JP2015017722A - Heat exchanger and heating and cooling air conditioning system using the same - Google Patents

Heat exchanger and heating and cooling air conditioning system using the same Download PDF

Info

Publication number
JP2015017722A
JP2015017722A JP2013143594A JP2013143594A JP2015017722A JP 2015017722 A JP2015017722 A JP 2015017722A JP 2013143594 A JP2013143594 A JP 2013143594A JP 2013143594 A JP2013143594 A JP 2013143594A JP 2015017722 A JP2015017722 A JP 2015017722A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
internal space
air conditioning
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013143594A
Other languages
Japanese (ja)
Inventor
正 岡本
Tadashi Okamoto
正 岡本
泰司 道本
Taiji Domoto
泰司 道本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTP CO Ltd
株式会社B.T.P.
Original Assignee
BTP CO Ltd
株式会社B.T.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTP CO Ltd, 株式会社B.T.P. filed Critical BTP CO Ltd
Priority to JP2013143594A priority Critical patent/JP2015017722A/en
Publication of JP2015017722A publication Critical patent/JP2015017722A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger and a heating and cooling air conditioning system using the same capable of achieving both satisfactory air conditioning performance and energy saving characteristics in a cooling operation and a heating operation respectively.SOLUTION: A heat exchanger has internal volume divided into two by partitioning internal space. In each partitioned internal space (internal space 1 and internal space 2), a refrigerant inflow port (refrigerant inflow port 10 and refrigerant inflow port 12) and a refrigerant outflow port (refrigerant outflow port 14 and refrigerant outflow port 16) are provided. A branch pipe communicating from a refrigerant pipe to the refrigerant inflow port 10 and the refrigerant inflow port 12, and a collecting pipe for communicating from the refrigerant outflow port 14 and the refrigerant outflow port 16 to the refrigerant pipe are provided. An opening/closing mechanism 18 is provided between a branch portion of the branch pipe and the refrigerant inflow port 10, and an opening/closing mechanism 20 is provided between a collecting portion of the collecting pipe and the refrigerant outflow port 14.

Description

本発明は容量を可変できる熱交換器及びそれを用いた冷暖房空調システムに関し、より具体的には、冷房運転及び暖房運転のそれぞれにおいて良好な空調性能及び省エネルギー特性を両立し得る、可変容量熱交換器及びそれを用いた冷暖房空調システムに関する。   The present invention relates to a heat exchanger capable of varying capacity and a cooling / heating air conditioning system using the same, and more specifically, variable capacity heat exchange capable of achieving both good air conditioning performance and energy saving characteristics in each of cooling operation and heating operation. The present invention relates to a container and an air conditioning system using the same.

一般に、冷暖房空調システムの室外機用熱交換器においては、暖房運転時に、外気の温度が低下すると、室外機用熱交換器に霜が付着して、通風量の低下及び熱交換量の低下をきたすため、除霜する必要があった。そのため、外気通風路に対して風上側と風下側に並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が風下側熱交換器に流れ、冷房時には高温冷媒が風下側熱交換器、風上側熱交換器の順に流れるようにした冷暖房空調システムが知られている(例えば、特許文献1参照)。   In general, in an outdoor unit heat exchanger of an air conditioning / air conditioning system, when the temperature of the outside air decreases during heating operation, frost adheres to the outdoor unit heat exchanger, reducing the ventilation rate and the heat exchange rate. It was necessary to defrost to make it come. Therefore, the windward side heat exchanger and the leeward side heat exchanger arranged in parallel on the windward side and the leeward side with respect to the outdoor air passage are used as outdoor unit heat exchangers, and during heating, the high-temperature refrigerant is used as the windward side heat exchanger. A cooling and heating air conditioning system is known in which the refrigerant having a low temperature due to adiabatic expansion flows to the leeward heat exchanger and the high temperature refrigerant flows in the order of the leeward heat exchanger and then the windward heat exchanger during cooling. (For example, refer to Patent Document 1).

上記冷暖房空調システムの効果は、冷房運転時には風上側熱交換器と風下側熱交換器との2つの熱交換器の能力を合算して使用することによる凝縮性能の向上によってもたらされるものであり、冷暖房空調システムの冷房性能が大幅に改善される。   The effect of the air conditioning and air conditioning system is brought about by the improvement of the condensation performance by using the combined capacity of the two heat exchangers, the windward heat exchanger and the leeward heat exchanger, during cooling operation. The cooling performance of the air conditioning system is greatly improved.

一方、暖房運転時には風上側熱交換器から風下側熱交換器に向けて凝縮熱が放熱される。当該放熱によって風下側熱交換器表面に対する難着霜効果及び除霜効果が発現し、冷媒の蒸発性能の向上に伴って暖房性能が改善される。   On the other hand, during heating operation, condensation heat is radiated from the windward heat exchanger toward the leeward heat exchanger. Due to the heat radiation, a frost formation effect and a defrosting effect are exerted on the surface of the leeward heat exchanger, and the heating performance is improved as the refrigerant evaporation performance is improved.

しかしながら、暖房運転時に風上側熱交換器の放熱で冷媒を過冷却し過ぎた場合、風下側熱交換器に入る冷媒温度が低下し過ぎる場合がある。冷媒温度が低下し過ぎた場合、風下側の熱交換器の熱交換性能が追い付かなくなると、冷媒の蒸発不足となり所謂液バック(圧縮機へ液状態の冷媒が送られる状態)のリスクが高まることになる。   However, if the refrigerant is overcooled by heat release from the windward heat exchanger during heating operation, the refrigerant temperature entering the leeward heat exchanger may be excessively lowered. If the refrigerant temperature is too low and the heat exchange performance of the leeward heat exchanger cannot catch up, the refrigerant will be insufficiently evaporated, increasing the risk of so-called liquid back (a state in which liquid refrigerant is sent to the compressor). become.

通常のシステム制御では、当該状態を避けるため、膨張弁制御を絞り方向に制御し、風下側熱交換器へ入る冷媒を低圧化し、十分な冷媒の蒸発を促そうとする。しかしながら、冷媒が低圧化すると熱交換器表面はより低温化し、着霜しやすい状態になってしまう。   In normal system control, in order to avoid this state, the expansion valve control is controlled in the throttle direction, the refrigerant entering the leeward heat exchanger is reduced in pressure, and sufficient evaporation of the refrigerant is urged. However, when the pressure of the refrigerant is reduced, the surface of the heat exchanger becomes lower in temperature and is likely to be frosted.

風上側熱交換器の凝縮熱放熱による風下側熱交換器の難着霜効果が追い付かなくなると、(1)熱交換器の着霜、(2)熱交換器性能(蒸発性能)の低下、(3)システム制御の低圧化、(4)熱交換器の着霜、という悪循環に入ってしまうことになる。   When the hard frost formation effect of the leeward heat exchanger due to the condensation heat radiation of the windward heat exchanger cannot catch up, (1) frost formation of the heat exchanger, (2) deterioration of the heat exchanger performance (evaporation performance), ( 3) A vicious circle of system control pressure reduction and (4) heat exchanger frost formation will occur.

特開2008−25897号公報JP 2008-25897 A

上記の問題を解決する方法として、風上側熱交換器を性能的にバランスのとれた大きさまでサイズダウンすることが考えられるが、着霜問題が存在しない冷房運転時は風上側熱交換器による過冷却効果を可能な限り大きく発現した方が好ましく、矛盾が生じてしまう。   As a method for solving the above problem, it is conceivable to reduce the size of the windward side heat exchanger to a size that is balanced in terms of performance. It is preferable that the cooling effect is expressed as much as possible, resulting in a contradiction.

また、風上側熱交換器を風下側熱交換器より小型化すると、風下側熱交換器の通風面積に対して通気抵抗値の高低が生じてしまい、通過空気の偏流によって風下側熱交換器の熱交換器性能を低下させてしまう。   Also, if the downwind heat exchanger is made smaller than the downwind heat exchanger, the ventilation resistance value increases or decreases with respect to the ventilation area of the downwind heat exchanger, and the drift of the passing air causes the downwind heat exchanger to The heat exchanger performance is degraded.

以上のような従来技術における問題点に鑑み、本発明の目的は、冷房運転及び暖房運転のそれぞれにおいて良好な空調性能及び省エネルギー特性を両立し得る、熱交換器及びそれを用いた冷暖房空調システムを提供することにある。   In view of the problems in the prior art as described above, an object of the present invention is to provide a heat exchanger and an air conditioning air conditioning system using the heat exchanger that can achieve both good air conditioning performance and energy saving characteristics in each of cooling operation and heating operation. It is to provide.

本発明者は上記目的を達成すべく、風上側に設置する熱交換器の構造等について鋭意研究を重ねた結果、当該熱交換器の内部空間を仕切ることによって容量を可変できる熱交換器とすることが極めて有効であることを見出し、本発明に到達した。   In order to achieve the above object, the present inventor conducted extensive research on the structure of the heat exchanger installed on the windward side, and as a result, the heat exchanger has a variable capacity by partitioning the internal space of the heat exchanger. Has been found to be extremely effective, and the present invention has been achieved.

即ち、本発明は、
内部空間に仕切を設けることによって二分割された第一の内部空間と第二の内部空間とを有する熱交換器であって、
前記第一の内部空間及び前記第二の内部空間のそれぞれに設けられた第一の冷媒流入口及び第二の冷媒流入口並びに第一の冷媒流出口及び第二の冷媒流出口と、
冷媒管から前記第一の冷媒流入口及び前記第二の冷媒流入口に連通する分岐管と、
前記第一の冷媒流出口及び前記第二の冷媒流出口から前記冷媒管に連通する集合管と、
前記分岐管の分岐部から前記第一の冷媒流入口の間に設けられた第一の開閉機構と、
前記集合管の集合部から前記第一の冷媒流出口の間に設けられた第二の開閉機構と、
を有すること、
を特徴とする熱交換器を提供する。
That is, the present invention
A heat exchanger having a first internal space and a second internal space divided into two by providing a partition in the internal space,
A first refrigerant inlet and a second refrigerant inlet, a first refrigerant outlet and a second refrigerant outlet provided in each of the first internal space and the second internal space;
A branch pipe communicating from the refrigerant pipe to the first refrigerant inlet and the second refrigerant inlet;
A collecting pipe communicating from the first refrigerant outlet and the second refrigerant outlet to the refrigerant pipe;
A first opening / closing mechanism provided between a branch portion of the branch pipe and the first refrigerant inlet;
A second opening / closing mechanism provided between a collecting portion of the collecting pipe and the first refrigerant outlet;
Having
A heat exchanger characterized by the above is provided.

上記本発明の熱交換器においては、第一の開閉機構と第二の開閉機構とを共に開けた場合、内部空間の全てに冷媒が流通し、熱交換器の全内容積を使用することができる。また、第一の開閉機構と第二の開閉機構とを共に閉じた場合、第一の内部空間のみに冷媒が流通し、第一の内部空間に相当する内容積のみを使用することができる。   In the heat exchanger of the present invention, when both the first opening / closing mechanism and the second opening / closing mechanism are opened, the refrigerant flows through the entire internal space, and the entire internal volume of the heat exchanger may be used. it can. When both the first opening / closing mechanism and the second opening / closing mechanism are closed, the refrigerant flows only in the first internal space, and only the internal volume corresponding to the first internal space can be used.

また、本発明は、外気通風路に対して風上側と風下側とに熱交換器が併設された冷暖房空調システムであって、風上側に設置される前記熱交換器を本発明の上記熱交換器とすること、を特徴とする冷暖房空調システムも提供する。   Further, the present invention is an air conditioning / air conditioning system in which heat exchangers are provided on the windward side and the leeward side with respect to the outdoor air passage, and the heat exchanger installed on the windward side is the heat exchange according to the present invention. An air conditioning system is also provided.

上記本発明の冷暖房空調システムでは、冷房運転時は前記第一の開閉機構と前記第二の開閉機構とを共に開き、前記熱交換器の前記内部空間の全て(前記第一の内部空間及び前記第二の内部空間)に冷媒を流通させ、暖房運転時は前記第一の開閉機構と前記第二の開閉機構とを共に閉じ、前記熱交換器の前記内部空間1のみに冷媒を流通させること、が好ましい。   In the air conditioning / air conditioning system of the present invention, during the cooling operation, the first opening / closing mechanism and the second opening / closing mechanism are both opened, and all of the internal spaces of the heat exchanger (the first internal space and the The refrigerant is circulated in the second internal space), and during the heating operation, the first opening and closing mechanism and the second opening and closing mechanism are both closed, and the refrigerant is circulated only in the internal space 1 of the heat exchanger. Are preferred.

冷房運転時は熱交換器の能力を全て発揮させることで最大の過冷却効果を得ることができ、熱交換器を併設することによる冷房性能増大効果を最大に引き出すことができる。   During cooling operation, the maximum supercooling effect can be obtained by fully demonstrating the capacity of the heat exchanger, and the effect of increasing the cooling performance by installing the heat exchanger can be maximized.

また、暖房運転時は第一の内部空間に相当する能力を発揮させることで熱交換器性能を抑え、風下側熱交換器へ流入する冷媒の温度が低温化し過ぎるのを防止し、風下側熱交換器へ流入する冷媒の低圧化に伴う暖房性能の低下を回避することができる。   Also, during heating operation, the performance equivalent to the first internal space is exhibited to suppress the heat exchanger performance, preventing the temperature of the refrigerant flowing into the leeward heat exchanger from becoming too low, and reducing the leeward heat It is possible to avoid a decrease in heating performance due to the low pressure of the refrigerant flowing into the exchanger.

更に、上記本発明の冷暖房空調システムでは、前記第一の内部空間を風下側に設置される前記熱交換器の冷媒流入口近傍に配置すること、が好ましく、風上側に設置される前記熱交換器の通風面積を風下側に設置される前記熱交換器の通風面積以上とすること、が好ましい。   Furthermore, in the air conditioning / heating air conditioning system of the present invention, it is preferable that the first internal space is disposed in the vicinity of a refrigerant inlet of the heat exchanger installed on the leeward side, and the heat exchange installed on the windward side. It is preferable that the ventilation area of the vessel is equal to or greater than the ventilation area of the heat exchanger installed on the leeward side.

風上側に設置される熱交換器の通風面積が風下側に設置される熱交換器の通風面積以上となっているため、熱交換の併設に伴う通過空気の偏流を防止することができる。また、暖房時に使用する風上側の熱交換器部分(第一の内部空間に相当)が風下側熱交換器の冷媒流入口近傍に配置されているため、風下側熱交換器の最も着霜しやすい部分において集中的に難着霜効果が得られ、熱交換器を併設する目的の一つである難着霜効果による暖房能力の向上も確保することができる。   Since the ventilation area of the heat exchanger installed on the leeward side is equal to or larger than the ventilation area of the heat exchanger installed on the leeward side, it is possible to prevent drift of the passing air accompanying the heat exchange. In addition, since the leeward heat exchanger portion (corresponding to the first internal space) used for heating is arranged in the vicinity of the refrigerant inlet of the leeward heat exchanger, the leeward heat exchanger is most frosted. The frost formation effect is intensively obtained in the easy part, and the improvement of the heating capacity due to the frost formation effect, which is one of the purposes of providing the heat exchanger, can be ensured.

本発明によれば、冷房運転及び暖房運転のそれぞれにおいて良好な空調性能及び省エネルギー特性を両立し得る、熱交換器及びそれを用いた冷暖房空調システムを提供することができる。   According to the present invention, it is possible to provide a heat exchanger and an air conditioning / air conditioning system using the heat exchanger that can achieve both favorable air conditioning performance and energy saving characteristics in each of cooling operation and heating operation.

より具体的には、本発明の熱交換器によれば、必要に応じて簡便に容量を変化させることができる熱交換器を提供することができる。また、本発明の冷暖房空調システムによれば、風上側に設置する熱交換器の容量を冷房運転時と暖房運転時とで適宜変化させることで、冷房性能及び暖房性能を最大限に発揮し得る冷暖房空調システムを提供することができる。   More specifically, according to the heat exchanger of the present invention, it is possible to provide a heat exchanger whose capacity can be easily changed as necessary. Further, according to the air conditioning and air conditioning system of the present invention, the capacity of the heat exchanger installed on the windward side is appropriately changed between the cooling operation and the heating operation, so that the cooling performance and the heating performance can be maximized. An air conditioning system can be provided.

本発明の一実施形態に係る熱交換器の概略構成図である。It is a schematic block diagram of the heat exchanger which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器の概略構成図である(冷房運転時)。It is a schematic block diagram of the heat exchanger which concerns on one Embodiment of this invention (at the time of air_conditionaing | cooling operation). 本発明の一実施形態に係る熱交換器の概略構成図である(暖房運転時)。It is a schematic block diagram of the heat exchanger which concerns on one Embodiment of this invention (at the time of heating operation). 本発明の冷暖房空調システムの冷房運転時の冷媒回路を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit at the time of the air_conditionaing | cooling operation of the air conditioning system of this invention. 本発明の冷暖房空調システムの暖房運転時の冷媒回路を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit at the time of the heating operation of the air-conditioning / air-conditioning system of this invention. 一般的な冷暖房空調システムの暖房運転時の各種特性を示す線図である。It is a diagram which shows the various characteristics at the time of the heating operation of a general air conditioning air conditioning system. 本発明の冷暖房空調システムの暖房運転時の各種特性を示す線図である(風上側熱交換器全容積の100%で運転)。It is a diagram which shows the various characteristics at the time of the heating operation of the air-conditioning / air-conditioning system of this invention (operating at 100% of the total capacity of an upwind heat exchanger). 本発明の冷暖房空調システムの暖房運転時の各種特性を示す線図である(風上側熱交換器全容積の50%で運転)。It is a diagram which shows the various characteristics at the time of the heating driving | operation of the air-conditioning / air-conditioning system of this invention (operating with 50% of the total capacity of an upwind heat exchanger). 一般的な冷暖房空調システムの冷房運転時の各種特性を示す線図である。It is a diagram which shows the various characteristics at the time of air_conditionaing | cooling operation of a general air-conditioning / air conditioning system. 本発明の冷暖房空調システムの冷房運転時の各種特性を示す線図である(風上側熱交換器全容積の100%で運転)。It is a diagram which shows the various characteristics at the time of air_conditionaing | cooling operation of the air-conditioning / air-conditioning system of this invention (operating at 100% of the total capacity of an upwind heat exchanger).

以下、図面を参照しながら本発明の熱交換器及びそれを用いた冷暖房空調システムの代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。   DESCRIPTION OF EMBODIMENTS Hereinafter, representative embodiments of a heat exchanger of the present invention and an air conditioning / air conditioning system using the same will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.

[A]熱交換器
図1は、本発明の一実施形態に係る熱交換器(可変容量熱交換器)の概略構成図である。本実施形態の可変容量熱交換器1は、一般的なアルミニウム合金製の熱交換器からなる本体2と、仕切板4と、分岐管6と、集合管8と、冷媒流入口10、12と、冷媒流出口14、16と、開閉機構18、20と、を有している。
[A] Heat Exchanger FIG. 1 is a schematic configuration diagram of a heat exchanger (variable capacity heat exchanger) according to an embodiment of the present invention. The variable capacity heat exchanger 1 of this embodiment includes a main body 2 made of a general aluminum alloy heat exchanger, a partition plate 4, a branch pipe 6, a collecting pipe 8, and refrigerant inlets 10 and 12. The refrigerant outlets 14 and 16 and the opening and closing mechanisms 18 and 20 are provided.

アルミニウム合金製の熱交換器からなる本体2には、本発明の効果を損なわない範囲で従来公知の種々のアルミニウム製の熱交換器を使用することができ、例えば、アルミニウム合金製のフィン・アンド・チューブ型熱交換器やパラレルフロー型熱交換器を用いることができる。   For the main body 2 formed of an aluminum alloy heat exchanger, various conventionally known aluminum heat exchangers can be used as long as the effects of the present invention are not impaired. -A tube type heat exchanger or a parallel flow type heat exchanger can be used.

図1に示す本実施形態の可変容量熱交換器1の本体2は、パラレルフロー型熱交換器からなり、アルミニウム合金製のヘッダーパイプ22、24と、これらヘッダーパイプ22、24に連通する互いに平行なアルミニウム合金製の、例えば押出形材からなる複数の扁平熱交換器26と、隣接する扁平熱交換器26の間に介在されるアルミニウム合金製のコルゲートフィン28とで主に構成されている。   A main body 2 of the variable capacity heat exchanger 1 of the present embodiment shown in FIG. 1 is formed of a parallel flow type heat exchanger, and is made of aluminum alloy header pipes 22 and 24 and parallel to each other communicating with the header pipes 22 and 24. It is mainly composed of a plurality of flat heat exchangers 26 made of, for example, an extruded shape member and made of aluminum alloy and corrugated fins 28 made of aluminum alloy interposed between adjacent flat heat exchangers 26.

本体2の内部空間は4つの仕切板4によって第一の内部空間(内部空間1)及び第二の内部空間(内部空間2)の2つに仕切られており、内部空間の内容積は二分割されている。仕切板4によって仕切られた内部空間(第一の内部空間及び第二の内部空間)には、それぞれ冷媒流入口(第一の冷媒流入口10及び第二の冷媒流入口12)と冷媒流出口(第一の冷媒流出口14及び第二の冷媒流出口16)とが設けられている。   The internal space of the main body 2 is divided into two parts, a first internal space (internal space 1) and a second internal space (internal space 2) by four partition plates 4, and the internal volume of the internal space is divided into two. Has been. Refrigerant inlets (first refrigerant inlet 10 and second refrigerant inlet 12) and refrigerant outlets are respectively provided in the internal spaces (first internal space and second internal space) partitioned by the partition plate 4. (A first refrigerant outlet 14 and a second refrigerant outlet 16) are provided.

また、可変容量熱交換器1には、冷媒管(図示せず。)から第一の冷媒流入口10及び第二の冷媒流入口12に連通する分岐管6と、第一の冷媒流出口14及び第二の冷媒流出口16から冷媒管に連通する集合管8と、が設けられており、分岐管6の分岐部から第一の冷媒流入口10の間に第一の開閉機構18が設けられ、集合管8の集合部から第一の冷媒流出口14の間に第二の開閉機構20が設けられている。   Further, the variable capacity heat exchanger 1 includes a branch pipe 6 that communicates from a refrigerant pipe (not shown) to the first refrigerant inlet 10 and the second refrigerant inlet 12, and a first refrigerant outlet 14. And a collecting pipe 8 communicating with the refrigerant pipe from the second refrigerant outlet 16, and a first opening / closing mechanism 18 is provided between the branch portion of the branch pipe 6 and the first refrigerant inlet 10. The second opening / closing mechanism 20 is provided between the collecting portion of the collecting pipe 8 and the first refrigerant outlet 14.

第一の開閉機構18及び第二の開閉機構20を共に開けた場合、本体2の内部空間の全て(第一の内部空間及び第二の内部空間)に冷媒を流通させることができ(図2を参照:可変容量熱交換器1の全体である灰色部分に冷媒が循環)、第一の開閉機構18と第二の開閉機構20とを共に閉じた場合、可変容量熱交換器1の第一の内部空間のみに冷媒を流通させることができる(図3を参照:可変熱容量熱交換器1の下半分である灰色部分に冷媒が循環)。   When both the first opening / closing mechanism 18 and the second opening / closing mechanism 20 are opened, the refrigerant can be circulated in all the internal spaces (the first internal space and the second internal space) of the main body 2 (FIG. 2). The refrigerant circulates in the gray portion of the entire variable capacity heat exchanger 1), and when the first opening / closing mechanism 18 and the second opening / closing mechanism 20 are both closed, the first of the variable capacity heat exchanger 1 is The refrigerant can be circulated only in the internal space (see FIG. 3: the refrigerant circulates in the gray portion which is the lower half of the variable heat capacity heat exchanger 1).

ここで、本実施形態においては、第一の内部空間及び第二の内部空間は同じ容積を有している。即ち、図1等において、第一の内部空間は、可変容量熱交換器1(本体2)の鉛直方向下側から50%の部分に相当する内部空間である。この第一の内部空間は、後述するように、冷暖房空調システムにおいて風下側熱交換器と並設する場合、暖房運転時(冬季)に着霜し易い風下側熱交換器の下側部分に対向して配置される。   Here, in the present embodiment, the first internal space and the second internal space have the same volume. That is, in FIG. 1 and the like, the first internal space is an internal space corresponding to a portion of 50% from the lower side in the vertical direction of the variable capacity heat exchanger 1 (main body 2). As will be described later, this first internal space faces the lower part of the leeward heat exchanger that is likely to form frost during heating operation (winter season) when it is arranged in parallel with the leeward heat exchanger in the air conditioning air conditioning system. Arranged.

したがって、この場合、可変容量熱交換器1において、仕切板4によって分割される内部空間(第一の内部空間及び第二の内部空間)それぞれの大きさは、暖房運転時に使用する可変容量熱交換器1の最適容量から設計すればよい。風下側熱交換器によって着霜する部分が異なることもあるため、その場合は、仕切板4の位置を適宜変更して、第一の内部空間の容積を、例えば可変容量熱交換器1(本体2)の鉛直方向下側から20%〜50%、20%〜30%の部分に相当するように設計してもよい。   Therefore, in this case, in the variable capacity heat exchanger 1, the sizes of the internal spaces (first internal space and second internal space) divided by the partition plate 4 are variable capacity heat exchange used during heating operation. What is necessary is just to design from the optimal capacity of the vessel 1. Since the part that forms frost may differ depending on the leeward side heat exchanger, in that case, the position of the partition plate 4 is appropriately changed, and the volume of the first internal space is changed to, for example, the variable capacity heat exchanger 1 (main body You may design so that it may correspond to a 20%-50%, 20%-30% part from the vertical direction lower side of 2).

[B]冷暖房空調システム
次に、本実施形態の冷暖房空調システムは、外気通風路に対して風上側と風下側とに熱交換器が併設された冷暖房空調システムであって、風上側に設置される熱交換器が上記実施形態の可変容量熱交換器1であること、を特徴とする冷暖房空調システムである。図4と図5とにそれぞれ冷房運転時と暖房運転時との冷媒回路を示す概略構成図をそれぞれ示す。
[B] Air-conditioning / air-conditioning system Next, the air-conditioning / air-conditioning system of the present embodiment is an air-conditioning / air-conditioning system in which heat exchangers are provided on the windward side and the leeward side of the outdoor air passage, and is installed on the windward side. The heat exchanger is a variable capacity heat exchanger 1 according to the above embodiment. FIG. 4 and FIG. 5 show schematic configuration diagrams showing refrigerant circuits during cooling operation and heating operation, respectively.

本実施形態の冷暖房空調システムは、主面が鉛直方向に略平行になる位置関係で、外気通風路に対して風上側と風下側にそれぞれ並設される可変容量熱交換器1及び風下側熱交換器30からなる室外機用熱交換器32を有している。また、風上側に設置された可変容量熱交換器1に設けられた第一の冷媒流入口10及び第二の冷媒流入口12に接続する分岐管6と、可変容量熱交換器1に設けられた第一の冷媒流出口14及び第二の冷媒流出口16に接続する集合管8と、この集合管8に介設される膨張機構(例えば膨張弁EV)と、分岐管6と集合管8とを接続する互いに並列な第一の分岐管及び第二の分岐管と、を具備する。   The air conditioning and air conditioning system of the present embodiment has a variable capacity heat exchanger 1 and a leeward side heat that are arranged in parallel on the leeward side and leeward side with respect to the outside air ventilation path in a positional relationship in which the main surface is substantially parallel to the vertical direction. An outdoor unit heat exchanger 32 including the exchanger 30 is provided. In addition, the branch pipe 6 connected to the first refrigerant inlet 10 and the second refrigerant inlet 12 provided in the variable capacity heat exchanger 1 installed on the windward side, and the variable capacity heat exchanger 1 are provided. The collecting pipe 8 connected to the first refrigerant outlet 14 and the second refrigerant outlet 16, the expansion mechanism (for example, the expansion valve EV) interposed in the collecting pipe 8, the branch pipe 6 and the collecting pipe 8 And a first branch pipe and a second branch pipe that are connected in parallel to each other.

更に、第一の分岐管及び第二の分岐管に介設される計4個の逆止弁CV1、CV2、CV3及びCV4からなる後述する逆止弁機構34と、第一の分岐管における2つの逆止弁CV1及びCV2の間と風下側熱交換器30の下端の冷媒流出入口とを接続する室外側管36と、第二の分岐管における2つの逆止弁CV3及びCV4の間と室内機用熱交換器38とを接続する第一の室内側管40と、を具備する。   Further, a check valve mechanism 34, which will be described later, consisting of a total of four check valves CV1, CV2, CV3, and CV4 interposed between the first branch pipe and the second branch pipe, and 2 in the first branch pipe. Between the two check valves CV1 and CV2 and the refrigerant inlet / outlet at the lower end of the leeward heat exchanger 30; between the two check valves CV3 and CV4 in the second branch pipe; And a first indoor side pipe 40 connected to the machine heat exchanger 38.

なお、風下側熱交換器30と室内側熱交換器38とを接続する第二の室内側管42には、風下側熱交換器30側から順に四方弁DVと圧縮機44が介設されており、この四方弁DVの切り換えによって、圧縮機44から吐出される高温・高圧の冷媒が室内機用熱交換器38、又は、室外機用熱交換器32の風下側熱交換器30に流れるようになっている。   The second indoor pipe 42 connecting the leeward heat exchanger 30 and the indoor heat exchanger 38 is provided with a four-way valve DV and a compressor 44 in order from the leeward heat exchanger 30 side. The high-temperature and high-pressure refrigerant discharged from the compressor 44 flows through the indoor unit heat exchanger 38 or the leeward heat exchanger 30 of the outdoor unit heat exchanger 32 by switching the four-way valve DV. It has become.

上記逆止弁機構34は、冷媒流入管と冷媒流出管とを接続する互いに並列な第一の分岐管及び第二の分岐管のうちの一方、即ち第一の分岐管に直列に介設される第一の逆止弁CV1及び第二の逆止弁CV2と、他方の分岐管即ち第二の分岐管に直列に介設される第3の逆止弁CV3及び第4の逆止弁CV4の4個の逆止弁によって構成されている。この場合、各逆止弁CV1〜CV4は、冷媒流入口側から冷媒流出口側への流れを阻止すると共に、第一,第二の分岐管内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する機能を有している。   The check valve mechanism 34 is interposed in series with one of the first branch pipe and the second branch pipe parallel to each other, that is, the first branch pipe connecting the refrigerant inlet pipe and the refrigerant outlet pipe. The first check valve CV1 and the second check valve CV2, and the third check valve CV3 and the fourth check valve CV4 which are provided in series with the other branch pipe, that is, the second branch pipe. The four check valves are configured. In this case, the check valves CV1 to CV4 block the flow from the refrigerant inlet side to the refrigerant outlet side, and the secondary side has a higher pressure than the primary side of the refrigerant flowing in the first and second branch pipes. Sometimes it has the function of blocking the flow.

上記のように形成される逆止弁機構34において、第一の分岐管における第一の逆止弁CV1と第二の逆止弁CV2の間と風下側熱交換器30の下端の冷媒流出入口とが室外側管36によって接続されている。また、第二の分岐管における第3の逆止弁CV3と第4の逆止弁CV4の間と室内側熱交換器38とが第一の室内側管40によって接続されている。   In the check valve mechanism 34 formed as described above, the refrigerant outflow inlet at the lower end of the leeward side heat exchanger 30 between the first check valve CV1 and the second check valve CV2 in the first branch pipe. Are connected by an outdoor tube 36. In addition, the first indoor side pipe 40 connects between the third check valve CV3 and the fourth check valve CV4 in the second branch pipe and the indoor side heat exchanger 38.

上記[A]で述べたように、可変容量熱交換器1においては、仕切板4によって分割される内部空間(第一の内部空間及び第二の内部空間)それぞれの大きさは、暖房運転時に使用する熱交換器2の最適容量から設計することができる。また、暖房運転時に冷媒を流通させる風上側に設置する可変容量熱交換器1の部位は、風下側熱交換器30の低圧冷媒の入口(冷媒流入口12)の近傍に重畳するように(即ち、対向するように)配置設計することが好ましい。   As described in [A] above, in the variable capacity heat exchanger 1, the size of each of the internal spaces (first internal space and second internal space) divided by the partition plate 4 is determined during heating operation. It can design from the optimal capacity | capacitance of the heat exchanger 2 to be used. Further, the portion of the variable capacity heat exchanger 1 installed on the windward side through which the refrigerant flows during the heating operation overlaps with the vicinity of the low-pressure refrigerant inlet (the refrigerant inlet 12) of the leeward heat exchanger 30 (that is, the refrigerant inlet 12). It is preferable to design the arrangement so as to face each other.

風上側に設置される可変容量熱交換器1の通風面積は、風下側熱交換器30の通風面積以上とすることが好ましい。風上側に設置される可変容量熱交換器1の通風面積を風下側熱交換器30の通風面積以上とすることで、通気抵抗の高低を抑制し、熱交換2の併設に伴う通過空気の偏流を防止することができる。   The ventilation area of the variable capacity heat exchanger 1 installed on the windward side is preferably equal to or larger than the ventilation area of the leeward heat exchanger 30. By setting the ventilation area of the variable capacity heat exchanger 1 installed on the windward side to be equal to or larger than the ventilation area of the leeward heat exchanger 30, the level of ventilation resistance is suppressed, and the drift of the passing air accompanying the heat exchange 2 is provided. Can be prevented.

次に、本発明の冷暖房空調システムに関し、冷房運転時及び暖房運転時における動作について説明する。   Next, regarding the air conditioning / air conditioning system of the present invention, operations during cooling operation and heating operation will be described.

<冷房運転時>
冷房運転時には、図4に矢印で示すように、膨張弁EV(膨張機構)を通過し断熱膨張で低圧化された冷媒は、逆止弁機構34の第4の逆止弁CV4を通過し、室内側熱交換器38へ流れ蒸発される。このとき、第二の逆止弁CV2と第3の逆止弁CV3には、弁裏に高圧の冷媒が充満している状態であるので、流路として機能しない。
<During cooling operation>
During the cooling operation, as indicated by an arrow in FIG. 4, the refrigerant that has passed through the expansion valve EV (expansion mechanism) and reduced in pressure by adiabatic expansion passes through the fourth check valve CV4 of the check valve mechanism 34, It flows into the indoor heat exchanger 38 and is evaporated. At this time, the second check valve CV2 and the third check valve CV3 do not function as flow paths because the valve back is filled with high-pressure refrigerant.

室内側熱交換器38を通過した冷媒は、四方弁DV→圧縮機44→風下側熱交換器30を通過し、室外側管36を介して第一の分岐管における第一の逆止弁CV1と第二の逆止弁CV2の間に流入する。逆止弁機構34に戻った冷媒は、第一の逆止弁CV1を通過する。このとき、第二の逆止弁CV2と第3の逆止弁CV3は弁の逆止機能が働いて流路として機能しない。   The refrigerant that has passed through the indoor heat exchanger 38 passes through the four-way valve DV → the compressor 44 → the leeward heat exchanger 30 and passes through the outdoor pipe 36 to the first check valve CV1 in the first branch pipe. And the second check valve CV2. The refrigerant that has returned to the check valve mechanism 34 passes through the first check valve CV1. At this time, the second check valve CV2 and the third check valve CV3 do not function as flow paths because of the check function of the valves.

第一の逆止弁CV1を通過した冷媒(即ち高温の凝縮液)は、風上側に設置された可変容量熱交換器1の上端の第一の冷媒流入口10及び第二の冷媒流入口12から入り、第二の内部空間及び第一の内部空間を重力方向(上から下)へ流れる。これにより、可変容量熱交換器1はサブクーラとして機能すると共に、可変容量熱交換器1の通路抵抗値を最小限に抑制することができるので、運転効率の向上を図ることができる。   The refrigerant (that is, the high-temperature condensate) that has passed through the first check valve CV1 is the first refrigerant inlet 10 and the second refrigerant inlet 12 at the upper end of the variable capacity heat exchanger 1 installed on the windward side. And flows in the direction of gravity (from top to bottom) through the second internal space and the first internal space. Thereby, the variable capacity heat exchanger 1 functions as a subcooler, and the passage resistance value of the variable capacity heat exchanger 1 can be suppressed to the minimum, so that the operation efficiency can be improved.

冷房運転時においては、第一の開閉機構18と第二の開閉機構20とを共に開き、可変容量熱交換器1の内部空間の全て(第一の内部空間及び第二の内部空間)に冷媒を流通させる。その結果、冷房運転時は可変容量熱交換器1の全面を利用してその能力を全て発揮させることで最大の過冷却効果を得ることができ、可変容量熱交換器1を併設することによる冷房性能増大効果を最大に引き出すことができる。   During the cooling operation, both the first opening / closing mechanism 18 and the second opening / closing mechanism 20 are opened, and the refrigerant is placed in the entire internal space (the first internal space and the second internal space) of the variable capacity heat exchanger 1. Circulate. As a result, the maximum supercooling effect can be obtained by utilizing the entire capacity of the variable capacity heat exchanger 1 during the cooling operation, and the cooling by providing the variable capacity heat exchanger 1 together. The effect of increasing performance can be maximized.

<暖房運転時>
暖房運転時には、図5に矢印で示すように、膨張弁EV(膨張機構)を通過し断熱膨張で低圧化された冷媒は、逆止弁機構34の第二の逆止弁CV2を通過し、風下側熱交換器30へ流れ蒸発される。このとき、第一の逆止弁CV1と第4の逆止弁CV4には、弁裏に高圧の冷媒が充満している状態であるので、流路として機能しない。
<During heating operation>
During the heating operation, as indicated by an arrow in FIG. 5, the refrigerant that has passed through the expansion valve EV (expansion mechanism) and has been reduced in pressure by adiabatic expansion passes through the second check valve CV <b> 2 of the check valve mechanism 34, It flows to the leeward side heat exchanger 30 and is evaporated. At this time, the first check valve CV1 and the fourth check valve CV4 do not function as flow paths because the valve back is filled with high-pressure refrigerant.

風下側熱交換器30を通過した冷媒は、四方弁DV→圧縮機44→室内側熱交換器38を通過し、第一の室内側管40を介して第二の分岐管における第3の逆止弁CV3と第4の逆止弁CV4の間に流入する。逆止弁機構34に戻った冷媒は、第3の逆止弁CV3を通過する。このとき、第一の逆止弁CV1と第4の逆止弁CV4は弁の逆止機能が働いて流路として機能しない。   The refrigerant that has passed through the leeward side heat exchanger 30 passes through the four-way valve DV → the compressor 44 → the indoor side heat exchanger 38, and passes through the first indoor side pipe 40 to the third reverse pipe in the second branch pipe. It flows between the stop valve CV3 and the fourth check valve CV4. The refrigerant that has returned to the check valve mechanism 34 passes through the third check valve CV3. At this time, the first check valve CV1 and the fourth check valve CV4 do not function as flow paths due to the check function of the valves.

第3の逆止弁CV3を通過した冷媒(即ち高温の凝縮液)は、風上側に設置した可変容量熱交換器1の上端の第二の冷媒流入口12から重力方向(上から下)へ流れる。これにより、可変容量熱交換器1の通路抵抗値を最小限に抑制することができるので、運転効率の向上を図ることができる。   The refrigerant (that is, the high-temperature condensate) that has passed through the third check valve CV3 travels in the direction of gravity (from top to bottom) from the second refrigerant inlet 12 at the upper end of the variable capacity heat exchanger 1 installed on the windward side. Flowing. Thereby, since the passage resistance value of the variable capacity heat exchanger 1 can be suppressed to the minimum, the operation efficiency can be improved.

暖房運転時においては、第一の開閉機構18と第二の開閉機構20とを共に閉じ、可変容量熱交換器1の内部空間の一部(第一の内部空間)のみに冷媒を流通させる。その結果、暖房運転時は内部空間の一部(第一の内部空間)のみに相当する可変容量熱交換器1の能力を発揮させることができる。内部空間の一部(第一の内部空間)に相当する熱交換能力を暖房運転時に使用する可変容量熱交換器1の最適容量から設計することで、風下側熱交換器30へ流入する冷媒の温度が低温化し過ぎるのを防止し、風下側熱交換器30へ流入する冷媒の低圧化に伴う暖房性能の低下を回避することができる。   During the heating operation, both the first opening / closing mechanism 18 and the second opening / closing mechanism 20 are closed, and the refrigerant is circulated only in a part of the internal space of the variable capacity heat exchanger 1 (first internal space). As a result, the capacity of the variable capacity heat exchanger 1 corresponding to only a part of the internal space (first internal space) can be exhibited during the heating operation. By designing the heat exchange capacity corresponding to a part of the internal space (first internal space) from the optimum capacity of the variable capacity heat exchanger 1 used during the heating operation, the refrigerant flowing into the leeward heat exchanger 30 is designed. It is possible to prevent the temperature from becoming too low, and to avoid a decrease in heating performance due to the low pressure of the refrigerant flowing into the leeward heat exchanger 30.

第一の開閉機構18及び第二の開閉機構20は、本発明の効果を損なわない範囲で従来公知の種々の開閉機構を用いることができ、例えば、冷房/暖房の運転モードを感知するスイッチ式の開閉機構や外気温センサーから使用環境情報を計り開閉タイミングを決定する開閉機構等を用いることができる。   As the first opening / closing mechanism 18 and the second opening / closing mechanism 20, various conventionally known opening / closing mechanisms can be used as long as the effects of the present invention are not impaired. For example, a switch type that senses a cooling / heating operation mode. An open / close mechanism that measures use environment information from an open / close mechanism or an outside air temperature sensor and determines the open / close timing can be used.

また、上記のように、この発明に係る室外機用熱交換装置によれば、1つの膨張弁EV(膨張機構)の制御と逆止弁機構34によって、冷房運転時と暖房運転時のいずれにおいても風上側に設置した可変容量熱交換器1への冷媒の流入方向を一定にすることができるので、配管の簡略化が図れると共に、運転制御を容易にし、かつ運転効率の向上が図れる。   In addition, as described above, according to the heat exchanger for outdoor units according to the present invention, the control of one expansion valve EV (expansion mechanism) and the check valve mechanism 34 can be used during either the cooling operation or the heating operation. Since the flow direction of the refrigerant into the variable capacity heat exchanger 1 installed on the windward side can be made constant, piping can be simplified, operation control can be facilitated, and operation efficiency can be improved.

次に、図6、図7及び図8を参照して、本発明の冷暖房空調システムを用いた場合の暖房運転時の効果について、実施例を用いて説明する。   Next, with reference to FIG. 6, FIG. 7 and FIG. 8, the effect at the time of heating operation when the air conditioning system of the present invention is used will be described using examples.

図6は、一般的な冷暖房空調システムの暖房運転時の各種特性を示す線図である。冷暖房空調システムは市販の日本製3馬力エアコン(新品)を使用し、特に改造等を施すことなく使用した。測定時の外気温は約5℃であり、冷媒封入量は2.95kgとした。   FIG. 6 is a diagram showing various characteristics during a heating operation of a general cooling / heating air conditioning system. The air-conditioning system used was a commercially available Japanese 3-horsepower air conditioner (new) without any modification. The outside air temperature at the time of measurement was about 5 ° C., and the refrigerant filling amount was 2.95 kg.

図7は、風上側の可変幼少熱交換器1の全容積の100%で運転した場合の、本発明の冷暖房空調システムの暖房運転時の各種特性を示す線図である。上記市販の日本製3馬力エアコン(新品)に風上側の熱交換器として上記実施形態の可変容量熱交換器1を追加し、当該可変容量熱交換器1の全内容積の100%で運転した。測定時の外気温は約7℃であり、冷媒封入量は3.95kgとした。   FIG. 7 is a diagram showing various characteristics at the time of heating operation of the cooling / heating air conditioning system of the present invention when operating at 100% of the total volume of the variable infant heat exchanger 1 on the windward side. The variable capacity heat exchanger 1 of the above embodiment was added as a windward heat exchanger to the above-mentioned commercially available Japanese 3-horsepower air conditioner (new) and operated at 100% of the total internal volume of the variable capacity heat exchanger 1. . The outside air temperature at the time of measurement was about 7 ° C., and the refrigerant filling amount was 3.95 kg.

図8は、風上側の可変容量熱交換器1の全容積の50%で運転した場合の、本発明の冷暖房空調システムの暖房運転時の各種特性を示す線図である。上記市販の日本製3馬力エアコン(新品)に風上側の熱交換器として上記実施形態の可変容量熱交換器1を追加し、当該可変容量熱交換器1の全内容積の50%で運転した。測定時の外気温は約8℃であり、冷媒封入量は3.45kgとした。   FIG. 8 is a diagram showing various characteristics at the time of heating operation of the air conditioning / air conditioning system of the present invention when operating at 50% of the total capacity of the variable capacity heat exchanger 1 on the windward side. The variable capacity heat exchanger 1 of the above embodiment was added as a windward heat exchanger to the above-mentioned commercially available Japanese 3-horsepower air conditioner (new) and operated at 50% of the total internal volume of the variable capacity heat exchanger 1. . The outside air temperature at the time of measurement was about 8 ° C., and the refrigerant filling amount was 3.45 kg.

市販の日本製3馬力エアコン(新品)、可変容量熱交換器1を追設した場合(100%運転)、及び可変容量熱交換器1を追設した場合(50%運転)の着霜時間は、それぞれ176分、143分及び180分であった。可変容量熱交換器を100%運転した場合の着霜時間は市販の日本製3馬力エアコン(新品)と比較して短くなったが、可変容量熱交換器を50%運転とすることで、市販の日本製3馬力エアコン(新品)よりも着霜時間が長くなった。   The frosting time when a commercially available Japanese 3-horsepower air conditioner (new), a variable capacity heat exchanger 1 is additionally installed (100% operation), and a variable capacity heat exchanger 1 is additionally installed (50% operation) is 176 minutes, 143 minutes and 180 minutes, respectively. The frosting time when the variable capacity heat exchanger is operated at 100% is shorter than that of a commercially available Japanese 3-horsepower air conditioner (new). The frosting time was longer than that of the Japanese 3-horsepower air conditioner (new).

次に、図9及び図10を参照して、本発明の冷暖房空調システムを用いた場合の冷房運転時の効果について説明する。   Next, with reference to FIG.9 and FIG.10, the effect at the time of the air_conditionaing | cooling operation at the time of using the air conditioning system of this invention is demonstrated.

図9は、一般的な冷暖房空調システムの冷房運転時の各種特性を示す線図である。冷暖房空調システムは市販の日本製3馬力エアコン(新品)を使用し、特に改造等を施すことなく使用した。測定時の外気温は約42.7℃であり、冷媒封入量は2.95kgとした。   FIG. 9 is a diagram showing various characteristics during cooling operation of a general air conditioning / air conditioning system. The air-conditioning system used was a commercially available Japanese 3-horsepower air conditioner (new) without any modification. The outside air temperature at the time of measurement was about 42.7 ° C., and the refrigerant filling amount was 2.95 kg.

図10は、風上側の可変容量熱交換器1の全容積の100%で運転した場合の、本発明の冷暖房空調システムの冷房運転時の各種特性を示す線図である。上記市販の日本製3馬力エアコン(新品)に風上側の熱交換器として上記実施形態の可変容量熱交換器1を追加し、当該可変容量熱交換器1の全内容積の100%で運転した。測定時の外気温は約42.3℃であり、冷媒封入量は3.45kgとした。   FIG. 10 is a diagram showing various characteristics during the cooling operation of the cooling / heating air-conditioning system of the present invention when operated at 100% of the total volume of the variable capacity heat exchanger 1 on the windward side. The variable capacity heat exchanger 1 of the above embodiment was added as a windward heat exchanger to the above-mentioned commercially available Japanese 3-horsepower air conditioner (new) and operated at 100% of the total internal volume of the variable capacity heat exchanger 1. . The outside air temperature at the time of measurement was about 42.3 ° C., and the refrigerant filling amount was 3.45 kg.

図9及び図10からわかるように、市販の日本製3馬力エアコン(新品)に比べて可変容量熱交換器1を追設した場合(100%運転)は、少ない消費電力でより室温を低下させることができた。   As can be seen from FIGS. 9 and 10, when the variable capacity heat exchanger 1 is additionally installed (100% operation) compared to a commercially available Japanese 3-horsepower air conditioner (new), the room temperature is lowered with less power consumption. I was able to.

以上、本発明の代表的な実施形態及び実施例について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。   The representative embodiments and examples of the present invention have been described above. However, the present invention is not limited to these embodiments, and various design changes are possible. Included in the range.

1・・・可変容量熱交換器、
2・・・本体、
4・・・仕切板、
6・・・分岐管、
8・・・集合管、
10・・・第一の冷媒流入口、
12・・・第二の冷媒流入口、
14・・・第一の冷媒流出口、
16・・・第二の冷媒流出口、
18・・・第一の開閉機構、
20・・・第二の開閉機構、
22,24・・・ヘッダーパイプ、
26・・・扁平熱交換器、
28・・・コルゲートフィン、
30・・・風下側熱交換器、
32・・・室外機用熱交換器、
34・・・逆止弁機構、
36・・・室外側管、
38・・・室内機用熱交換器、
40・・・第一の室内側管、
42・・・第二の室内側管、
44・・・圧縮機。
1 ... Variable capacity heat exchanger,
2 ... Body
4 ... partition plate,
6 ... Branch pipe,
8 ... collecting pipe,
10: First refrigerant inlet,
12 ... second refrigerant inlet,
14: First refrigerant outlet,
16 ... second refrigerant outlet,
18: First opening / closing mechanism,
20 ... Second opening / closing mechanism,
22, 24 ... header pipe,
26: flat heat exchanger,
28 ... corrugated fin,
30 ... leeward heat exchanger,
32 ... heat exchanger for outdoor unit,
34. Check valve mechanism,
36 ... outdoor pipe,
38 ... heat exchanger for indoor unit,
40: first indoor pipe,
42 ... second indoor side pipe,
44: Compressor.

Claims (5)

内部空間に仕切を設けることによって二分割された第一の内部空間と第二の内部空間とを有する熱交換器であって、
前記第一の内部空間及び前記第二の内部空間のそれぞれに設けられた第一の冷媒流入口及び第二の冷媒流入口並びに第一の冷媒流出口及び第二の冷媒流出口と、
冷媒管から前記第一の冷媒流入口及び前記第二の冷媒流入口に連通する分岐管と、
前記第一の冷媒流出口及び前記第二の冷媒流出口から前記冷媒管に連通する集合管と、
前記分岐管の分岐部から前記第一の冷媒流入口の間に設けられた第一の開閉機構と、
前記集合管の集合部から前記第一の冷媒流出口の間に設けられた第二の開閉機構と、
を有すること、
を特徴とする熱交換器。
A heat exchanger having a first internal space and a second internal space divided into two by providing a partition in the internal space,
A first refrigerant inlet and a second refrigerant inlet, a first refrigerant outlet and a second refrigerant outlet provided in each of the first internal space and the second internal space;
A branch pipe communicating from the refrigerant pipe to the first refrigerant inlet and the second refrigerant inlet;
A collecting pipe communicating from the first refrigerant outlet and the second refrigerant outlet to the refrigerant pipe;
A first opening / closing mechanism provided between a branch portion of the branch pipe and the first refrigerant inlet;
A second opening / closing mechanism provided between a collecting portion of the collecting pipe and the first refrigerant outlet;
Having
A heat exchanger characterized by
外気通風路に対して風上側と風下側とに熱交換器が併設された冷暖房空調システムであって、風上側に設置される前記熱交換器が請求項1に記載の熱交換器であること、を特徴とする冷暖房空調システム。   It is an air-conditioning / air conditioning system in which heat exchangers are provided on the windward side and the leeward side with respect to the outside air passage, and the heat exchanger installed on the windward side is the heat exchanger according to claim 1. , Featuring air conditioning system. 冷房運転時は前記第一の開閉機構と前記第二の開閉機構とを共に開き、前記熱交換器の前記内部空間の全てに冷媒を流通させ、暖房運転時は前記第一の開閉機構と前記第二の開閉機構とを共に閉じ、前記熱交換器の前記第一の内部空間のみに冷媒を流通させること、
を特徴とする請求項2に記載の冷暖房空調システム。
During the cooling operation, the first opening / closing mechanism and the second opening / closing mechanism are both opened, and the refrigerant is circulated through the entire internal space of the heat exchanger, and during the heating operation, the first opening / closing mechanism and the Closing both the second opening and closing mechanism and circulating the refrigerant only in the first internal space of the heat exchanger;
The air conditioning air conditioning system according to claim 2.
前記第一の内部空間を風下側に設置される前記熱交換器の冷媒流入口近傍に配置すること、を特徴とする請求項2又は3に記載の冷暖房空調システム。   The air conditioning system according to claim 2 or 3, wherein the first internal space is arranged in the vicinity of a refrigerant inlet of the heat exchanger installed on the leeward side. 風上側に設置される前記熱交換器の通風面積を風下側に設置される前記熱交換器の通風面積以上とすること、を特徴とする請求項2〜4のいずれかに記載の冷暖房空調システム。   5. The air conditioning system according to claim 2, wherein a ventilation area of the heat exchanger installed on the windward side is equal to or larger than a ventilation area of the heat exchanger installed on the leeward side. .
JP2013143594A 2013-07-09 2013-07-09 Heat exchanger and heating and cooling air conditioning system using the same Pending JP2015017722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143594A JP2015017722A (en) 2013-07-09 2013-07-09 Heat exchanger and heating and cooling air conditioning system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143594A JP2015017722A (en) 2013-07-09 2013-07-09 Heat exchanger and heating and cooling air conditioning system using the same

Publications (1)

Publication Number Publication Date
JP2015017722A true JP2015017722A (en) 2015-01-29

Family

ID=52438884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143594A Pending JP2015017722A (en) 2013-07-09 2013-07-09 Heat exchanger and heating and cooling air conditioning system using the same

Country Status (1)

Country Link
JP (1) JP2015017722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155994A (en) * 2016-02-29 2017-09-07 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
WO2019153797A1 (en) * 2018-02-09 2019-08-15 青岛海尔空调电子有限公司 Outdoor unit heat exchanger matching method and outdoor unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155994A (en) * 2016-02-29 2017-09-07 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
WO2017150221A1 (en) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
WO2019153797A1 (en) * 2018-02-09 2019-08-15 青岛海尔空调电子有限公司 Outdoor unit heat exchanger matching method and outdoor unit

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP6644154B2 (en) Air conditioner
US20140230477A1 (en) Hot water supply air conditioning system
WO2019091241A1 (en) Cooling circulation system for air conditioning, and air conditioner
CN110762787B (en) Defrosting control method of multi-split central air conditioning system
JP2012077921A (en) Refrigeration apparatus
CN109579356B (en) Temperature control multi-online heat pump system with heat recovery function and control method
CN105333641B (en) Air-source air conditioning and water heating system
JP4845987B2 (en) Air conditioning system
CN104236177B (en) A kind of phase-transition heat-storage, coolant are crossed cold-heat-exchanging exchange system and are adopted its air conditioning system
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
CN104879950A (en) Air conditioner all-in-one machine system and control method thereof
CN107499089A (en) A kind of electric automobile heat-pump air-conditioning system and its method of work
JP2015017722A (en) Heat exchanger and heating and cooling air conditioning system using the same
CN109373529B (en) Air conditioner and control method thereof
KR101392856B1 (en) an air conditioner with water-cooled heat exchange without an outside-equipment
WO2016002111A1 (en) Cooling and heating air-conditioning system
JP2015017735A (en) Heat exchanger and heating and cooling air conditioning system using the same
JP6303872B2 (en) Air conditioning system
CN110657604B (en) Heat pump system and control method
JP7386613B2 (en) Heat exchanger and air conditioner equipped with it
JP2018080883A (en) Multi-room type air conditioner
CN107356009B (en) Multi-split air conditioning system and low-temperature control method thereof
CN204880471U (en) Heat pump air conditioning unit