JP6419882B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6419882B2
JP6419882B2 JP2017064906A JP2017064906A JP6419882B2 JP 6419882 B2 JP6419882 B2 JP 6419882B2 JP 2017064906 A JP2017064906 A JP 2017064906A JP 2017064906 A JP2017064906 A JP 2017064906A JP 6419882 B2 JP6419882 B2 JP 6419882B2
Authority
JP
Japan
Prior art keywords
air conditioner
heat transfer
space
refrigerant
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017064906A
Other languages
Japanese (ja)
Other versions
JP2018169062A (en
Inventor
佐藤 大和
大和 佐藤
佐々木 重幸
重幸 佐々木
広 米田
広 米田
遠藤 剛
剛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2017064906A priority Critical patent/JP6419882B2/en
Publication of JP2018169062A publication Critical patent/JP2018169062A/en
Application granted granted Critical
Publication of JP6419882B2 publication Critical patent/JP6419882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、空気調和機に関し、特に、パラレルフロー型熱交換器の各伝熱管に供給する液冷媒の量を均一化できる空気調和機に関する。   The present invention relates to an air conditioner, and more particularly, to an air conditioner that can equalize the amount of liquid refrigerant supplied to each heat transfer tube of a parallel flow heat exchanger.

空気調和機の屋外機等に用いられるパラレルフロー型熱交換器の従来技術として、特許文献1に記載のものがある。同特許では、要約書、および、図1、図2等に開示されるように、一対のヘッダーパイプ(以下では「ヘッダ」ともいう)と、両ヘッダーパイプに接続する互いに平行な複数の扁平状の熱交換チューブ(以下では「伝熱管」ともいう)と、ヘッダーパイプ内の空間を上下に仕切る仕切板によって上下に区画される上側及び下側熱交換領域と、を具備するパラレルフロー型熱交換器において、ヘッダーパイプ内を熱交換チューブ側と外側空間とに区画する隔壁を具備し、隔壁に、上側熱交換領域における最下位置の熱交換チューブより下方側に開口する冷媒流通孔と、ヘッダーパイプの長手方向に沿って適宜間隔をおいて設けられると共に、上側熱交換領域の上方側の開口面積が増大する複数の冷媒流通孔とが設けられたパラレルフロー型熱交換器が提案されている。   As a prior art of a parallel flow type heat exchanger used for an outdoor unit of an air conditioner, there is one described in Patent Document 1. In this patent, as disclosed in the abstract and FIGS. 1 and 2, etc., a pair of header pipes (hereinafter also referred to as “headers”) and a plurality of parallel flat shapes connected to both header pipes. Heat exchange tubes (hereinafter also referred to as “heat transfer tubes”), and parallel flow type heat exchange comprising upper and lower heat exchange regions that are vertically partitioned by a partition plate that partitions the space in the header pipe vertically A partition wall that divides the inside of the header pipe into a heat exchange tube side and an outer space, the partition wall having a refrigerant circulation hole that opens downward from a lowermost heat exchange tube in the upper heat exchange region, and a header Parallel flow type heat exchange provided with a plurality of refrigerant flow holes which are provided at appropriate intervals along the longitudinal direction of the pipe and which increase the opening area on the upper side of the upper heat exchange region. Vessel has been proposed.

特開2016−176615号公報Japanese Patent Laid-Open No. 2006-176615

熱交換器を蒸発器として使用する場合、その熱交換効率を向上させるには、複数の伝熱管の各々に略均等な量の液冷媒を供給する必要がある。しかしながら、複数の伝熱管を流入側ヘッダの夫々異なる高さに接続し、各伝熱管に冷媒を分配するパラレルフロー型熱交換器では、ヘッダ内の液冷媒が重力によってヘッダ下部に滞留してしまうため、ヘッダ上部に接続された伝熱管には、ガス冷媒が多く流入し、液冷媒はわずかしか流入しない。この結果、上部伝熱管内での液冷媒蒸発は少量に留まり、熱交換は十分になされない。逆に、ヘッダ下部に接続された伝熱管には、ヘッダ下部に滞留した大量の液冷媒が流入する。この結果、液冷媒の全てが蒸発しきる前に下部伝熱管から気液二相状態の冷媒が流出する。   When using a heat exchanger as an evaporator, in order to improve the heat exchange efficiency, it is necessary to supply a substantially equal amount of liquid refrigerant to each of the plurality of heat transfer tubes. However, in a parallel flow heat exchanger in which a plurality of heat transfer tubes are connected to different heights of the inflow side header and the refrigerant is distributed to each heat transfer tube, the liquid refrigerant in the header stays in the lower part of the header due to gravity. Therefore, a large amount of gas refrigerant flows into the heat transfer tube connected to the upper portion of the header, and only a small amount of liquid refrigerant flows. As a result, liquid refrigerant evaporation in the upper heat transfer tube remains in a small amount, and heat exchange is not sufficiently performed. On the contrary, a large amount of liquid refrigerant staying at the lower part of the header flows into the heat transfer tube connected to the lower part of the header. As a result, the gas-liquid two-phase refrigerant flows out from the lower heat transfer tube before all of the liquid refrigerant evaporates.

これらの事象を、液冷媒とガス冷媒を合計した質量流量に対するガス冷媒の質量流量比で定義される乾き度で言い換えると、積層配置された伝熱管のうち、上部伝熱管は乾き度が大きく、下部伝熱管は乾き度が小さい、ということになる。そして、伝熱管毎の乾き度にバラつきがあると、熱交換器全体の熱交換効率が低下してしまうといった問題が発生する。これに加え、下部伝熱管を通って熱交換器から流出した気液二相冷媒中の液冷媒が、熱交換器の下流の圧縮機に流入すると、圧縮機の故障が発生する惧れもある。   In other words, the dryness defined by the mass flow rate ratio of the gas refrigerant to the total mass flow rate of the liquid refrigerant and the gas refrigerant, among the heat transfer tubes arranged in layers, the upper heat transfer tube has a high dryness, This means that the lower heat transfer tube has a low dryness. And when the dryness for every heat exchanger tube varies, the problem that the heat exchange efficiency of the whole heat exchanger will fall will generate | occur | produce. In addition to this, if the liquid refrigerant in the gas-liquid two-phase refrigerant flowing out of the heat exchanger through the lower heat transfer tube flows into the compressor downstream of the heat exchanger, the compressor may be broken. .

これらの問題に対し、特許文献1では、背景技術欄で説明した構成によって各伝熱管の乾き度の偏りを抑制している。しかし、ヘッダーパイプ内を仕切る隔壁の異なる高さに単数の開口を設けた構成だけでは、外側空間から熱交換チューブ側空間に流入した高速の冷媒が、十分に拡散、減速しない状態で熱交換チューブに向かことになるため、熱交換チューブに流入できなかった多量の液冷媒が重力によって落下し、ヘッダ下部に滞留する。その結果、伝熱管の接続高さによって乾き度がバラつきを抑制するという課題は十分に解消されていなかった。   With respect to these problems, Patent Document 1 suppresses the unevenness of the dryness of each heat transfer tube by the configuration described in the background art section. However, with only a single opening provided at different heights of the partition walls partitioning the header pipe, the high-speed refrigerant flowing from the outer space into the heat exchange tube side space is not sufficiently diffused and decelerated. Therefore, a large amount of liquid refrigerant that could not flow into the heat exchange tube falls due to gravity and stays in the lower part of the header. As a result, the problem that the degree of dryness does not vary depending on the connection height of the heat transfer tubes has not been sufficiently solved.

そこで、本発明では、パラレルフロー型熱交換器のヘッダ内で十分に拡散、減速させた冷媒を接続高さの異なる各伝熱管に供給し、伝熱管毎の乾き度のバラつきを抑制することで熱交換効率を向上させた空気調和機を提供することを目的とする。   Therefore, in the present invention, the refrigerant sufficiently diffused and decelerated in the header of the parallel flow type heat exchanger is supplied to each heat transfer tube having a different connection height, thereby suppressing variation in dryness of each heat transfer tube. It aims at providing the air conditioner which improved the heat exchange efficiency.

上記課題を解決するため、本発明の空気調和機は、室外熱交換器と、室内熱交換器と、圧縮機と、膨張弁を備え、前記何れかの熱交換器は、筒状の流入側ヘッダと、筒状の流出側ヘッダと、両ヘッダ間を接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を有し、前記複数の伝熱管の各々は、断面が扁平形状であり、各伝熱管を水平より傾斜させた状態で前記両ヘッダに接続するとともに、垂直に配置された前記筒状の流入側ヘッダの内部は、垂直に配置された仕切板によって、前記複数の伝熱管に冷媒を分配する第一空間と、下方から供給された冷媒を前記第一空間に送る第二空間と、に仕切られており、該仕切板には、水平方向の中心より一端側に寄った第一連通部と、水平方向の中心より他端側に寄った第二連通部と、が水平方向の中心を挟んで対に設けられており、前記第一連通部と前記第二連通部を、前記伝熱管の傾斜に合わせて高さを異ならせて配置したIn order to solve the above problems, an air conditioner of the present invention includes an outdoor heat exchanger, an indoor heat exchanger, a compressor, and an expansion valve, and any one of the heat exchangers has a cylindrical inflow side. A header, a tubular outflow side header, a plurality of heat transfer tubes connecting the two headers, and a fin that expands a heat transfer area of the heat transfer tubes, and each of the plurality of heat transfer tubes has a cross section Is a flat shape, and the heat transfer tubes are connected to both the headers in a state inclined from the horizontal, and the inside of the cylindrical inflow side header arranged vertically is divided by a partition plate arranged vertically, The first space for distributing the refrigerant to the plurality of heat transfer tubes and the second space for sending the refrigerant supplied from below to the first space are partitioned from the horizontal center. A first communication portion that is closer to one end side, and a second communication portion that is closer to the other end side than the center in the horizontal direction; Is provided in pairs across the horizontal center, said second communicating portion and the first communicating portion, and arranged at different heights in accordance with the inclination of the heat transfer tube.

本発明の空気調和機によれば、パラレルフロー型熱交換器のヘッダ内で十分に拡散、減速させた冷媒を各伝熱管に供給し、伝熱管毎の乾き度のバラつきを抑制することで熱交換効率を向上させた空気調和機を提供することができる。   According to the air conditioner of the present invention, the refrigerant, which has been sufficiently diffused and decelerated in the header of the parallel flow heat exchanger, is supplied to each heat transfer tube, thereby suppressing the variation in the dryness of each heat transfer tube. An air conditioner with improved exchange efficiency can be provided.

本発明のその他の課題、構成、作用、効果については、以下の実施例において詳細に説明する。   Other problems, configurations, operations, and effects of the present invention will be described in detail in the following examples.

一般的な熱交換器の外観を示す斜視図。The perspective view which shows the external appearance of a general heat exchanger. 一般的な流入側ヘッダと伝熱管の断面図。Sectional drawing of a general inflow side header and a heat exchanger tube. 実施例1の流入側ヘッダと伝熱管の断面図。Sectional drawing of the inflow side header and heat exchanger tube of Example 1. FIG. 実施例1の仕切板および冷媒の流れ場を上方から見た断面図。Sectional drawing which looked at the partition plate and refrigerant | coolant flow field of Example 1 from upper direction. 実施例1の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of Example 1 from the 2nd space side. 実施例2の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of Example 2 from the 2nd space side. 実施例3の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of Example 3 from the 2nd space side. 実施例3の変形例の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of the modification of Example 3 from the 2nd space side. 実施例4の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of Example 4 from the 2nd space side. 実施例4の変形例の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of the modification of Example 4 from the 2nd space side. 実施例4の他の変形例の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of the other modification of Example 4 from the 2nd space side. 実施例5の仕切板および冷媒の流れ場を上方から見た断面図。Sectional drawing which looked at the partition plate of Example 5 and the flow field of a refrigerant | coolant from upper direction. 実施例6の仕切板および冷媒の流れ場を上方から見た断面図。Sectional drawing which looked at the partition plate of Example 6 and the flow field of a refrigerant | coolant from upper direction. 実施例7の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of Example 7 from the 2nd space side. 実施例7の変形例の仕切板を第二空間側から見た断面図。Sectional drawing which looked at the partition plate of the modification of Example 7 from the 2nd space side. 一般的な空気調和機の概略図。Schematic of a general air conditioner.

まず、図16に示す空気調和機の概略図と、図1、図2に示す熱交換器の概略図を用いて、一般的な空気調和機と熱交換器の構成を説明する。   First, the structure of a general air conditioner and a heat exchanger will be described using the schematic diagram of the air conditioner shown in FIG. 16 and the schematic diagram of the heat exchanger shown in FIGS. 1 and 2.

図16は、従来の空気調和機100の冷凍サイクルの構成図である。空気調和機100は、室外機101と室内機108が接続配管112a、112bによって接続されたものである。室外機101は、圧縮機102と、四方弁103と、室外熱交換器104と、室外ファンモータ105と、室外ファン106と、絞り装置107を備え、室内機108は、室内熱交換器109と、室内ファンモータ110と、室内ファン111を備えている。   FIG. 16 is a configuration diagram of a refrigeration cycle of the conventional air conditioner 100. In the air conditioner 100, an outdoor unit 101 and an indoor unit 108 are connected by connecting pipes 112a and 112b. The outdoor unit 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, an outdoor fan motor 105, an outdoor fan 106, and a throttle device 107, and the indoor unit 108 includes an indoor heat exchanger 109, The indoor fan motor 110 and the indoor fan 111 are provided.

次に、冷房運転中の動作を例に、空気調和機100の各要素の作用を説明する。冷房運転時には、冷媒は図中の実線矢印の向きに流れる。まず、圧縮機102から吐出された高温・高圧のガス冷媒は、四方弁103を経由したのちに室外熱交換器104に流れ、室外熱交換器104で外気に放熱することで凝縮し、高圧の液冷媒となる。この液冷媒は絞り装置107の作用で減圧され、低温低圧の気液二相状態となり、接続配管112aを通じて室内機108へ流れる。室内機108に入った気液二相冷媒は、室内熱交換器109で室内空気の熱を吸熱することで蒸発し、これにより室内冷房が実現される。室内機108で蒸発したガス冷媒は、接続配管112bを通じて、室外機101へ戻り、四方弁103を通って再び圧縮機102で圧縮されることになる。これが冷房運転中の冷凍サイクルである。   Next, the operation of each element of the air conditioner 100 will be described by taking the operation during the cooling operation as an example. During the cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure. First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 102 flows to the outdoor heat exchanger 104 after passing through the four-way valve 103, condenses by releasing heat to the outside air in the outdoor heat exchanger 104, It becomes a liquid refrigerant. The liquid refrigerant is depressurized by the action of the expansion device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 108 through the connection pipe 112a. The gas-liquid two-phase refrigerant that has entered the indoor unit 108 evaporates by absorbing the heat of the indoor air in the indoor heat exchanger 109, thereby realizing indoor cooling. The gas refrigerant evaporated in the indoor unit 108 returns to the outdoor unit 101 through the connection pipe 112b, and is compressed by the compressor 102 again through the four-way valve 103. This is the refrigeration cycle during the cooling operation.

一方、暖房運転時は、四方弁103により冷媒流路が切り替えられ、図中の破線矢印の方向に冷媒が流れる。まず、圧縮機102から吐出された高温・高圧のガス冷媒は、四方弁103および接続配管112bを通って室内機108に流れる。室内機108に入った高温のガス冷媒は、室内熱交換器109で室内空気に放熱することで室内暖房が実現される。このとき、ガス冷媒は凝縮し、高圧の液冷媒となる。その後、高圧の液冷媒は、接続配管112aを通って室外機101に流れる。室外機101に入った高圧の液冷媒は、絞り装置107の作用で減圧され、低温低圧の気液二相状態となり、室外熱交換器104に流れ、室外空気の熱を吸熱することで蒸発し、ガス冷媒となる。このガス冷媒は、四方弁103を通った後、圧縮機102で再び圧縮される。これが暖房運転中の冷凍サイクルである。   On the other hand, during the heating operation, the refrigerant flow path is switched by the four-way valve 103, and the refrigerant flows in the direction of the broken line arrow in the figure. First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 102 flows to the indoor unit 108 through the four-way valve 103 and the connection pipe 112b. The high-temperature gas refrigerant that has entered the indoor unit 108 is radiated to the indoor air by the indoor heat exchanger 109, thereby realizing indoor heating. At this time, the gas refrigerant condenses and becomes a high-pressure liquid refrigerant. Thereafter, the high-pressure liquid refrigerant flows to the outdoor unit 101 through the connection pipe 112a. The high-pressure liquid refrigerant that has entered the outdoor unit 101 is depressurized by the action of the expansion device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 104, and evaporates by absorbing the heat of the outdoor air. It becomes a gas refrigerant. The gas refrigerant passes through the four-way valve 103 and is compressed again by the compressor 102. This is the refrigeration cycle during heating operation.

このように、室外熱交換器104、及び、室内熱交換器109内の冷媒の流れの向きは、冷房運転時と暖房運転時で逆向きになる。尚、冷媒としてはR32を用いているが、R410A等の別の冷媒を用いても良い。   Thus, the direction of the refrigerant flow in the outdoor heat exchanger 104 and the indoor heat exchanger 109 is opposite between the cooling operation and the heating operation. In addition, although R32 is used as a refrigerant | coolant, you may use another refrigerant | coolants, such as R410A.

図1は、一般的なパラレルフロー型熱交換器を蒸発器として用いた場合の外観を示す斜視図である。ここに示す熱交換器は、冷媒を分配する図中左側の流入側ヘッダと冷媒を合流させる図中右側の流出側ヘッダからなる二本のヘッダ1と、これらのヘッダ1間を接続するとともに、冷媒が内部を流れる複数の扁平状の伝熱管2と、伝熱管2にロウ付けされその伝熱面積を拡大する複数のフィン3から構成される。なお、図1に示すように、冷媒の流れ方向と空気の流れ方向は直交しており、伝熱管2内を流れる冷媒と伝熱管2間を流れる空気が、フィン3を介して熱交換することで、効率の良い熱交換が実現されている。   FIG. 1 is a perspective view showing an external appearance when a general parallel flow heat exchanger is used as an evaporator. The heat exchanger shown here connects two headers 1 consisting of an inflow header on the left side in the figure for distributing the refrigerant and an outflow side header on the right side in the figure for merging the refrigerant, and the header 1. A plurality of flat heat transfer tubes 2 through which the refrigerant flows and a plurality of fins 3 brazed to the heat transfer tubes 2 to expand the heat transfer area. As shown in FIG. 1, the refrigerant flow direction and the air flow direction are orthogonal, and the refrigerant flowing in the heat transfer tube 2 and the air flowing between the heat transfer tubes 2 exchange heat through the fins 3. Thus, efficient heat exchange is realized.

図2は、図1の流入側のヘッダ1と伝熱管2の断面図である。ここに示すように、ヘッダ1には、複数の伝熱管2が高さ方向に所定の間隔をあけて積層して挿入接続されている。   FIG. 2 is a cross-sectional view of the header 1 and the heat transfer tube 2 on the inflow side of FIG. As shown here, a plurality of heat transfer tubes 2 are stacked and inserted and connected to the header 1 at predetermined intervals in the height direction.

熱交換器を凝縮器として使用する場合は、冷媒の流れは図2の矢印とは逆方向となり、伝熱管2からヘッダ1に流入した液冷媒が、重力によってヘッダ1の下部に滞留する。この液冷媒をヘッダ1から排出するために、冷媒出入口4はヘッダ1の下部に配置されている。   When the heat exchanger is used as a condenser, the flow of the refrigerant is in the direction opposite to the arrow in FIG. 2, and the liquid refrigerant flowing into the header 1 from the heat transfer tube 2 stays in the lower part of the header 1 due to gravity. In order to discharge the liquid refrigerant from the header 1, the refrigerant inlet / outlet 4 is disposed at the lower part of the header 1.

一方で、熱交換器を蒸発器として使用する場合は、図2の矢印に示すように、冷媒はヘッダ1の下部にある冷媒出入口4からヘッダ1内に流入し、各伝熱管2に分配される。蒸発器にはガス冷媒と液冷媒が混ざりあった気液二相状態の冷媒が供給されるため、重力の影響によって、液冷媒がヘッダ1の下部に滞留し、ガス冷媒がヘッダ1の上部に上昇することから、ヘッダ1内部では、ガス冷媒と液冷媒が自然と上下に分離してしまう。この結果、ヘッダ1上部に接続された伝熱管2にはガス冷媒が多く流れ、ヘッダ1下部に接続された伝熱管2には液冷媒が多く流れることになる。この状況を上述した乾き度を用いて表現すると、ヘッダ1上部に接続された伝熱管2は乾き度が大きく、ヘッダ1下部に接続された伝熱管2は乾き度が小さい、ということになる。   On the other hand, when the heat exchanger is used as an evaporator, the refrigerant flows into the header 1 from the refrigerant inlet / outlet 4 at the lower part of the header 1 and is distributed to the heat transfer tubes 2 as shown by arrows in FIG. The Since the gas-liquid two-phase refrigerant in which the gas refrigerant and the liquid refrigerant are mixed is supplied to the evaporator, the liquid refrigerant stays at the lower part of the header 1 due to the influence of gravity, and the gas refrigerant is at the upper part of the header 1. Since it rises, the gas refrigerant and the liquid refrigerant are naturally separated vertically in the header 1. As a result, a large amount of gas refrigerant flows through the heat transfer tube 2 connected to the upper portion of the header 1, and a large amount of liquid refrigerant flows through the heat transfer tube 2 connected to the lower portion of the header 1. If this situation is expressed using the dryness described above, the heat transfer tube 2 connected to the upper portion of the header 1 has a high dryness, and the heat transfer tube 2 connected to the lower portion of the header 1 has a low dryness.

蒸発器は液冷媒の蒸発熱を利用して熱交換するものであるため、液冷媒の供給量が少なすぎる伝熱管2では、熱交換効率が低下する。一方で、液冷媒が多すぎる伝熱管2では、液冷媒が蒸発しきる前に冷媒が流出してしまい、下流にある圧縮機102の破壊を招く惧れがある。つまり、接続高さの異なる各伝熱管2の乾き度のバラつきを抑制し、何れの伝熱管においても同様の熱交換を実現することが、蒸発器の熱交換効率の向上、および、空気調和機の故障回避に寄与する。   Since the evaporator exchanges heat by using the evaporation heat of the liquid refrigerant, the heat exchange efficiency is lowered in the heat transfer tube 2 in which the supply amount of the liquid refrigerant is too small. On the other hand, in the heat transfer tube 2 having too much liquid refrigerant, the refrigerant flows out before the liquid refrigerant evaporates, which may cause destruction of the compressor 102 downstream. That is, it is possible to suppress variation in the dryness of the heat transfer tubes 2 having different connection heights, and to realize the same heat exchange in any heat transfer tube, thereby improving the heat exchange efficiency of the evaporator and the air conditioner. This contributes to avoiding failure.

図2に示した一般的なヘッダ1では、乾き度のバラつきを抑制するための手段が備わっていないことに加え、冷媒出入口4から流入してきた冷媒の流れ方向(図中の下から上に向かう方向)と、伝熱管2内の流れ方向(図中の左から右に向かう方向)が直交しており、伝熱管2に冷媒が流入しづらいことも各伝熱管2の乾き度がバラつく要因となる。   In the general header 1 shown in FIG. 2, in addition to not having means for suppressing the variation in dryness, the flow direction of the refrigerant flowing in from the refrigerant inlet / outlet 4 (from the bottom to the top in the figure) Direction) and the flow direction in the heat transfer tubes 2 (the direction from the left to the right in the figure) are orthogonal to each other, and it is difficult for the refrigerant to flow into the heat transfer tubes 2. It becomes.

以下では、この問題を解決する構成として本発明の実施例を説明する。   Below, the Example of this invention is described as a structure which solves this problem.

先ず、図3から図5を用いて、実施例1の空気調和機を説明する。なお、図16、図1、図2で説明した一般的な空気調和機と共通する点は説明を省略する。   First, the air conditioner of Example 1 is demonstrated using FIGS. 3-5. In addition, description is abbreviate | omitted about the point which is common in the general air conditioner demonstrated in FIG. 16, FIG. 1, FIG.

図3は、本実施例の流入側のヘッダ1と伝熱管の断面図である。ここに示すように、本実施例では、垂直に配置された略円筒状のヘッダ1の内部を、高さ方向に長い仕切板10によって、伝熱管2に冷媒を分配する、体積の大きい第一空間1a(仕切板10の右側空間)と、下方から供給された冷媒を第一空間1aに送る、体積の小さい第二空間1b(仕切板10の左側空間)に仕切っている。このように、仕切板10によってヘッダ1内部を仕切ることで、冷媒が上昇する第二空間1bの流路面積を減少させ、冷媒の流速を増速させることで、気液二相冷媒中の液冷媒をヘッダ1の上端まで輸送することができる。また、仕切板10には、第二空間1bから第一空間1aへ冷媒を移動させる複数の連通孔が高さ方向に所定間隔で設けられており、接続高さが異なる複数の伝熱管2の夫々の近傍に冷媒を供給できるようになっている。   FIG. 3 is a cross-sectional view of the header 1 and the heat transfer tube on the inflow side of the present embodiment. As shown here, in the present embodiment, the inside of the substantially cylindrical header 1 arranged vertically is distributed to the heat transfer tube 2 by the partition plate 10 that is long in the height direction. The space 1a (the right side space of the partition plate 10) and the second space 1b (the left space of the partition plate 10) having a small volume for sending the refrigerant supplied from below to the first space 1a are partitioned. Thus, by partitioning the inside of the header 1 by the partition plate 10, the flow area of the second space 1b in which the refrigerant rises is reduced, and the flow rate of the refrigerant is increased, so that the liquid in the gas-liquid two-phase refrigerant is increased. The refrigerant can be transported to the upper end of the header 1. Further, the partition plate 10 is provided with a plurality of communication holes for moving the refrigerant from the second space 1b to the first space 1a at predetermined intervals in the height direction, and the plurality of heat transfer tubes 2 having different connection heights. The refrigerant can be supplied to the vicinity of each.

なお、図3に示すヘッダ1の製造方法としては様々な方法が考えられるが、例えば、伝熱管挿入孔と仕切板挿入孔が開けられた略円筒状のヘッダ1に、複数の伝熱管2と、仕切板10を挿入し、それらを炉内でロウ付けすることで一体化する製造方法が挙げられる。   Various methods can be considered as a method of manufacturing the header 1 shown in FIG. 3. For example, a plurality of heat transfer tubes 2 are provided on a substantially cylindrical header 1 in which a heat transfer tube insertion hole and a partition plate insertion hole are opened. The manufacturing method which inserts the partition plate 10 and integrates them by brazing them in a furnace is mentioned.

次に、図4の断面図を用いて、略円筒状のヘッダ1内部での冷媒の流れ場を説明する。図4は、連通部を含む図3のAA平面での断面図であり、ここに示すように、仕切板10には、水平方向(幅方向)の中心を挟むように、一端側に寄った第一連通部20と、他端側に寄った第二連通部21が対に設けられている。これらの連通部を介して狭い第二空間1bから広い第一空間1aへと移動した冷媒50は、流路面積の拡大に伴い、第一空間1a内で減速される。また、各連通部を通過した冷媒50は、第一空間1aの内壁面に沿うように流れ、図中右端の仕切板10の対面位置で衝突し、流れの向きを仕切板10側へ変えて減速しながら、第一空間1a内にムラなく拡散する。   Next, the flow field of the refrigerant inside the substantially cylindrical header 1 will be described using the cross-sectional view of FIG. 4 is a cross-sectional view taken along the AA plane of FIG. 3 including the communication portion. As shown here, the partition plate 10 is closer to one end side so as to sandwich the center in the horizontal direction (width direction). A first communication part 20 and a second communication part 21 approaching the other end are provided in pairs. The refrigerant 50 that has moved from the narrow second space 1b to the wide first space 1a via these communicating portions is decelerated in the first space 1a as the flow path area increases. Further, the refrigerant 50 that has passed through each communication portion flows along the inner wall surface of the first space 1a, collides at the facing position of the partition plate 10 at the right end in the figure, and changes the flow direction to the partition plate 10 side. While decelerating, it diffuses evenly in the first space 1a.

図5は、ヘッダ1内に設置された仕切板10を第二空間1b側から見た断面図である。ここに示すように、第一連通部20と第二連通部21を、仕切板10の中心線を挟むように略線対称の配置とすることで、図4で説明したヘッダ1の壁面に沿った流れを実現できる。   FIG. 5 is a cross-sectional view of the partition plate 10 installed in the header 1 as viewed from the second space 1b side. As shown here, by arranging the first communication part 20 and the second communication part 21 in a substantially line symmetrical manner so as to sandwich the center line of the partition plate 10, the wall surface of the header 1 described in FIG. Along the flow.

また、第一連通部20と第二連通部21は、直上の伝熱管2の接続高さと、直下の伝熱管2の接続高さの間に設けられているため、連通部を流出した比較的高速の冷媒は、そのまま伝熱管2に流入することはなく、図4に一部を示した長い経路で十分に減速、拡散された後に、すなわち、第一空間1a内の何れの高さにおいても略均質な気液二相冷媒となってから、伝熱管2に流入するようになっている。なお、図5では、第一連通部20と第二連通部21を、上下の伝熱管2の略中間に配置したが、ヘッダ1に流入する冷媒の乾き度や流量に応じて、上下何れかの伝熱管2側に偏って、第一連通部20と第二連通部21を配置しても良い。   Moreover, since the 1st communication part 20 and the 2nd communication part 21 are provided between the connection height of the heat exchanger tube 2 immediately above and the connection height of the heat transfer pipe 2 directly below, the comparison which flowed out the communication part The high-speed refrigerant does not flow into the heat transfer tube 2 as it is, and is sufficiently decelerated and diffused by the long path shown in part in FIG. 4, that is, at any height in the first space 1a. In addition, after becoming a substantially homogeneous gas-liquid two-phase refrigerant, the refrigerant flows into the heat transfer tube 2. In FIG. 5, the first series communication portion 20 and the second communication portion 21 are arranged approximately in the middle of the upper and lower heat transfer tubes 2, but depending on the dryness and flow rate of the refrigerant flowing into the header 1, The first communication part 20 and the second communication part 21 may be arranged so as to be biased toward the heat transfer tube 2 side.

以上で説明したように、本実施例の空気調和機では、蒸発器のヘッダ1の内部を、冷媒を高速で上昇させる狭い空間と、冷媒を減速させてから伝熱管2に分配する広い空間に仕切るとともに、両空間を仕切る仕切板10の異なる高さ毎に一対の連通部を設けることで、第二空間1bで加速した気液二相冷媒を、第一空間1aで十分に減速、拡散させることができ、低速かつ略均質となった気液二相冷媒を複数の伝熱管2の各々に適切な量だけ供給できるため、各伝熱管2の乾き度のバラつきを抑制し、蒸発器としての熱交換効率を向上させることができる。   As described above, in the air conditioner of this embodiment, the inside of the header 1 of the evaporator is divided into a narrow space where the refrigerant is raised at a high speed and a wide space where the refrigerant is decelerated and then distributed to the heat transfer tubes 2. By partitioning and providing a pair of communicating portions at different heights of the partition plate 10 that partitions both spaces, the gas-liquid two-phase refrigerant accelerated in the second space 1b is sufficiently decelerated and diffused in the first space 1a. Since the gas-liquid two-phase refrigerant that has become low-speed and substantially homogeneous can be supplied to each of the plurality of heat transfer tubes 2 in an appropriate amount, variation in the dryness of each heat transfer tube 2 is suppressed, Heat exchange efficiency can be improved.

なお、本実施例では、仕切板10を長方形の平板としたが、第一空間1aと第二空間1bを形成し、冷媒が通過する第一連通部20と第二連通部21を設けることができるのであれば、部分的に厚さが変わるような部材や曲面で構成された部材で仕切板10を構成しても良いし、複数の部材を組み合わせたり、ヘッダ1と一体成型した仕切板10としても良い。   In this embodiment, the partition plate 10 is a rectangular flat plate. However, the first space 1a and the second space 1b are formed, and the first communication portion 20 and the second communication portion 21 through which the refrigerant passes are provided. If possible, the partition plate 10 may be composed of a member whose thickness is partially changed or a member composed of a curved surface, a plurality of members combined, or a partition plate integrally molded with the header 1 It may be 10.

また、本実施例では、図3のように、仕切板10を垂直に(重力方向に対して平行に)配置したが、伝熱管2毎の冷媒流量や乾き度を意図的に変えたい場合や、冷媒流量の大小に応じて、仕切板10を垂直から傾けても配置しても良い。なお、図4、図5では、第一連通部20と第二連通部21を線対称に配置したが、図4に例示した冷媒の流れ場を形成できるのであれば、一対の連通部を必ずしも線対象に設ける必要は無い。また、図3では、第一連通部20と第二連通部21からなる一対二孔の連通部を示したが、同一の高さに三つ以上の連通部を設ける構成としても良い。さらに、図5では伝熱管2の形状を扁平状としたが、丸管としても良く、扁平多穴管としても良い。   Further, in this embodiment, as shown in FIG. 3, the partition plate 10 is arranged vertically (parallel to the direction of gravity). However, when the refrigerant flow rate and the dryness of each heat transfer tube 2 are to be changed intentionally, Depending on the refrigerant flow rate, the partition plate 10 may be tilted from the vertical position. 4 and 5, the first communication part 20 and the second communication part 21 are arranged in line symmetry. However, if the refrigerant flow field illustrated in FIG. 4 can be formed, a pair of communication parts is provided. It is not always necessary to provide the line target. In FIG. 3, a pair of two-hole communication portions including the first communication portion 20 and the second communication portion 21 are shown, but three or more communication portions may be provided at the same height. Furthermore, although the shape of the heat transfer tube 2 is flat in FIG. 5, it may be a round tube or a flat multi-hole tube.

次に、図6を用いて、実施例2の空気調和機を説明する。なお、実施例1と共通する点は、重複説明を省略する。   Next, the air conditioner of Example 2 is demonstrated using FIG. In addition, duplication description is abbreviate | omitted about the point which is common in Example 1. FIG.

図6は、実施例2の仕切板10を第二空間1b側から見た断面図であり、第一連通部20と第二連通部21を、仕切板10の水平方向における端部に配置し、伝熱管2の幅よりも更に外側に配置している。第一連通部20と第二連通部21をこの様に配置することで、第二空間1bから第一空間1aに流入する冷媒は、実施例1の図4に示す冷媒流れ場よりも更に壁面に沿った状態で流れるため、第一連通部20と第二連通部21での損失を更に低減することができる。また、ヘッダ1に仕切板10をロウ付けによって固定する製造方法とする場合、ロウ付け面積を減少できるため、より容易に熱交換器を製造することが可能となる。   FIG. 6 is a cross-sectional view of the partition plate 10 according to the second embodiment when viewed from the second space 1b side, and the first series communication portion 20 and the second communication portion 21 are disposed at the end of the partition plate 10 in the horizontal direction. In addition, the heat transfer tube 2 is disposed outside the width. By arranging the first communication part 20 and the second communication part 21 in this way, the refrigerant flowing into the first space 1a from the second space 1b is further more than the refrigerant flow field shown in FIG. Since it flows in a state along the wall surface, the loss at the first communication part 20 and the second communication part 21 can be further reduced. Moreover, when it is set as the manufacturing method which fixes the partition plate 10 to the header 1 by brazing, since a brazing area can be reduced, it becomes possible to manufacture a heat exchanger more easily.

なお、ここで説明した構成は実施例1と組み合わせて用いても良く、例えば第一連通部20のみを仕切板10の水平方向における端部に配置することも可能である。   In addition, you may use the structure demonstrated here in combination with Example 1, For example, it is also possible to arrange | position only the 1st communicating part 20 in the edge part in the horizontal direction of the partition plate 10. For example, as shown in FIG.

次に、図7を用いて、実施例3の空気調和機を説明する。なお、上述の実施例と共通する点は、重複説明を省略する。   Next, the air conditioner of Example 3 will be described with reference to FIG. In addition, the description which overlaps with the above-mentioned Example is abbreviate | omitted.

図7は、実施例3の仕切板10を第二空間1b側から見た断面図である。本発明の効果を得るには、図4に示したように、第一空間1aの内面に沿って流れる一対の冷媒流れ場が生じれば良いため、必ずしも、実施例1、2のような一対の分離した連通部を設ける必要は無い。そこで、本実施例では、連通部として、図7に示すような横長孔22を設け、その両端から流出する冷媒によって、図4に示した冷媒の流れ場を形成できるようにした。   FIG. 7 is a cross-sectional view of the partition plate 10 according to the third embodiment as viewed from the second space 1b side. In order to obtain the effect of the present invention, as shown in FIG. 4, a pair of refrigerant flow fields that flow along the inner surface of the first space 1 a may be generated. There is no need to provide a separate communication part. Therefore, in the present embodiment, a laterally long hole 22 as shown in FIG. 7 is provided as the communicating portion, and the refrigerant flow field shown in FIG. 4 can be formed by the refrigerant flowing out from both ends thereof.

なお、図7では横長孔22の形状を長方形としたが、これが楕円形であっても構わない。また、第一連通部20と第二連通部21となる個所だけ、その寸法を横長孔22の短手方向の幅よりも拡大または縮小しても構わない。   In FIG. 7, the shape of the horizontally long hole 22 is a rectangle, but it may be an ellipse. Further, the dimensions of only the portions that become the first communication portion 20 and the second communication portion 21 may be enlarged or reduced more than the width of the laterally long hole 22 in the short direction.

図8は、実施例3の変形例の仕切板10を第二空間1b側から見た断面図である。このように、横長孔22をヘッダ1の壁面にまで拡大することで、実施例2で示した効果と同様の効果を得ることができる。   FIG. 8 is a cross-sectional view of the partition plate 10 according to a modification of the third embodiment when viewed from the second space 1b side. Thus, by expanding the horizontally long hole 22 to the wall surface of the header 1, the same effect as the effect shown in the second embodiment can be obtained.

次に、図9を用いて、実施例4の空気調和機を説明する。なお、上述の実施例と共通する点は、重複説明を省略する。   Next, the air conditioner of Example 4 is demonstrated using FIG. In addition, the description which overlaps with the above-mentioned Example is abbreviate | omitted.

図9は、実施例4の仕切板10を第二空間1b側から見た断面図である。図9では、第一連通部20と第二連通部21を、ヘッダ1の高さ方向に長い縦長孔とすることで、第二空間1bから第一空間1aに流入する冷媒が高さ方向に容易に拡散されるようにしている。   FIG. 9 is a cross-sectional view of the partition plate 10 according to the fourth embodiment as viewed from the second space 1b side. In FIG. 9, the refrigerant flowing into the first space 1 a from the second space 1 b in the height direction is formed by making the first communication portion 20 and the second communication portion 21 into a vertically long hole that is long in the height direction of the header 1. To be easily diffused.

図10は、実施例4の変形例の仕切板10を第二空間1b側から見た断面図である。図9では、縦長孔の高さを伝熱管2の間隔より小さくしているが、図10では、縦長孔の高さを伝熱管2の間隔より大きくしている。例えば、縦長孔の高さを仕切板10の高さと等しくすると、ヘッダ1に仕切板10をロウ付けで固定する場合、ロウ付け箇所がヘッダ1の上下壁面と接する面のみとなり、製造が容易となる。   FIG. 10 is a cross-sectional view of the partition plate 10 according to a modification of the fourth embodiment when viewed from the second space 1b side. In FIG. 9, the height of the vertically long holes is made smaller than the interval between the heat transfer tubes 2, but in FIG. 10, the height of the vertically long holes is made larger than the interval between the heat transfer tubes 2. For example, if the height of the vertically long hole is equal to the height of the partition plate 10, when the partition plate 10 is fixed to the header 1 by brazing, the brazed portion is only a surface in contact with the upper and lower wall surfaces of the header 1, and manufacturing is easy. Become.

図11は、実施例4の他の変形例の仕切板10を第二空間1b側から見た断面図である。ここに示すように、実施例3の変形例の横長孔22と、実施例4の縦長穴を組み合わせた連通部としても良い。この構成によれば、横長孔22による作用と、縦長穴による作用を併せ持った蒸発器を得ることができる。   FIG. 11 is a cross-sectional view of the partition plate 10 according to another modification of the fourth embodiment when viewed from the second space 1b side. As shown here, it is good also as a communicating part which combined the horizontally long hole 22 of the modification of Example 3, and the vertically long hole of Example 4. FIG. According to this configuration, an evaporator having both the action of the horizontally long hole 22 and the action of the vertically long hole can be obtained.

次に、図12を用いて、実施例5の空気調和機を説明する。なお、上述の実施例と共通する点は、重複説明を省略する。   Next, the air conditioner of Example 5 is demonstrated using FIG. In addition, the description which overlaps with the above-mentioned Example is abbreviate | omitted.

図12は、実施例5の仕切板および冷媒の流れ場を上方から見た断面図である。ここに示すように、本実施例では、実施例1の図4に比べ、第二空間1bの流路面積を更に狭くすると同時に、第一空間1aの流路面積を更に広くするように、湾曲した仕切板11を設置しており、第二空間1bを流れる冷媒50の流速を更に加速し、第一空間1aに流出する冷媒50の流速を更に減速させている。   FIG. 12 is a cross-sectional view of the partition plate and the refrigerant flow field of Example 5 as viewed from above. As shown here, in this embodiment, compared with FIG. 4 of the first embodiment, the flow area of the second space 1b is further narrowed, and at the same time, the flow area of the first space 1a is further increased. The partition plate 11 is installed to further accelerate the flow rate of the refrigerant 50 flowing through the second space 1b and further decelerate the flow rate of the refrigerant 50 flowing out to the first space 1a.

図12では、平板を湾曲させるような形としたが、ヘッダ1に流入してくる冷媒の乾き度や流量に応じて第一空間1aの流路面積のみを減らしたいときは、第二空間1bの流路面積のみを減らすように仕切板11の板厚を部分的に厚くすることも可能である。   In FIG. 12, the flat plate is curved. However, when it is desired to reduce only the flow area of the first space 1a according to the dryness and flow rate of the refrigerant flowing into the header 1, the second space 1b is used. It is also possible to partially increase the thickness of the partition plate 11 so as to reduce only the flow path area.

次に、図13を用いて、実施例6の空気調和機を説明する。なお、上述の実施例と共通する点は、重複説明を省略する。   Next, the air conditioner of Example 6 will be described with reference to FIG. In addition, the description which overlaps with the above-mentioned Example is abbreviate | omitted.

図13は、実施例6の仕切板および冷媒の流れ場を上方から見た断面図である。ここに示すように、本実施例では、略L字状に配置された仕切板12によって、第二空間1bが空間1cと空間1dに分割されている。ヘッダ1に供給された気液二相冷媒は、ヘッダ1の下部で予めガス冷媒51と液冷媒52に分離され、ガス冷媒51を空間1cに、液冷媒52を空間1dに、分けて供給できるようになっている。そして、第一連通部20を通ったガス冷媒51と第二連通部21を通った液冷媒52が、第一空間1a内で所望の比で混合される。このとき、空間1cと空間1dの流路面積、または、第一連通部20と第二連通部21の開口面積を変えることで、ガス冷媒51と液冷媒52の混合比を調整でき、第一空間1a内における冷媒の乾き度を調整できる。   FIG. 13: is sectional drawing which looked at the partition plate and refrigerant | coolant flow field of Example 6 from upper direction. As shown here, in the present embodiment, the second space 1b is divided into a space 1c and a space 1d by the partition plate 12 arranged in a substantially L shape. The gas-liquid two-phase refrigerant supplied to the header 1 is separated in advance into a gas refrigerant 51 and a liquid refrigerant 52 at the lower part of the header 1, and the gas refrigerant 51 can be supplied separately to the space 1c and the liquid refrigerant 52 to the space 1d. It is like that. And the gas refrigerant | coolant 51 which passed the 1st communication part 20, and the liquid refrigerant | coolant 52 which passed the 2nd communication part 21 are mixed by desired ratio in the 1st space 1a. At this time, the mixing ratio of the gas refrigerant 51 and the liquid refrigerant 52 can be adjusted by changing the flow path area of the space 1c and the space 1d or the opening area of the first communication part 20 and the second communication part 21, The dryness of the refrigerant in one space 1a can be adjusted.

なお、図13では、仕切板12を二枚の平板で構成することで、第二空間1bを二つの空間に分割する例を示したが、分割する空間の数や形状に応じて、仕切板12の板厚を部分的に変化させてもよく、仕切板12を所望の曲面で構成しても構わない。   In addition, in FIG. 13, although the example which divides | segments the 2nd space 1b into two spaces was shown by comprising the partition plate 12 by two flat plates, according to the number and shape of the space to divide | segment, The plate thickness of 12 may be partially changed, and the partition plate 12 may be formed of a desired curved surface.

次に、図14を用いて、実施例7の空気調和機を説明する。なお、上述の実施例と共通する点は、重複説明を省略する。   Next, the air conditioner of Example 7 is demonstrated using FIG. In addition, the description which overlaps with the above-mentioned Example is abbreviate | omitted.

図14は、実施例7の仕切板10を第二空間1b側から見た断面図である。ここに示すように、本実施例では、扁平形状の伝熱管2を水平から傾斜させた状態でヘッダ1に接続しており、第一連通部20と第二連通部21を、両者を結ぶ直線が伝熱管2の傾斜と略平行となるように、高さを異ならせて配置することで、連結部から流出した冷媒が傾斜接続された伝熱管2に流入しやすくなっている。   FIG. 14 is a cross-sectional view of the partition plate 10 according to the seventh embodiment when viewed from the second space 1b side. As shown here, in the present embodiment, the flat heat transfer tube 2 is connected to the header 1 while being inclined from the horizontal, and the first communication portion 20 and the second communication portion 21 are connected to each other. By disposing the straight lines so as to be substantially parallel to the inclination of the heat transfer tube 2, the refrigerant flowing out from the connecting portion can easily flow into the heat transfer tubes 2 connected in an inclined manner.

図15は、実施例7の変形例の仕切板10を第二空間1b側から見た断面図である。ここに示すように、本実施例の連通部は、実施例7の第一連通部20と第二連通部21を繋げた横長孔22としており、この横長孔22を伝熱管2の傾斜と平行に配置することで、連結部から流出した冷媒が傾斜接続された伝熱管2に流入しやすくなっている。   FIG. 15 is a cross-sectional view of the partition plate 10 according to a modification of the seventh embodiment when viewed from the second space 1b side. As shown here, the communicating portion of the present embodiment is a horizontally long hole 22 that connects the first communicating portion 20 and the second communicating portion 21 of the seventh embodiment, and this horizontally long hole 22 is defined as the inclination of the heat transfer tube 2. By arrange | positioning in parallel, the refrigerant | coolant which flowed out from the connection part becomes easy to flow in into the heat exchanger tube 2 inclinedly connected.

なお、図14、図15のように、連通部を傾斜した伝熱管2と平行に配置することが理想であるが、必ずしも平行となる必要は無い。同様に、扁平形状となる伝熱管2が傾斜していない場合や伝熱管2の形状が例えば丸管であっても本実施例の適用は可能である。また、ヘッダ1の形状やヘッダ1内部の流れ場に合わせて第一連通部20と第二連通部21を傾斜させることも可能である。   As shown in FIGS. 14 and 15, it is ideal to arrange the communication portion in parallel with the inclined heat transfer tube 2, but it is not necessarily required to be parallel. Similarly, the present embodiment can be applied even when the heat transfer tube 2 having a flat shape is not inclined or the shape of the heat transfer tube 2 is, for example, a round tube. Moreover, it is also possible to incline the 1st communicating part 20 and the 2nd communicating part 21 according to the shape of the header 1 or the flow field inside the header 1.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成について、他の構成の追加、削除、置換をすることが可能である。   The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations with respect to the configuration of each embodiment.

1 ヘッダ、
1a 第一空間、
1b 第二空間、
1c、1d 空間、
2 伝熱管、
3 フィン、
4 冷媒出入口、
10、11、12 仕切板、
20 第一連通部、
21 第二連通部、
22 横長孔、
50 冷媒、
51 ガス冷媒、
52 液冷媒、
100 空気調和機、
101 室外機、
102 圧縮機、
103 四方弁、
104 室外熱交換器、
105 室外ファンモータ、
106 室外ファン、
107 絞り装置、
108 室内機、
109 室内熱交換器、
110 室内ファンモータ、
111 室内ファン、
112a、112b 接続配管
1 header,
1a first space,
1b second space,
1c, 1d space,
2 heat transfer tubes,
3 Fins,
4 Refrigerant entrance / exit,
10, 11, 12 partition plate,
20 First communication part,
21 Second communication part,
22 Horizontal hole,
50 refrigerant,
51 gas refrigerant,
52 liquid refrigerant,
100 air conditioner,
101 outdoor unit,
102 compressor,
103 Four-way valve,
104 outdoor heat exchanger,
105 outdoor fan motor,
106 outdoor fan,
107 aperture device,
108 indoor units,
109 indoor heat exchanger,
110 Indoor fan motor,
111 indoor fans,
112a, 112b Connection piping

Claims (7)

室外熱交換器と、室内熱交換器と、圧縮機と、膨張弁を備えた空気調和機であって、
前記何れかの熱交換器は、筒状の流入側ヘッダと、筒状の流出側ヘッダと、両ヘッダ間を接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を有し、
前記複数の伝熱管の各々は、断面が扁平形状であり、
各伝熱管を水平より傾斜させた状態で前記両ヘッダに接続するとともに、
垂直に配置された前記筒状の流入側ヘッダの内部は、
垂直に配置された仕切板によって、
前記複数の伝熱管に冷媒を分配する第一空間と、
下方から供給された冷媒を前記第一空間に送る第二空間と、に仕切られており、
該仕切板には、
水平方向の中心より一端側に寄った第一連通部と、
水平方向の中心より他端側に寄った第二連通部と、が水平方向の中心を挟んで対に設けられており、
前記第一連通部と前記第二連通部を、前記伝熱管の傾斜に合わせて高さを異ならせて配置したことを特徴とする空気調和機。
An air conditioner including an outdoor heat exchanger, an indoor heat exchanger, a compressor, and an expansion valve,
Any one of the heat exchangers includes a cylindrical inflow side header, a cylindrical outflow side header, a plurality of heat transfer tubes connecting the two headers, and a fin that expands a heat transfer area of the heat transfer tubes, Have
Each of the plurality of heat transfer tubes has a flat cross section.
While connecting each heat transfer tube to both headers in a state inclined from the horizontal,
The inside of the cylindrical inflow header arranged vertically is
By the partition plates arranged vertically,
A first space for distributing the refrigerant to the plurality of heat transfer tubes;
And is partitioned into a second space that sends the refrigerant supplied from below to the first space,
In the partition plate,
A first series of passages that are closer to one end than the horizontal center;
A second communicating portion that is closer to the other end side than the horizontal center, and is provided in pairs across the horizontal center ;
The air conditioner characterized in that the first communication part and the second communication part are arranged with different heights according to the inclination of the heat transfer tube .
請求項1に記載の空気調和機において、
前記第一連通部と前記第二連通部は、前記仕切板の水平方向の端部に設けられていることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The air conditioner characterized in that the first communication part and the second communication part are provided at a horizontal end of the partition plate.
請求項1または2に記載の空気調和機において、
前記仕切板には、前記第一連通部と前記第二連通部を繋げた横長孔が形成されることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
The air conditioner, wherein the partition plate is formed with a laterally long hole connecting the first communication part and the second communication part.
請求項1に記載の空気調和機において、
前記第一連通部と前記第二連通部は、前記流入側ヘッダの高さ方向に長い縦長孔であることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The air conditioner, wherein the first communication part and the second communication part are vertically long holes in a height direction of the inflow side header.
請求項1に記載の空気調和機において、
前記第一連通部と前記第二連通部は、上側の伝熱管と下側の伝熱管の略中間の高さに設けられていることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The air conditioner characterized in that the first communication part and the second communication part are provided at a substantially intermediate height between the upper heat transfer tube and the lower heat transfer tube.
請求項1に記載の空気調和機において、
前記仕切板は、前記第二空間側の面が、前記第二空間の流路面積を縮小する凸形状であることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The air conditioner, wherein the partition plate has a convex shape that reduces a surface area of the second space on a surface of the second space.
請求項1に記載の空気調和機において、
前記仕切板の前記第二空間側の面によって、前記第二空間が複数に分割されることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The air conditioner characterized in that the second space is divided into a plurality by the surface of the partition plate on the second space side.
JP2017064906A 2017-03-29 2017-03-29 Air conditioner Active JP6419882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064906A JP6419882B2 (en) 2017-03-29 2017-03-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064906A JP6419882B2 (en) 2017-03-29 2017-03-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2018169062A JP2018169062A (en) 2018-11-01
JP6419882B2 true JP6419882B2 (en) 2018-11-07

Family

ID=64020094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064906A Active JP6419882B2 (en) 2017-03-29 2017-03-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP6419882B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115069A (en) * 2019-01-18 2020-07-30 パナソニックIpマネジメント株式会社 Heat exchanger
JP7132138B2 (en) * 2019-01-25 2022-09-06 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle equipment
EP3922941A4 (en) 2019-02-04 2022-02-16 Mitsubishi Electric Corporation Heat exchanger and air-conditioner provided with same
US11898781B2 (en) * 2019-03-05 2024-02-13 Mitsubishi Electric Corporation Gas header, heat exchanger, and refrigeration cycle apparatus
WO2020245982A1 (en) * 2019-06-06 2020-12-10 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP6766980B1 (en) * 2019-10-15 2020-10-14 三菱電機株式会社 Air conditioner equipped with heat exchanger and heat exchanger
JP7414984B2 (en) * 2020-05-22 2024-01-16 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2022037450A (en) * 2020-08-25 2022-03-09 サンデン・アドバンストテクノロジー株式会社 Heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488623A (en) * 1944-07-31 1949-11-22 Modine Mfg Co Heat exchanger
US5067561A (en) * 1990-11-30 1991-11-26 General Motors Corporation Radiator tank oil cooler
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
CN101592448A (en) * 2009-03-25 2009-12-02 江苏康泰热交换设备工程有限公司 Heat exchanger and method for distributing fluid in heat exchanger
CN101691981B (en) * 2009-07-23 2011-12-07 三花丹佛斯(杭州)微通道换热器有限公司 Multi-channel heat exchanger with improved refrigerant fluid distribution uniformity
JP5508818B2 (en) * 2009-11-09 2014-06-04 株式会社ケーヒン・サーマル・テクノロジー Evaporator
CN101858672B (en) * 2010-06-29 2011-09-28 三花丹佛斯(杭州)微通道换热器有限公司 Heat exchanger with improved heat exchange property
CN102384692A (en) * 2010-09-01 2012-03-21 珠海格力电器股份有限公司 Collecting pipe and heat exchanger with same
KR101317377B1 (en) * 2011-11-21 2013-10-22 현대자동차주식회사 Condenser for vehicle
JP2014066503A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat exchanger, and freezer
CN104154801B (en) * 2014-08-14 2016-05-04 丹佛斯微通道换热器(嘉兴)有限公司 Header and heat exchanger

Also Published As

Publication number Publication date
JP2018169062A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6419882B2 (en) Air conditioner
KR101462176B1 (en) Heat exchanger
WO2018173356A1 (en) Heat exchanger and air conditioner using same
WO2017149989A1 (en) Heat exchanger and air conditioner
WO2020161761A1 (en) Heat exchanger and air-conditioner provided with same
US10041710B2 (en) Heat exchanger and air conditioner
JP2018162900A (en) Heat exchanger and air conditioner including the same
WO2018138972A1 (en) Heat exchanger and air conditioning apparatus
JP2011127831A (en) Heat exchanger and refrigerating cycle device including the same
US7163052B2 (en) Parallel flow evaporator with non-uniform characteristics
KR20170067351A (en) Heat exchanger
JP2016095094A (en) Heat exchanger and refrigeration cycle device
JP5716496B2 (en) Heat exchanger and air conditioner
WO2015045105A1 (en) Heat exchanger and air conditioner using same
JP2021188795A (en) Heat exchanger
WO2021192902A1 (en) Heat exchanger
WO2021192903A1 (en) Heat exchanger
CN111750573B (en) Heat exchanger flow divider
JP7210744B2 (en) Heat exchanger and refrigeration cycle equipment
JP6915714B1 (en) Heat exchanger
JP2020115070A (en) Heat exchanger
JP7327213B2 (en) Heat exchanger
JP7146139B1 (en) heat exchangers and air conditioners
JP7327214B2 (en) Heat exchanger
JP7310655B2 (en) Heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150