JP2020115069A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2020115069A
JP2020115069A JP2019006715A JP2019006715A JP2020115069A JP 2020115069 A JP2020115069 A JP 2020115069A JP 2019006715 A JP2019006715 A JP 2019006715A JP 2019006715 A JP2019006715 A JP 2019006715A JP 2020115069 A JP2020115069 A JP 2020115069A
Authority
JP
Japan
Prior art keywords
refrigerant
flat
flat tubes
flat tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019006715A
Other languages
Japanese (ja)
Inventor
良美 林
Yoshimi Hayashi
良美 林
松井 大
Masaru Matsui
大 松井
立慈 川端
Tatsuji Kawabata
立慈 川端
長谷川 寛
Hiroshi Hasegawa
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019006715A priority Critical patent/JP2020115069A/en
Publication of JP2020115069A publication Critical patent/JP2020115069A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a heat exchanger including a plurality of flat tubes formed with a plurality of refrigerant flow paths, and a pair of header pipe connecting the flat tubes at both ends, respectively, for avoiding the amount of refrigerant flowing along the plurality of flat tubes in the header pipes and the ratio of gas-liquid refrigerant from being non-uniform.SOLUTION: A header pipe 3b includes a bulkhead plate 10 for, when functioning as a vaporizer, partitioning a refrigerant outflow section 12 where refrigerant flows out to a plurality of flat tubes 2, into a connection side space 8 for the flat tubes 2 and a non-contact side space 9 for the flat tubes 2, and a refrigerant inflow port 11 via which the refrigerant flows below a vertical intermediate position of the non-contact side space 9, the bulkhead plate 10 including a communication hole 13 provided above a vertical intermediate position of the refrigerant outflow section 12. The insertion margin of each flat tube 2 is equal to or larger than that of the right-over flat tube 2, and the lowermost-stage flat tube 2 is longer than the uppermost-stage flat tube 2.SELECTED DRAWING: Figure 2

Description

本発明は、一対のヘッダーパイプと、複数の冷媒流路をもつ複数の扁平管と、で構成され、複数の扁平管の間を流れる空気と、扁平管の冷媒流路の中を流れる冷媒とで熱交換を行う熱交換器に関するものである。 The present invention is composed of a pair of header pipes and a plurality of flat tubes having a plurality of refrigerant channels, air flowing between the plurality of flat tubes, and a refrigerant flowing in the refrigerant channels of the flat tubes. The present invention relates to a heat exchanger for exchanging heat.

従来から、水平方向の左右に対峙する一対のヘッダーパイプと、複数の冷媒流路をもつ複数の扁平管と、扁平管同士の間に設けられる伝熱フィンと、で構成され、複数の扁平管の間を流れる空気と、扁平管の冷媒流路の中を流れる冷媒とで熱交換を行う熱交換器が知られている。 Conventionally, it is composed of a pair of header pipes facing each other in the horizontal direction, a plurality of flat tubes having a plurality of refrigerant flow paths, and heat transfer fins provided between the flat tubes. There is known a heat exchanger that performs heat exchange between air flowing between the two and a refrigerant flowing in a refrigerant passage of a flat tube.

この種の熱交換器において、ヘッダーパイプ内の複数の扁平管を流れる冷媒量および気液冷媒の比率を均一化させるため、ヘッダーパイプ内に、複数の扁平管を複数の区間に分ける仕切板と、分かれた2つの区間の上側の区間の下方と、下側の区間の上方と、を連通させる接続管と、を設けた熱交換器が開示されている。(例えば、特許文献1参照)。 In this type of heat exchanger, in order to equalize the amount of refrigerant and the ratio of gas-liquid refrigerant flowing through the plurality of flat tubes in the header pipe, in the header pipe, a partition plate that divides the plurality of flat tubes into a plurality of sections and There is disclosed a heat exchanger provided with a connection pipe that connects the lower part of the upper part of the two separated parts and the upper part of the lower part of the divided part. (For example, refer to Patent Document 1).

図6は、特許文献1に記載された従来の熱交換器である。 FIG. 6 shows a conventional heat exchanger described in Patent Document 1.

図6に示すように、熱交換器100は、複数の冷媒流路で形成された複数の扁平管101と、扁平管101の両端部をそれぞれ接続する一対のヘッダーパイプ102a、102bで構成され、ヘッダーパイプ102a、102bには、複数の扁平管101を複数の区間に分ける仕切板103a、103bと、分かれた2つの区間に冷媒を通過させる接続管104と、を設けている。一方のヘッダーパイプ102aには、冷媒配管105a、105bが接続されている。 As shown in FIG. 6, the heat exchanger 100 is composed of a plurality of flat tubes 101 formed of a plurality of refrigerant flow paths, and a pair of header pipes 102a and 102b connecting both ends of the flat tubes 101, The header pipes 102a and 102b are provided with partition plates 103a and 103b that divide the plurality of flat tubes 101 into a plurality of sections, and a connection tube 104 that allows the refrigerant to pass through the two divided sections. Refrigerant pipes 105a and 105b are connected to one header pipe 102a.

接続管104は、他方のヘッダーパイプ102bにおいて、仕切板103bによって分かれた下側の区間の上方と、上側の区間の下方と、を接続している。 The connection pipe 104 connects the upper part of the lower section divided by the partition plate 103b and the lower part of the upper section in the other header pipe 102b.

蒸発器として機能する場合、冷媒配管105bよりヘッダーパイプ102aに流入した冷媒が扁平管101を通り、ヘッダーパイプ102bの下側の区間に流れる。ヘッダーパイプ102bの下側の区間に流れた冷媒は、接続管104を介して、ヘッダーパイプ102bの上側の区間へ流入するため、ヘッダーパイプ102b内を上昇してターンする際の重力影響による冷媒の気液分離が抑制され、ヘッダーパイプ102bの上側の区間に接続された複数の扁平管101を流れる冷媒量および気液冷媒の比率が均一になるように配分することができる。 When functioning as an evaporator, the refrigerant flowing from the refrigerant pipe 105b into the header pipe 102a passes through the flat pipe 101 and flows into the lower section of the header pipe 102b. The refrigerant flowing in the lower section of the header pipe 102b flows into the upper section of the header pipe 102b via the connection pipe 104, and therefore the refrigerant due to the influence of gravity when ascending in the header pipe 102b and turning is generated. Gas-liquid separation is suppressed, and the amount of the refrigerant flowing through the plurality of flat tubes 101 connected to the upper section of the header pipe 102b and the ratio of the gas-liquid refrigerant can be distributed so as to be uniform.

特開2016−53473号公報JP, 2016-53473, A

しかしながら従来の構成では、蒸発器として機能する場合、特に、冷媒循環量が少なく、冷媒流速が遅く、ガスと液とに分離しやすい部分負荷運転時においては、扁平管からヘッダーパイプ内に流入した気液二相冷媒の内、重力の影響により、密度の小さいガス冷媒がヘッダーパイプ内の上方に、密度の大きい液冷媒がヘッダーパイプ内の下方に偏りやすく、上側の扁平管にガス冷媒が、下側の扁平管に液冷媒が流れ、同一熱交換区間において
冷媒状態が不均一となる課題を有していた。
However, in the conventional configuration, when functioning as an evaporator, in particular, the refrigerant circulation amount is small, the refrigerant flow velocity is slow, and during partial load operation in which gas and liquid are easily separated, it flows from the flat pipe into the header pipe. Of the gas-liquid two-phase refrigerant, due to the effect of gravity, the gas refrigerant with a low density is upward in the header pipe, the liquid refrigerant with a high density is likely to be biased downward in the header pipe, and the gas refrigerant is present in the upper flat tube. There is a problem that the liquid refrigerant flows through the lower flat tube and the refrigerant state becomes nonuniform in the same heat exchange section.

本発明は、前記従来の課題を解決するもので、複数の冷媒流路で形成された複数の扁平管と、扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、複数の扁平管に均一に冷媒を流入させることを目的とする。 The present invention is to solve the above-mentioned conventional problems, and a plurality of flat tubes formed of a plurality of refrigerant flow paths, and a pair of header pipes that respectively connect both ends of the flat tubes, and a heat exchange The purpose of the present invention is to make the refrigerant uniformly flow into the plurality of flat tubes.

前記従来の課題を解決するために、本発明の熱交換器は、複数の冷媒流路を有する複数の扁平管と、扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、少なくとも一方のヘッダーパイプは、蒸発器として機能する場合、複数の扁平管へ冷媒が流出する冷媒流出区間において、扁平管の接続側空間と、扁平管の非接続側空間と、を区切る隔壁板と、非接続側空間の鉛直方向中間位置より下方に冷媒が流入する冷媒流入口と、を有し、隔壁板は、冷媒流出区間の鉛直方向中間位置より上方に連通孔を備え、扁平管の差込代は、直上の扁平管と同等以上、かつ、最下段の扁平管は最上段の扁平管よりも長くなるように設けるものである。 In order to solve the conventional problems, the heat exchanger of the present invention is composed of a plurality of flat tubes having a plurality of refrigerant flow paths, and a pair of header pipes that respectively connect both ends of the flat tubes. In the heat exchanger, at least one header pipe, when functioning as an evaporator, in the refrigerant outflow section where the refrigerant flows out to the plurality of flat tubes, the connection side space of the flat tubes, the non-connection side space of the flat tubes, And a refrigerant inlet port through which the refrigerant flows below the vertical intermediate position of the non-connection side space, and the partition plate has a communication hole above the vertical intermediate position of the refrigerant outlet section. The insertion allowance of the flat tube is equal to or more than that of the flat tube immediately above, and the flat tube at the lowermost stage is longer than the flat tube at the uppermost stage.

これにより、冷媒流入口の気液二相冷媒は、冷媒流出区間の非接続側空間へ流れ込み、確実に冷媒流出区間の上側まで吹き上がる。特に最小運転時やよりガス状態(ガスリッチ)の場合、低循環量のため吹き上がった冷媒は流速が低下し、連通孔から扁平管接続側へ流出する際に、隔壁板付近を流下する。冷媒を上方の連通孔から流下させる場合、液冷媒はヘッダーパイプの下方よりも上方に多く供給されるが、最上段の扁平管は、他の扁平管と比べて差込代が短いため、管内流路に流れ込む液冷媒は低減する。扁平管の差込代は、下方にかけて長くなるため、上段の扁平管に流れ込まなかった液冷媒は、直下の扁平管の上面(真上の扁平管よりも飛び出した面)にトラップされて、管内流路に流れ込みながら流下する。 Accordingly, the gas-liquid two-phase refrigerant at the refrigerant inlet flows into the non-connection side space of the refrigerant outflow section and surely blows up to the upper side of the refrigerant outflow section. Especially in the minimum operation or in a more gas state (gas rich), the flow rate of the blown-up refrigerant decreases due to the low circulation amount, and when flowing out from the communication hole to the flat pipe connection side, the refrigerant flows down near the partition plate. When the refrigerant is made to flow down from the upper communication hole, the liquid refrigerant is supplied more to the upper side than to the lower side of the header pipe, but the flat tube in the uppermost stage has a shorter insertion margin than other flat tubes, so The liquid refrigerant flowing into the flow path is reduced. Since the insertion allowance of the flat tube becomes longer toward the bottom, the liquid refrigerant that did not flow into the upper flat tube is trapped on the upper surface of the flat tube directly below (the surface that protrudes from the flat tube directly above), It flows down while flowing into the flow path.

本発明の熱交換器は、特に最小運転時など、冷媒が低循環量や、よりガス状態(ガスリッチ)の場合において、液冷媒はヘッダーパイプの下方よりも上方に多く供給されるのに対し、上方に接続された扁平管へ流入する液冷媒が過多になることを抑制しつつ、下方にかけて扁平管の差込代が長くなることから、液冷媒が扁平管の上面にトラップされて管内流路に流れ込む割合が増加するため、液冷媒を各扁平管へ満遍なく流すことが可能である。それにより、扁平管を流れる気液冷媒の比率のばらつきを低減し、冷媒状態を均一にすることができる。 The heat exchanger of the present invention, especially in the minimum operation, when the refrigerant is in a low circulation amount or in a more gas state (gas rich), while the liquid refrigerant is supplied more upward than below the header pipe, While suppressing the excess amount of liquid refrigerant flowing into the flat pipe connected to the upper part, the insertion margin of the flat pipe becomes longer toward the lower part, so the liquid refrigerant is trapped on the upper surface of the flat pipe and the flow path in the pipe is increased. Since the ratio of the liquid refrigerant flowing into the flat tubes increases, it is possible to flow the liquid refrigerant evenly to the flat tubes. Thereby, it is possible to reduce the variation in the ratio of the gas-liquid refrigerant flowing through the flat tube and make the refrigerant state uniform.

本発明の実施の形態1の熱交換器の斜視図The perspective view of the heat exchanger of Embodiment 1 of this invention. 本発明の実施の形態1のヘッダーパイプのx−y平面の断面図Sectional drawing of the xy plane of the header pipe of Embodiment 1 of this invention. 本発明の実施の形態1のヘッダーパイプのx−z平面の断面図Sectional drawing of the xz plane of the header pipe of Embodiment 1 of this invention 熱交換器を適用した室外機の内部構造を示すx−z正面図Xz front view showing the internal structure of the outdoor unit to which the heat exchanger is applied 熱交換器を適用した室外機の内部構造を示すx−y正面図Xy front view showing the internal structure of the outdoor unit to which the heat exchanger is applied 従来の熱交換器のx−y平面の断面図Sectional drawing of the xy plane of the conventional heat exchanger.

第1の発明は、複数の冷媒流路を有する複数の扁平管と、扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、少なくとも一方のヘッダーパイプは、蒸発器として機能する場合、複数の扁平管へ冷媒が流出する冷媒流出区間において、扁平管の接続側空間と、扁平管の非接続側空間と、を区切る隔壁板と、非接続側空間の鉛直方向中間位置より下方に冷媒が流入する冷媒流入口と、を有し、隔壁板は、冷媒流出区間の鉛直方向中間位置より上方に連通孔を備え、扁平管の差込代は、直上の扁
平管と同等以上、かつ、最下段の扁平管は最上段の扁平管よりも長くなるように設けた構造とする。
A first aspect of the present invention is a heat exchanger configured with a plurality of flat tubes having a plurality of refrigerant flow paths, and a pair of header pipes that respectively connect both ends of the flat tubes, wherein at least one header pipe is When functioning as an evaporator, in the refrigerant outflow section where the refrigerant flows out to a plurality of flat tubes, the partition plate that separates the space on the connection side of the flat tubes and the space on the non-connection side of the flat tubes, and the vertical direction of the non-connection side space. And a refrigerant inlet port through which the refrigerant flows downward from the intermediate position in the direction, the partition plate has a communication hole above the intermediate position in the vertical direction of the refrigerant outflow section, and the insertion allowance of the flat tube is a flat surface directly above. The flat tube at the same level as the tube or more, and the flat tube at the bottom is longer than the flat tube at the top.

これにより、冷媒流入口の気液二相冷媒は、冷媒流出区間の非接続側空間へ流れ込み、確実に冷媒流出区間の上側まで吹き上がる。特に最小運転時やよりガス状態(ガスリッチ)の場合、低循環量のため吹き上がった冷媒は流速が低下し、連通孔から扁平管接続側へ流出する際に、隔壁板付近を流下する。冷媒を上方の連通孔から流下させる場合、液冷媒はヘッダーパイプの下方よりも上方に多く供給されるが、最上段の扁平管は、他の扁平管と比べて差込代が短いため、管内流路に流れ込む液冷媒は低減する。扁平管の差込代は、下方にかけて長くなるため、上段の扁平管に流れ込まなかった液冷媒は、直下の扁平管の上面(真上の扁平管よりも飛び出した面)にトラップされて、管内流路に流れ込みながら流下する。 Accordingly, the gas-liquid two-phase refrigerant at the refrigerant inlet flows into the non-connection side space of the refrigerant outflow section and surely blows up to the upper side of the refrigerant outflow section. Especially in the minimum operation or in a more gas state (gas rich), the flow rate of the blown-up refrigerant decreases due to the low circulation amount, and when flowing out from the communication hole to the flat pipe connection side, the refrigerant flows down near the partition plate. When the refrigerant is made to flow down from the upper communication hole, the liquid refrigerant is supplied more to the upper side than to the lower side of the header pipe, but the flat tube in the uppermost stage has a shorter insertion margin than other flat tubes, so The liquid refrigerant flowing into the flow path is reduced. Since the insertion allowance of the flat tube becomes longer toward the bottom, the liquid refrigerant that did not flow into the upper flat tube is trapped on the upper surface of the flat tube directly below (the surface that protrudes from the flat tube directly above), It flows down while flowing into the flow path.

従って、特に最小運転時など、冷媒が低循環量や、よりガス状態(ガスリッチ)の場合において、液冷媒はヘッダーパイプの下方よりも上方に多く供給されるのに対し、上方に接続された扁平管へ流入する液冷媒が過多になることを抑制しつつ、下方にかけて扁平管の差込代が長くなることから、液冷媒が扁平管の上面にトラップされて管内流路に流れ込む割合が増加するため、液冷媒を各扁平管へ満遍なく流すことが可能である。それにより、扁平管を流れる気液冷媒の比率のばらつきを低減し、冷媒状態を均一にすることができる。 Therefore, especially when the refrigerant is in a low circulation amount or in a more gas state (gas rich) such as at the time of minimum operation, the liquid refrigerant is supplied more to the upper side than to the lower side of the header pipe, while the flat refrigerant connected to the upper side is supplied. While suppressing the excess amount of liquid refrigerant flowing into the pipe, the insertion margin of the flat pipe becomes longer toward the lower side, so that the ratio of the liquid refrigerant trapped on the upper surface of the flat pipe and flowing into the pipe internal passage increases. Therefore, the liquid refrigerant can be evenly flowed to each flat tube. Thereby, it is possible to reduce the variation in the ratio of the gas-liquid refrigerant flowing through the flat tube and make the refrigerant state uniform.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1の熱交換器の斜視図であり、x方向は扁平管の流路を流れる冷媒の流動方向、y方向はヘッダーパイプ軸方向、z方向は空気流れ方向である。
(Embodiment 1)
1 is a perspective view of a heat exchanger according to a first embodiment of the present invention, where the x direction is the flow direction of a refrigerant flowing through a flow path of a flat tube, the y direction is the header pipe axial direction, and the z direction is the air flow direction. Is.

図1において、熱交換器1は、複数の扁平管2と、一対のヘッダーパイプ3a、3bと、を備えている。 In FIG. 1, the heat exchanger 1 includes a plurality of flat tubes 2 and a pair of header pipes 3a and 3b.

一方のヘッダーパイプ3aには、冷媒配管4a、4bがそれぞれ接続されている。これら各冷媒配管4a、4bは、冷媒の流入口または流出口として機能するように構成されている。 Refrigerant pipes 4a and 4b are connected to one header pipe 3a, respectively. Each of these refrigerant pipes 4a and 4b is configured to function as an inlet or an outlet for the refrigerant.

ヘッダーパイプ3a内には、冷媒配管4a、4bの高さ方向(y方向)の間の位置に、複数の扁平管2を複数の区間に分ける仕切板5が設けられている。 A partition plate 5 that divides the plurality of flat tubes 2 into a plurality of sections is provided in the header pipe 3a at a position between the refrigerant pipes 4a and 4b in the height direction (y direction).

ヘッダーパイプ3a、3bは、例えば、アルミニウムなどの金属材料を押出成型することにより、円筒状に形成されている。 The header pipes 3a and 3b are formed in a cylindrical shape by extruding a metal material such as aluminum.

複数の扁平管2は、ヘッダーパイプ3a、3bの軸方向(y方向)に沿って、互いが平行になるように、それぞれ水平方向(x方向)に配置されている。 The plurality of flat tubes 2 are arranged in the horizontal direction (x direction) so as to be parallel to each other along the axial direction (y direction) of the header pipes 3a and 3b.

複数の扁平管2同士の間には、上下に連続する波状に形成された複数のフィン6が構成されており、複数のフィン6の間を流れる空気と、複数の扁平管2の中を流れる冷媒と、で熱交換を行う。 Between the plurality of flat tubes 2, a plurality of fins 6 which are vertically continuous and formed in a wavy shape are configured, and air flowing between the plurality of fins 6 and the inside of the plurality of flat tubes 2 flow. Heat exchange with the refrigerant.

なお、冷媒としては、例えば、R410A、R32およびR32を含む混合冷媒などが用いられる。 As the refrigerant, for example, a mixed refrigerant containing R410A, R32, and R32 is used.

図2は、図1のA−A断面図(本発明の実施の形態1のヘッダーパイプのx−y平面の断面図)、図3は、図2のB−B断面図(本発明の実施の形態1のヘッダーパイプのx−z平面の断面図)、である。 2 is a sectional view taken along the line AA of FIG. 1 (a sectional view taken along the xy plane of the header pipe according to the first embodiment of the present invention), and FIG. 3 is a sectional view taken along the line BB of FIG. 2 is a cross-sectional view of the header pipe of the form 1 in the xz plane).

扁平管2内に設けられた複数の冷媒流路7は、ヘッダーパイプ3a、3bの内部に連通されている。 The plurality of refrigerant flow paths 7 provided in the flat tube 2 communicate with the inside of the header pipes 3a and 3b.

他方のヘッダーパイプ3b内には、蒸発器として機能する場合、複数の扁平管2へ冷媒が流出する冷媒流出区間12において、複数の扁平管2の接続側空間8と、複数の扁平管2の非接続側空間9と、に区切るヘッダーパイプ3bの軸方向(y方向)に延びた隔壁板10と、非接続側空間9のヘッダーパイプ3bの軸方向(y方向)で中間位置より下方に冷媒が流入する冷媒流入口11と、が設けられている。 In the other header pipe 3b, when functioning as an evaporator, in the refrigerant outflow section 12 in which the refrigerant flows to the plurality of flat tubes 2, the connection side spaces 8 of the plurality of flat tubes 2 and the plurality of flat tubes 2 are formed. The partition plate 10 that extends in the axial direction (y direction) of the header pipe 3b that divides into the non-connection side space 9, and the refrigerant below the intermediate position in the axial direction (y direction) of the header pipe 3b in the non-connection side space 9. And a refrigerant inlet 11 into which the refrigerant flows.

隔壁板10は、冷媒流出区間12に設けられ、ヘッダーパイプ3bの軸方向(y方向)に対して中間位置より上方に位置する連通孔13を備えている。 The partition plate 10 is provided in the refrigerant outflow section 12 and has a communication hole 13 located above an intermediate position in the axial direction (y direction) of the header pipe 3b.

扁平管2は、同一の冷媒流出区間12において、接続側空間8に突出する扁平管2の差込代は、直上の扁平管2と同等以上、かつ、最下段の扁平管2は最上段の扁平管2よりも長くなるように構成されている。 In the flat tube 2, in the same refrigerant outflow section 12, the insertion allowance of the flat tube 2 protruding into the connection side space 8 is equal to or more than that of the flat tube 2 immediately above, and the flat tube 2 in the lowermost stage is in the uppermost stage. It is configured to be longer than the flat tube 2.

以上のように構成された熱交換器について、蒸発器として機能する場合には、ヘッダーパイプ3bの冷媒流入口11の冷媒が、冷媒流出区間12の非接続側空間9に流れ、ヘッダーパイプ3bを+y方向へ上昇し、隔壁板10の上端にある連通孔13を通り、冷媒流出区間12における扁平管2の接続側空間8に循環する。 When the heat exchanger configured as described above functions as an evaporator, the refrigerant at the refrigerant inlet 11 of the header pipe 3b flows into the non-connection side space 9 of the refrigerant outflow section 12 and flows through the header pipe 3b. It rises in the +y direction, passes through the communication hole 13 at the upper end of the partition plate 10, and circulates in the connection side space 8 of the flat tube 2 in the refrigerant outflow section 12.

次に、本実施形態の利用について、本実施形態の熱交換器1を空気調和装置の室外機20に利用した場合を例に説明する。 Next, the use of the present embodiment will be described by taking as an example the case where the heat exchanger 1 of the present embodiment is used in the outdoor unit 20 of the air conditioner.

図4は、本実施形態の熱交換器1を適用した室外機20の内部構造を示すx−z平面図であり、図5は、本実施形態の熱交換器1を適用した室外機20の内部構造を示すx−y平面図である。 FIG. 4 is an xz plan view showing the internal structure of the outdoor unit 20 to which the heat exchanger 1 of this embodiment is applied, and FIG. 5 shows the outdoor unit 20 to which the heat exchanger 1 of this embodiment is applied. It is an xy top view which shows an internal structure.

図4、図5に示すように、室外機20は、圧縮機21と、切替弁22と、室外膨張弁23と、送風機24と、熱交換器1と、を備えている。室外機20と室内機(図示せず)は、液管25と、ガス管26とで接続している。 As shown in FIGS. 4 and 5, the outdoor unit 20 includes a compressor 21, a switching valve 22, an outdoor expansion valve 23, a blower 24, and the heat exchanger 1. The outdoor unit 20 and the indoor unit (not shown) are connected by a liquid pipe 25 and a gas pipe 26.

熱交換器1のヘッダーパイプ3a、3bは、冷媒配管4aを介して切替弁22と、冷媒配管4bを介して、室外膨張弁23と、それぞれ接続している。 The header pipes 3a and 3b of the heat exchanger 1 are connected to the switching valve 22 via the refrigerant pipe 4a and to the outdoor expansion valve 23 via the refrigerant pipe 4b, respectively.

まず、冷房運転を行う場合は、熱交換器1は凝縮器として機能する。 First, when performing the cooling operation, the heat exchanger 1 functions as a condenser.

室外機20の圧縮機21から送られるガス冷媒は、切替弁22を介して、冷媒配管4aから、ヘッダーパイプ3aの中に流入される。このガス冷媒は、仕切板5によって区切られた冷媒配管4aの接続側のヘッダーパイプ3aの内部を通り、複数の扁平管2内の複数の冷媒流路7に流入され、水平方向(+x方向、+z方向)に流れ、ヘッダーパイプ3bの上側の区間の冷媒流出区間12における扁平管2の接続側空間8に流出する。 The gas refrigerant sent from the compressor 21 of the outdoor unit 20 flows into the header pipe 3a from the refrigerant pipe 4a through the switching valve 22. This gas refrigerant passes through the inside of the header pipe 3a on the connection side of the refrigerant pipe 4a divided by the partition plate 5, flows into the plurality of refrigerant flow paths 7 in the plurality of flat tubes 2, and is horizontally (+x direction, +z direction), and flows out into the connection side space 8 of the flat pipe 2 in the refrigerant outflow section 12 in the section above the header pipe 3b.

流出した冷媒は、隔壁板10の上方の連通孔13を介して、隔壁板10で区切られた扁平管2の非接続側空間9を−y方向に下降し、ヘッダーパイプ3bの冷媒流入口11を介
して、ヘッダーパイプ3bの下側の区間に流入する。
The outflowing refrigerant descends in the -y direction in the non-connection side space 9 of the flat tube 2 partitioned by the partition plate 10 through the communication hole 13 above the partition plate 10, and the refrigerant inlet 11 of the header pipe 3b. Through the header pipe 3b into the lower section.

流入した冷媒は、複数の扁平管2内の複数の冷媒流路7を介して水平方向(−z方向、−x方向)に流れる。冷媒は、扁平管2において、送風機24により送られた空気と熱交換をすることで放熱して凝縮される。 The inflowing refrigerant flows in the horizontal direction (-z direction, -x direction) through the plurality of refrigerant flow paths 7 in the plurality of flat tubes 2. In the flat tube 2, the refrigerant exchanges heat with the air sent by the blower 24 to radiate heat and be condensed.

凝縮した冷媒は、仕切板5によって区切られた冷媒配管4bの接続側のヘッダーパイプ3aの空間に流出し、冷媒配管4bから室外膨張弁23、液管25を通り、室内機に流出される。 The condensed refrigerant flows out into the space of the header pipe 3a on the connection side of the refrigerant pipe 4b divided by the partition plate 5, passes through the outdoor expansion valve 23 and the liquid pipe 25 from the refrigerant pipe 4b, and flows out to the indoor unit.

室内機に流れた凝縮した冷媒は、室内熱交換器(図示せず)で空気と熱交換をすることで吸熱し蒸発する。蒸発した冷媒は、ガス管26を通り、切替弁22を介して、圧縮機21に循環する。 The condensed refrigerant that has flowed into the indoor unit absorbs heat and evaporates by exchanging heat with air in an indoor heat exchanger (not shown). The evaporated refrigerant passes through the gas pipe 26 and circulates to the compressor 21 via the switching valve 22.

暖房運転を行う場合は、熱交換器1は蒸発器として機能する。 When performing the heating operation, the heat exchanger 1 functions as an evaporator.

室外機20の圧縮機21から送られるガス冷媒は、切替弁22を介して、ガス管26を通り、室内機に流出される。 The gas refrigerant sent from the compressor 21 of the outdoor unit 20 passes through the gas pipe 26 through the switching valve 22 and flows out to the indoor unit.

室内機に流れたガス冷媒は、室内機に設けられた室内熱交換器で空気と熱交換をすることで放熱し凝縮する。 The gas refrigerant flowing into the indoor unit radiates heat and condenses by exchanging heat with air in an indoor heat exchanger provided in the indoor unit.

凝縮した冷媒は、液管25、室外膨張弁23を通り、気液二相冷媒となり、冷媒配管4bから、仕切板5によって区切られた冷媒配管4bの接続側のヘッダーパイプ3aの内部を通り、複数の扁平管2内の複数の冷媒流路7に流入され、水平方向(+x方向、+z方向)に流れ、ヘッダーパイプ3bの下側の区間に流出する。 The condensed refrigerant passes through the liquid pipe 25 and the outdoor expansion valve 23 to become a gas-liquid two-phase refrigerant, and passes from the refrigerant pipe 4b through the inside of the header pipe 3a on the connection side of the refrigerant pipe 4b separated by the partition plate 5, It flows into the plurality of refrigerant flow paths 7 in the plurality of flat tubes 2, flows in the horizontal direction (+x direction, +z direction), and flows out to the lower section of the header pipe 3b.

ヘッダーパイプ3bに流入してきた気液二相冷媒は、ヘッダーパイプ3bの冷媒流入口11を介して冷媒流出区間12の扁平管2の非接続側空間9へ流れ込んで、ヘッダーパイプ3b内を隔壁板10に沿って+y方向へ上昇する。上昇した気液二相冷媒は、隔壁板10の連通孔13を介して、扁平管2の接続側空間8へ上方から流れ込む。 The gas-liquid two-phase refrigerant flowing into the header pipe 3b flows into the non-connection side space 9 of the flat pipe 2 in the refrigerant outflow section 12 through the refrigerant inlet 11 of the header pipe 3b, and the header pipe 3b has a partition wall plate. Rise along +10 in the +y direction. The ascended gas-liquid two-phase refrigerant flows into the connection side space 8 of the flat tube 2 from above via the communication hole 13 of the partition plate 10.

扁平管2の接続側空間8に流入した冷媒は、複数の扁平管2内の複数の冷媒流路7を介して水平方向(−z方向、−x方向)に流れる。冷媒は、扁平管2において、送風機24により送られた空気と熱交換をすることで吸熱して蒸発される。 The refrigerant flowing into the connection side space 8 of the flat tube 2 flows in the horizontal direction (−z direction, −x direction) via the plurality of refrigerant flow paths 7 in the plurality of flat tubes 2. In the flat tube 2, the refrigerant exchanges heat with the air sent by the blower 24 to absorb heat and evaporate.

蒸発した冷媒は、仕切板5によって区切られた冷媒配管4aの接続側のヘッダーパイプ3aの空間に流出し、冷媒配管4aから切替弁22を介して、圧縮機21に循環する。 The evaporated refrigerant flows out into the space of the header pipe 3a on the connection side of the refrigerant pipe 4a, which is partitioned by the partition plate 5, and circulates from the refrigerant pipe 4a to the compressor 21 via the switching valve 22.

以上のように、本実施の形態において、熱交換器1は、複数の冷媒流路7を有する扁平管2と、複数の扁平管2を水平方向に設置し、扁平管2の両端部をそれぞれ接続する一対のヘッダーパイプ3a、3bと、を備え、複数の扁平管2を、ヘッダーパイプ3a、3bの軸方向に沿って、互いに平行に接続される。 As described above, in the present embodiment, the heat exchanger 1 has the flat tubes 2 having the plurality of refrigerant flow paths 7 and the plurality of flat tubes 2 installed in the horizontal direction, and the both ends of the flat tube 2 are respectively arranged. A pair of header pipes 3a and 3b to be connected are provided, and the plurality of flat tubes 2 are connected in parallel to each other along the axial direction of the header pipes 3a and 3b.

ヘッダーパイプ3bは、蒸発器として機能する場合、複数の扁平管2へ冷媒が流出する冷媒流出区間12において、複数の扁平管2の接続側空間8と、複数の扁平管2の非接続側空間9と、に区切るヘッダーパイプ3bの軸方向(y方向)に延びた隔壁板10と、非接続側空間9のヘッダーパイプ3bの軸方向(y方向)で中間位置より下方に冷媒が流入する冷媒流入口11と、を有し、隔壁板10は、ヘッダーパイプ3bの軸方向(y方向)に対して中間位置より上方に位置する連通孔13を備えており、扁平管2は、同一の冷媒
流出区間12において、接続側空間8に突出する扁平管2の差込代は、直上の扁平管2と同等以上、かつ、最下段の扁平管2は最上段の扁平管2よりも長くなるように構成されている。
When the header pipe 3b functions as an evaporator, in the refrigerant outflow section 12 in which the refrigerant flows out to the plurality of flat tubes 2, the connection side spaces 8 of the plurality of flat tubes 2 and the non-connection side spaces of the plurality of flat tubes 2 are provided. 9, a partition wall plate 10 extending in the axial direction (y direction) of the header pipe 3b, and a refrigerant into which the refrigerant flows below an intermediate position in the axial direction (y direction) of the header pipe 3b in the non-connection side space 9. The partition wall plate 10 has a communication hole 13 located above the intermediate position with respect to the axial direction (y direction) of the header pipe 3b, and the flat pipe 2 has the same refrigerant. In the outflow section 12, the insertion allowance of the flat tube 2 protruding into the connection side space 8 is equal to or larger than that of the flat tube 2 immediately above, and the flat tube 2 at the bottom is longer than the flat tube 2 at the top. Is configured.

これにより、冷媒流入口11の気液二相冷媒は、冷媒流出区間12の非接続側空間9へ流れ込み、確実に冷媒流出区間12の上側まで吹き上がる。特に最小運転時やよりガス状態(ガスリッチ)の場合、低循環量のため吹き上がった冷媒は流速が低下し、連通孔13から接続側空間8へ流出する際に、隔壁板10付近を流下する。冷媒を上方の連通孔13から流下させる場合、液冷媒はヘッダーパイプ3bの下方よりも上方に多く供給されるが、最上段の扁平管2は、他の扁平管2と比べて差込代が短いため、管内流路に流れ込む液冷媒は低減する。扁平管2の差込代は、下方にかけて長くなるため、上段の扁平管2に流れ込まなかった液冷媒は、直下の扁平管2の上面(真上の扁平管2よりも飛び出した面)にトラップされて、管内流路に流れ込みながら流下する。 As a result, the gas-liquid two-phase refrigerant at the refrigerant inlet 11 flows into the non-connection side space 9 of the refrigerant outflow section 12 and surely blows up to the upper side of the refrigerant outflow section 12. Particularly, in the minimum operation or in a more gas state (gas rich), the flow rate of the blown-up refrigerant decreases due to the low circulation amount, and when flowing out from the communication hole 13 to the connection side space 8, it flows down near the partition plate 10. .. When the refrigerant is made to flow down from the upper communication hole 13, the liquid refrigerant is supplied more to the upper side than to the lower side of the header pipe 3b, but the flat tube 2 at the uppermost stage has a larger insertion allowance than the other flat tubes 2. Since it is short, the amount of liquid refrigerant flowing into the pipe channel is reduced. Since the insertion margin of the flat tube 2 becomes longer toward the lower side, the liquid refrigerant that has not flowed into the flat tube 2 in the upper stage is trapped on the upper surface of the flat tube 2 immediately below (the surface protruding from the flat tube 2 directly above). Then, it flows down while flowing into the flow path in the pipe.

従って、特に最小運転時など、冷媒が低循環量や、よりガス状態(ガスリッチ)の場合において、液冷媒はヘッダーパイプ3bの下方よりも上方に多く供給されるのに対し、上方に接続された扁平管2へ流入する液冷媒が過多になることを抑制しつつ、下方にかけて扁平管2の差込代が長くなることから、液冷媒が扁平管2の上面にトラップされて管内流路に流れ込む割合が増加するため、液冷媒を各扁平管2へ満遍なく流すことが可能である。それにより、扁平管2を流れる気液冷媒の比率のばらつきを低減し、冷媒状態を均一にすることができる。 Therefore, especially when the refrigerant is in a low circulation amount or in a more gas state (gas rich), such as during the minimum operation, the liquid refrigerant is supplied to the upper portion more than the lower portion of the header pipe 3b, but is connected to the upper portion. While suppressing the excess amount of the liquid refrigerant flowing into the flat tube 2, the insertion margin of the flat tube 2 becomes longer toward the lower side, so that the liquid refrigerant is trapped on the upper surface of the flat tube 2 and flows into the in-pipe flow path. Since the ratio increases, the liquid refrigerant can be evenly flowed to each flat tube 2. Thereby, it is possible to reduce the variation in the ratio of the gas-liquid refrigerant flowing through the flat tube 2 and make the refrigerant state uniform.

また、別部材として接続管を用いることなく、ヘッダーパイプ3b内において液冷媒を優先的に流すことが可能となるため、ヘッダーパイプ3bの内容積の増大を抑制でき、ヘッダーパイプ3b内に必要な冷媒量を削減することができる。 In addition, since it is possible to preferentially flow the liquid refrigerant in the header pipe 3b without using a connecting pipe as a separate member, it is possible to suppress an increase in the internal volume of the header pipe 3b, and it is necessary to use the liquid refrigerant in the header pipe 3b. The amount of refrigerant can be reduced.

なお、実施例では、熱交換器1を1列設置しているが、例えば、空気流れ方向(z方向)に2つ以上でもよく、また、重力方向(y方向)に2つ以上の熱交換器1を重ねた構成を用いた場合でも、同様の効果を得られる事は言うまでもない。 Although the heat exchangers 1 are installed in one row in the embodiment, for example, two or more heat exchangers may be provided in the air flow direction (z direction), or two or more heat exchanges may be made in the gravity direction (y direction). It goes without saying that the same effect can be obtained even when the configuration in which the devices 1 are stacked is used.

また、実施例では、複数のフィン6が、複数の扁平管2同士の間に上下に連続する波状に形成された構成としているが、互いが平行になるように、複数の扁平管2に直角に挿入されるよう板状に形成された構成とした場合でも、同様の効果を得られる事は言うまでもない。 Further, in the embodiment, the plurality of fins 6 are formed in a vertically continuous wave shape between the plurality of flat tubes 2, but the plurality of fins 6 are perpendicular to the plurality of flat tubes 2 so that they are parallel to each other. It is needless to say that the same effect can be obtained even when the plate-shaped structure is inserted so that the same effect can be obtained.

また、実施例では、扁平管2の差込代はヘッダーパイプ3bの軸方向(y方向)の上方から下方にかけて、同じ割合で次第に長くなる構成としているが、異なる割合で次第に長くなるような構成とした場合でも、同様の効果を得られる事は言うまでもない。 Further, in the embodiment, the insertion allowance of the flat tube 2 is configured to be gradually increased at the same rate from the upper side to the lower side in the axial direction (y direction) of the header pipe 3b, but is configured to be gradually increased at different rates. It goes without saying that the same effect can be obtained even in the case of.

本発明は、扁平管利用の熱交換器において、ヘッダーパイプ内の冷媒流出区間を複数の分配室に区切り、かつ、連通孔をそれぞれの分配室の上方に設けることで、気液二相冷媒を複数の扁平管に冷媒量および気液冷媒の比率が均一になるように配分することができる熱交換器分流器であり、冷凍機、空気調和装置、給湯空調複合装置などの用途に適用できる。 The present invention, in a heat exchanger using a flat tube, divides the refrigerant outflow section in the header pipe into a plurality of distribution chambers, and by providing a communication hole above each of the distribution chambers, a gas-liquid two-phase refrigerant is generated. It is a heat exchanger shunt that can distribute the amount of refrigerant and the ratio of gas-liquid refrigerant to a plurality of flat tubes so as to be uniform, and can be applied to applications such as refrigerators, air conditioners, and hot water supply air conditioning complex devices.

1 熱交換器
2 扁平管
3a、3b ヘッダーパイプ
4a、4b 冷媒配管
5 仕切板
6 フィン
7 冷媒流路
8 接続側空間
9 非接続側空間
10 隔壁板
11 冷媒流入口
12 冷媒流出区間
13 連通孔
20 室外機
21 圧縮機
22 切替弁
23 室外膨張弁
24 送風機
25 液管
26 ガス管
100 熱交換器
101 扁平管
102a、102b ヘッダーパイプ
103a、103b 仕切板
104 接続管
105a、105b 冷媒配管
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Flat pipe 3a, 3b Header pipe 4a, 4b Refrigerant piping 5 Partition plate 6 Fin 7 Refrigerant flow path 8 Connection side space 9 Non-connection side space 10 Partition plate 11 Refrigerant outflow port 13 Refrigerant outflow section 13 Communication hole 20 Outdoor unit 21 Compressor 22 Switching valve 23 Outdoor expansion valve 24 Blower 25 Liquid pipe 26 Gas pipe 100 Heat exchanger 101 Flat pipe 102a, 102b Header pipe 103a, 103b Partition plate 104 Connection pipe 105a, 105b Refrigerant pipe

Claims (1)

複数の冷媒流路を有する複数の扁平管と、前記扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、少なくとも一方の前記ヘッダーパイプは、蒸発器として機能する場合、前記複数の扁平管へ冷媒が流出する冷媒流出区間において、前記扁平管の接続側空間と、前記扁平管の非接続側空間と、を区切る隔壁板と、前記非接続側空間の鉛直方向中間位置より下方に冷媒が流入する冷媒流入口と、を有し、前記隔壁板は、前記冷媒流出区間の鉛直方向中間位置より上方に連通孔を備え、前記扁平管の差込代は、直上の前記扁平管と同等以上、かつ、最下段の前記扁平管は最上段の前記扁平管よりも長いことを特徴とした熱交換器。
In a heat exchanger composed of a plurality of flat tubes having a plurality of refrigerant flow paths and a pair of header pipes that respectively connect both ends of the flat tubes, at least one of the header pipes functions as an evaporator. In the refrigerant outflow section in which the refrigerant flows out to the plurality of flat tubes, a partition plate that separates the connection side space of the flat tubes and the non-connection side space of the flat tubes, and the vertical direction of the non-connection side space. A refrigerant inflow port through which a refrigerant flows in from a direction intermediate position below; and, the partition plate has a communication hole above a vertical direction intermediate position of the refrigerant outflow section, and the insertion allowance of the flat tube is A heat exchanger characterized in that it is equal to or more than the flat tube directly above and that the flat tube at the lowermost stage is longer than the flat tube at the uppermost stage.
JP2019006715A 2019-01-18 2019-01-18 Heat exchanger Pending JP2020115069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006715A JP2020115069A (en) 2019-01-18 2019-01-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006715A JP2020115069A (en) 2019-01-18 2019-01-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2020115069A true JP2020115069A (en) 2020-07-30

Family

ID=71778504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006715A Pending JP2020115069A (en) 2019-01-18 2019-01-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2020115069A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043273U (en) * 1990-04-13 1992-01-13
JPH07180929A (en) * 1993-12-24 1995-07-18 Toshiba Corp Heat exchanger
JP2009041876A (en) * 2007-08-10 2009-02-26 Gac Corp Heat exchanger
JP2012032112A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Heat exchanger
JP2013234839A (en) * 2012-05-04 2013-11-21 Lg Electronics Inc Heat exchanger
JP2014066503A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat exchanger, and freezer
JP2014126273A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Heat exchanger and refrigeration device
JP2018162900A (en) * 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner including the same
JP2018169062A (en) * 2017-03-29 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043273U (en) * 1990-04-13 1992-01-13
JPH07180929A (en) * 1993-12-24 1995-07-18 Toshiba Corp Heat exchanger
JP2009041876A (en) * 2007-08-10 2009-02-26 Gac Corp Heat exchanger
JP2012032112A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Heat exchanger
JP2013234839A (en) * 2012-05-04 2013-11-21 Lg Electronics Inc Heat exchanger
JP2014066503A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat exchanger, and freezer
JP2014126273A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Heat exchanger and refrigeration device
JP2018162900A (en) * 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner including the same
JP2018169062A (en) * 2017-03-29 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP5901748B2 (en) Refrigerant distributor, heat exchanger equipped with this refrigerant distributor, refrigeration cycle apparatus, and air conditioner
KR101462176B1 (en) Heat exchanger
US10465955B2 (en) Heat exchanger and air conditioning apparatus
CN113330268B (en) Heat exchanger and air conditioner provided with same
US9518788B2 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
WO2018116929A1 (en) Heat exchanger and air conditioner
KR20170067351A (en) Heat exchanger
US11022372B2 (en) Air conditioner
JP2018162900A (en) Heat exchanger and air conditioner including the same
WO2015046275A1 (en) Heat exchanger and air conditioner using same
EP3916331A1 (en) Heat exchanger
WO2017149950A1 (en) Heat exchanger and air conditioner
CN110998215B (en) Heat exchanger
JP2020112274A (en) Heat exchanger
JP2020115070A (en) Heat exchanger
JP2019095073A (en) Heat exchanger and heat pump device using the same
CN111750573B (en) Heat exchanger flow divider
JP2020115069A (en) Heat exchanger
TWI634305B (en) Heat exchanger and air conditioner
JP2020085268A (en) Heat exchanger
JP6537868B2 (en) Heat exchanger
JP2020085267A (en) Heat exchanger
WO2024023891A1 (en) Heat exchanger
CN111750730A (en) Heat exchanger flow divider

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230322