JP2018162900A - Heat exchanger and air conditioner including the same - Google Patents

Heat exchanger and air conditioner including the same Download PDF

Info

Publication number
JP2018162900A
JP2018162900A JP2017059074A JP2017059074A JP2018162900A JP 2018162900 A JP2018162900 A JP 2018162900A JP 2017059074 A JP2017059074 A JP 2017059074A JP 2017059074 A JP2017059074 A JP 2017059074A JP 2018162900 A JP2018162900 A JP 2018162900A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
header
pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017059074A
Other languages
Japanese (ja)
Inventor
広 米田
Hiroshi Yoneda
広 米田
禎夫 関谷
Sadao Sekiya
禎夫 関谷
佐々木 重幸
Shigeyuki Sasaki
重幸 佐々木
佐藤 大和
Yamato Sato
大和 佐藤
遠藤 剛
Takeshi Endo
剛 遠藤
法福 守
Mamoru Hofuku
守 法福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2017059074A priority Critical patent/JP2018162900A/en
Publication of JP2018162900A publication Critical patent/JP2018162900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of preventing deviation of liquid refrigerant distribution in a heat exchanger header within a wide refrigerant flow rate range, and having excellent energy saving.SOLUTION: A heat exchanger includes two headers arranged substantially perpendicularly, a plurality of heat transfer pipes connecting the headers substantially horizontally, and a fin configured enlarging a heat transfer area of the heat transfer pipe. The inside of the header is partitioned into a plurality of sections in a height direction by a perforated partition plate arranged substantially horizontally, and to the uppermost section among the plurality of sections, a main pipe into which refrigerant flows is connected.SELECTED DRAWING: Figure 3

Description

本発明は、熱交換器に関するものであり、特に、熱交換器のヘッダ間を接続する複数の伝熱管の各々に分配される、気液二相冷媒の偏りを小さくできる熱交換器に関するものである。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger that can reduce the bias of a gas-liquid two-phase refrigerant distributed to each of a plurality of heat transfer tubes connecting between headers of the heat exchanger. is there.

蒸気圧縮式の冷凍サイクルを用いた空気調和機では、冷凍サイクルの内部を流動する冷媒と室外空気あるいは室内空気の間で熱交換する熱交換器が用いられる。   In an air conditioner using a vapor compression refrigeration cycle, a heat exchanger that exchanges heat between a refrigerant flowing inside the refrigeration cycle and outdoor air or indoor air is used.

この熱交換器として、例えば、内部に多数の微小流路を備えた扁平伝熱管を用いたものがある。この熱交換器は、両端に円筒状のヘッダを略垂直に設け、両ヘッダ間を多数の扁平伝熱管で接続し、各々の扁平伝熱管にフィンと呼ばれる拡大伝熱面をロウ付け等で固定したものである。熱交換器の内部に流れる冷媒は、入口配管を通じて一方のヘッダに流入したのち、各伝熱管に分岐して流れ、その内部を、外部を流れる空気と熱交換しつつ流下し、他方のヘッダで合流し、出口配管から流出する。   As this heat exchanger, for example, there is one using a flat heat transfer tube provided with a large number of minute flow paths inside. This heat exchanger is provided with cylindrical headers at both ends approximately vertically, connecting between both headers with a number of flat heat transfer tubes, and fixing the expanded heat transfer surfaces called fins to each flat heat transfer tube by brazing etc. It is a thing. The refrigerant flowing inside the heat exchanger flows into one header through the inlet pipe, then flows into each heat transfer tube, flows down while exchanging heat with the air flowing outside, and flows through the other header. Merge and flow out of the outlet piping.

ところで、例えば、この熱交換器を蒸発器、すなわち、内部の冷媒を蒸発させて外側を流れる空気を冷却する用途で用いる場合、冷媒入口側のヘッダ内は気液二相状態であるため、重力の影響により液冷媒が下方に偏る傾向があり、上下方向に積層して設けられた各伝熱管に、吸熱作用のある液冷媒を偏りなく分配することが難しい。そして、この偏りが大きい場合、液冷媒の分岐割合の少ない上部の伝熱管では、液冷媒が早期に蒸発を完了してしまうため、伝熱管の内部の多くが、吸熱作用のほとんど無いガス冷媒で満たされてしまうことになる。すなわち、熱交換器の伝熱面積を有効に利用することができなくなり、機器の省エネルギー性が低下してしまう恐れがある。   By the way, for example, when this heat exchanger is used in an evaporator, that is, in an application for evaporating an internal refrigerant and cooling air flowing outside, the inside of the header on the refrigerant inlet side is in a gas-liquid two-phase state. As a result, the liquid refrigerant tends to be biased downward, and it is difficult to evenly distribute the liquid refrigerant having an endothermic effect to the heat transfer tubes that are stacked in the vertical direction. When this deviation is large, the liquid refrigerant completes evaporation at an early stage in the upper heat transfer tube with a small liquid refrigerant branching ratio. Therefore, most of the inside of the heat transfer tube is a gas refrigerant having almost no endothermic effect. It will be satisfied. That is, the heat transfer area of the heat exchanger cannot be used effectively, and the energy saving performance of the device may be reduced.

このような課題を解決するための従来技術として、例えば、特許文献1の図1に示すものがある。この例では、ヘッダの内部に、上下に間隙を残して隔壁を設置し、ヘッダ内にループ状の冷媒流が発生するように冷媒の入口部を複数設けたものである。これにより、ヘッダ内部を気液二相流が循環して流れるため、液冷媒の良好な分配を実現しようとするものである。   As a prior art for solving such a problem, for example, there is one shown in FIG. In this example, a partition is provided inside the header leaving a gap above and below, and a plurality of refrigerant inlets are provided so that a loop-shaped refrigerant flow is generated in the header. Thereby, since the gas-liquid two-phase flow circulates in the header, it is intended to realize a good distribution of the liquid refrigerant.

しかし、特許文献1の構成では、冷凍サイクルの冷媒循環流量が小さい時など、冷媒流の持つ運動量が小さい場合にはヘッダ内のループ状の冷媒流が実現されず、密度の大きい液冷媒がヘッダの下部に溜まり、下部の伝熱管に液冷媒が偏って流れ、上部の伝熱管には液冷媒の良好な分配が実現できない可能性がある。   However, in the configuration of Patent Document 1, when the momentum of the refrigerant flow is small, such as when the refrigerant circulation flow rate of the refrigeration cycle is small, the loop-shaped refrigerant flow in the header is not realized, and the liquid refrigerant having a high density is used as the header. There is a possibility that the liquid refrigerant flows in an uneven manner in the lower heat transfer tubes and the liquid refrigerant flows unbalanced in the lower heat transfer tubes.

特開2011−85324号公報JP 2011-85324 A

本発明は、幅広い冷媒流量範囲で熱交換器ヘッダ内の液冷媒の分配の偏りを防止し、省エネルギー性に優れた空気調和機を提供することを目的とする。   It is an object of the present invention to provide an air conditioner that prevents uneven distribution of liquid refrigerant in a heat exchanger header in a wide refrigerant flow range and is excellent in energy saving.

本発明の課題は、略垂直に配置された二つのヘッダと、該ヘッダ間を略水平に接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を備えており、前記ヘッダの内部は、略水平に配置された孔あき仕切板によって高さ方向に複数の区画に仕切られ、該複数の区画のうち最上段の区画には、冷媒が流入する主管が接続されている熱交換器により達成される。   An object of the present invention includes two headers arranged substantially vertically, a plurality of heat transfer tubes that connect the headers substantially horizontally, and a fin that expands a heat transfer area of the heat transfer tubes, The inside of the header is partitioned into a plurality of sections in the height direction by a perforated partition plate arranged substantially horizontally, and a main pipe into which a refrigerant flows is connected to the uppermost section among the plurality of sections. Achieved by the heat exchanger.

また、本発明の課題は、略垂直に配置された二つのヘッダと、該ヘッダ間を略水平に接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を備えており、前記ヘッダの内部は、略垂直に配置された隔壁によって伝熱管側空間と反対側空間に仕切られるとともに、該伝熱管側空間は、略水平に配置された孔あき仕切板によって高さ方向に複数の区画に仕切られ、前記反対側空間の下部には、冷媒が流入する主管が接続されているとともに、前記隔壁の上部には、前記伝熱管側空間の複数の区画のうち、最上段の区画と前記反対側空間を連通する主連通孔が設けられている熱交換器により達成される。   The subject of the present invention includes two headers arranged substantially vertically, a plurality of heat transfer tubes that connect the headers substantially horizontally, and fins that expand the heat transfer area of the heat transfer tubes. The header is partitioned into a space opposite to the heat transfer tube side space by a partition wall arranged substantially vertically, and the heat transfer tube side space is arranged in a height direction by a perforated partition plate arranged substantially horizontally. A main pipe into which a refrigerant flows is connected to a lower part of the opposite side space, and an uppermost part of the plurality of sections of the heat transfer pipe side space is connected to the upper part of the partition wall. This is achieved by a heat exchanger provided with a main communication hole that communicates the section and the opposite space.

本発明によれば、幅広い冷媒流量範囲でヘッダ内の液冷媒の分配の偏りを防止し、省エネルギー性に優れた空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the uneven distribution of the liquid refrigerant in a header can be prevented in the wide refrigerant | coolant flow range, and the air conditioner excellent in energy saving property can be provided.

実施例1の空気調和機の冷凍サイクルを示す図。The figure which shows the refrigerating cycle of the air conditioner of Example 1. FIG. 実施例1の空気調和機の室外熱交換器を示す斜視図。The perspective view which shows the outdoor heat exchanger of the air conditioner of Example 1. FIG. 実施例1のヘッダの断面と配管の接続状態を示す図。The figure which shows the cross section of the header of Example 1, and the connection state of piping. 実施例2のヘッダの断面と配管の接続状態を示す図。The figure which shows the cross section of the header of Example 2, and the connection state of piping. 実施例3のヘッダの断面と配管の接続状態を示す図。The figure which shows the cross section of the header of Example 3, and the connection state of piping. 実施例4のヘッダの断面と配管の接続状態を示す図。The figure which shows the cross section of the header of Example 4, and the connection state of piping.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例1の空気調和機100の冷凍サイクルの構成図である。本実施例の空気調和機100は、室外機1と室内機8が接続配管12a、12bによって接続されたものである。室外機1は、圧縮機2と、四方弁3と、室外熱交換器4と、室外ファンモータ5と、室外ファン6と、絞り装置7を備え、室内機8は、室内熱交換器9と、室内ファンモータ10と、室内ファン11を備えている。   FIG. 1 is a configuration diagram of a refrigeration cycle of the air conditioner 100 according to the first embodiment. The air conditioner 100 of the present embodiment is one in which an outdoor unit 1 and an indoor unit 8 are connected by connecting pipes 12a and 12b. The outdoor unit 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor fan motor 5, an outdoor fan 6, and an expansion device 7, and the indoor unit 8 includes an indoor heat exchanger 9 and The indoor fan motor 10 and the indoor fan 11 are provided.

次に、冷房運転中の動作を例に、空気調和機100の各要素の作用を説明する。冷房運転時には、冷媒は図中の実線矢印の向きに流れる。まず、圧縮機2から吐出された高温・高圧のガス冷媒は、四方弁3を経由したのちに室外熱交換器4に流れ、室外熱交換器4で外気に放熱することで凝縮し、高圧の液冷媒となる。この液冷媒は絞り装置7の作用で減圧され、低温低圧の気液二相状態となり、接続配管12aを通じて室内機8へ流れる。室内機8に入った気液二相冷媒は、室内熱交換器9で室内空気の熱を吸熱することで蒸発し、これにより室内冷房が実現される。室内機8で蒸発したガス冷媒は、接続配管12bを通じて、室外機1へ戻り、四方弁3を通って再び圧縮機2で圧縮されることになる。これが冷房運転中の冷凍サイクルである。   Next, the operation of each element of the air conditioner 100 will be described by taking the operation during the cooling operation as an example. During the cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure. First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the outdoor heat exchanger 4 after passing through the four-way valve 3, condenses by releasing heat to the outside air in the outdoor heat exchanger 4, It becomes a liquid refrigerant. This liquid refrigerant is depressurized by the action of the expansion device 7, enters a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 8 through the connection pipe 12a. The gas-liquid two-phase refrigerant that has entered the indoor unit 8 evaporates by absorbing the heat of the indoor air in the indoor heat exchanger 9, thereby realizing indoor cooling. The gas refrigerant evaporated in the indoor unit 8 returns to the outdoor unit 1 through the connection pipe 12b, passes through the four-way valve 3, and is compressed again by the compressor 2. This is the refrigeration cycle during the cooling operation.

一方、暖房運転時は、四方弁3により冷媒流路が切り替えられ、図中の破線矢印の方向に冷媒が流れる。まず、圧縮機2から吐出された高温・高圧のガス冷媒は、四方弁3および接続配管12bを通って室内機8に流れる。室内機8に入った高温のガス冷媒は、室内熱交換器9で室内空気に放熱することで室内暖房が実現される。このとき、ガス冷媒は凝縮し、高圧の液冷媒となる。その後、高圧の液冷媒は、接続配管12aを通って室外機1に流れる。室外機1に入った高圧の液冷媒は、絞り装置7の作用で減圧され、低温低圧の気液二相状態となり、室外熱交換器4に流れ、室外空気の熱を吸熱することで蒸発し、ガス冷媒となる。このガス冷媒は、四方弁3を通った後、圧縮機2で再び圧縮される。これが暖房運転中の冷凍サイクルである。   On the other hand, during the heating operation, the refrigerant flow path is switched by the four-way valve 3, and the refrigerant flows in the direction of the broken line arrow in the figure. First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows to the indoor unit 8 through the four-way valve 3 and the connection pipe 12b. The high-temperature gas refrigerant that has entered the indoor unit 8 is radiated to the indoor air by the indoor heat exchanger 9, thereby realizing indoor heating. At this time, the gas refrigerant condenses and becomes a high-pressure liquid refrigerant. Thereafter, the high-pressure liquid refrigerant flows to the outdoor unit 1 through the connection pipe 12a. The high-pressure liquid refrigerant that has entered the outdoor unit 1 is decompressed by the action of the expansion device 7, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 4, and evaporates by absorbing the heat of the outdoor air. It becomes a gas refrigerant. The gas refrigerant passes through the four-way valve 3 and is compressed again by the compressor 2. This is the refrigeration cycle during heating operation.

このように、室外熱交換器4、及び、室内熱交換器9内の冷媒の流れの向きは、冷房運転時と暖房運転時で逆向きになる。尚、本実施例では、冷媒としてはR32を用いているが、R410A等の別の冷媒を用いても良い。   Thus, the direction of the refrigerant flow in the outdoor heat exchanger 4 and the indoor heat exchanger 9 is reversed between the cooling operation and the heating operation. In this embodiment, R32 is used as the refrigerant, but another refrigerant such as R410A may be used.

次に、図2、図3を用いて、室外熱交換器4の詳細を説明する。図2は、室外熱交換器4の斜視図であり、図3は、室外熱交換器4の一方のヘッダ近傍の詳細構造を示す断面図である。なお、これらの図中の太実線矢印は、室外熱交換器4が蒸発器として作用する暖房運転時の冷媒の流れ(図1中の破線矢印)を示すものであり、絞り装置7側のヘッダ13aから四方弁3側のヘッダ13bに向けて冷媒が流れる様子を示している。   Next, the detail of the outdoor heat exchanger 4 is demonstrated using FIG. 2, FIG. FIG. 2 is a perspective view of the outdoor heat exchanger 4, and FIG. 3 is a cross-sectional view showing a detailed structure near one header of the outdoor heat exchanger 4. In addition, the thick line arrow in these figures shows the flow of the refrigerant | coolant at the time of the heating operation in which the outdoor heat exchanger 4 acts as an evaporator (dashed line arrow in FIG. 1), and the header by the expansion apparatus 7 side. A state in which the refrigerant flows from 13a toward the header 13b on the four-way valve 3 side is shown.

図2に示すように、室外熱交換器4は、略垂直に配置された略円筒状の二つのヘッダ13(13a、13b)と、これらの両端の高さが異なるヘッダ13間を略水平に接続する複数(本実施例では12本)の扁平伝熱管14と、扁平伝熱管14の伝熱面積を拡大する多数のフィン15から構成されており、扁平伝熱管14を通過する冷媒が、室外ファン6から供給される空気と熱交換できるようになっている。   As shown in FIG. 2, the outdoor heat exchanger 4 is arranged between the two substantially cylindrical headers 13 (13 a and 13 b) arranged substantially vertically and the headers 13 having different heights at both ends. It is composed of a plurality of (in this embodiment, 12) flat heat transfer tubes 14 to be connected and a large number of fins 15 that expand the heat transfer area of the flat heat transfer tubes 14, and the refrigerant passing through the flat heat transfer tubes 14 Heat can be exchanged with the air supplied from the fan 6.

また、図3(a)の断面図に示すように、略円筒状のヘッダ13aの上部には後述する主管16が接続されており、ヘッダ13aの内部は、孔あき仕切板17によって、高さ方向に複数(図3では4つ)の区画に仕切られている。   Further, as shown in the sectional view of FIG. 3A, a main pipe 16 to be described later is connected to an upper portion of the substantially cylindrical header 13a, and the inside of the header 13a is heightened by a perforated partition plate 17. It is partitioned into a plurality of (four in FIG. 3) sections in the direction.

図3(a)をA−A断面で切断した、図3(b)の上視図に示すように、孔あき仕切板17の略中央部には孔部17aを設けており、この孔部17aによって隣接する区画が連通されている。なお、図3(b)では、円形の孔部17aを1個設ける構成を示しているが、これに代え、矩形の孔や、複数の孔が設けられた構成としても良い。また、図3では、絞り装置7側のヘッダ13aの詳細構造のみを図示しているが、四方弁3側のヘッダ13bを同様の構造としても良い。   As shown in the top view of FIG. 3 (b), taken along section AA in FIG. 3 (a), a hole 17a is provided in the substantially central part of the perforated partition plate 17, and this hole Adjacent sections are communicated with each other by 17a. FIG. 3B shows a configuration in which one circular hole portion 17a is provided. Alternatively, a configuration in which a rectangular hole or a plurality of holes is provided may be used. 3 shows only the detailed structure of the header 13a on the expansion device 7 side, the header 13b on the four-way valve 3 side may have the same structure.

暖房運転時に気液二相冷媒の入口となる主管16は、ヘッダ13a内の最上段区画の上部に接続されており、その接続位置は、当該区画に含まれる何れの扁平伝熱管14よりも高い位置となっている。   The main pipe 16 serving as an inlet for the gas-liquid two-phase refrigerant during the heating operation is connected to the upper portion of the uppermost section in the header 13a, and the connection position is higher than any flat heat transfer pipe 14 included in the section. Is in position.

主管16を介してヘッダ13aに供給された気液二相冷媒は、密度の小さいガスと、密度の大きい液が共存した冷媒であり、密度の大きい液冷媒は重力の影響により下側に溜まりやすく、また、上側に上昇しにくいものであるが、本実施例では、主管16がヘッダ13aの最も高い位置に接続され、扁平伝熱管14が主管16よりも下方に接続される構造であるため、冷媒循環流量が小さく、液冷媒の上昇が期待できない状況でも、上側の主管16から下側の扁平伝熱管14に効率よく液冷媒を供給することができる。   The gas-liquid two-phase refrigerant supplied to the header 13a via the main pipe 16 is a refrigerant in which a gas having a low density and a liquid having a high density coexist, and the liquid refrigerant having a high density tends to accumulate on the lower side due to the influence of gravity. In this embodiment, the main pipe 16 is connected to the highest position of the header 13a, and the flat heat transfer pipe 14 is connected to the lower side of the main pipe 16 in the present embodiment. Even in a situation where the refrigerant circulation flow rate is small and liquid refrigerant cannot be expected to rise, the liquid refrigerant can be efficiently supplied from the upper main pipe 16 to the lower flat heat transfer pipe 14.

これに加え、本実施例のヘッダ13aでは、孔あき仕切板17を用いて内部を複数区画に区切っているため、液冷媒が重力の影響で下方に移動する際に、孔部17aの通過に時間を要するため、冷媒循環流量の大小に拘らず、各区画に液冷媒が留まる時間を延長することができ、上方区画に接続された扁平伝熱管14への液冷媒の供給量を増加させることができる。これにより、孔あき仕切板17を用いない構成に比べ、各扁平伝熱管14への気液二相冷媒の供給量を均一化することが可能となる。   In addition to this, in the header 13a of the present embodiment, the inside is divided into a plurality of sections using the perforated partition plate 17, so that when the liquid refrigerant moves downward under the influence of gravity, it passes through the hole 17a. Since time is required, the time that the liquid refrigerant stays in each section can be extended regardless of the refrigerant circulation flow rate, and the supply amount of the liquid refrigerant to the flat heat transfer tube 14 connected to the upper section is increased. Can do. Thereby, compared with the structure which does not use the perforated partition plate 17, it becomes possible to equalize the supply amount of the gas-liquid two-phase refrigerant to each flat heat transfer tube.

以上で説明したように、本実施例の構成によれば、冷媒循環流量の大小に拘らず、各扁平伝熱管14への液冷媒の分配の偏りを抑制でき、何れの扁平伝熱管14においても、同程度の吸熱作用を確保できるため、室外熱交換器4全体としての効率を高めた、省エネルギー性に優れた空気調和機を提供することができる。   As described above, according to the configuration of the present embodiment, it is possible to suppress uneven distribution of the liquid refrigerant to each flat heat transfer tube 14 regardless of the refrigerant circulation flow rate. Since the same degree of endothermic action can be ensured, an air conditioner with improved energy efficiency and improved efficiency of the outdoor heat exchanger 4 as a whole can be provided.

次に、本発明の実施例2の空気調和機について説明する。冷凍サイクルの構成や動作に関しては実施例と同一であるので重複する説明は省略し、以下では、実施例1との違いを中心に説明する。   Next, an air conditioner according to a second embodiment of the present invention will be described. Since the configuration and operation of the refrigeration cycle are the same as those in the embodiment, a duplicate description is omitted, and the following description will focus on differences from the embodiment 1.

図4は、実施例2の室外熱交換器4のヘッダ13a近傍の断面図である。実施例1のヘッダ13aとの違いは、孔あき仕切板17により区切られた区画のそれぞれの下部に、主管16と連通する配管16aが接続されていることである。各配管16aの接続位置は、当該区画の最下段の扁平伝熱管14よりも低い位置である。また、配管16aの内径を、主管16の内径よりも小さくしているため、配管16aの流路断面積は、主管16の流路断面積よりも小さくなっている。また、配管16aは、ヘッダ13aから主管16に向けて水平もしくは下り勾配で接続されており、上り勾配の部分が存在しないようになっている。   FIG. 4 is a cross-sectional view of the vicinity of the header 13a of the outdoor heat exchanger 4 according to the second embodiment. The difference from the header 13 a of the first embodiment is that a pipe 16 a communicating with the main pipe 16 is connected to the lower part of each section partitioned by the perforated partition plate 17. The connection position of each pipe 16a is a position lower than the flat-shaped heat transfer tube 14 at the bottom of the section. Further, since the inner diameter of the pipe 16 a is smaller than the inner diameter of the main pipe 16, the flow path cross-sectional area of the pipe 16 a is smaller than the flow path cross-sectional area of the main pipe 16. The pipe 16a is connected in a horizontal or downward gradient from the header 13a to the main pipe 16, so that no upward gradient portion exists.

室外熱交換器4を蒸発器として使用する暖房運転時には、実施例1で説明した構成、作用によって、各伝熱管への液冷媒の分配の偏りを防止できる。   During heating operation in which the outdoor heat exchanger 4 is used as an evaporator, the uneven distribution of the liquid refrigerant to each heat transfer tube can be prevented by the configuration and operation described in the first embodiment.

一方、室外熱交換器4を凝縮器として使用する冷房運転時には、図4の矢印に示すように、扁平伝熱管14からヘッダ13aに流入した液冷媒は、配管16aを経由して主管16に流出されるため、ヘッダ13a内の各区画での液冷媒が滞留、すなわち、冷媒流動の停滞を防止できる。なお、配管16aは、ヘッダ13aから主管16に向かう途上に上り勾配部分が存在しないので、液冷媒の流れが阻害されず、スムーズな冷媒流を得ることができる。   On the other hand, at the time of cooling operation using the outdoor heat exchanger 4 as a condenser, as shown by the arrow in FIG. 4, the liquid refrigerant flowing into the header 13a from the flat heat transfer tube 14 flows out into the main tube 16 through the pipe 16a. Therefore, the liquid refrigerant in each section in the header 13a can be prevented, that is, the stagnation of the refrigerant flow can be prevented. In addition, since the pipe 16a does not have an upward slope portion on the way from the header 13a to the main pipe 16, the flow of the liquid refrigerant is not hindered and a smooth refrigerant flow can be obtained.

以上で説明したように、本実施例の室外熱交換器4によれば、凝縮器として使用する場合、上述した作用によって、冷媒流動の停滞を防止できることに加え、蒸発器として使用する場合においても、各伝熱管への液冷媒の分配の偏りを防止し、省エネルギー性に優れた空気調和機を提供することができる。   As explained above, according to the outdoor heat exchanger 4 of the present embodiment, when used as a condenser, it is possible to prevent stagnation of refrigerant flow by the above-described action, and also when used as an evaporator. In addition, it is possible to prevent an uneven distribution of the liquid refrigerant to each heat transfer tube and to provide an air conditioner excellent in energy saving.

次に、実施例3の空気調和機について、実施例2との違いを中心として説明する。なお、上述した実施例と共通する点については、重複説明を省略する。   Next, the air conditioner of the third embodiment will be described focusing on the difference from the second embodiment. In addition, about the point which is common in the Example mentioned above, duplication description is abbreviate | omitted.

図5は、実施例3の室外熱交換器4のヘッダ13aの断面図である。実施例2との違いは、実施例2(図4)では、4本の配管16aのそれぞれでヘッダ13aと主管16を接続していたが、本実施例では、配管16a同士を合流させた後に主管16に接続させている。本実施例でも、各々の配管16aの流路断面積は、主管16の流路断面積よりも小さくなっており、ヘッダ13aから主管16に向かう配管16aの経路途上に上り勾配部分が存在していない。   FIG. 5 is a cross-sectional view of the header 13a of the outdoor heat exchanger 4 according to the third embodiment. The difference from the second embodiment is that in the second embodiment (FIG. 4), the header 13a and the main pipe 16 are connected to each other by the four pipes 16a, but in this embodiment, the pipes 16a are joined together. The main pipe 16 is connected. Also in this embodiment, the flow passage cross-sectional area of each pipe 16a is smaller than the flow passage cross-sectional area of the main pipe 16, and an upward slope portion exists in the course of the pipe 16a from the header 13a to the main pipe 16. Absent.

そのため、実施例2と同様に、凝縮器として作用する場合に冷媒の流動が阻害されることを防止しつつ、蒸発器として作用する場合に各伝熱管への液冷媒の分配の偏りを防止し、省エネルギー性に優れた空気調和機を提供することができる。   Therefore, as in the second embodiment, the flow of the refrigerant is prevented from being hindered when acting as a condenser, and the distribution of the liquid refrigerant to each heat transfer tube is prevented from being biased when acting as an evaporator. It is possible to provide an air conditioner excellent in energy saving.

次に、実施例4について説明する。なお、上述した実施例と共通する点については、重複説明を省略する。   Next, Example 4 will be described. In addition, about the point which is common in the Example mentioned above, duplication description is abbreviate | omitted.

図6は実施例4の室外熱交換器4のヘッダ13aの断面図である。図6(a)に示すように、本実施例のヘッダ13aは、最下部に主管16が接続されており、また、図6(a)、図6(b)に示すように、略垂直に配置された隔壁18によって、主管16側の空間と、扁平伝熱管14側の空間に仕切られている。扁平伝熱管14側の空間は、実施例1等と同様に、孔あき仕切板17によって複数区画に区分けされている。さらに、図6(c)に示すように、隔壁18には、最上部に主連通孔18aが設けられ、各区画の下部に相当する位置に副連通孔18bが設けられている。   FIG. 6 is a cross-sectional view of the header 13a of the outdoor heat exchanger 4 of the fourth embodiment. As shown in FIG. 6 (a), the main pipe 16 is connected to the lowermost part of the header 13a of this embodiment, and as shown in FIGS. 6 (a) and 6 (b), the header 13a is substantially vertical. The partition wall 18 is partitioned into a space on the main tube 16 side and a space on the flat heat transfer tube 14 side. The space on the flat heat transfer tube 14 side is divided into a plurality of sections by a perforated partition plate 17 as in the first embodiment. Further, as shown in FIG. 6C, the partition wall 18 is provided with a main communication hole 18a at the uppermost portion, and a sub-communication hole 18b at a position corresponding to the lower part of each section.

図6(a)の太実線矢印は、暖房運転を行っている場合、すなわち室外熱交換器4が蒸発器として作用している場合の気液二相冷媒の流れの向きを示している。ここに示すように、暖房運転時に気液二相冷媒の主要な供給口となる主連通孔18aは、ヘッダ13a内の最上段区画に含まれる何れの伝熱管よりも高い位置に設けられている。また、各区画に対応して設けられた副連通孔18bの高さは、各区画の最も低い位置にある伝熱管より低くなっている。また、副連通孔18bの流路断面積は、主連通孔18aの流路断面積よりも小さくなっている。さらに、主管16とヘッダ13aの接続部は、最も低い位置にある副連通孔18bより低い位置に設けられている。   6A indicates the direction of the flow of the gas-liquid two-phase refrigerant when the heating operation is performed, that is, when the outdoor heat exchanger 4 is acting as an evaporator. As shown here, the main communication hole 18a, which is the main supply port for the gas-liquid two-phase refrigerant during the heating operation, is provided at a position higher than any of the heat transfer tubes included in the uppermost section in the header 13a. . Moreover, the height of the sub communicating hole 18b provided corresponding to each division is lower than the heat exchanger tube in the lowest position of each division. The flow passage cross-sectional area of the sub communication hole 18b is smaller than the flow passage cross-sectional area of the main communication hole 18a. Furthermore, the connecting portion between the main pipe 16 and the header 13a is provided at a position lower than the sub communication hole 18b at the lowest position.

実施例1の説明で述べた通り、内部を流動する気液二相冷媒は、密度の小さいガスと、密度の大きい液が共存している状態であり、密度の大きい液は重力の作用により下側に溜まりやすく、また、上側に上昇しにくい。しかしながら、本実施例においては、主連通孔18aが、最上部の扁平伝熱管14よりも高い位置に設けられているため、冷媒循環流量が小さく、液冷媒の上昇が期待できない状況でも、各扁平伝熱管14に液冷媒を供給することができる。   As described in the description of the first embodiment, the gas-liquid two-phase refrigerant flowing inside is a state where a gas having a low density and a liquid having a high density coexist, and the liquid having a high density is lowered by the action of gravity. It is easy to collect on the side and it is difficult to rise upward. However, in this embodiment, since the main communication hole 18a is provided at a position higher than the uppermost flat heat transfer tube 14, each flatness is small even in a situation where the refrigerant circulation flow rate is small and liquid refrigerant cannot be expected to rise. A liquid refrigerant can be supplied to the heat transfer tube 14.

また、本実施例においては、隔壁18により仕切られた、ヘッダ13の伝熱管が接続されている側の区画が孔あき仕切板17にて高さ方向に複数の区画に区切られているため、液冷媒が重力の作用により、ヘッダ下部に直接落下することを防いでおり、液冷媒が各区画に留まる時間を延長させている。これにより、各伝熱管に液冷媒を略均一に分配することが可能となる。   Further, in this embodiment, the partition on the side to which the heat transfer tube of the header 13 is connected, which is partitioned by the partition wall 18, is divided into a plurality of partitions in the height direction by the perforated partition plate 17, The liquid refrigerant is prevented from dropping directly to the lower part of the header due to the action of gravity, and the time for which the liquid refrigerant stays in each section is extended. Thereby, it becomes possible to distribute liquid refrigerant substantially uniformly to each heat exchanger tube.

また、冷房運転時であって、室外熱交換器4が凝縮器として作用する場合、すなわち、冷媒の流動方向が図6(a)の太矢印の反対の方向になっている場合には、各扁平伝熱管14からヘッダ13aに流入した気液二相冷媒の液冷媒は、副連通孔18bを介して主管16に流れ込むため、ヘッダ13a内の各区画の下部に液冷媒が溜まり、冷媒の流動が阻害されることを防止できる。すなわち、凝縮器として作用する場合に冷媒の流動が阻害されることを防止しつつ、蒸発器として作用する場合に各伝熱管への液冷媒の分配の偏りを防止し、省エネルギー性に優れた空気調和機を提供することができる。   In the cooling operation, when the outdoor heat exchanger 4 acts as a condenser, that is, when the flow direction of the refrigerant is opposite to the thick arrows in FIG. Since the liquid refrigerant of the gas-liquid two-phase refrigerant that has flowed into the header 13a from the flat heat transfer tube 14 flows into the main pipe 16 through the sub-communication hole 18b, the liquid refrigerant accumulates in the lower part of each section in the header 13a, and the refrigerant flow Can be prevented. That is, while preventing the refrigerant flow from being hindered when acting as a condenser, when acting as an evaporator, it prevents uneven distribution of the liquid refrigerant to each heat transfer tube, and has excellent energy saving performance. A harmony machine can be provided.

なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本実施例は扁平伝熱管14が12本の熱交換器となっているが、伝熱管の数がこれ以外でも適用可能である。また、本発明は、熱交換器が、複数の熱交換器ブロックの組み合わせで構成されている場合に、任意のブロックに適用することも可能である。   In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, in this embodiment, the flat heat transfer tubes 14 are twelve heat exchangers, but the present invention can be applied to other heat transfer tubes. Moreover, this invention can also be applied to arbitrary blocks, when the heat exchanger is comprised by the combination of several heat exchanger blocks.

100 空気調和機、
1 室外機、
2 圧縮機、
3 四方弁、
4 室外熱交換器、
5 室外ファンモータ、
6 室外ファン、
7 絞り装置、
8 室内機、
9 室内熱交換器、
10 室内ファンモータ、
11 室内ファン、
12a、12b 接続配管、
13、13a、13b ヘッダ、
14 扁平伝熱管、
15 フィン、
16 主管、
16a 配管、
17 孔あき仕切板、
17a 孔部、
18 隔壁、
18a 主連通孔、
18b 副連通孔
100 air conditioner,
1 outdoor unit,
2 compressors,
3 Four-way valve,
4 outdoor heat exchangers,
5 outdoor fan motor,
6 outdoor fans,
7 Aperture device,
8 indoor units,
9 Indoor heat exchanger,
10 Indoor fan motor,
11 Indoor fans,
12a, 12b connection piping,
13, 13a, 13b header,
14 flat heat transfer tube,
15 fins,
16 Main line,
16a piping,
17 perforated dividers,
17a hole,
18 Bulkhead,
18a Main communication hole,
18b Secondary communication hole

Claims (12)

略垂直に配置された二つのヘッダと、該ヘッダ間を略水平に接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を備えた熱交換器であって、
前記ヘッダの内部は、略水平に配置された孔あき仕切板によって高さ方向に複数の区画に仕切られ、
該複数の区画のうち最上段の区画には、冷媒が流入する主管が接続されていることを特徴とする熱交換器。
A heat exchanger comprising two headers arranged substantially vertically, a plurality of heat transfer tubes that connect the headers substantially horizontally, and fins that expand the heat transfer area of the heat transfer tubes,
The inside of the header is partitioned into a plurality of sections in the height direction by a perforated partition plate arranged substantially horizontally,
A heat exchanger in which a main pipe into which a refrigerant flows is connected to the uppermost section among the plurality of sections.
請求項1に記載の熱交換器において、
前記主管は、前記最上段の区画に接続された伝熱管のうち、最も高い位置に接続された伝熱管よりも高い位置で接続されていることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The heat exchanger is characterized in that the main pipe is connected at a position higher than the heat transfer pipe connected to the highest position among the heat transfer pipes connected to the uppermost section.
請求項1または2に記載の熱交換器において、
前記ヘッダの各区画の下部には、前記主管と連通する配管が接続されていることを特徴とする熱交換器。
The heat exchanger according to claim 1 or 2,
A pipe that communicates with the main pipe is connected to a lower portion of each section of the header.
請求項3に記載の熱交換器において、
前記配管は、各区画に接続された伝熱管のうち、最も低い位置にある伝熱管よりも低い位置に接続されていることを特徴とする熱交換器。
The heat exchanger according to claim 3,
The said piping is connected to the position lower than the heat exchanger tube in the lowest position among the heat exchanger tubes connected to each division, The heat exchanger characterized by the above-mentioned.
請求項3または4に記載の熱交換器において、
前記配管の流路断面積は、前記主管の流路断面積よりも小さいことを特徴とする熱交換器。
The heat exchanger according to claim 3 or 4,
The heat exchanger according to claim 1, wherein a flow passage cross-sectional area of the pipe is smaller than a flow passage cross-sectional area of the main pipe.
請求項3ないし5の何れか一項に記載の熱交換器において、
前記配管は、前記ヘッダから前記主管に向けて、水平もしくは下り勾配で接続されていることを特徴とする熱交換器。
The heat exchanger according to any one of claims 3 to 5,
The heat exchanger is characterized in that the pipe is connected horizontally or downwardly from the header toward the main pipe.
略垂直に配置された二つのヘッダと、該ヘッダ間を略水平に接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を備えた熱交換器であって、
前記ヘッダの内部は、略垂直に配置された隔壁によって伝熱管側空間と反対側空間に仕切られるとともに、該伝熱管側空間は、略水平に配置された孔あき仕切板によって高さ方向に複数の区画に仕切られ、
前記反対側空間の下部には、冷媒が流入する主管が接続されているとともに、
前記隔壁の上部には、前記伝熱管側空間の複数の区画のうち、最上段の区画と前記反対側空間を連通する主連通孔が設けられていることを特徴とする熱交換器。
A heat exchanger comprising two headers arranged substantially vertically, a plurality of heat transfer tubes that connect the headers substantially horizontally, and fins that expand the heat transfer area of the heat transfer tubes,
The interior of the header is partitioned into a space opposite to the heat transfer tube side space by partition walls arranged substantially vertically, and a plurality of the heat transfer tube side spaces are provided in the height direction by a perforated partition plate arranged substantially horizontally. Divided into compartments,
A main pipe into which the refrigerant flows is connected to the lower part of the opposite side space,
The heat exchanger according to claim 1, wherein a main communication hole is provided in the upper part of the partition wall to communicate the uppermost compartment and the opposite space among the plurality of compartments of the heat transfer tube side space.
請求項7に記載の熱交換器において、
前記主連通孔は、最上段の区画に接続された伝熱管のうち、最も高い位置にある伝熱管よりも高い位置に設けられていることを特徴とする熱交換器。
The heat exchanger according to claim 7,
The main communication hole is provided in a position higher than the heat transfer pipe at the highest position among the heat transfer pipes connected to the uppermost section.
請求項7または8に記載の熱交換器において、
前記隔壁には、前記伝熱管側空間の各区画の下部と前記反対側空間と連通する副連通孔が設けられており、
前記副連通孔は、各区画に接続された伝熱管のうち、最も低い位置にある伝熱管よりも低い位置に設けられていることを特徴とする熱交換器。
The heat exchanger according to claim 7 or 8,
The partition wall is provided with a sub-communication hole communicating with a lower portion of each section of the heat transfer tube side space and the opposite space,
The said sub communicating hole is provided in the position lower than the heat exchanger tube in the lowest position among the heat exchanger tubes connected to each division, The heat exchanger characterized by the above-mentioned.
請求項9に記載の熱交換器において、
前記副連通孔の流路断面積は、前記主連通孔の流路断面積よりも小さいことを特徴とする熱交換器。
The heat exchanger according to claim 9, wherein
The heat exchanger according to claim 1, wherein a flow passage cross-sectional area of the sub-communication hole is smaller than a flow passage cross-sectional area of the main communication hole.
請求項9または10に記載の熱交換器において、
前記主管は、前記副連通孔のうち、最も低い位置にある副連通孔よりも低い位置で前記ヘッダに接続されていることを特徴とする熱交換器。
The heat exchanger according to claim 9 or 10,
The main pipe is connected to the header at a position lower than the sub communication hole at the lowest position among the sub communication holes.
室外機と室内機を備えた空気調和機であって、
前記室外機は、圧縮機と、熱交換器と、室外ファンと、絞り装置を有し、
前記熱交換器は、請求項1から請求項11の何れか一項に記載の熱交換器であることを特徴とする空気調和機。
An air conditioner equipped with an outdoor unit and an indoor unit,
The outdoor unit includes a compressor, a heat exchanger, an outdoor fan, and a throttle device.
The said heat exchanger is a heat exchanger as described in any one of Claims 1-11, The air conditioner characterized by the above-mentioned.
JP2017059074A 2017-03-24 2017-03-24 Heat exchanger and air conditioner including the same Pending JP2018162900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059074A JP2018162900A (en) 2017-03-24 2017-03-24 Heat exchanger and air conditioner including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059074A JP2018162900A (en) 2017-03-24 2017-03-24 Heat exchanger and air conditioner including the same

Publications (1)

Publication Number Publication Date
JP2018162900A true JP2018162900A (en) 2018-10-18

Family

ID=63860945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059074A Pending JP2018162900A (en) 2017-03-24 2017-03-24 Heat exchanger and air conditioner including the same

Country Status (1)

Country Link
JP (1) JP2018162900A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114078A1 (en) * 2018-12-04 2020-06-11 浙江三花智能控制股份有限公司 Heat exchanger
JP2020115069A (en) * 2019-01-18 2020-07-30 パナソニックIpマネジメント株式会社 Heat exchanger
CN111750730A (en) * 2019-03-29 2020-10-09 松下知识产权经营株式会社 Heat exchanger flow divider
CN112797599A (en) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 Multi-split air conditioner electronic expansion valve opening control method, adjusting device and air conditioner system
WO2021106142A1 (en) * 2019-11-28 2021-06-03 三菱電機株式会社 Heat exchanger and air conditioner
CN114729760A (en) * 2019-11-14 2022-07-08 大金工业株式会社 Air conditioner
US20230108901A1 (en) * 2020-03-23 2023-04-06 Fujitsu General Limited Heat exchanger
CN117279313A (en) * 2023-08-30 2023-12-22 深圳海兰云数据中心科技有限公司 Gravity heat pipe refrigerating system of data center

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192447A (en) * 2006-01-19 2007-08-02 Showa Denko Kk Evaporator
JP2015055412A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192447A (en) * 2006-01-19 2007-08-02 Showa Denko Kk Evaporator
JP2015055412A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114078A1 (en) * 2018-12-04 2020-06-11 浙江三花智能控制股份有限公司 Heat exchanger
JP2020115069A (en) * 2019-01-18 2020-07-30 パナソニックIpマネジメント株式会社 Heat exchanger
CN111750730A (en) * 2019-03-29 2020-10-09 松下知识产权经营株式会社 Heat exchanger flow divider
CN114729760A (en) * 2019-11-14 2022-07-08 大金工业株式会社 Air conditioner
WO2021106142A1 (en) * 2019-11-28 2021-06-03 三菱電機株式会社 Heat exchanger and air conditioner
JPWO2021106142A1 (en) * 2019-11-28 2021-12-09 三菱電機株式会社 Heat exchanger and air conditioner
JP7004867B2 (en) 2019-11-28 2022-01-21 三菱電機株式会社 Heat exchanger and air conditioner
US20230108901A1 (en) * 2020-03-23 2023-04-06 Fujitsu General Limited Heat exchanger
CN112797599A (en) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 Multi-split air conditioner electronic expansion valve opening control method, adjusting device and air conditioner system
CN112797599B (en) * 2020-12-30 2022-08-16 宁波奥克斯电气股份有限公司 Multi-split air conditioner electronic expansion valve opening control method, adjusting device and air conditioner system
CN117279313A (en) * 2023-08-30 2023-12-22 深圳海兰云数据中心科技有限公司 Gravity heat pipe refrigerating system of data center

Similar Documents

Publication Publication Date Title
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP6202451B2 (en) Heat exchanger and air conditioner
JP5901748B2 (en) Refrigerant distributor, heat exchanger equipped with this refrigerant distributor, refrigeration cycle apparatus, and air conditioner
JP6419882B2 (en) Air conditioner
JP6045695B2 (en) Air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
WO2018173356A1 (en) Heat exchanger and air conditioner using same
US11022372B2 (en) Air conditioner
JP2018100800A (en) Heat exchanger and air conditioner
JP6927352B1 (en) Heat exchanger
WO2021192903A1 (en) Heat exchanger
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6906141B2 (en) Heat exchanger shunt
JP6742112B2 (en) Heat exchanger and air conditioner
JP6611335B2 (en) Heat exchanger and air conditioner
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6656950B2 (en) Heat exchangers and air conditioners
JP2020165578A (en) Heat exchanger flow divider
JP2020115070A (en) Heat exchanger
KR102148722B1 (en) Heat exchanger and air conditional having the same
JP2015068560A (en) Refrigeration cycle device user-side unit
JP6853867B2 (en) Heat exchanger and air conditioner
JP2020085268A (en) Heat exchanger
JP2020085267A (en) Heat exchanger
JP2021139530A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210331