されている。また、第二伝熱管22は、それぞれ第二ヘッダ部53内と連通状態となるように第二ヘッダ部53に接続されている。換言すれば、第一ヘッダ部52に接続されている伝熱管20が第一伝熱管21とされ、第二ヘッダ部53に接続されている伝熱管20が第二伝熱管22とされている。なお、本実施形態では、第一伝熱管21よりも第二伝熱管22の方が多く設けられているが、これに限られず、第一伝熱管21の方が第二伝熱管22よりも多く設けられていてもよい。また、第一伝熱管21と第二伝熱管22が同数設けられていてもよい。 The first heat transfer tubes 21 are connected to the first header portion 52 so as to communicate with the inside of the first header portion 52, respectively. Moreover, the 2nd heat exchanger tube 22 is connected to the 2nd header part 53 so that it may be in a communication state with the inside of the 2nd header part 53, respectively. In other words, the heat transfer tube 20 connected to the first header portion 52 is the first heat transfer tube 21, and the heat transfer tube 20 connected to the second header portion 53 is the second heat transfer tube 22. In the present embodiment, the second heat transfer tubes 22 are provided more than the first heat transfer tubes 21, but the present invention is not limited to this, and the first heat transfer tubes 21 are more than the second heat transfer tubes 22. It may be provided. Further, the same number of first heat transfer tubes 21 and second heat transfer tubes 22 may be provided.
 第一接続管55は、内部に流路が形成された管状の部材であって、その一端が第一ヘッダ部52に対して第一ヘッダ部52の内部と連通状態で接続されており、他端が第二ヘッダ部53に対して第二ヘッダ部53の内部と連通状態で接続されている。より詳細には、第一接続管55の一端は、第一ヘッダ部52における下部に接続されている。一方で、第一接続管55の他端は、第二ヘッダ部53における上部に接続されている。 The first connection pipe 55 is a tubular member having a flow path formed therein, and one end of the first connection pipe 55 is connected to the first header part 52 in communication with the inside of the first header part 52. The end is connected to the second header portion 53 in communication with the inside of the second header portion 53. More specifically, one end of the first connection pipe 55 is connected to the lower portion of the first header portion 52. On the other hand, the other end of the first connection pipe 55 is connected to the upper part of the second header portion 53.
 ここで、第一接続管55の一端は、第一ヘッダ部52に接続された複数の第一伝熱管21のうちの最も下方に位置する第一伝熱管21の第一ヘッダ部52への接続箇所に対して、上下方向で少なくとも一部が重なる位置(水平方向から見て少なくとも一部が重なる位置)で第一ヘッダ部52に接続されていることが好ましい。
 また、第一接続管55の他端は、第二ヘッダ部53に接続された複数の第二伝熱管22のうちの最も上方に位置する第二伝熱管22の第二ヘッダ部53への接続箇所に対して、上下方向で少なくとも一部が重なる位置(水平方向から見て少なくとも一部が重なる位置)で第一ヘッダ部52に接続されていることが好ましい。
Here, one end of the first connection pipe 55 is connected to the first header part 52 of the first heat transfer pipe 21 located at the lowest position among the plurality of first heat transfer pipes 21 connected to the first header part 52. It is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction).
Further, the other end of the first connection pipe 55 is connected to the second header part 53 of the second heat transfer pipe 22 located at the uppermost position among the plurality of second heat transfer pipes 22 connected to the second header part 53. It is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction).
 第二接続管56は、内部に流路が形成された管状の部材であって、第一接続管55と同様、一端が第一ヘッダ部52に対して第一ヘッダ部52の内部と連通状態で接続されており、他端が第二ヘッダ部53に対して第二ヘッダ部53の内部と連通状態で接続されている。一方で、第二接続管56は、第一接続管55と異なり、一端が第一ヘッダ部52における上部に接続されており、他端が、第二ヘッダ部53における上部に接続されている。 The second connection pipe 56 is a tubular member having a flow path formed therein, and, like the first connection pipe 55, one end communicates with the inside of the first header portion 52 with respect to the first header portion 52. And the other end is connected to the second header portion 53 in communication with the inside of the second header portion 53. On the other hand, unlike the first connection pipe 55, the second connection pipe 56 has one end connected to the upper part in the first header part 52 and the other end connected to the upper part in the second header part 53.
 なお、第二接続管56の一端は、第一接続管55の一端よりも上方で第一ヘッダ部52に接続されていればよい。また、第二接続管56の他端は、第一接続管55の他端よりも下方で第二ヘッダ部53に接続されていればよい。 It should be noted that one end of the second connection pipe 56 only needs to be connected to the first header portion 52 above one end of the first connection pipe 55. Further, the other end of the second connection pipe 56 only needs to be connected to the second header portion 53 below the other end of the first connection pipe 55.
 さらに、第二接続管56の一端は、第一ヘッダ部52に接続された複数の第一伝熱管21のうちの最も上方に位置する第一伝熱管21の第一ヘッダ部52への接続箇所に対して、上下方向で少なくとも一部が重なる位置(水平方向から見て少なくとも一部が重なる位置)で第一ヘッダ部52に接続されていることが好ましい。
 また、第二接続管56の他端は、第二ヘッダ部53に接続された複数の第二伝熱管22のうちの最も下方に位置する第二伝熱管22の第二ヘッダ部53への接続箇所に対して、上下方向で少なくとも一部が重なる位置(水平方向から見て少なくとも一部が重なる位置)で第一ヘッダ部52に接続されていることが好ましい。
Further, one end of the second connection pipe 56 is connected to the first header part 52 of the first heat transfer pipe 21 located at the uppermost position among the plurality of first heat transfer pipes 21 connected to the first header part 52. On the other hand, it is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction).
Further, the other end of the second connection pipe 56 is connected to the second header part 53 of the second heat transfer pipe 22 located at the lowest position among the plurality of second heat transfer pipes 22 connected to the second header part 53. It is preferable to be connected to the first header portion 52 at a position where at least a portion overlaps in the vertical direction (a position where at least a portion overlaps when viewed from the horizontal direction).
 次に上記熱交換器10が蒸発器として用いられる場合の作用・効果について説明する。
 なお、熱交換器10が室内熱交換器3の場合は空気調和機1の冷房運転時に蒸発器として用いられることになり、室外熱交換器5の場合には空気調和機1の暖房運転時に蒸発器として用いられることになる。
Next, operations and effects when the heat exchanger 10 is used as an evaporator will be described.
When the heat exchanger 10 is the indoor heat exchanger 3, it is used as an evaporator during the cooling operation of the air conditioner 1, and when the outdoor heat exchanger 5 is used, it evaporates during the heating operation of the air conditioner 1. It will be used as a container.
 熱交換器10が蒸発器として用いられる際には、図2に示す出入口側ヘッダ40の下部出入領域42に配管7から液相の冷媒が供給される。この冷媒は、下部出入領域42で複数の第一伝熱管21内に分配供給され、第一伝熱管21を流通する過程で第一伝熱管21の外部雰囲気との間で熱交換することで蒸発が促される。これにより、第一伝熱管21から折り返し側ヘッダ50の第一ヘッダ部52内に供給される冷媒は、一部が液相から気相に変化したことで液相・気相が混在した気液二相冷媒となる。 When the heat exchanger 10 is used as an evaporator, liquid-phase refrigerant is supplied from the pipe 7 to the lower inlet / outlet region 42 of the inlet / outlet header 40 shown in FIG. This refrigerant is distributed and supplied into the plurality of first heat transfer tubes 21 in the lower entrance / exit region 42, and is evaporated by exchanging heat with the external atmosphere of the first heat transfer tubes 21 in the process of flowing through the first heat transfer tubes 21. Is prompted. As a result, the refrigerant supplied from the first heat transfer tube 21 into the first header portion 52 of the folded-back header 50 is a gas-liquid mixture of a liquid phase and a gas phase due to a partial change from the liquid phase to the gas phase. It becomes a two-phase refrigerant.
 そして、図4に示すように、第一ヘッダ部52内に供給される気液二相冷媒のうち、液相分が多く密度の大きい冷媒が重力により第一ヘッダ部52の下部に集まり、気相分が多く密度の小さい冷媒が第一ヘッダ部52の上部に集まることになる。その結果、液相分が多い冷媒は、第一ヘッダ部52の下部に接続された第一接続管55内に導入され、第一接続管55を介して第二ヘッダ部53に導入される。一方、気相分が多い冷媒は第一ヘッダ部52の上部に接続された第二接続管56内に導入され、第二接続管56を介して第二ヘッダ部53内に導入される。 As shown in FIG. 4, among the gas-liquid two-phase refrigerant supplied into the first header section 52, the refrigerant having a large liquid phase content and a large density gathers under the first header section 52 due to gravity, and A refrigerant having a large phase and a low density gathers at the top of the first header portion 52. As a result, the refrigerant having a high liquid phase content is introduced into the first connection pipe 55 connected to the lower portion of the first header section 52, and is introduced into the second header section 53 through the first connection pipe 55. On the other hand, the refrigerant having a large gas phase content is introduced into the second connection pipe 56 connected to the upper portion of the first header section 52, and is introduced into the second header section 53 through the second connection pipe 56.
 これにより、第一接続管55が接続された第二ヘッダ部53内の上部に液相分が多い冷媒が供給され、第二ヘッダ部53内では上部から下部に向かって液相分が多い冷媒が降り注がれることになる。一方で、第二接続管56が接続された第二ヘッダ部53内の下部に気相分が多い冷媒が供給され、第二ヘッダ部53内では下部から上部に向かって気相部が多い冷媒が吹き上げることになる。その結果、第二ヘッダ部53内では、気相分が多い冷媒、液相分が多い冷媒が互いに混合され、第二ヘッダ部53内全体として冷媒の気液割合の均一化が図られる。これにより、第二ヘッダ部53内に接続された複数の第二伝熱管22には、それぞれ気液割合が均一化された冷媒が供給される。 Thereby, a refrigerant with a large liquid phase is supplied to the upper part in the second header part 53 to which the first connection pipe 55 is connected, and a refrigerant with a large liquid phase in the second header part 53 from the upper part toward the lower part. Will be poured down. On the other hand, a refrigerant with a large gas phase content is supplied to the lower part in the second header part 53 to which the second connection pipe 56 is connected, and a refrigerant with a larger gas phase part from the lower part to the upper part in the second header part 53. Will blow up. As a result, in the second header portion 53, the refrigerant having a large gas phase content and the refrigerant having a large liquid phase content are mixed with each other, and the gas-liquid ratio of the refrigerant is made uniform as a whole in the second header portion 53. Thereby, the refrigerant | coolant with which the gas-liquid ratio was equalized is supplied to the some 2nd heat exchanger tube 22 connected in the 2nd header part 53, respectively.
 その後、冷媒は、第二伝熱管22を流通する過程で第二伝熱管22の外部雰囲気との間で熱交換することで、再度蒸発が促される。これにより、第二伝熱管22内にて、冷媒における残存していた液相が気相に変化し、出入口側ヘッダ40の上部出入領域43には気相状態の冷媒が供給される。そして、この冷媒は上部出入領域43から配管7に導入され、冷媒回路を循環することになる。 Thereafter, the refrigerant is promoted to evaporate again by exchanging heat with the external atmosphere of the second heat transfer tube 22 in the process of flowing through the second heat transfer tube 22. As a result, the liquid phase remaining in the refrigerant changes into a gas phase in the second heat transfer tube 22, and the gas phase refrigerant is supplied to the upper entrance / exit region 43 of the inlet / outlet header 40. Then, the refrigerant is introduced into the pipe 7 from the upper entrance / exit area 43 and circulates in the refrigerant circuit.
 以上のように、本実施形態の熱交換器10によれば、第一ヘッダ部52内で液相分を多く含み密度の大きい冷媒が第一接続管55を介して第二ヘッダ部53の上方から供給される一方、第一ヘッダ部52内で気相分を多く含み密度の小さい冷媒が第二接続管56を介して第二ヘッダ部53の下方から供給される。そのため、第一ヘッダ部52内と第二ヘッダ部53内とで、冷媒の密度の大小が上下逆転される。これにより、第二ヘッダ部53内では、重力により密度の大きい冷媒が下方に移動する一方、密度の小さい冷媒が上方に移動することとなるため、これら密度差のある冷媒の混合を促進させた上で、冷媒を第二伝熱管22に導くことができる。したがって、第二ヘッダ部53に接続された複数の伝熱管20に供給する冷媒分配の均等化を図ることができる。その結果、各第二伝熱管22の上下位置にかかわらずこれら第二伝熱管22を流通する液相冷媒流量が均一化されるため、熱交換器10の性能低下を抑制することができる。 As described above, according to the heat exchanger 10 of the present embodiment, the refrigerant having a high liquid phase content and a large density in the first header portion 52 is located above the second header portion 53 via the first connection pipe 55. On the other hand, a refrigerant with a large gas phase content and a low density in the first header portion 52 is supplied from below the second header portion 53 via the second connection pipe 56. Therefore, the density of the refrigerant is reversed upside down in the first header portion 52 and the second header portion 53. Thereby, in the 2nd header part 53, since a refrigerant | coolant with a high density moves below by gravity, a refrigerant | coolant with a low density will move upwards, Therefore The mixing of the refrigerant | coolant with these density differences was accelerated | stimulated. Above, the refrigerant can be guided to the second heat transfer tube 22. Accordingly, it is possible to equalize the refrigerant distribution supplied to the plurality of heat transfer tubes 20 connected to the second header portion 53. As a result, the flow rate of the liquid refrigerant flowing through the second heat transfer tubes 22 is made uniform regardless of the upper and lower positions of the second heat transfer tubes 22, so that the performance deterioration of the heat exchanger 10 can be suppressed.
 次に熱交換器10が凝縮器として用いられる場合の作用・効果について説明する。
 なお、熱交換器10が室内熱交換器3の場合は空気調和機1の暖房運転時に凝縮器として用いられることになり、室外熱交換器5の場合には空気調和機1の冷房運転時に凝縮器として用いられることになる。
Next, operations and effects when the heat exchanger 10 is used as a condenser will be described.
When the heat exchanger 10 is the indoor heat exchanger 3, it is used as a condenser during the heating operation of the air conditioner 1, and when the outdoor heat exchanger 5 is used, it is condensed during the cooling operation of the air conditioner 1. It will be used as a container.
 熱交換器10が蒸発器として用いられる際には、図2に示す出入口側ヘッダ40の上部出入領域43に配管7から気相の冷媒が供給される。この冷媒は、上部出入領域43で複数の第二伝熱管22内に分配供給され、第二伝熱管22を流通する過程で第二伝熱管22の外部雰囲気との間で熱交換することで凝縮が促される。これにより、第二伝熱管22から折り返し側ヘッダ50の第二ヘッダ部53内に供給される冷媒は、一部が気相から液相に変化したことで液相・気相が混在した気液二相冷媒となる。 When the heat exchanger 10 is used as an evaporator, a gas-phase refrigerant is supplied from the pipe 7 to the upper entrance / exit region 43 of the entrance / exit header 40 shown in FIG. This refrigerant is distributed and supplied into the plurality of second heat transfer tubes 22 in the upper entrance / exit region 43, and condensed by exchanging heat with the external atmosphere of the second heat transfer tubes 22 in the process of flowing through the second heat transfer tubes 22. Is prompted. As a result, the refrigerant supplied from the second heat transfer tube 22 into the second header portion 53 of the folded-back header 50 is partly changed from the gas phase to the liquid phase, so that the gas phase is a mixture of the liquid phase and the gas phase. It becomes a two-phase refrigerant.
 そして、図5に示すように、第二ヘッダ部53内に供給される気液二相冷媒のうち液相分が多く密度の大きい冷媒は、重力により第二ヘッダ部53の下部に集まり、気相分が多く密度の小さい冷媒が第二ヘッダ部53の上部に集まることになる。その結果、気相分が多い冷媒は、第二ヘッダ部53の上部に接続された第一接続管55内に導入され、第一接続管55を介し第一ヘッダ部52内の下部に導入される。一方、液相分が多い冷媒は、第二ヘッダ部53の下部に接続された第二接続管56内に導入され、第二接続管56を介し第一ヘッダ部52内の上部に導入される。これによって、第一ヘッダ部52内では、熱交換器10を蒸発器として用いた場合の第二ヘッダ部53内同様、第一ヘッダ部52内全体として冷媒の気液割合の均一化が図られる。 As shown in FIG. 5, among the gas-liquid two-phase refrigerant supplied into the second header portion 53, the refrigerant having a large liquid phase content and a high density gathers under the second header portion 53 due to gravity, A refrigerant with a large phase content and a low density gathers at the upper part of the second header portion 53. As a result, the refrigerant with a large gas phase content is introduced into the first connection pipe 55 connected to the upper part of the second header part 53 and introduced into the lower part of the first header part 52 through the first connection pipe 55. The On the other hand, the refrigerant having a large amount of liquid phase is introduced into the second connection pipe 56 connected to the lower part of the second header part 53 and introduced into the upper part of the first header part 52 through the second connection pipe 56. . As a result, in the first header portion 52, the gas-liquid ratio of the refrigerant is made uniform as a whole in the first header portion 52 as in the second header portion 53 when the heat exchanger 10 is used as an evaporator. .
 ここで、熱交換器10を凝縮器として用いた場合の第一ヘッダ部52から冷媒が供給される複数の第一伝熱管21それぞれの流量は、第一伝熱管21のヘッド差(第一伝熱管21の出入口側ヘッダ40内での高さ)が大きい程、大きくなる。そのため、流量の大きい第一伝熱管21では外部雰囲気からの冷却効果が小さく、流量の大きい第一伝熱管21では外部雰囲気からの冷却効果が大きくなる。このように各第一伝熱管21による冷却効果にバラつきが生じると、熱交換器10全体としての性能低下を招いてしまう。 Here, the flow rate of each of the plurality of first heat transfer tubes 21 to which the refrigerant is supplied from the first header portion 52 when the heat exchanger 10 is used as a condenser is the head difference (first transfer) of the first heat transfer tubes 21. The larger the height in the inlet / outlet header 40 of the heat pipe 21 is, the larger it is. Therefore, the cooling effect from the external atmosphere is small in the first heat transfer tube 21 having a large flow rate, and the cooling effect from the external atmosphere is large in the first heat transfer tube 21 having a large flow rate. Thus, when the cooling effect by each 1st heat exchanger tube 21 varies, the performance decline as the heat exchanger 10 whole will be caused.
 仮に第一ヘッダ部52内の上部で気相分が多い場合には、上方に配置された第一伝熱管21での冷却効果が小さいため、十分に冷媒を凝縮することができない。一方、第一ヘッダ部52内の下部で液相分が多い場合には、下方に配置された第一伝熱管21の冷却効果が大きいため、冷媒を過冷却することとなってしまう。
 この点、本実施形態では、上記の通り、第一ヘッダ部52内での気液割合の均一化が図られるため、熱交換器10を凝縮器として用いる場合の上記不都合を抑制することができる。
If there is a large amount of gas phase in the upper part of the first header portion 52, the cooling effect in the first heat transfer tube 21 disposed above is small, so that the refrigerant cannot be sufficiently condensed. On the other hand, when there is much liquid phase in the lower part in the 1st header part 52, since the cooling effect of the 1st heat exchanger tube 21 arrange | positioned below is large, it will supercool a refrigerant | coolant.
In this respect, in this embodiment, since the gas-liquid ratio in the first header portion 52 is made uniform as described above, the inconvenience when the heat exchanger 10 is used as a condenser can be suppressed. .
 そして、熱交換器10を蒸発器、凝縮器として用いる場合のいずれであっても、本実施形態では、折り返し側ヘッダ50内の下部が第一ヘッダ部52、上部が第二ヘッダ部53とされているため、冷媒から分離した油分は、第二接続管56を介して第二ヘッダ部53の下部に滞留することなく、第一ヘッダ部52に導入することができる。これによって、第一ヘッダ部52内で冷媒に油分が混合されることになるため、冷媒回路での冷凍サイクル行うにあたって冷媒から油分が極端に不足してしまうことを回避することができる。 In either case where the heat exchanger 10 is used as an evaporator or a condenser, in the present embodiment, the lower part in the folded-back header 50 is the first header part 52 and the upper part is the second header part 53. Therefore, the oil component separated from the refrigerant can be introduced into the first header portion 52 without staying in the lower portion of the second header portion 53 via the second connection pipe 56. As a result, the oil component is mixed with the refrigerant in the first header portion 52, so that it is possible to avoid the oil component from becoming extremely insufficient from the refrigerant when performing the refrigeration cycle in the refrigerant circuit.
 次に本発明の第二実施形態に係る熱交換器60について、図6及び図7を参照して説明する。なお、第二実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 図6及び図7に示すように、第二実施形態の熱交換器60は、折り返し側ヘッダ50がさらに第二ヘッダ仕切板61を備えている点で第一実施形態と相違する。
Next, the heat exchanger 60 which concerns on 2nd embodiment of this invention is demonstrated with reference to FIG.6 and FIG.7. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIGS. 6 and 7, the heat exchanger 60 of the second embodiment is different from the first embodiment in that the folded-back header 50 further includes a second header partition plate 61.
 第二ヘッダ仕切板61は、第二ヘッダ部53内の空間を上下二つの領域に区画している。これら二つの領域のうち下方の領域は第二下部領域63とされ、上方の領域は第二上部領域64とされている。これら第二下部領域63及び第二上部領域64には、それぞれ第二伝熱管22が連通している。また、第二下部領域63には第二接続管56の他端が連通されているとともに、第二上部領域64には第一接続管55の他端が連通されている。 The second header partition 61 divides the space in the second header portion 53 into two upper and lower regions. Of these two regions, the lower region is a second lower region 63 and the upper region is a second upper region 64. The second heat transfer tubes 22 communicate with the second lower region 63 and the second upper region 64, respectively. In addition, the other end of the second connection pipe 56 communicates with the second lower region 63, and the other end of the first connection pipe 55 communicates with the second upper region 64.
 また、第二ヘッダ仕切板61には、上下方向に貫通する連通孔62が形成されている。この連通孔62によって、第二下部領域63と第二上部領域64とは水平方向の一部分で連通状態とされている。換言すれば、第二ヘッダ仕切板61は、第二下部領域63と第二上部領域64との水平方向一部での連通状態を許容するように、ヘッダ本体51の内周面から内側に張り出すように形成されている。
 連通孔62は、第二ヘッダ仕切板61の水平方向の中央に形成されていてもよいし、中央から外れて形成されていてもよい。
The second header partition plate 61 is formed with a communication hole 62 penetrating in the vertical direction. By this communication hole 62, the second lower region 63 and the second upper region 64 are in communication with each other in a part in the horizontal direction. In other words, the second header partition plate 61 is stretched inward from the inner peripheral surface of the header body 51 so as to allow a part of the second lower region 63 and the second upper region 64 to communicate with each other in the horizontal direction. It is formed to take out.
The communication hole 62 may be formed at the center in the horizontal direction of the second header partition plate 61 or may be formed away from the center.
 このような第二ヘッダ仕切板61を備えた熱交換器60によれば、特に熱交換器60を蒸発器として用いる場合における第二ヘッダ部53内での気液混合を、第一実施形態の熱交換器10に増して、より効果的に行うことができる。
 即ち、第一実施形態の熱交換器10の場合、第二ヘッダ部53の上部から供給される気相分が多く密度の大きい冷媒は重力により第二ヘッダ部53の下部へ速やかに落ちてきてしまうため、第二ヘッダ部53の下部にてやはり液相分が多くなってしまうこともある。
 特に、第二ヘッダ部53の上部から供給される冷媒量が多い場合はより顕著となる。
According to the heat exchanger 60 including the second header partition plate 61 as described above, gas-liquid mixing in the second header portion 53 particularly when the heat exchanger 60 is used as an evaporator is the same as that of the first embodiment. More than the heat exchanger 10, it can carry out more effectively.
That is, in the case of the heat exchanger 10 of the first embodiment, the refrigerant having a large gas phase supplied from the upper part of the second header part 53 and having a high density quickly falls to the lower part of the second header part 53 due to gravity. Therefore, the liquid phase may also increase at the lower part of the second header portion 53.
In particular, it becomes more conspicuous when the amount of refrigerant supplied from the upper part of the second header portion 53 is large.
 これに対して本実施形態では、第二ヘッダ部53の上部から導入される液相分の多い冷媒は、第二ヘッダ仕切板61の存在により、速やかに第二ヘッダ部53の下部に移動することなく、第二上部領域64に一時的に滞留することになる。さらに、第二ヘッダ部53の下方から導入される気相分の多い冷媒は、連通孔62を介して第二上部領域64に吹き上げられるため、第二上部領域64内に安定して気相分を供給することができる。これによって、第二ヘッダ部53内の第二下部領域63で液相分が過剰となることを抑制することができるとともに、第二上部領域64で気相分が過剰となることを抑制することができる。これによって、第二ヘッダ部53内全体として、気相分・液相分の混合促進をより効率的に図ることが可能となる。 On the other hand, in the present embodiment, the refrigerant having a large liquid phase introduced from the upper part of the second header part 53 quickly moves to the lower part of the second header part 53 due to the presence of the second header partition plate 61. Without being temporarily retained in the second upper region 64. Furthermore, since the refrigerant having a large amount of gas phase introduced from below the second header portion 53 is blown up to the second upper region 64 through the communication hole 62, the gas phase component is stably stabilized in the second upper region 64. Can be supplied. Thereby, it is possible to suppress the liquid phase component from being excessive in the second lower region 63 in the second header portion 53 and to suppress the gas phase component from being excessive in the second upper region 64. Can do. This makes it possible to more efficiently promote the mixing of the gas phase / liquid phase components in the second header portion 53 as a whole.
 なお、本実施形態では、第二ヘッダ部53内に一の第二ヘッダ仕切板61を設けた例について説明したが、第二ヘッダ部53内に、上下方向に間隔をあけて複数の第二ヘッダ仕切板61を設けてもよい。これによって上下に区画される複数の領域は、それぞれ第二伝熱管22に連通されていることが好ましい。また、複数の領域のうち、最も下方の領域に第二接続管56の他端が接続され、最も上方の領域に第一接続管55の他端が接続されていることが好ましい。
 また、複数の第二ヘッダ仕切板61を設ける場合には、各第二ヘッダ仕切板61に形成される連通孔62は、上下方向から見て互いに重ならない位置に形成されることが好ましい。これによって、各領域において液相分をより効果的に滞留させることができ、各領域での気液混合をより効率的に行うことが可能となる。
In the present embodiment, an example in which one second header partition plate 61 is provided in the second header portion 53 has been described, but a plurality of second header portions 53 are spaced apart in the vertical direction in the second header portion 53. A header partition plate 61 may be provided. Thus, it is preferable that the plurality of regions partitioned vertically are respectively connected to the second heat transfer tube 22. Moreover, it is preferable that the other end of the 2nd connecting pipe 56 is connected to the lowermost area | region among several area | regions, and the other end of the 1st connecting pipe 55 is connected to the uppermost area | region.
Moreover, when providing the several 2nd header partition plate 61, it is preferable that the communicating hole 62 formed in each 2nd header partition plate 61 is formed in the position which does not mutually overlap seeing from an up-down direction. Thereby, the liquid phase can be retained more effectively in each region, and gas-liquid mixing in each region can be performed more efficiently.
 次に本発明の第三実施形態に係る熱交換器70について、図8~図10を参照して説明する。なお、第三実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 図8~図10に示すように、第三実施形態の熱交換器70は、折り返し側ヘッダ50がさらに第一ヘッダ仕切板71を備えている点で第一実施形態と相違する。
Next, a heat exchanger 70 according to a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIGS. 8 to 10, the heat exchanger 70 of the third embodiment is different from the first embodiment in that the folded-back header 50 further includes a first header partition plate 71.
 第一ヘッダ仕切板71は、第一ヘッダ部52内の空間を上下二つの領域に区画している。これら二つの領域のうち下方の領域は第一下部領域72とされ、上方の領域は第一上部領域73とされている。これら第一下部領域72及び第一上部領域73には、それぞれ第一伝熱管21が連通している。また、第一下部領域72には第一接続管55の一端端が連通されているとともに、第一上部領域73には第二接続管56の一端が連通されている。
 第一下部領域72と第一上部領域73とは、第一ヘッダ部52内で非連通状態とされている。
The first header partition plate 71 divides the space in the first header portion 52 into two upper and lower regions. Of these two regions, the lower region is a first lower region 72 and the upper region is a first upper region 73. The first heat transfer tubes 21 communicate with the first lower region 72 and the first upper region 73, respectively. In addition, one end of the first connection pipe 55 is communicated with the first lower region 72, and one end of the second connection pipe 56 is communicated with the first upper region 73.
The first lower region 72 and the first upper region 73 are not in communication within the first header portion 52.
 第三実施形態の熱交換器70を蒸発器として用いる場合の作用効果を説明する。
 第一ヘッダ部52内に第一伝熱管21を経て導入される冷媒は、第一伝熱管21毎に気液の割合が異なる場合がある。特に、図9に示すように、上方に位置する第一伝熱管21から第一ヘッダ部52内に導入される冷媒程気相分が多く、下方に位置する第一伝熱管21から第一ヘッダ部52内に導入される冷媒程液相分が多い。そのため、第一ヘッダ仕切板71によって第一ヘッダ部52内を第一下部領域72、第一上部領域73に仕切ることによって、第一接続管55、第二接続管56を介して第二ヘッダ部53内の下部、上部に供給される冷媒の気相、液相割合を安定させることができる。
 また、第一ヘッダ仕切板71の上下方向位置を調整することで、第二ヘッダ部53内の下部、上部に供給される冷媒の気液割合や流量を所望の値に調整することができる。
The effect in the case of using the heat exchanger 70 of 3rd embodiment as an evaporator is demonstrated.
The refrigerant introduced into the first header part 52 via the first heat transfer tube 21 may have a different gas / liquid ratio for each first heat transfer tube 21. In particular, as shown in FIG. 9, the refrigerant introduced into the first header portion 52 from the first heat transfer tube 21 positioned above has a larger amount of gas phase, and the first heat transfer tube 21 positioned below the first header portion 52. The refrigerant introduced into the interior has more liquid phase. Therefore, the first header portion 52 is partitioned into the first lower region 72 and the first upper region 73 by the first header partition plate 71, so that the second header is connected via the first connection pipe 55 and the second connection pipe 56. The gas phase and the liquid phase ratio of the refrigerant supplied to the lower part and the upper part in the part 53 can be stabilized.
Further, by adjusting the vertical position of the first header partition plate 71, the gas-liquid ratio and the flow rate of the refrigerant supplied to the lower part and the upper part in the second header part 53 can be adjusted to desired values.
 次に、第三実施形態の熱交換器70を凝縮器として用いる場合の作用効果を説明する。
 本実施形態では、第一ヘッダ部52内の第一下部領域72に気相分の多い冷媒が供給され、第一上部領域73に液相分の多い冷媒が供給される。
 そのため、上述の通りヘッダ30差によって、複数の第一伝熱管21のうち下方に位置する第一伝熱管21の流量が小さく冷却効果が相対的に大きい場合、この第一伝熱管21を流通する冷媒は気相分が多いため、冷媒を過冷却させることなく、適切に凝縮させることができる。一方、ヘッダ30差によって複数の第一伝熱管21のうち上方に位置する第一伝熱管21の流量が大きく冷却効果が相対的に小さい場合でも、この第一伝熱管21を流通する冷媒は既に凝縮した液相分が多いため、不都合はない。
 したがって、熱交換器70全体としてより効率的に冷媒を凝縮させることができる。
Next, the effect in the case of using the heat exchanger 70 of 3rd embodiment as a condenser is demonstrated.
In the present embodiment, a refrigerant with a large amount of gas phase is supplied to the first lower region 72 in the first header portion 52, and a refrigerant with a large amount of liquid phase is supplied to the first upper region 73.
Therefore, when the flow rate of the first heat transfer tube 21 located below among the plurality of first heat transfer tubes 21 is small and the cooling effect is relatively large due to the difference in the header 30 as described above, the first heat transfer tube 21 is circulated. Since the refrigerant has a large gas phase content, it can be appropriately condensed without supercooling the refrigerant. On the other hand, even when the flow rate of the first heat transfer tube 21 positioned above among the plurality of first heat transfer tubes 21 is large due to the difference in the header 30 and the cooling effect is relatively small, the refrigerant flowing through the first heat transfer tube 21 is already present. There is no inconvenience because there is much condensed liquid phase.
Therefore, the refrigerant can be more efficiently condensed as the heat exchanger 70 as a whole.
 次に本発明の第四実施形態に係る熱交換器80について、図11を参照して説明する。
 第四実施形態の熱交換器80は、第一接続管81、第二接続管82の形状が、図11に示すように、扁平管状をなしている点で第一~第三実施形態と相違する。
Next, the heat exchanger 80 which concerns on 4th embodiment of this invention is demonstrated with reference to FIG.
The heat exchanger 80 of the fourth embodiment differs from the first to third embodiments in that the shapes of the first connecting pipe 81 and the second connecting pipe 82 are flat tubes as shown in FIG. To do.
 即ち、第三実施形態の第一接続管81、第二接続管82は、第一実施形態~第三実施形態の第一接続管81、第二接続管82同様に第一ヘッダ部52、第二ヘッダ部53に接続されている一方で、第一~第三実施形態の伝熱管20同様の構造をなしており、即ち、内部に互いに間隔をあけて一方向に複数配列された流路を有する扁平管状をなしている。そのため、断面円形状の第一~第三実施形態の第一接続管81、第二接続管82に比べて、第三実施形態の第一接続管81、第二接続管82は、内部を流通する冷媒量を多く確保することができるとともに、冷媒の圧損を低減させることができる。 That is, the first connection pipe 81 and the second connection pipe 82 of the third embodiment are the same as those of the first connection pipe 81 and the second connection pipe 82 of the first to third embodiments. While being connected to the two header parts 53, it has the same structure as the heat transfer tube 20 of the first to third embodiments, that is, a plurality of flow paths arranged in one direction at intervals inside. It has a flat tubular shape. Therefore, compared with the first connecting pipe 81 and the second connecting pipe 82 of the first to third embodiments having a circular cross section, the first connecting pipe 81 and the second connecting pipe 82 of the third embodiment are circulated inside. A large amount of refrigerant can be ensured and pressure loss of the refrigerant can be reduced.
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 The embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
 例えば実施形態では、第一ヘッダ部52、第二ヘッダ部53が折り返し側ヘッダ50のヘッダ本体51に一体に形成されている例を説明した。しかしながら、これに限定されることはなく、例えば図12に示す第一変形例のように、第一ヘッダ部52、第二ヘッダ部53が互いに独立して配置してもよい。この場合、第一接続管55と第二接続管56とは、第一ヘッダ部52及び第二ヘッダ部53を互いにたすき掛けするように接続することになる。なお、この第一変形例では、第一ヘッダ部52と第二ヘッダ部53とを同様の上下方向位置に配置しているが、互いに異なる上下方向位置に配置してもよい。 For example, in the embodiment, the example in which the first header portion 52 and the second header portion 53 are formed integrally with the header body 51 of the folded-back header 50 has been described. However, the present invention is not limited to this, and the first header part 52 and the second header part 53 may be arranged independently of each other as in the first modification shown in FIG. In this case, the first connecting pipe 55 and the second connecting pipe 56 are connected so that the first header portion 52 and the second header portion 53 are overlaid on each other. In the first modification, the first header portion 52 and the second header portion 53 are arranged at the same vertical position, but may be arranged at different vertical positions.
 また、例えば図13に示す第二変形例のように、出入口側ヘッダ40に戻ってきた冷媒を再度折り返し側ヘッダ50に供給した後に出入口側ヘッダ40に戻す構成となるように、第一ヘッダ部52及び第二ヘッダ部53を折り返し側ヘッダ50に二組設けるとともに出入口側ヘッダ40に一組設ける構成であってもよい。 Further, for example, as in the second modification shown in FIG. 13, the first header portion is configured so that the refrigerant returned to the inlet / outlet header 40 is supplied again to the return header 50 and then returned to the inlet / outlet header 40. Two sets of 52 and the second header portion 53 may be provided in the return side header 50 and one set may be provided in the entrance / exit side header 40.
 さらに、例えば図14に示す第三変形例のように、本実施形態の熱交換器10が上下に2段配置されるように構成してもよい。
 また、例えば図15に示す第四変形例のように、折り返しヘッダ30に上下に隣り合う第一ヘッダ部52及び第二ヘッダ部53を設けるとともに、これら第一ヘッダ部52及び第二ヘッダ部53を上下から挟み込むように第一ヘッダ部52及び第二ヘッダ部53を設け、これに対応するように出入口側ヘッダ40内を区画した構成であってもよい。
Furthermore, you may comprise so that the heat exchanger 10 of this embodiment may be arrange | positioned two steps up and down like the 3rd modification shown in FIG. 14, for example.
Further, for example, as in the fourth modification shown in FIG. 15, the first header portion 52 and the second header portion 53 that are adjacent to each other in the upper and lower sides are provided in the folded header 30, and the first header portion 52 and the second header portion 53 are provided. The 1st header part 52 and the 2nd header part 53 may be provided so that may be pinched | interposed from the upper and lower sides, and the inside / outlet side header 40 inside may be divided so as to correspond to this.
 本発明の一態様における熱交換器及び空気調和機によれば、効率低下の抑制を図ることができる。 According to the heat exchanger and the air conditioner according to one aspect of the present invention, it is possible to suppress the decrease in efficiency.
 1 空気調和機
 2 圧縮機
 3 室内熱交換器
 4 膨張弁
 5 室外熱交換器
 6 四方弁
 7 配管
 10   熱交換器
 20   伝熱管
 21   第一伝熱管
 22   第二伝熱管
 23   フィン
 30   ヘッダ
 40   出入口側ヘッダ
 41   仕切板
 42   下部出入領域
 43   上部出入領域
 50   折り返し側ヘッダ
 51   ヘッダ本体
 52   第一ヘッダ部
 53   第二ヘッダ部
 54   主仕切板
 55   第一接続管
 56   第二接続管
 60   熱交換器
 61   第二ヘッダ仕切板
 62   連通孔
 63   第二下部領域
 64   第二上部領域
 70   熱交換器
 71   第一ヘッダ仕切板
 72   第一下部領域
 73   第一上部領域
 80   熱交換器
 81   第一接続管
 82   第二接続管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Compressor 3 Indoor heat exchanger 4 Expansion valve 5 Outdoor heat exchanger 6 Four way valve 7 Piping 10 Heat exchanger 20 Heat transfer tube 21 First heat transfer tube 22 Second heat transfer tube 23 Fin 30 Header 40 Entrance / exit side header 41 Partition Plate 42 Lower Access Area 43 Upper Access Area 50 Return Side Header 51 Header Main Body 52 First Header Portion 53 Second Header Portion 54 Main Partition Plate 55 First Connection Pipe 56 Second Connection Pipe 60 Heat Exchanger 61 Second Header Partition plate 62 Communication hole 63 Second lower region 64 Second upper region 70 Heat exchanger 71 First header partition plate 72 First lower region 73 First upper region 80 Heat exchanger 81 First connection pipe 82 Second connection pipe

Claims (6)

  1.  水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第一伝熱管と、
     上下方向に延びる筒状をなし、複数の前記第一伝熱管の一端が連通状態で接続される第一ヘッダ部と、
     水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第二伝熱管と、
     複数の前記第二伝熱管の一端が連通状態で接続される第二ヘッダ部と、
     前記第一ヘッダ部の下部と前記第二ヘッダ部の上部とを接続する第一接続管と、
     前記第一ヘッダ部の上部と前記第二ヘッダ部の下部とを接続する第二接続管と、を備える熱交換器。
    A first heat transfer tube that extends in the horizontal direction and has a plurality of refrigerants arranged in the vertical direction with a refrigerant flowing therethrough,
    A first header portion that is formed in a cylindrical shape extending in the up-down direction and one end of the plurality of first heat transfer tubes is connected in a communicating state;
    A second heat transfer tube extending in the horizontal direction and having a plurality of refrigerants arranged in the vertical direction with a refrigerant flowing through the interior;
    A second header part to which one end of the plurality of second heat transfer tubes is connected in a communicating state;
    A first connection pipe connecting the lower part of the first header part and the upper part of the second header part;
    A heat exchanger comprising: a second connection pipe that connects an upper part of the first header part and a lower part of the second header part.
  2.  前記第二ヘッダ部内の空間を、前記第一接続管と連通する第二上部領域と前記第二接続管と連通する第二下部領域とに区画するとともに、上下に貫通する連通孔が形成された第二ヘッダ仕切板をさらに備える請求項1に記載の熱交換器。 A space in the second header portion is partitioned into a second upper region communicating with the first connection pipe and a second lower region communicating with the second connection pipe, and a communication hole penetrating vertically is formed. The heat exchanger according to claim 1, further comprising a second header partition plate.
  3.  前記第一ヘッダ部内の空間を、前記第一接続管に連通する第一下部領域と、前記第二接続管に連通する第一上部領域とに区画する第一ヘッダ仕切板をさらに備える請求項1又は2に記載の熱交換器。 The first header partition plate for partitioning a space in the first header portion into a first lower region communicating with the first connection pipe and a first upper region communicating with the second connection pipe. The heat exchanger according to 1 or 2.
  4.  前記第一接続管と前記第二接続管の少なくとも一方が、内部に互いに間隔をあけて複数配列された流路を有する扁平管状をなしている請求項1から3のいずれか一項に記載の熱交換器。 The at least one of said 1st connection pipe and said 2nd connection pipe has comprised the flat tube | pipe which has the flow path arranged in multiple numbers at intervals mutually inside. Heat exchanger.
  5.  ヘッダをさらに備え、
     前記ヘッダは、上下方向に延びる筒状をなすヘッダ本体と、前記ヘッダ本体内を上下に区画する主仕切板と、を有し、
     前記第一ヘッダ部は、前記ヘッダ本体内であって、前記主仕切板の下方の部分であり、
     前記第二ヘッダ部は、前記ヘッダ本体内であって、前記主仕切板の上方の部分である請求項1から4のいずれか一項に記載の熱交換器。
    A header,
    The header has a cylindrical header body extending in the vertical direction, and a main partition plate that partitions the header body vertically.
    The first header portion is in the header body and is a portion below the main partition plate,
    The heat exchanger according to any one of claims 1 to 4, wherein the second header portion is a portion above the main partition plate in the header main body.
  6.  請求項1から5のいずれか一項に記載の熱交換器を備える空気調和機。 An air conditioner comprising the heat exchanger according to any one of claims 1 to 5.
PCT/JP2017/005960 2016-02-29 2017-02-17 Heat exchanger and air conditioner WO2017150221A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017227162A AU2017227162B2 (en) 2016-02-29 2017-02-17 Heat exchanger and air conditioner
EP17759690.5A EP3376149B1 (en) 2016-02-29 2017-02-17 Heat exchanger and air conditioner
CN201780004388.4A CN108291786A (en) 2016-02-29 2017-02-17 Heat exchanger and air-conditioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038405 2016-02-29
JP2016038405A JP6656950B2 (en) 2016-02-29 2016-02-29 Heat exchangers and air conditioners

Publications (1)

Publication Number Publication Date
WO2017150221A1 true WO2017150221A1 (en) 2017-09-08

Family

ID=59742965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005960 WO2017150221A1 (en) 2016-02-29 2017-02-17 Heat exchanger and air conditioner

Country Status (5)

Country Link
EP (1) EP3376149B1 (en)
JP (1) JP6656950B2 (en)
CN (1) CN108291786A (en)
AU (1) AU2017227162B2 (en)
WO (1) WO2017150221A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466047B1 (en) * 2018-08-22 2019-02-06 三菱電機株式会社 Heat exchanger and air conditioner
JP7210744B2 (en) * 2019-07-31 2023-01-23 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623806U (en) * 1992-05-15 1994-03-29 カルソニック株式会社 Heat exchanger for heat pump type air conditioner
JP2007078317A (en) * 2005-09-16 2007-03-29 Sanyo Electric Co Ltd Heat exchanger for cooling equipment, and cooling equipment
US20100206535A1 (en) * 2007-10-12 2010-08-19 Carrier Corporation Heat exchangers having baffled manifolds
WO2012098917A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2014109416A (en) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd Air conditioner
JP2014152937A (en) * 2013-02-04 2014-08-25 Daikin Ind Ltd Freezer
JP2015017722A (en) * 2013-07-09 2015-01-29 株式会社B.T.P. Heat exchanger and heating and cooling air conditioning system using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447156A (en) * 1977-09-21 1979-04-13 Hitachi Ltd Heat exchanger
JP5741680B1 (en) * 2013-12-27 2015-07-01 ダイキン工業株式会社 Heat exchanger and air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623806U (en) * 1992-05-15 1994-03-29 カルソニック株式会社 Heat exchanger for heat pump type air conditioner
JP2007078317A (en) * 2005-09-16 2007-03-29 Sanyo Electric Co Ltd Heat exchanger for cooling equipment, and cooling equipment
US20100206535A1 (en) * 2007-10-12 2010-08-19 Carrier Corporation Heat exchangers having baffled manifolds
WO2012098917A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
JP5071597B2 (en) 2011-01-21 2012-11-14 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2014109416A (en) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd Air conditioner
JP2014152937A (en) * 2013-02-04 2014-08-25 Daikin Ind Ltd Freezer
JP2015017722A (en) * 2013-07-09 2015-01-29 株式会社B.T.P. Heat exchanger and heating and cooling air conditioning system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376149A4

Also Published As

Publication number Publication date
AU2017227162B2 (en) 2019-06-20
EP3376149B1 (en) 2019-07-31
JP2017155994A (en) 2017-09-07
EP3376149A4 (en) 2018-12-05
JP6656950B2 (en) 2020-03-04
CN108291786A (en) 2018-07-17
EP3376149A1 (en) 2018-09-19
AU2017227162A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6202451B2 (en) Heat exchanger and air conditioner
WO2018116929A1 (en) Heat exchanger and air conditioner
JP5761252B2 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2018162900A (en) Heat exchanger and air conditioner including the same
US10544990B2 (en) Heat exchanger
US11022372B2 (en) Air conditioner
WO2015046275A1 (en) Heat exchanger and air conditioner using same
JP6742112B2 (en) Heat exchanger and air conditioner
WO2017150219A1 (en) Heat exchanger and air conditioner
JP2015108463A (en) Heat exchanger and refrigeration cycle device
WO2017150221A1 (en) Heat exchanger and air conditioner
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5677220B2 (en) Refrigeration cycle equipment
KR102011278B1 (en) Condenser
JP6853867B2 (en) Heat exchanger and air conditioner
JP2020115070A (en) Heat exchanger
WO2018061359A1 (en) Heat exchanger and refrigeration cycle device
KR102148722B1 (en) Heat exchanger and air conditional having the same
JP2020085268A (en) Heat exchanger
JP2020085267A (en) Heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017759690

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017227162

Country of ref document: AU

Date of ref document: 20170217

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE